Search Results

Search found 15061 results on 603 pages for 'modified date'.

Page 394/603 | < Previous Page | 390 391 392 393 394 395 396 397 398 399 400 401  | Next Page >

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • WebCenter Spaces 11g PS2 Template Customization

    - by javier.ductor(at)oracle.com
    Recently, we have been involved in a WebCenter Spaces customization project. Customer sent us a prototype website in HTML, and we had to transform Spaces to set the same look&feel as in the prototype.Protoype:First of all, we downloaded a Virtual Machine with WebCenter Spaces 11g PS2, same version as customer's. The next step was to download ExtendWebCenterSpaces application. This is a webcenter application that customizes several elements of WebCenter Spaces: templates, skins, landing page, etc. jDeveloper configuration is needed, we followed steps described in Extended Guide, this blog was helpful too. . After that, we deployed the application using WebLogic console, we created a new group space and assigned the ExtendedWebCenterSpaces template (portalCentricSiteTemplate) to it. The result was this:As you may see there is a big difference with the prototype, which meant a lot of work to do from our side.So we needed to create a new Spaces template with its skin.Using jDeveloper, we created a new template based on the default template. We removed all menus we did not need and inserted 'include'  tags for header, breadcrumb and footers. Each of these elements was defined in an isolated jspx file.In the beginning, we faced a problem: we had to add code from prototype (in plain HTML) to jspx templates (JSF language). We managed to workaround this issue using 'verbatim' tags with 'CDATA' surrounding HTML code in header, breadcrumb and footers.Once the template was modified, we added css styles to the default skin. So we had some styles from portalCentricSiteTemplate plus styles from customer's prototype.Then, we re-deployed the application, assigned this template to a new group space and checked the result. After testing, we usually found issues, so we had to do some modifications in the application, then it was necessary to re-deploy the application and restart Spaces server. Due to this fact, the testing process takes quite a bit of time.Added to the template and skin customization, we also customized the Landing Page using this application and Members task flow using another application: SpacesTaskflowCustomizationApplication. I will talk about this task flow customization in a future entry.After some issues and workarounds, eventually we managed to get this look&feel in Spaces:P.S. In this customization I was working with Francisco Vega and Jose Antonio Labrada, consultants from Oracle Malaga International Consulting Centre.

    Read the article

  • Put Unused Tabs on Hold in Firefox

    - by Asian Angel
    If you have a lot of content heavy webpages open in Firefox, it soon adds up on memory usage. The BarTab extension puts unused tabs on hold and keeps them unloaded until you are ready to access them. Before When you have a few tabs open things are not so bad. But if you have something like 30+ tabs open then Firefox is definitely going to have a much larger memory footprint. For the moment all six tabs are active in our example… After Once the extension is installed you can see quite a difference in the tab bar. Five of the six websites are literally on hold and display as about:blank. In the screenshot above all six tabs were restored from a previous session, but to put new tabs on hold the preferences will have to be modified. Notice that you can have active tabs placed on hold if you do not access them within a set time (“x” seconds, minutes, hours, or days). You may also add your favorite websites as exclusions. Newly opened tabs can now be placed on hold until you are ready for them. Need to place a currently accessed tab on hold? Use the tab context menu to unload the page. Once you use the tab context menu to place a tab on hold your browser will shift over to the closest active tab. You will notice the difference in memory usage when you put a lot of intensive pages on hold. Conclusion If you keep a high number of content heavy webpages open in Firefox then the BarTab extension will help reduce memory usage while browsing. Links Download the BarTab extension (Mozilla Add-ons) Similar Articles Productive Geek Tips Quick Tip: Use Tab Characters in Textarea Boxes in FirefoxYou Really Want to Completely Disable Tabs in Firefox?Quick Hits: 11 Firefox Tab How-TosQuick Tip: Save Windows and Tabs When Restarting FirefoxMake Firefox Use Multiple Rows of Tabs TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 VMware Workstation 7 Acronis Online Backup Gmail Button Addon (Firefox) Hyperwords addon (Firefox) Backup Outlook 2010 Daily Motivator (Firefox) FetchMp3 Can Download Videos & Convert Them to Mp3 Use Flixtime To Create Video Slideshows

    Read the article

  • SQL SERVER – Creating All New Database with Full Recovery Model

    - by pinaldave
    Sometimes, complex problems have very simple solutions. Let us see the following email which I received recently. “Hi Pinal, In our system when we create new database, by default, they are all created with the Simple Recovery Model. We have to manually change the recovery model after we create the database. We used the following simple T-SQL code: CREATE DATABASE dbname. We are very frustrated with this situation. We want all our databases to have the Full Recovery Model option by default. We are considering the following methods; please suggest the most efficient one among them. 1) Creating a Policy; when it is violated, the database model can be fixed 2) Triggers at Server Level 3) Automated Job which goes through all the databases and checks their recovery model; if the DBA has not changed the model, then the job will list the Databases and change their recovery model Also, we have a situation where we need a database in the Simple Recovery Model as well – how to white list them? Please suggest the best method.” Indeed, an interesting email! The answer to their question, i.e., which is the best method to fit their needs (white list, default, etc)? It will be NONE of the above. Here is the solution in one line and also the easiest way: Just go to your Model database: Path in SSMS >> Databases > System Databases >> model >> Right Click Properties >> Options >> Recovery Model - Select Full from dropdown. Every newly created database takes its base template from the Model Database. If you create a custom SP in the Model Database, when you create a new database, it will automatically exist in that database. Any database that was already created before making changes in the Model Database will not be affected at all. Creating Policy is also a good method, and I will blog about this in a separate blog post, but looking at current specifications of the reader, I think the Model Database should be modified to have a Full Recovery Option. While writing this blog post, I remembered my another blog post where the model database log file was growing drastically even though there were no transactions SQL SERVER – Log File Growing for Model Database – model Database Log File Grew Too Big. NOTE: Please do not touch the Model Database unnecessary. It is a strict “No.” If you want to create an object that you need in all the databases, then instead of creating it in model database, I suggest that you create a new database called maintenance and create the object there. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, Readers Question, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • How to convince my boss that quality is a good thing to have in code?

    - by Kristof Claes
    My boss came to me today to ask me if we could implement a certain feature in 1.5 days. I had a look at it and told him that 2 to 3 days would be more realistic. He then asked me: "And what if we do it quick and dirty?" I asked him to explain what he meant with "quick and dirty". It turns out, he wants us to write code as quickly as humanly possible by (for example) copying bits and pieces from other projects, putting all code in the code-behind of the WebForms pages, stop caring about DRY and SOLID and assuming that the code and functionalities will never ever have to be modified or changed. What's even worse, he doesn't want us do it for just this one feature, but for all the code we write. We can make more profit when we do things quick and dirty. Clients don't want to pay for you taking into account that something might change in the future. The profits for us are in delivering code as quick as possible. As long as the application does what it needs to do, the quality of the code doesn't matter. They never see the code. I have tried to convince him that this is a bad way to think as the manager of a software company, but he just wouldn't listen to my arguments: Developer motivation: I explained that it is hard to keep developers motivated when they are constantly under pressure of unrealistic deadlines and budget to write sloppy code very quickly. Readability: When a project gets passed on to another developer, cleaner and better structured code will be easier to read and understand. Maintainability: It is easier, safer and less time consuming to adapt, extend or change well written code. Testability: It is usually easier to test and find bugs in clean code. My co-workers are as baffled as I am by my boss' standpoint, but we can't seem to get to him. He keeps on saying that by making things more quickly, we can sell more projects, ask a lower price for them while still making a bigger profit. And in the end these projects pay the developer's salaries. What more can I say to make him see he is wrong? I want to buy him copies of Peopleware and The Mythical Man-Month, but I have a feeling they won't change his mind either. A lot of you will probably say something like "Run! Get out of there now!" or "I'd quit!", but that's not really an option since .NET web development jobs are rather rare in the region where I live...

    Read the article

  • What are the alternatives to "overriding a method" when using composition instead of inheritance?

    - by Sebastien Diot
    If we should favor composition over inheritance, the data part of it is clear, at least for me. What I don't have a clear solution to is how overwriting methods, or simply implementing them if they are defined in a pure virtual form, should be implemented. An obvious way is to wrap the instance representing the base-class into the instance representing the sub-class. But the major downsides of this are that if you have say 10 methods, and you want to override a single one, you still have to delegate every other methods anyway. And if there were several layers of inheritance, you have now several layers of wrapping, which becomes less and less efficient. Also, this only solve the problem of the object "client"; when another object calls the top wrapper, things happen like in inheritance. But when a method of the deepest instance, the base class, calls it's own methods that have been wrapped and modified, the wrapping has no effect: the call is performed by it's own method, instead of by the highest wrapper. One extreme alternative that would solve those problems would be to have one instance per method. You only wrap methods that you want to overwrite, so there is no pointless delegation. But now you end up with an incredible amount of classes and object instance, which will have a negative effect on memory usage, and this will require a lot more coding too. So, are there alternatives (preferably alternatives that can be used in Java), that: Do not result in many levels of pointless delegation without any changes. Make sure that not only the client of an object, but also all the code of the object itself, is aware of which implementation of method should be called. Does not result in an explosion of classes and instances. Ideally puts the extra memory overhead that is required at the "class"/"particular composition" level (static if you will), rather than having every object pay the memory overhead of composition. My feeling tells me that the instance representing the base class should be at the "top" of the stack/layers so it receives calls directly, and can process them directly too if they are not overwritten. But I don't know how to do it that way.

    Read the article

  • How to include an apache library with my opensource code?

    - by OscarRyz
    I have this opensource code with MIT license that uses an Apache 2.0 licensed library. I want to include this in my project, so it can be built right away. In the point 4 of that license explains how to redistribute it: excerpt: 4 . Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: You must give any other recipients of the Work or Derivative Works a copy of this License; and You must cause any modified files to carry prominent notices stating that You changed the files; and You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. I'm not creating a derivative work ( I plan to provide it as it is ). I don't have a NOTICE file, just my my own LICENSE.txt file. Question: Where should I put something along the lines: "This project uses Xyz library distributed under Apache2.0 ..."? What's recommented? Should I provide the apache license file too? Or would be enough if I just say "Find the license online here...http://www.apache.org/licenses/LICENSE-2.0.html" I hope someone who has done this in the past may shed some light on the matter.

    Read the article

  • Questions re: Eclipse Jobs API

    - by BenCole
    Similar to http://stackoverflow.com/questions/8738160/eclipse-jobs-api-for-a-stand-alone-swing-project This question mentions the Jobs API from the Eclipse IDE: ...The disadvantage of the pre-3.0 approach was that the user had to wait until an operation completed before the UI became responsive again. The UI still provided the user the ability to cancel the currently running operation but no other work could be done until the operation completed. Some operations were performed in the background (resource decoration and JDT file indexing are two such examples) but these operations were restricted in the sense that they could not modify the workspace. If a background operation did try to modify the workspace, the UI thread would be blocked if the user explicitly performed an operation that modified the workspace and, even worse, the user would not be able to cancel the operation. A further complication with concurrency was that the interaction between the independent locking mechanisms of different plug-ins often resulted in deadlock situations. Because of the independent nature of the locks, there was no way for Eclipse to recover from the deadlock, which forced users to kill the application... ...The functionality provided by the workspace locking mechanism can be broken down into the following three aspects: Resource locking to ensure multiple operations did not concurrently modify the same resource Resource change batching to ensure UI stability during an operation Identification of an appropriate time to perform incremental building With the introduction of the Jobs API, these areas have been divided into separate mechanisms and a few additional facilities have been added. The following list summarizes the facilities added. Job class: support for performing operations or other work in the background. ISchedulingRule interface: support for determining which jobs can run concurrently. WorkspaceJob and two IWorkspace#run() methods: support for batching of delta change notifications. Background auto-build: running of incremental build at a time when no other running operations are affecting resources. ILock interface: support for deadlock detection and recovery. Job properties for configuring user feedback for jobs run in the background. The rest of this article provides examples of how to use the above-mentioned facilities... In regards to above API, is this an implementation of a particular design pattern? Which one?

    Read the article

  • const vs. readonly for a singleton

    - by GlenH7
    First off, I understand there are folk who oppose the use of singletons. I think it's an appropriate use in this case as it's constant state information, but I'm open to differing opinions / solutions. (See The singleton pattern and When should the singleton pattern not be used?) Second, for a broader audience: C++/CLI has a similar keyword to readonly with initonly, so this isn't strictly a C# type question. (Literal field versus constant variable in C++/CLI) Sidenote: A discussion of some of the nuances on using const or readonly. My Question: I have a singleton that anchors together some different data structures. Part of what I expose through that singleton are some lists and other objects, which represent the necessary keys or columns in order to connect the linked data structures. I doubt that anyone would try to change these objects through a different module, but I want to explicitly protect them from that risk. So I'm currently using a "readonly" modifier on those objects*. I'm using readonly instead of const with the lists as I read that using const will embed those items in the referencing assemblies and will therefore trigger a rebuild of those referencing assemblies if / when the list(s) is/are modified. This seems like a tighter coupling than I would want between the modules, but I wonder if I'm obsessing over a moot point. (This is question #2 below) The alternative I see to using "readonly" is to make the variables private and then wrap them with a public get. I'm struggling to see the advantage of this approach as it seems like wrapper code that doesn't provide much additional benefit. (This is question #1 below) It's highly unlikely that we'll change the contents or format of the lists - they're a compilation of things to avoid using magic strings all over the place. Unfortunately, not all the code has converted over to using this singleton's presentation of those strings. Likewise, I don't know that we'd change the containers / classes for the lists. So while I normally argue for the encapsulations advantages a get wrapper provides, I'm just not feeling it in this case. A representative sample of my singleton public sealed class mySingl { private static volatile mySingl sngl; private static object lockObject = new Object(); public readonly Dictionary<string, string> myDict = new Dictionary<string, string>() { {"I", "index"}, {"D", "display"}, }; public enum parms { ABC = 10, DEF = 20, FGH = 30 }; public readonly List<parms> specParms = new List<parms>() { parms.ABC, parms.FGH }; public static mySingl Instance { get { if(sngl == null) { lock(lockObject) { if(sngl == null) sngl = new mySingl(); } } return sngl; } } private mySingl() { doSomething(); } } Questions: Am I taking the most reasonable approach in this case? Should I be worrying about const vs. readonly? is there a better way of providing this information?

    Read the article

  • apt-get install is not able to access /etc

    - by HorusKol
    I put together an ubuntu 12.04 server a couple of weeks ago and everything seemed fine until this morning. Suddenly, I'm having trouble installing new packages - at first I thought there was something wrong with tinyproxy and so I tried installing squid instead. However, I get similar results: Starting tinyproxy: tinyproxy: Could not open config file "/etc/tinyproxy.conf".\ ... /var/lib/dpkg/info/squid3.postinst: 1: /var/lib/dpkg/info/squid3.postinst: cannot open /etc/squid3/squid.conf: No such file It seems that apt-get is not creating the configuration files needed for these programs. I haven't modified any configuration or user groups since the last successful update/install of packages. /etc is present, and is populated with a nice healthy tree of configuration files. It is owned and grouped to root, and has the properties drwxr-xr-x - all the files and folders inside seem to be fine to, as far as I can tell. I've even been able to edit/save a couple as sudo. Full output from installing tinyproxy: Reading package lists... Done Building dependency tree Reading state information... Done The following NEW packages will be installed: tinyproxy 0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded. Need to get 0 B/61.6 kB of archives. After this operation, 201 kB of additional disk space will be used. Selecting previously unselected package tinyproxy. (Reading database ... 58916 files and directories currently installed.) Unpacking tinyproxy (from .../tinyproxy_1.8.3-1_amd64.deb) ... Processing triggers for ureadahead ... Processing triggers for man-db ... Setting up tinyproxy (1.8.3-1) ... Starting tinyproxy: tinyproxy: Could not open config file "/etc/tinyproxy.conf". invoke-rc.d: initscript tinyproxy, action "start" failed. dpkg: error processing tinyproxy (--configure): subprocess installed post-installation script returned error exit status 70 Errors were encountered while processing: tinyproxy E: Sub-process /usr/bin/dpkg returned an error code (1) Result of strace after installation: 18467 open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3 18467 open("/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3 18467 read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\200\30\2\0\0\0\0\0"..., 832) = 832 18467 open("/etc/tinyproxy.conf", O_RDONLY) = -1 ENOENT (No such file or directory)

    Read the article

  • ASP.NET Hosting :: ASP.NET File Upload Control

    - by mbridge
    The asp.net FileUpload control allows a user to browse and upload files to the web server. From developers perspective, it is as simple as dragging and dropping the FileUpload control to the aspx page. An extra control, like a Button control, or some other control is needed, to actually save the file. <asp:FileUploadID="FileUpload1"runat="server"/> <asp:ButtonID="B1"runat="server"Text="Save"OnClick="B1_Click"/> By default, the FileUpload control allows a maximum of 4MB file to be uploaded and the execution timeout is 110 seconds. These properties can be changed from within the web.config file’s httpRuntime section. The maxRequestLength property determines the maximum file size that can be uploaded. The executionTimeout property determines the maximum time for execution. <httpRuntimemaxRequestLength="8192"executionTimeout="220"/> From code behind, the mime type, size of the file, file name and the extension of the file can be obtained. The maximum file size that can be uploaded can be obtained and modified using the System.Web.Configuration.HttpRuntimeSection class. Files can be alternatively saved using the System.IO.HttpFileCollection class. This collection class can be populated using the Request.Files property. The collection contains HttpPostedFile class which contains a reference to the class. using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls; using System.IO; using System.Configuration; using System.Web.Configuration;   namespace WebApplication1 {     public partial class WebControls : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           //Using FileUpload control to upload and save files         protected void B1_Click(object sender, EventArgs e)         {             if (FileUpload1.HasFile && FileUpload1.PostedFile.ContentLength > 0)             {                 //mime type of the uploaded file                 string mimeType = FileUpload1.PostedFile.ContentType;                   //size of the uploaded file                 int size = FileUpload1.PostedFile.ContentLength; // bytes                   //extension of the uploaded file                 string extension = System.IO.Path.GetExtension(FileUpload1.FileName);                                  //save file                 string path = Server.MapPath("path");                                 FileUpload1.SaveAs(path + FileUpload1.FileName);                              }             //maximum file size allowed             HttpRuntimeSection rt = new HttpRuntimeSection();             rt.MaxRequestLength = rt.MaxRequestLength * 2;             int length = rt.MaxRequestLength;                     //execution timeout             TimeSpan ts = rt.ExecutionTimeout;             double secomds = ts.TotalSeconds;           }           //Using Request.Files to save files         private void AltSaveFile()         {             HttpFileCollection coll = Request.Files;             for (int i = 0; i < coll.Count; i++)             {                 HttpPostedFile file = coll[i];                   if (file.ContentLength > 0)                     ;//do something             }         }     } }

    Read the article

  • Internal Mutation of Persistent Data Structures

    - by Greg Ros
    To clarify, when I mean use the terms persistent and immutable on a data structure, I mean that: The state of the data structure remains unchanged for its lifetime. It always holds the same data, and the same operations always produce the same results. The data structure allows Add, Remove, and similar methods that return new objects of its kind, modified as instructed, that may or may not share some of the data of the original object. However, while a data structure may seem to the user as persistent, it may do other things under the hood. To be sure, all data structures are, internally, at least somewhere, based on mutable storage. If I were to base a persistent vector on an array, and copy it whenever Add is invoked, it would still be persistent, as long as I modify only locally created arrays. However, sometimes, you can greatly increase performance by mutating a data structure under the hood. In more, say, insidious, dangerous, and destructive ways. Ways that might leave the abstraction untouched, not letting the user know anything has changed about the data structure, but being critical in the implementation level. For example, let's say that we have a class called ArrayVector implemented using an array. Whenever you invoke Add, you get a ArrayVector build on top of a newly allocated array that has an additional item. A sequence of such updates will involve n array copies and allocations. Here is an illustration: However, let's say we implement a lazy mechanism that stores all sorts of updates -- such as Add, Set, and others in a queue. In this case, each update requires constant time (adding an item to a queue), and no array allocation is involved. When a user tries to get an item in the array, all the queued modifications are applied under the hood, requiring a single array allocation and copy (since we know exactly what data the final array will hold, and how big it will be). Future get operations will be performed on an empty cache, so they will take a single operation. But in order to implement this, we need to 'switch' or mutate the internal array to the new one, and empty the cache -- a very dangerous action. However, considering that in many circumstances (most updates are going to occur in sequence, after all), this can save a lot of time and memory, it might be worth it -- you will need to ensure exclusive access to the internal state, of course. This isn't a question about the efficacy of such a data structure. It's a more general question. Is it ever acceptable to mutate the internal state of a supposedly persistent or immutable object in destructive and dangerous ways? Does performance justify it? Would you still be able to call it immutable? Oh, and could you implement this sort of laziness without mutating the data structure in the specified fashion?

    Read the article

  • SQL SERVER – Concurrancy Problems and their Relationship with Isolation Level

    - by pinaldave
    Concurrency is simply put capability of the machine to support two or more transactions working with the same data at the same time. This usually comes up with data is being modified, as during the retrieval of the data this is not the issue. Most of the concurrency problems can be avoided by SQL Locks. There are four types of concurrency problems visible in the normal programming. 1)      Lost Update – This problem occurs when there are two transactions involved and both are unaware of each other. The transaction which occurs later overwrites the transactions created by the earlier update. 2)      Dirty Reads – This problem occurs when a transactions selects data that isn’t committed by another transaction leading to read the data which may not exists when transactions are over. Example: Transaction 1 changes the row. Transaction 2 changes the row. Transaction 1 rolls back the changes. Transaction 2 has selected the row which does not exist. 3)      Nonrepeatable Reads – This problem occurs when two SELECT statements of the same data results in different values because another transactions has updated the data between the two SELECT statements. Example: Transaction 1 selects a row, which is later on updated by Transaction 2. When Transaction A later on selects the row it gets different value. 4)      Phantom Reads – This problem occurs when UPDATE/DELETE is happening on one set of data and INSERT/UPDATE is happening on the same set of data leading inconsistent data in earlier transaction when both the transactions are over. Example: Transaction 1 is deleting 10 rows which are marked as deleting rows, during the same time Transaction 2 inserts row marked as deleted. When Transaction 1 is done deleting rows, there will be still rows marked to be deleted. When two or more transactions are updating the data, concurrency is the biggest issue. I commonly see people toying around with isolation level or locking hints (e.g. NOLOCK) etc, which can very well compromise your data integrity leading to much larger issue in future. Here is the quick mapping of the isolation level with concurrency problems: Isolation Dirty Reads Lost Update Nonrepeatable Reads Phantom Reads Read Uncommitted Yes Yes Yes Yes Read Committed No Yes Yes Yes Repeatable Read No No No Yes Snapshot No No No No Serializable No No No No I hope this 400 word small article gives some quick understanding on concurrency issues and their relation to isolation level. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Patterns for Handling Changing Property Sets in C++

    - by Bhargav Bhat
    I have a bunch "Property Sets" (which are simple structs containing POD members). I'd like to modify these property sets (eg: add a new member) at run time so that the definition of the property sets can be externalized and the code itself can be re-used with multiple versions/types of property sets with minimal/no changes. For example, a property set could look like this: struct PropSetA { bool activeFlag; int processingCount; /* snip few other such fields*/ }; But instead of setting its definition in stone at compile time, I'd like to create it dynamically at run time. Something like: class PropSet propSetA; propSetA("activeFlag",true); //overloading the function call operator propSetA("processingCount",0); And the code dependent on the property sets (possibly in some other library) will use the data like so: bool actvFlag = propSet["activeFlag"]; if(actvFlag == true) { //Do Stuff } The current implementation behind all of this is as follows: class PropValue { public: // Variant like class for holding multiple data-types // overloaded Conversion operator. Eg: operator bool() { return (baseType == BOOLEAN) ? this->ToBoolean() : false; } // And a method to create PropValues various base datatypes static FromBool(bool baseValue); }; class PropSet { public: // overloaded[] operator for adding properties void operator()(std::string propName, bool propVal) { propMap.insert(std::make_pair(propName, PropVal::FromBool(propVal))); } protected: // the property map std::map<std::string, PropValue> propMap; }; This problem at hand is similar to this question on SO and the current approach (described above) is based on this answer. But as noted over at SO this is more of a hack than a proper solution. The fundamental issues that I have with this approach are as follows: Extending this for supporting new types will require significant code change. At the bare minimum overloaded operators need to be extended to support the new type. Supporting complex properties (eg: struct containing struct) is tricky. Supporting a reference mechanism (needed for an optimization of not duplicating identical property sets) is tricky. This also applies to supporting pointers and multi-dimensional arrays in general. Are there any known patterns for dealing with this scenario? Essentially, I'm looking for the equivalent of the visitor pattern, but for extending class properties rather than methods. Edit: Modified problem statement for clarity and added some more code from current implementation.

    Read the article

  • Difference between EJB Persist & Merge operation

    - by shantala.sankeshwar
    This article gives the difference between EJB Persist & Merge operations with scenarios.Use Case Description Users working on EJB persist & merge operations often have this question in mind " When merge can create new entity as well as modify existing entity,then why do we have 2 separate operations - persist & merge?" The reason is very simple.If we use merge operation to create new entity & if the entity exists then it does not throw any exception,but persist throws exception if the entity already exists.Merge should be used to modify the existing entity.The sql statement that gets executed on persist operation is insert statement.But in case of merge first select statement gets executed & then update sql statement gets executed.Scenario 1: Persist operation to create new Emp recordLet us suppose that we have a Java EE Web Application created with Entities from Emp table & have created session bean with data control. Drop Emp Object(Expand SessionEJBLocal->Constructors under Data Controls) as ADF Parameter form in jspx pageDrop persistEmp(Emp) as ADF CommandButton & provide #{bindings.EmpIterator.currentRow.dataProvider} as the value for emp parameter.Then run this page & provide values for Emp,click on 'persistEmp' button.New Emp record gets created.So when we execute persist operation only insert sql statement gets executed :INSERT INTO EMP (EMPNO, COMM, HIREDATE, ENAME, JOB, DEPTNO, SAL, MGR) VALUES (?, ?, ?, ?, ?, ?, ?, ?)    bind => [2, null, null, e2, null, 10, null, null]Scenario 2: Merge operation to modify existing Emp recordLet us suppose that we have a Java EE Web Application created with Entities from Emp table & have created session bean with data control.Drop empFindAll() Object as ADF form on jspx page.Drop mergeEmp(Emp) operation as commandButton & provide #{bindings.EmpIterator.currentRow.dataProvider} as the value for emp parameter.Then run this page & modify values for Emp record,click on 'mergeEmp' button.The respective Emp record gets modified.So when we execute merge operation select & update sql statements gets executed :SELECT EMPNO, COMM, HIREDATE, ENAME, JOB, DEPTNO, SAL, MGR FROM EMP WHERE (EMPNO = ?) bind => [7566]UPDATE EMP SET ENAME = ? WHERE (EMPNO = ?) bind => [KINGS, 7839]

    Read the article

  • Keybindings for individual letter keys (not modifier-combinations) on a GtkTextView widget (Gtk3 and PyGI)

    - by monotasker
    I've been able to set several keybord shortcuts for a GtkTextView and a GtkTextEntry using the new css provider system. I'm finding, though, that I only seem to be able to establish keybindings for combinations including a modifier key. The widget doesn't respond to any bindings I set up that use: the delete key the escape key individual letter or punctuation keys alone Here's the code where I set up the css provider for the keybindings: #set up style context keys = Gtk.CssProvider() keys.load_from_path(os.path.join(data_path, 'keybindings.css')) #set up style contexts and css providers widgets = {'window': self.window, 'vbox': self.vbox, 'toolbar': self.toolbar, 'search_entry': self.search_entry, 'paned': self.paned, 'notelist_treeview': self.notelist_treeview, 'notelist_window': self.notelist_window, 'notetext_window': self.notetext_window, 'editor': self.editor, 'statusbar': self.statusbar } for l, w in widgets.iteritems(): w.get_style_context().add_provider(keys, Gtk.STYLE_PROVIDER_PRIORITY_USER) Then in keybindings.css this is an example of what works: @binding-set gtk-vi-text-view { bind "<ctrl>b" { "move-cursor" (display-lines, -5, 0) }; /* 5 lines up */ bind "<ctrl>k" { "move-cursor" (display-lines, -1, 0) }; /* down */ bind "<ctrl>j" { "move-cursor" (display-lines, 1, 0) }; /* up */ } Part of what I'm trying to do is just add proper delete-key function to the text widgets (right now the delete key does nothing at all). So if I add a binding like one of these, nothing happens: bind "Delete" { "delete-selection" () }; bind "Delete" { "delete-from-cursor" (chars, 1) }; The other part of what I want to do is more elaborate. I want to set up something like Vim's command and visual modes. So at the moment I'm just playing around with (a) setting the widget to editable=false by hitting the esc key; and (b) using homerow letters to move the cursor (as a proof-of-concept exercise). So far there's no response from the escape key or from the letter keys, even though the bindings work when I apply them to modifier-key combinations. For example, I do this in the css for the text-widget: bind "j" { "move-cursor" (display-lines, 1, 0) }; /* down */ bind "k" { "move-cursor" (display-lines, -1, 0) }; /* up */ bind "l" { "move-cursor" (logical-positions, 1, 0) }; /* right */ bind "h" { "move-cursor" (logical-positions, -1, 0) }; /* left */ but none of these bindings does anything, even if other bindings in the same set are respected. What's especially odd is that the vim-like movement bindings above are respected when I attach them to a GtkTreeView widget for navigating the tree-view options: @binding-set gtk-vi-tree-view { bind "j" { "move-cursor" (display-lines, 1) }; /* selection down */ bind "k" { "move-cursor" (display-lines, -1) }; /* selection up */ } So it seems like there are limitations or overrides of some kind on keybindings for the TextView widget (and for the del key?), but I can't find documentation of anything like that. Are these just things that can't be done with the css providers? If so, what are my alternatives for non-modified keybindings? Thanks.

    Read the article

  • Adding Column to a SQL Server Table

    - by Dinesh Asanka
    Adding a column to a table is  common task for  DBAs. You can add a column to a table which is a nullable column or which has default values. But are these two operations are similar internally and which method is optimal? Let us start this with an example. I created a database and a table using following script: USE master Go --Drop Database if exists IF EXISTS (SELECT 1 FROM SYS.databases WHERE name = 'AddColumn') DROP DATABASE AddColumn --Create the database CREATE DATABASE AddColumn GO USE AddColumn GO --Drop the table if exists IF EXISTS ( SELECT 1 FROM sys.tables WHERE Name = 'ExistingTable') DROP TABLE ExistingTable GO --Create the table CREATE TABLE ExistingTable (ID BIGINT IDENTITY(1,1) PRIMARY KEY CLUSTERED, DateTime1 DATETIME DEFAULT GETDATE(), DateTime2 DATETIME DEFAULT GETDATE(), DateTime3 DATETIME DEFAULT GETDATE(), DateTime4 DATETIME DEFAULT GETDATE(), Gendar CHAR(1) DEFAULT 'M', STATUS1 CHAR(1) DEFAULT 'Y' ) GO -- Insert 100,000 records with defaults records INSERT INTO ExistingTable DEFAULT VALUES GO 100000 Before adding a Column Before adding a column let us look at some of the details of the database. DBCC IND (AddColumn,ExistingTable,1) By running the above query, you will see 637 pages for the created table. Adding a Column You can add a column to the table with following statement. ALTER TABLE ExistingTable Add NewColumn INT NULL Above will add a column with a null value for the existing records. Alternatively you could add a column with default values. ALTER TABLE ExistingTable Add NewColumn INT NOT NULL DEFAULT 1 The above statement will add a column with a 1 value to the existing records. In the below table I measured the performance difference between above two statements. Parameter Nullable Column Default Value CPU 31 702 Duration 129 ms 6653 ms Reads 38 116,397 Writes 6 1329 Row Count 0 100000 If you look at the RowCount parameter, you can clearly see the difference. Though column is added in the first case, none of the rows are affected while in the second case all the rows are updated. That is the reason, why it has taken more duration and CPU to add column with Default value. We can verify this by several methods. Number of Pages The number of data pages can be obtained by using DBCC IND command. Though, this an undocumented dbcc command, many experts are ok to use this command in production. However, since there is no official word from Microsoft, use this “at your own risk”. DBCC IND (AddColumn,ExistingTable,1) Before Adding the Columns 637 Adding a Column with NULL 637 Adding a column with DEFAULT value 1270 This clearly shows that pages are physically modified. Please note, a high value indicated in the Adding a column with DEFAULT value  column is also a result of page splits. Continues…

    Read the article

  • How to recover from finite-state-machine breakdown?

    - by Earl Grey
    My question may seems very scientific but I think it's a common problem and seasoned developers and programmers hopefully will have some advice to avoid the problem I mention in title. Btw., what I describe bellow is a real problem I am trying to proactively solve in my iOS project, I want to avoid it at all cost. By finite state machine I mean this I have a UI with a few buttons, several session states relevant to that UI and what this UI represents, I have some data which values are partly displayed in the UI, I receive and handle some external triggers (represented by callbacks from sensors). I made state diagrams to better map the relevant scenarios that are desirable and alowable in that UI and application. As I slowly implement the code, the app starts to behave more and more like it should. However, I am not very confident that it is robust enough. My doubts come from watching my own thinking and implementation process as it goes. I was confident that I had everything covered, but it was enough to make a few brute tests in the UI and I quickly realized that there are still gaps in the behavior ..I patched them. However, as each component depends and behaves based on input from some other component, a certain input from user or some external source trigers a chain of events, state changes..etc. I have several components and each behave like this Trigger received on input - trigger and its sender analyzed - output something (a message, a state change) based on analysis The problem is, this is not completely selfcontained, and my components (a database item, a session state, some button's state)...COULD be changed, influenced, deleted, or otherwise modified, outside the scope of the event-chain or desirable scenario. (phone crashes, battery is empty phone turn of suddenly) This will introduce a nonvalid situation into the system, from which the system potentially COULD NOT BE ABLE to recover. I see this (althought people do not realize this is the problem) in many of my competitors apps that are on apple store, customers write things like this "I added three documents, and after going there and there, i cannot open them, even if a see them." or "I recorded videos everyday, but after recording a too log video, I cannot turn of captions on them.., and the button for captions doesn't work".. These are just shortened examples, customers often describe it in more detail..from the descriptions and behavior described in them, I assume that the particular app has a FSM breakdown. So the ultimate question is how can I avoid this, and how to protect the system from blocking itself? EDIT I am talking in the context of one viewcontroller's view on the phone, I mean one part of the application. I Understand the MVC pattern, I have separate modules for distinct functionality..everything I describe is relevant to one canvas on the UI.

    Read the article

  • A new name for unit tests

    - by Will
    I never used to like unit testing. I always thought it increased the amount of work I had to do. Turns out, that's only true in terms of the actual number of lines of code you write and furthermore, this is completely offset by the increase in the number of lines of useful code that you can write in an hour with tests and test driven development. Now I love unit tests as they allow me to write useful code, that quite often works first time! (knock on wood) I have found that people are reluctant to do unit tests or start a project with test driven development if they are under strict time-lines or in an environment where others don't do it, so they don't. Kinda like, a cultural refusal to even try. I think one of the most powerful things about unit testing is the confidence that it gives you to undertake refactoring. It also gives new found hope, that I can give my code to someone else to refactor/improve, and if my unit tests still work, I can use the new version of the library that they modified, pretty much, without fear. It's this last aspect of unit testing that I think needs a new name. The unit test is more like a contract of what this code should do now, and in the future. When I hear the word testing, I think of mice in cages, with multiple experiments done on them to see the effectiveness of a compound. This is not what unit testing is, we're not trying out different code to see what is the most affective approach, we're defining what outputs we expect with what inputs. In the mice example, unit tests are more like the definitions of how the universe will work as opposed to the experiments done on the mice. Am I on crack or does anyone else see this refusal to do testing and do they think it's a similar reason they don't want to do it? What reasons do you / others give for not testing? What do you think their motivations are in not unit testing? And as a new name for unit testing that might get over some of the objections, how about jContract? (A bit Java centric I know :), or Unit Contracts?

    Read the article

  • how to update child records when updating the Master table using Linq [closed]

    - by user20358
    I currently use a general repositry class that can update only a single table like so public abstract class MyRepository<T> : IRepository<T> where T : class { protected IObjectSet<T> _objectSet; protected ObjectContext _context; public MyRepository(ObjectContext Context) { _objectSet = Context.CreateObjectSet<T>(); _context = Context; } public IQueryable<T> GetAll() { return _objectSet.AsQueryable(); } public IQueryable<T> Find(Expression<Func<T, bool>> filter) { return _objectSet.Where(filter); } public void Add(T entity) { _objectSet.AddObject(entity); _context.ObjectStateManager.ChangeObjectState(entity, System.Data.EntityState.Added); _context.SaveChanges(); } public void Update(T entity) { _context.ObjectStateManager.ChangeObjectState(entity, System.Data.EntityState.Modified); _context.SaveChanges(); } public void Delete(T entity) { _objectSet.Attach(entity); _context.ObjectStateManager.ChangeObjectState(entity, System.Data.EntityState.Deleted); _objectSet.DeleteObject(entity); _context.SaveChanges(); } } For every table class generated by my EDMX designer I create another class like this public class CustomerRepo : MyRepository<Customer> { public CustomerRepo (ObjectContext context) : base(context) { } } for any updates that I need to make to a particular table I do this: Customer CustomerObj = new Customer(); CustomerObj.Prop1 = ... CustomerObj.Prop2 = ... CustomerObj.Prop3 = ... CustomerRepo.Update(CustomerObj); This works perfectly well when I am updating just to the specific table called Customer. Now if I need to also update each row of another table which is a child of Customer called Orders what changes do I need to make to the class MyRepository. Orders table will have multiple records for a Customer record and multiple fields too, say for example Field1, Field2, Field3. So my questions are: 1.) If I only need to update Field1 of the Orders table for some rows based on a condition and Field2 for some other rows based on a different condition then what changes I need to do? 2.) If there is no such condition and all child rows need to be updated with the same value for all rows then what changes do I need to do? Thanks for taking the time. Look forward to your inputs...

    Read the article

  • Producing a smooth mesh from density cloud and marching cubes

    - by Wardy
    Based on my results from this question I decided to build myself a 3D noise map containing float values in place of my existing boolean point values. The effect I'm trying to produce is something like this, rather than typical rolling hills; which should explain the "missing cubes" in the image below. If I render my density map in normal "minecraft mode" (1 block per point in the density map) varying the size of the cube based on the value in my density map (floats in the range 0 to 1) I get something like this: I'm now happy that I can produce a density map for the marching cubes algorithm (which will need a little tweaking) but for some reason when I run it through my implementation it's not producing what I expect. My problem is that I'm getting something like the first image in this answer to my previous question, when I want to achieve the effect in the second image. Upon further investigation I can't see how marching cubes does the "move vertex along the edge" type logic (i.e. the difference between the two images on my previous link). I see that it does do some interpolation, but I'm not convinced I have the correct understanding of what I think it should do, because the code in question appears to give the same result regardless of whether I use boolean or float values. I took the code from here which is a C# implementation of marching cubes, but instead of using the MarchingCubesPrimitive I modified it to accept an object of type IDrawable, containing lists for the various collections (vertices, normals, UVs, indices), the logic was otherwise untouched. My understanding is that given a very low isovalue the accuracy level of the surface being rendered should increase, so in short "less 45 degree slows more rolling hills" type mesh output. However this isn't what I'm seeing. Have I missed something or is the implementation flawed and need to be fixed? EDIT: A little more detail on what I am seeing when I "marching cube" the data. Ok so firstly, ignore the fact that the meshes created by the chunks don't "connect" (i'll probably raise another question about this later). Then look at the shaping of the island, it's too ... square, from the voxels rendered as boxes you get the impression there's a clean soft gradual hill and yet from the image there are sharp falling edges even in the most central areas where the gradient in the first image looks the most smooth. The data is "regenerated" each time I run this so no 2 islands come out the same, and it's purely random so not based on noise, but still, how can it look so smooth in 1 image and so not smooth in the other?

    Read the article

  • SQL SERVER – A Brief Note on SET TEXTSIZE

    - by pinaldave
    Here is a small conversation I received. I thought though an old topic, indeed a thought provoking for the moment. Question: Is there any difference between LEFT function and SET TEXTSIZE? I really like this small but interesting question. The question does not specify the difference between usage or performance. Anyway we will quickly take a look at how TEXTSIZE works. You can run the following script to see how LEFT and SET TEXTSIZE works. USE TempDB GO -- Create TestTable CREATE TABLE MyTable (ID INT, MyText VARCHAR(MAX)) GO INSERT MyTable (ID, MyText) VALUES(1, REPLICATE('1234567890', 100)) GO -- Select Data SELECT ID, MyText FROM MyTable GO -- Using Left SELECT ID, LEFT(MyText, 10) MyText FROM MyTable GO -- Set TextSize SET TEXTSIZE 10; SELECT ID, MyText FROM MyTable; SET TEXTSIZE 2147483647 GO -- Clean up DROP TABLE MyTable GO Now let us see the usage result which we receive from both of the example. If you are going to ask what you should do – I really do not know. I can tell you where I will use either of the same. LEFT seems to be easy to use but again if you like to do extra work related to SET TEXTSIZE go for it. Here is how I will use SET TEXTSIZE. If I am selecting data from in my SSMS for testing or any other non production related work from a large table which has lots of columns with varchar data, I will consider using this statement to reduce the amount of the data which is retrieved in the result set. In simple word, for testing purpose I will use it. On the production server, there should be a specific reason to use the same. Here is my candid opinion – I do not think they can be directly comparable even though both of them give the exact same result. LEFT is applicable only on the column of a single SELECT statement. where it is used but it SET TEXTSIZE applies to all the columns in the SELECT and follow up SELECT statements till the SET TEXTSIZE is not modified again in the session. Uncomparable! I hope this sample example gives you idea how to use SET TEXTSIZE in your daily use. I would like to know your opinion about how and when do you use this feature. Please leave a comment. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • SQL SERVER – Template Browser – A Very Important and Useful Feature of SSMS

    - by pinaldave
    Let me start today’s blog post with a direction question. How many of you have ever used Template Browser? Template Browser is a very important and useful feature of SQL Server Management Studio (SSMS). Every time when I am talking about SQL Server there is always someone comes up with the question, why there is no step by step procedure included in SSMS for features. Honestly every time I get this question, the question I ask back is How many of you have ever used Template Browser? I think the answer to this question is most of the time either no or we have not heard of the feature. One of the people asked me back – have you ever written about it on your blog? I have not yet written about it. Basically there is nothing much to write about it. It is pretty straight forward feature, like any other feature and it is indeed difficult to elaborate. However, I will try to give a quick introduction to this feature. Templates are like a quick cheat sheet or quick reference. Templates are available to create objects like databases, tables, views, indexes, stored procedures, triggers, statistics, and functions. Templates are also available for Analysis Services as well. The template scripts contain parameters to help you customize the code. You can Replace Template Parameters dialog box to insert values into the script. Additionally users can create new custom templates as well with folder structure. To open a template from Template Explorer Go to View menu >> Template Explorer or type CTRL+ALT+L. You will find a list of categories click on any category and expand the folder structure. For our sample example let us expand Index Folder. In this folder you will notice the various T-SQL Scripts. These scripts can be opened by double click or can be dragged to editor area and modified as needed. Sample template is now available in the query editor area with all the necessary parameter place folder. You can replace the same parameter by typing either CTRL+SHIFT+M or by going to Query Menu >> Specify Values for Template Parameters. In this screen it will show  Specify Values for Template Parameters dialog box, accept the value or replace it with a new value. This will now get your script ready to go. Check it one more time and change the script to fit your requirement. I personally use template explorer for two things. First one is obviously for templates but the hidden one and an important one is for learning new features and T-SQL commands. There is so much to learn and so little time. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • ASP.NET Membership Password Hash -- .NET 3.5 to .NET 4 Upgrade Surprise!

    - by David Hoerster
    I'm in the process of evaluating how my team will upgrade our product from .NET 3.5 SP1 to .NET 4. I expected the upgrade to be pretty smooth with very few, if any, upgrade issues. To my delight, the upgrade wizard said that everything upgraded without a problem. I thought I was home free, until I decided to build and run the application. A big problem was staring me in the face -- I couldn't log on. Our product is using a custom ASP.NET Membership Provider, but essentially it's a modified SqlMembershipProvider with some additional properties. And my login was failing during the OnAuthenticate event handler of my ASP.NET Login control, right where it was calling my provider's ValidateUser method. After a little digging, it turns out that the password hash that the membership provider was using to compare against the stored password hash in the membership database tables was different. I compared the password hash from the .NET 4 code line, and it was a different generated hash than my .NET 3.5 code line. (Tip -- when upgrading, always keep a valid debug copy of your app handy in case you have to step through a lot of code.) So it was a strange situation, but at least I knew what the problem was. Now the question was, "Why was it happening?" Turns out that a breaking change in .NET 4 is that the default hash algorithm changed to SHA256. Hey, that's great -- stronger hashing algorithm. But what do I do with all the hashed passwords in my database that were created using SHA1? Well, you can make two quick changes to your app's web.config and everything will be OK. Basically, you need to override the default HashAlgorithmTypeproperty of your membership provider. Here are the two places to do that: 1. At the beginning of your element, add the following element: <system.web> <machineKey validation="SHA1" /> ... </system.web> 2. On your element under , add the following hashAlgorithmType attribute: <system.web> <membership defaultProvider="myMembership" hashAlgorithmType="SHA1"> ... </system.web> After that, you should be good to go! Hope this helps.

    Read the article

  • Your interesting code tricks/ conventions? [closed]

    - by Paul
    What interesting conventions, rules, tricks do you use in your code? Preferably some that are not so popular so that the rest of us would find them as novelties. :) Here's some of mine... Input and output parameters This applies to C++ and other languages that have both references and pointers. This is the convention: input parameters are always passed by value or const reference; output parameters are always passed by pointer. This way I'm able to see at a glance, directly from the function call, what parameters might get modified by the function: Inspiration: Old C code int a = 6, b = 7, sum = 0; calculateSum(a, b, &sum); Ordering of headers My typical source file begins like this (see code below). The reason I put the matching header first is because, in case that header is not self-sufficient (I forgot to include some necessary library, or forgot to forward declare some type or function), a compiler error will occur. // Matching header #include "example.h" // Standard libraries #include <string> ... Setter functions Sometimes I find that I need to set multiple properties of an object all at once (like when I just constructed it and I need to initialize it). To reduce the amount of typing and, in some cases, improve readability, I decided to make my setters chainable: Inspiration: Builder pattern class Employee { public: Employee& name(const std::string& name); Employee& salary(double salary); private: std::string name_; double salary_; }; Employee bob; bob.name("William Smith").salary(500.00); Maybe in this particular case it could have been just as well done in the constructor. But for Real WorldTM applications, classes would have lots more fields that should be set to appropriate values and it becomes unmaintainable to do it in the constructor. So what about you? What personal tips and tricks would you like to share?

    Read the article

< Previous Page | 390 391 392 393 394 395 396 397 398 399 400 401  | Next Page >