Search Results

Search found 18865 results on 755 pages for 'distinct values'.

Page 404/755 | < Previous Page | 400 401 402 403 404 405 406 407 408 409 410 411  | Next Page >

  • HTML actual page link

    - by lore3d
    Hi all, I'm building a website, and i need to know the actual page address in which the user is in, in order to take users in the same page after login. The problem is that every page is generated from variables passed by url and query string, so I dont't know how to recover every variable and assign to it the correct value. How to recover variables name and assign them the correct values? Thanks lore (sorry for my English)

    Read the article

  • Javascript Date: Ensure getMinutes(), getHours(), getSeconds() puts 0 in front if necessary

    - by Mega Matt
    Hi all, Looking for a creative way to be sure values that come from the getHours, getMinutes, and getSeconds() method for the javascript Date object return "06" instead of 6 (for example). Are there any parameters that I don't know about? Obviously I could write a function that does it by checking the length and prepending a "0" if need be, but I thought there might be something more streamlined than that. Thanks.

    Read the article

  • Sorting by value with ORDER BY?

    - by Kevin
    For clarification, are you able to use MySQL this way to sort? ORDER BY CompanyID = XXX DESC What I am trying to do is use one sql query to sort everything where X = Y, in this case, where CompanyID = XXX. All values where CompanyID is not XXX should come after all the results where CompanyID = XXX. I don't want to limit my query but I do want to sort a particular company above other listings.

    Read the article

  • Timer (NSTimer) won't work...why?

    - by eco_bach
    Hi I have the following, can anyone familiar with NSTimer tell me why it isn't working?? I've tried various values for an interval but no luck. self.timer = [NSTimer scheduledTimerWithTimeInterval:.5 target:self selector:@selector(update:) userInfo:nil repeats:YES]; And then my selector method - (void)update:(NSTimer*)timer { //DOESN"T TRACE OUT! NSLog(@" update:theTimer and userInfo = %@",timer.userInfo); }

    Read the article

  • toFixed(2) - math round ?

    - by adrien334
    Hi, I would like to find a function that will return this kind of formatted values : 1.5555 => 1.55 1.5556 => 1.56 1.5554 => 1.55 1.5651 => 1.56 toFixed() and math round return this value : 1.5651.fixedTo(2) => 1.57 This will be usefull for money rounding.

    Read the article

  • requestFocus() in java?

    - by Venkats
    In JTable, if you are inserting values to that row of 4 in first column, Then the focus goes to first row and second column by default. I want to focus the next column of the same row( ie., row 4). How to set requestFocus() in JTable by row wise.?

    Read the article

  • Connecting Id field with name field

    - by sts
    Hi, Am having a table with quetion_id , nominees and vote_count. In which the values for question_id and nominees are prepopulated from other tables with vote_count as zero. If the users select some nominees the vote count should be incresed by one. The problem is How to connect the question_id and nominees like for this question_id this nominee is selected . can some one give example for this situation..

    Read the article

  • without wrapping jQuery search result

    - by uzay95
    ASP.NET is changing id, name values according to control's parent control name. That's why i am searching id with JQUERY as below. // $ is looking to the end of "id" attribute of input elements $("input[id$='cbAddToNews']") Only one element is returning by jQuery. But when i want to change the attribute, I'm using this syntax: $($("input[id$='cbAddToNews']")[0]).show() Is there any way to do this without wrapping it with $(...[0]) ?

    Read the article

  • Understanding Request Validation in ASP.NET MVC 3

    - by imran_ku07
         Introduction:             A fact that you must always remember "never ever trust user inputs". An application that trusts user inputs may be easily vulnerable to XSS, XSRF, SQL Injection, etc attacks. XSS and XSRF are very dangerous attacks. So to mitigate these attacks ASP.NET introduced request validation in ASP.NET 1.1. During request validation, ASP.NET will throw HttpRequestValidationException: 'A potentially dangerous XXX value was detected from the client', if he found, < followed by an exclamation(like <!) or < followed by the letters a through z(like <s) or & followed by a pound sign(like &#123) as a part of query string, posted form and cookie collection. In ASP.NET 4.0, request validation becomes extensible. This means that you can extend request validation. Also in ASP.NET 4.0, by default request validation is enabled before the BeginRequest phase of an HTTP request. ASP.NET MVC 3 moves one step further by making request validation granular. This allows you to disable request validation for some properties of a model while maintaining request validation for all other cases. In this article I will show you the use of request validation in ASP.NET MVC 3. Then I will briefly explain the internal working of granular request validation.       Description:             First of all create a new ASP.NET MVC 3 application. Then create a simple model class called MyModel,     public class MyModel { public string Prop1 { get; set; } public string Prop2 { get; set; } }             Then just update the index action method as follows,   public ActionResult Index(MyModel p) { return View(); }             Now just run this application. You will find that everything works just fine. Now just append this query string ?Prop1=<s to the url of this application, you will get the HttpRequestValidationException exception.           Now just decorate the Index action method with [ValidateInputAttribute(false)],   [ValidateInput(false)] public ActionResult Index(MyModel p) { return View(); }             Run this application again with same query string. You will find that your application run without any unhandled exception.           Up to now, there is nothing new in ASP.NET MVC 3 because ValidateInputAttribute was present in the previous versions of ASP.NET MVC. Any problem with this approach? Yes there is a problem with this approach. The problem is that now users can send html for both Prop1 and Prop2 properties and a lot of developers are not aware of it. This means that now everyone can send html with both parameters(e.g, ?Prop1=<s&Prop2=<s). So ValidateInput attribute does not gives you the guarantee that your application is safe to XSS or XSRF. This is the reason why ASP.NET MVC team introduced granular request validation in ASP.NET MVC 3. Let's see this feature.           Remove [ValidateInputAttribute(false)] on Index action and update MyModel class as follows,   public class MyModel { [AllowHtml] public string Prop1 { get; set; } public string Prop2 { get; set; } }             Note that AllowHtml attribute is only decorated on Prop1 property. Run this application again with ?Prop1=<s query string. You will find that your application run just fine. Run this application again with ?Prop1=<s&Prop2=<s query string, you will get HttpRequestValidationException exception. This shows that the granular request validation in ASP.NET MVC 3 only allows users to send html for properties decorated with AllowHtml attribute.            Sometimes you may need to access Request.QueryString or Request.Form directly. You may change your code as follows,   [ValidateInput(false)] public ActionResult Index() { var prop1 = Request.QueryString["Prop1"]; return View(); }             Run this application again, you will get the HttpRequestValidationException exception again even you have [ValidateInput(false)] on your Index action. The reason is that Request flags are still not set to unvalidate. I will explain this later. For making this work you need to use Unvalidated extension method,     public ActionResult Index() { var q = Request.Unvalidated().QueryString; var prop1 = q["Prop1"]; return View(); }             Unvalidated extension method is defined in System.Web.Helpers namespace . So you need to add using System.Web.Helpers; in this class file. Run this application again, your application run just fine.             There you have it. If you are not curious to know the internal working of granular request validation then you can skip next paragraphs completely. If you are interested then carry on reading.             Create a new ASP.NET MVC 2 application, then open global.asax.cs file and the following lines,     protected void Application_BeginRequest() { var q = Request.QueryString; }             Then make the Index action method as,    [ValidateInput(false)] public ActionResult Index(string id) { return View(); }             Please note that the Index action method contains a parameter and this action method is decorated with [ValidateInput(false)]. Run this application again, but now with ?id=<s query string, you will get HttpRequestValidationException exception at Application_BeginRequest method. Now just add the following entry in web.config,   <httpRuntime requestValidationMode="2.0"/>             Now run this application again. This time your application will run just fine. Now just see the following quote from ASP.NET 4 Breaking Changes,   In ASP.NET 4, by default, request validation is enabled for all requests, because it is enabled before the BeginRequest phase of an HTTP request. As a result, request validation applies to requests for all ASP.NET resources, not just .aspx page requests. This includes requests such as Web service calls and custom HTTP handlers. Request validation is also active when custom HTTP modules are reading the contents of an HTTP request.             This clearly state that request validation is enabled before the BeginRequest phase of an HTTP request. For understanding what does enabled means here, we need to see HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly. Here is the implementation of HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly,     public NameValueCollection Form { get { if (this._form == null) { this._form = new HttpValueCollection(); if (this._wr != null) { this.FillInFormCollection(); } this._form.MakeReadOnly(); } if (this._flags[2]) { this._flags.Clear(2); this.ValidateNameValueCollection(this._form, RequestValidationSource.Form); } return this._form; } } public NameValueCollection QueryString { get { if (this._queryString == null) { this._queryString = new HttpValueCollection(); if (this._wr != null) { this.FillInQueryStringCollection(); } this._queryString.MakeReadOnly(); } if (this._flags[1]) { this._flags.Clear(1); this.ValidateNameValueCollection(this._queryString, RequestValidationSource.QueryString); } return this._queryString; } } public void ValidateInput() { if (!this._flags[0x8000]) { this._flags.Set(0x8000); this._flags.Set(1); this._flags.Set(2); this._flags.Set(4); this._flags.Set(0x40); this._flags.Set(0x80); this._flags.Set(0x100); this._flags.Set(0x200); this._flags.Set(8); } }             The above code indicates that HttpRequest.QueryString and HttpRequest.Form will only validate the querystring and form collection if certain flags are set. These flags are automatically set if you call HttpRequest.ValidateInput method. Now run the above application again(don't forget to append ?id=<s query string in the url) with the same settings(i.e, requestValidationMode="2.0" setting in web.config and Application_BeginRequest method in global.asax.cs), your application will run just fine. Now just update the Application_BeginRequest method as,   protected void Application_BeginRequest() { Request.ValidateInput(); var q = Request.QueryString; }             Note that I am calling Request.ValidateInput method prior to use Request.QueryString property. ValidateInput method will internally set certain flags(discussed above). These flags will then tells the Request.QueryString (and Request.Form) property that validate the query string(or form) when user call Request.QueryString(or Request.Form) property. So running this application again with ?id=<s query string will throw HttpRequestValidationException exception. Now I hope it is clear to you that what does requestValidationMode do. It just tells the ASP.NET that not invoke the Request.ValidateInput method internally before the BeginRequest phase of an HTTP request if requestValidationMode is set to a value less than 4.0 in web.config. Here is the implementation of HttpRequest.ValidateInputIfRequiredByConfig method which will prove this statement(Don't be confused with HttpRequest and Request. Request is the property of HttpRequest class),    internal void ValidateInputIfRequiredByConfig() { ............................................................... ............................................................... ............................................................... ............................................................... if (httpRuntime.RequestValidationMode >= VersionUtil.Framework40) { this.ValidateInput(); } }              Hopefully the above discussion will clear you how requestValidationMode works in ASP.NET 4. It is also interesting to note that both HttpRequest.QueryString and HttpRequest.Form only throws the exception when you access them first time. Any subsequent access to HttpRequest.QueryString and HttpRequest.Form will not throw any exception. Continuing with the above example, just update Application_BeginRequest method in global.asax.cs file as,   protected void Application_BeginRequest() { try { var q = Request.QueryString; var f = Request.Form; } catch//swallow this exception { } var q1 = Request.QueryString; var f1 = Request.Form; }             Without setting requestValidationMode to 2.0 and without decorating ValidateInput attribute on Index action, your application will work just fine because both HttpRequest.QueryString and HttpRequest.Form will clear their flags after reading HttpRequest.QueryString and HttpRequest.Form for the first time(see the implementation of HttpRequest.QueryString and HttpRequest.Form above).           Now let's see ASP.NET MVC 3 granular request validation internal working. First of all we need to see type of HttpRequest.QueryString and HttpRequest.Form properties. Both HttpRequest.QueryString and HttpRequest.Form properties are of type NameValueCollection which is inherited from the NameObjectCollectionBase class. NameObjectCollectionBase class contains _entriesArray, _entriesTable, NameObjectEntry.Key and NameObjectEntry.Value fields which granular request validation uses internally. In addition granular request validation also uses _queryString, _form and _flags fields, ValidateString method and the Indexer of HttpRequest class. Let's see when and how granular request validation uses these fields.           Create a new ASP.NET MVC 3 application. Then put a breakpoint at Application_BeginRequest method and another breakpoint at HomeController.Index method. Now just run this application. When the break point inside Application_BeginRequest method hits then add the following expression in quick watch window, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                                              Now Press F5 so that the second breakpoint inside HomeController.Index method hits. When the second breakpoint hits then add the following expression in quick watch window again, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                            First screen shows that _entriesTable field is of type System.Collections.Hashtable and _entriesArray field is of type System.Collections.ArrayList during the BeginRequest phase of the HTTP request. While the second screen shows that _entriesTable type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingHashtable and _entriesArray type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingArrayList during executing the Index action method. In addition to these members, ASP.NET MVC 3 also perform some operation on _flags, _form, _queryString and other members of HttpRuntime class internally. This shows that ASP.NET MVC 3 performing some operation on the members of HttpRequest class for making granular request validation possible.           Both LazilyValidatingArrayList and LazilyValidatingHashtable classes are defined in the Microsoft.Web.Infrastructure assembly. You may wonder why their name starts with Lazily. The fact is that now with ASP.NET MVC 3, request validation will be performed lazily. In simple words, Microsoft.Web.Infrastructure assembly is now taking the responsibility for request validation from System.Web assembly. See the below screens. The first screen depicting HttpRequestValidationException exception in ASP.NET MVC 2 application while the second screen showing HttpRequestValidationException exception in ASP.NET MVC 3 application.   In MVC 2:                 In MVC 3:                          The stack trace of the second screenshot shows that Microsoft.Web.Infrastructure assembly (instead of System.Web assembly) is now performing request validation in ASP.NET MVC 3. Now you may ask: where Microsoft.Web.Infrastructure assembly is performing some operation on the members of HttpRequest class. There are at least two places where the Microsoft.Web.Infrastructure assembly performing some operation , Microsoft.Web.Infrastructure.DynamicValidationHelper.GranularValidationReflectionUtil.GetInstance method and Microsoft.Web.Infrastructure.DynamicValidationHelper.ValidationUtility.CollectionReplacer.ReplaceCollection method, Here is the implementation of these methods,   private static GranularValidationReflectionUtil GetInstance() { try { if (DynamicValidationShimReflectionUtil.Instance != null) { return null; } GranularValidationReflectionUtil util = new GranularValidationReflectionUtil(); Type containingType = typeof(NameObjectCollectionBase); string fieldName = "_entriesArray"; bool isStatic = false; Type fieldType = typeof(ArrayList); FieldInfo fieldInfo = CommonReflectionUtil.FindField(containingType, fieldName, isStatic, fieldType); util._del_get_NameObjectCollectionBase_entriesArray = MakeFieldGetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); util._del_set_NameObjectCollectionBase_entriesArray = MakeFieldSetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); Type type6 = typeof(NameObjectCollectionBase); string str2 = "_entriesTable"; bool flag2 = false; Type type7 = typeof(Hashtable); FieldInfo info2 = CommonReflectionUtil.FindField(type6, str2, flag2, type7); util._del_get_NameObjectCollectionBase_entriesTable = MakeFieldGetterFunc<NameObjectCollectionBase, Hashtable>(info2); util._del_set_NameObjectCollectionBase_entriesTable = MakeFieldSetterFunc<NameObjectCollectionBase, Hashtable>(info2); Type targetType = CommonAssemblies.System.GetType("System.Collections.Specialized.NameObjectCollectionBase+NameObjectEntry"); Type type8 = targetType; string str3 = "Key"; bool flag3 = false; Type type9 = typeof(string); FieldInfo info3 = CommonReflectionUtil.FindField(type8, str3, flag3, type9); util._del_get_NameObjectEntry_Key = MakeFieldGetterFunc<string>(targetType, info3); Type type10 = targetType; string str4 = "Value"; bool flag4 = false; Type type11 = typeof(object); FieldInfo info4 = CommonReflectionUtil.FindField(type10, str4, flag4, type11); util._del_get_NameObjectEntry_Value = MakeFieldGetterFunc<object>(targetType, info4); util._del_set_NameObjectEntry_Value = MakeFieldSetterFunc(targetType, info4); Type type12 = typeof(HttpRequest); string methodName = "ValidateString"; bool flag5 = false; Type[] argumentTypes = new Type[] { typeof(string), typeof(string), typeof(RequestValidationSource) }; Type returnType = typeof(void); MethodInfo methodInfo = CommonReflectionUtil.FindMethod(type12, methodName, flag5, argumentTypes, returnType); util._del_validateStringCallback = CommonReflectionUtil.MakeFastCreateDelegate<HttpRequest, ValidateStringCallback>(methodInfo); Type type = CommonAssemblies.SystemWeb.GetType("System.Web.HttpValueCollection"); util._del_HttpValueCollection_ctor = CommonReflectionUtil.MakeFastNewObject<Func<NameValueCollection>>(type); Type type14 = typeof(HttpRequest); string str6 = "_form"; bool flag6 = false; Type type15 = type; FieldInfo info6 = CommonReflectionUtil.FindField(type14, str6, flag6, type15); util._del_get_HttpRequest_form = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info6); util._del_set_HttpRequest_form = MakeFieldSetterFunc(typeof(HttpRequest), info6); Type type16 = typeof(HttpRequest); string str7 = "_queryString"; bool flag7 = false; Type type17 = type; FieldInfo info7 = CommonReflectionUtil.FindField(type16, str7, flag7, type17); util._del_get_HttpRequest_queryString = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info7); util._del_set_HttpRequest_queryString = MakeFieldSetterFunc(typeof(HttpRequest), info7); Type type3 = CommonAssemblies.SystemWeb.GetType("System.Web.Util.SimpleBitVector32"); Type type18 = typeof(HttpRequest); string str8 = "_flags"; bool flag8 = false; Type type19 = type3; FieldInfo flagsFieldInfo = CommonReflectionUtil.FindField(type18, str8, flag8, type19); Type type20 = type3; string str9 = "get_Item"; bool flag9 = false; Type[] typeArray4 = new Type[] { typeof(int) }; Type type21 = typeof(bool); MethodInfo itemGetter = CommonReflectionUtil.FindMethod(type20, str9, flag9, typeArray4, type21); Type type22 = type3; string str10 = "set_Item"; bool flag10 = false; Type[] typeArray6 = new Type[] { typeof(int), typeof(bool) }; Type type23 = typeof(void); MethodInfo itemSetter = CommonReflectionUtil.FindMethod(type22, str10, flag10, typeArray6, type23); MakeRequestValidationFlagsAccessors(flagsFieldInfo, itemGetter, itemSetter, out util._del_BitVector32_get_Item, out util._del_BitVector32_set_Item); return util; } catch { return null; } } private static void ReplaceCollection(HttpContext context, FieldAccessor<NameValueCollection> fieldAccessor, Func<NameValueCollection> propertyAccessor, Action<NameValueCollection> storeInUnvalidatedCollection, RequestValidationSource validationSource, ValidationSourceFlag validationSourceFlag) { NameValueCollection originalBackingCollection; ValidateStringCallback validateString; SimpleValidateStringCallback simpleValidateString; Func<NameValueCollection> getActualCollection; Action<NameValueCollection> makeCollectionLazy; HttpRequest request = context.Request; Func<bool> getValidationFlag = delegate { return _reflectionUtil.GetRequestValidationFlag(request, validationSourceFlag); }; Func<bool> func = delegate { return !getValidationFlag(); }; Action<bool> setValidationFlag = delegate (bool value) { _reflectionUtil.SetRequestValidationFlag(request, validationSourceFlag, value); }; if ((fieldAccessor.Value != null) && func()) { storeInUnvalidatedCollection(fieldAccessor.Value); } else { originalBackingCollection = fieldAccessor.Value; validateString = _reflectionUtil.MakeValidateStringCallback(context.Request); simpleValidateString = delegate (string value, string key) { if (((key == null) || !key.StartsWith("__", StringComparison.Ordinal)) && !string.IsNullOrEmpty(value)) { validateString(value, key, validationSource); } }; getActualCollection = delegate { fieldAccessor.Value = originalBackingCollection; bool flag = getValidationFlag(); setValidationFlag(false); NameValueCollection col = propertyAccessor(); setValidationFlag(flag); storeInUnvalidatedCollection(new NameValueCollection(col)); return col; }; makeCollectionLazy = delegate (NameValueCollection col) { simpleValidateString(col[null], null); LazilyValidatingArrayList array = new LazilyValidatingArrayList(_reflectionUtil.GetNameObjectCollectionEntriesArray(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesArray(col, array); LazilyValidatingHashtable table = new LazilyValidatingHashtable(_reflectionUtil.GetNameObjectCollectionEntriesTable(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesTable(col, table); }; Func<bool> hasValidationFired = func; Action disableValidation = delegate { setValidationFlag(false); }; Func<int> fillInActualFormContents = delegate { NameValueCollection values = getActualCollection(); makeCollectionLazy(values); return values.Count; }; DeferredCountArrayList list = new DeferredCountArrayList(hasValidationFired, disableValidation, fillInActualFormContents); NameValueCollection target = _reflectionUtil.NewHttpValueCollection(); _reflectionUtil.SetNameObjectCollectionEntriesArray(target, list); fieldAccessor.Value = target; } }             Hopefully the above code will help you to understand the internal working of granular request validation. It is also important to note that Microsoft.Web.Infrastructure assembly invokes HttpRequest.ValidateInput method internally. For further understanding please see Microsoft.Web.Infrastructure assembly code. Finally you may ask: at which stage ASP NET MVC 3 will invoke these methods. You will find this answer by looking at the following method source,   Unvalidated extension method for HttpRequest class defined in System.Web.Helpers.Validation class. System.Web.Mvc.MvcHandler.ProcessRequestInit method. System.Web.Mvc.ControllerActionInvoker.ValidateRequest method. System.Web.WebPages.WebPageHttpHandler.ProcessRequestInternal method.       Summary:             ASP.NET helps in preventing XSS attack using a feature called request validation. In this article, I showed you how you can use granular request validation in ASP.NET MVC 3. I explain you the internal working of  granular request validation. Hope you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • BizTalk host throttling &ndash; Singleton pattern and High database size

    - by S.E.R.
    Originally posted on: http://geekswithblogs.net/SERivas/archive/2013/06/30/biztalk-host-throttling-ndash-singleton-pattern-and-high-database-size.aspxI have worked for some days around the singleton pattern (for those unfamiliar with it, read this post by Victor Fehlberg) and have come across a few very interesting posts, among which one dealt with performance issues (here, also by Victor Fehlberg). Simply put: if you have an orchestration which implements the singleton pattern, then performances will continuously decrease as the orchestration receives and consumes messages, and that behavior is more obvious when the orchestration never ends (ie : it keeps looping and never terminates or completes). As I experienced the same kind of problem (actually I was alerted by SCOM, which told me that the host was being throttled because of High database size), I thought it would be a good idea to dig a little bit a see what happens deep inside BizTalk and thus understand the reasons for this behavior. NOTE: in this article, I will focus on this High database size throttling condition. I will try and work on the other conditions in some not too distant future… Test conditions The singleton orchestration For the purpose of this study, I have created the following orchestration, which is a very basic implementation of a singleton that piles up incoming messages, then does something else when a certain timeout has been reached without receiving another message: Throttling settings I have two distinct hosts : one that hosts the receive port (basic FILE port) : Ports_ReceiveHostone that hosts the orchestration : ProcessingHost In order to emphasize the throttling mechanism, I have modified the throttling settings for each of these hosts are as follows (all other parameters are set to the default value): [Throttling thresholds] Message count in database: 500 (default value : 50000) Evolution of performance counters when submitting messages Since we are investigating the High database size throttling condition, here are the performance counter that we should take a look at (all of them are in the BizTalk:Message Agent performance object): Database sizeHigh database sizeMessage delivery throttling stateMessage publishing throttling stateMessage delivery delay (ms)Message publishing delay (ms)Message delivery throttling state durationMessage publishing throttling state duration (If you are not used to Perfmon, I strongly recommend that you start using it right now: it is a wonderful tool that allows you to open the hood and see what is going on inside BizTalk – and other systems) Database size It is quite obvious that we will start by watching the database size and high database size counters, just to see when the first reaches the configured threshold (500) and when the second rings the alarm. NOTE : During this test I submitted 600 messages, one message at a time every 10ms to see the evolution of the counters we have previously selected. It might not show very well on this screenshot, but here is what happened: From 15:46:50 to 15:47:50, the database size for the Ports_ReceiveHost host (blue line) kept growing until it reached a maximum of 504.At 15:47:50, the high database size alert fires At first I was surprised by this result: why is it the database size of the receiving host that keeps growing since it is the processing host that piles up messages? Actually, it makes total sense. This counter measures the size of the database queue that is being filled by the host, not consumed. Therefore, the high database size alert is raised on the host that fills the queue: Ports_ReceiveHost. More information is available on the Public MPWiki page. Now, looking at the Message publishing throttling state for the receiving host (green line), we can see that a throttling condition has been reached at 15:47:50: We can also see that the Message publishing delay(ms) (blue line) has begun growing slowly from this point. All of this explains why performances keep decreasing when a singleton keeps processing new messages: the database size grows and when it has exceeded the Message count in database threshold, the host is throttled and the publishing delay keeps increasing. Digging further So, what happens to the database queue then? Is it flushed some day or does it keep growing and growing indefinitely? The real question being: will the host be throttled forever because of this singleton? To answer this question, I set the Message count in database threshold to 20 (this value is very low in order not to wait for too long, otherwise I certainly would have fallen asleep in front of my screen) and I submitted 30 messages. The test was started at 18:26. At 18:56 (ie : exactly 30min later) the throttling was stopped and the database size was divided by 2. 30 min later again, the database size had dropped to almost zero: I guess I’ll have to find some documentation and do some more testing before I sort this out! My guess is that some maintenance job is at work here, though I cannot tell which one Digging even further If we take a look at the Message delivery throttling state counter for the processing host, we can see that this host was also throttled during the submission of the 600 documents: The value for the counter was 1, meaning that Message delivery incoming rate for the host instance exceeds the Message delivery outgoing rate * the specified Rate overdrive factor (percent) value. We will see this another day… :) A last word Let’s end this article with a warning: DO NOT CHANGE THE THROTTLING SETTINGS LIGHTLY! The temptation can be great to just bypass throttling by setting very high values for each parameter (or zero in some cases, which simply disables throttling). Nevertheless, always keep in mind that this mechanism is here for a very good reason: prevent your BizTalk infrastructure from exploding!! So whatever you do with those settings, do a lot of testing and benchmarking!

    Read the article

  • Taking advantage of Windows Azure CDN and Dynamic Pages in ASP.NET - Caching content from hosted services

    - by Shawn Cicoria
    With the updates to Windows Azure CDN announced this week [1] I wanted to help illustrate the capability with a working sample that will serve up dynamic content from an ASP.NET site hosted in a WebRole. First, to get a good overview of the capability you can read the Overview of the Windows Azure CDN [2] content on MSDN. When you setup the ability to cache content from a hosted service, the requirement is to provide a path to your role’s DNS endpoint that ends in the path “/cdn”.  Additionally, you then map CDN to that service. What WAZ CDN does, is allow you to then map that through the CDN to your host.  The CDN will then make a request to your host on your client’s behalf. The requirement is still that your client, and any Url’s that are to be serviced through the CDN and this capability have to use the CDN DNS name and not your host – no different than what CDN does for Blog storage. The following 2 URL’s are samples of how the client needs to issue the requests. Windows Azure hosted service URL: http: //myHostedService.cloudapp.net/cdn/music.aspx   - for regular “dynamic” content Windows Azure CDN URL: http: //<identifier>.vo.msecnd.net/music.aspx   - for CDN “cachable” content. The first URL path’s the request direct to your host into the Azure datacenter.  The 2nd URL paths the request through the CDN infrastructure, where CDN will make the determination to request the content on behalf of the client to the Azure datacenter and your host on the /cdn path. The big advantage here is you can apply logic to your content creation.  What’s important is emitting the CDN friendly headers that allow CDN to request and re-request only when you designate based upon it’s rules of “staleness” as described in the overview page. With IIS7.5 there is an underlying issue when the Managed Module “OutputCache” is enabled that in order to emit a good header for your content, you’ll need to remove, and in my sample, helps provide CDN friendly headers.  You get IIS 7.5 when running under OS Family “2” in your service configuration. By default, and when the OutputCache managed module is loaded, if you use the HttpResponse.CachePolicy to set the Http Headers for “max-age” when the HttpCacheability is “Public”, you will NOT get the “max-age” emitted as part of the “Cache-control:” header.  Instead, the OutputCache module will remove “max-age” and just emit “public”.  It works ok when Cacheability is set to “private”. To work around the issue and ensure your code as follows emits the full max-age along with the public option, you need to remove as follows: <system.webServer>   <modules runAllManagedModulesForAllRequests="true">     <remove name="OutputCache"/>   </modules> </system.webServer>   Response.Cache.SetCacheability(HttpCacheability.Public); Response.Cache.SetMaxAge(TimeSpan.FromMinutes(rv));   In the attached solution, the way I approached it was to have a VirtualApplication under the root site that has it’s own web.config  - this VirtualApplication is the /cdn of the site and when deployed to Azure as a Web Role will surface as a distinct IIS Application – along with a separate AppDomain. The CDN Sample is a simple Web Forms site that the /default landing page contains 3 IFrames to host: 1. Content direct from the host @   http://xxxx.cloudapp.net/cdn 2. Content via the CDN @ http://azxxx.vo.msecnd.net  3. Simple list of recent requests – showing where the request came from.   When you run the sample the first time you hit the page, both the Host and the CDN will cause 2 initial requests to hit the host.  You won’t see the first requests in the list because of timing – but if you refresh, you’ll see that the list will show that you have 2 requests initially. 1. sourced direct from the Browser to the HOST 2. sourced via the CDN The picture above shows the call-outs of each of those requests – green rows showing requests coming direct to the HOST, yellow showing the CDN request.  The IP addresses of the green items are direct from the client, where the CDN is from the CDN data center. As you refresh the page (hit Ctrl+F5 to force a full refresh and avoid “304 – not changed”) you’ll see that the request to the HOST get’s processed direct; but the request to the CDN endpoint is serviced direct from the CDN and doesn’t incur any additional request back to the HOST. The following is the Headers from the CDN response (Status-Line) HTTP/1.1 200 OK Age 13 Cache-Control public, max-age=300 Connection keep-alive Content-Length 6212 Content-Type image/jpeg; charset=utf-8 Date Fri, 11 Mar 2011 20:47:14 GMT Expires Fri, 11 Mar 2011 20:52:01 GMT Last-Modified Fri, 11 Mar 2011 20:47:02 GMT Server Microsoft-IIS/7.5 X-AspNet-Version 4.0.30319 X-Powered-By ASP.NET   The following are the Headers from the HOST response (Status-Line) HTTP/1.1 200 OK Cache-Control public, max-age=300 Content-Length 6189 Content-Type image/jpeg; charset=utf-8 Date Fri, 11 Mar 2011 20:47:15 GMT Last-Modified Fri, 11 Mar 2011 20:47:02 GMT Server Microsoft-IIS/7.5 X-AspNet-Version 4.0.30319 X-Powered-By ASP.NET   You can see that with the CDN request, the countdown (age) starts for aging the content. The full sample is located here: CDNSampleSite.zip [1] http://blogs.msdn.com/b/windowsazure/archive/2011/03/09/now-available-updated-windows-azure-sdk-and-windows-azure-management-portal.aspx [2] http://msdn.microsoft.com/en-us/library/ff919703.aspx

    Read the article

  • The Interaction between Three-Tier Client/Server Model and Three-Tier Application Architecture Model

    The three-tier client/server model is a network architectural approach currently used in modern networking. This approach divides a network in to three distinct components. Three-Tier Client/Server Model Components Client Component Server Component Database Component The Client Component of the network typically represents any device on the network. A basic example of this would be computer or another network/web enabled devices that are connected to a network. Network clients request resources on the network, and are usually equipped with a user interface for the presentation of the data returned from the Server Component. This process is done through the use of various software clients, and example of this can be seen through the use of a web browser client. The web browser request information from the Server Component located on the network and then renders the results for the user to process. The Server Components of the network return data based on specific client request back to the requesting client.  Server Components also inherit the attributes of a Client Component in that they are a device on the network and that they can also request information from other Server Components. However what differentiates a Client Component from a Server Component is that a Server Component response to requests from devices on the network. An example of a Server Component can be seen in a web server. A web server listens for new requests and then interprets the request, processes the web pages, and then returns the processed data back to the web browser client so that it may render the data for the user to interpret. The Database Component of the network returns unprocessed data from databases or other resources. This component also inherits attributes from the Server Component in that it is a device on a network, it can request information from other server components and database components, and it also listens for new requests so that it can return data when needed. The three-tier client/server model is very similar to the three-tier application architecture model, and in fact the layers can be mapped to one another. Three-Tier Application Architecture Model Presentation Layer/Logic Business Layer/Logic Data Layer/Logic The Presentation Layer including its underlying logic is very similar to the Client Component of the three-tiered model. The Presentation Layer focuses on interpreting the data returned by the Business Layer as well as presents the data back to the user.  Both the Presentation Layer and the Client Component focus primarily on the user and their experience. This allows for segments of the Business Layer to be distributable and interchangeable because the Presentation Layer is not directly integrated in with Business Layer. The Presentation Layer does not care where the data comes from as long as it is in the proper format. This allows for the Presentation Layer and Business Layer to be stored on one or more different servers so that it can provide a higher availability to clients requesting data. A good example of this is a web site that uses load balancing. When a web site decides to take on the task of load balancing they must obtain a network device that sits in front of a one or machines in order to distribute the request across multiple servers. When a user comes in through the load balanced device they are redirected to a specific server based on a few factors. Common Load Balancing Factors Current Server Availability Current Server Response Time Current Server Priority The Business Layer and corresponding logic are business rules applied to data prior to it being sent to the Presentation Layer. These rules are used to manipulate the data coming from the Data Access Layer, in addition to validating any data prior to being stored in the Data Access Layer. A good example of this would be when a user is trying to create multiple accounts under one email address. The Business Layer logic can prevent duplicate accounts by enforcing a unique email for every new account before the data is even stored in the Data Access Layer. The Server Component can be directly tied to this layer in that the server typically stores and process the Business Layer before it is returned to the end-user via the Presentation Layer. In addition the Server Component can also run automated process through the Business Layer on the data in the Data Access Layer so that additional business analysis can be derived from the data that has been already collected. The Data Layer and its logic are responsible for storing information so that it can be easily retrieved. Typical in most modern applications data is stored in a database management system however data can also be in the form of files stored on a file server. In addition a database can take on one of several forms. Common Database Formats XML File Pipe Delimited File Tab Delimited File Comma Delimited File (CSV) Plain Text File Microsoft Access Microsoft SQL Server MySql Oracle Sybase The Database component of the Networking model can be directly tied to the Data Layer because this is where the Data Layer obtains the data to return back the Business Layer. The Database Component basically allows for a place on the network to store data for future use. This enables applications to save data when they can and then quickly recall the saved data as needed so that the application does not have to worry about storing the data in memory. This prevents overhead that could be created when an application must retain all data in memory. As you can see the Three-Tier Client/Server Networking Model and the Three-Tiered Application Architecture Model rely very heavily on one another to function especially if different aspects of an application are distributed across an entire network. The use of various servers and database servers are wonderful when an application has a need to distribute work across the network. Network Components and Application Layers Interaction Database components will store all data needed for the Data Access Layer to manipulate and return to the Business Layer Server Component executes the Business Layer that manipulates data so that it can be returned to the Presentation Layer Client Component hosts the Presentation Layer that  interprets the data and present it to the user

    Read the article

  • New .NET Library for Accessing the Survey Monkey API

    - by Ben Emmett
    I’ve used Survey Monkey’s API for a while, and though it’s pretty powerful, there’s a lot of boilerplate each time it’s used in a new project, and the json it returns needs a bunch of processing to be able to use the raw information. So I’ve finally got around to releasing a .NET library you can use to consume the API more easily. The main advantages are: Only ever deal with strongly-typed .NET objects, making everything much more robust and a lot faster to get going Automatically handles things like rate-limiting and paging through results Uses combinations of endpoints to get all relevant data for you, and processes raw response data to map responses to questions To start, either install it using NuGet with PM> Install-Package SurveyMonkeyApi (easier option), or grab the source from https://github.com/bcemmett/SurveyMonkeyApi if you prefer to build it yourself. You’ll also need to have signed up for a developer account with Survey Monkey, and have both your API key and an OAuth token. A simple usage would be something like: string apiKey = "KEY"; string token = "TOKEN"; var sm = new SurveyMonkeyApi(apiKey, token); List<Survey> surveys = sm.GetSurveyList(); The surveys object is now a list of surveys with all the information available from the /surveys/get_survey_list API endpoint, including the title, id, date it was created and last modified, language, number of questions / responses, and relevant urls. If there are more than 1000 surveys in your account, the library pages through the results for you, making multiple requests to get a complete list of surveys. All the filtering available in the API can be controlled using .NET objects. For example you might only want surveys created in the last year and containing “pineapple” in the title: var settings = new GetSurveyListSettings { Title = "pineapple", StartDate = DateTime.Now.AddYears(-1) }; List<Survey> surveys = sm.GetSurveyList(settings); By default, whenever optional fields can be requested with a response, they will all be fetched for you. You can change this behaviour if for some reason you explicitly don’t want the information, using var settings = new GetSurveyListSettings { OptionalData = new GetSurveyListSettingsOptionalData { DateCreated = false, AnalysisUrl = false } }; Survey Monkey’s 7 read-only endpoints are supported, and the other 4 which make modifications to data might be supported in the future. The endpoints are: Endpoint Method Object returned /surveys/get_survey_list GetSurveyList() List<Survey> /surveys/get_survey_details GetSurveyDetails() Survey /surveys/get_collector_list GetCollectorList() List<Collector> /surveys/get_respondent_list GetRespondentList() List<Respondent> /surveys/get_responses GetResponses() List<Response> /surveys/get_response_counts GetResponseCounts() Collector /user/get_user_details GetUserDetails() UserDetails /batch/create_flow Not supported Not supported /batch/send_flow Not supported Not supported /templates/get_template_list Not supported Not supported /collectors/create_collector Not supported Not supported The hierarchy of objects the library can return is Survey List<Page> List<Question> QuestionType List<Answer> List<Item> List<Collector> List<Response> Respondent List<ResponseQuestion> List<ResponseAnswer> Each of these classes has properties which map directly to the names of properties returned by the API itself (though using PascalCasing which is more natural for .NET, rather than the snake_casing used by SurveyMonkey). For most users, Survey Monkey imposes a rate limit of 2 requests per second, so by default the library leaves at least 500ms between requests. You can request higher limits from them, so if you want to change the delay between requests just use a different constructor: var sm = new SurveyMonkeyApi(apiKey, token, 200); //200ms delay = 5 reqs per sec There’s a separate cap of 1000 requests per day for each API key, which the library doesn’t currently enforce, so if you think you’ll be in danger of exceeding that you’ll need to handle it yourself for now.  To help, you can see how many requests the current instance of the SurveyMonkeyApi object has made by reading its RequestsMade property. If the library encounters any errors, including communicating with the API, it will throw a SurveyMonkeyException, so be sure to handle that sensibly any time you use it to make calls. Finally, if you have a survey (or list of surveys) obtained using GetSurveyList(), the library can automatically fill in all available information using sm.FillMissingSurveyInformation(surveys); For each survey in the list, it uses the other endpoints to fill in the missing information about the survey’s question structure, respondents, and responses. This results in at least 5 API calls being made per survey, so be careful before passing it a large list. It also joins up the raw response information to the survey’s question structure, so that for each question in a respondent’s set of replies, you can access a ProcessedAnswer object. For example, a response to a dropdown question (from the /surveys/get_responses endpoint) might be represented in json as { "answers": [ { "row": "9384627365", } ], "question_id": "615487516" } Separately, the question’s structure (from the /surveys/get_survey_details endpoint) might have several possible answers, one of which might look like { "text": "Fourth item in dropdown list", "visible": true, "position": 4, "type": "row", "answer_id": "9384627365" } The library understands how this mapping works, and uses that to give you the following ProcessedAnswer object, which first describes the family and type of question, and secondly gives you the respondent’s answers as they relate to the question. Survey Monkey has many different question types, with 11 distinct data structures, each of which are supported by the library. If you have suggestions or spot any bugs, let me know in the comments, or even better submit a pull request .

    Read the article

  • World Record Oracle Business Intelligence Benchmark on SPARC T4-4

    - by Brian
    Oracle's SPARC T4-4 server configured with four SPARC T4 3.0 GHz processors delivered the first and best performance of 25,000 concurrent users on Oracle Business Intelligence Enterprise Edition (BI EE) 11g benchmark using Oracle Database 11g Release 2 running on Oracle Solaris 10. A SPARC T4-4 server running Oracle Business Intelligence Enterprise Edition 11g achieved 25,000 concurrent users with an average response time of 0.36 seconds with Oracle BI server cache set to ON. The benchmark data clearly shows that the underlying hardware, SPARC T4 server, and the Oracle BI EE 11g (11.1.1.6.0 64-bit) platform scales within a single system supporting 25,000 concurrent users while executing 415 transactions/sec. The benchmark demonstrated the scalability of Oracle Business Intelligence Enterprise Edition 11g 11.1.1.6.0, which was deployed in a vertical scale-out fashion on a single SPARC T4-4 server. Oracle Internet Directory configured on SPARC T4 server provided authentication for the 25,000 Oracle BI EE users with sub-second response time. A SPARC T4-4 with internal Solid State Drive (SSD) using the ZFS file system showed significant I/O performance improvement over traditional disk for the Web Catalog activity. In addition, ZFS helped get past the UFS limitation of 32767 sub-directories in a Web Catalog directory. The multi-threaded 64-bit Oracle Business Intelligence Enterprise Edition 11g and SPARC T4-4 server proved to be a successful combination by providing sub-second response times for the end user transactions, consuming only half of the available CPU resources at 25,000 concurrent users, leaving plenty of head room for increased load. The Oracle Business Intelligence on SPARC T4-4 server benchmark results demonstrate that comprehensive BI functionality built on a unified infrastructure with a unified business model yields best-in-class scalability, reliability and performance. Oracle BI EE 11g is a newer version of Business Intelligence Suite with richer and superior functionality. Results produced with Oracle BI EE 11g benchmark are not comparable to results with Oracle BI EE 10g benchmark. Oracle BI EE 11g is a more difficult benchmark to run, exercising more features of Oracle BI. Performance Landscape Results for the Oracle BI EE 11g version of the benchmark. Results are not comparable to the Oracle BI EE 10g version of the benchmark. Oracle BI EE 11g Benchmark System Number of Users Response Time (sec) 1 x SPARC T4-4 (4 x SPARC T4 3.0 GHz) 25,000 0.36 Results for the Oracle BI EE 10g version of the benchmark. Results are not comparable to the Oracle BI EE 11g version of the benchmark. Oracle BI EE 10g Benchmark System Number of Users 2 x SPARC T5440 (4 x SPARC T2+ 1.6 GHz) 50,000 1 x SPARC T5440 (4 x SPARC T2+ 1.6 GHz) 28,000 Configuration Summary Hardware Configuration: SPARC T4-4 server 4 x SPARC T4-4 processors, 3.0 GHz 128 GB memory 4 x 300 GB internal SSD Storage Configuration: "> Sun ZFS Storage 7120 16 x 146 GB disks Software Configuration: Oracle Solaris 10 8/11 Oracle Solaris Studio 12.1 Oracle Business Intelligence Enterprise Edition 11g (11.1.1.6.0) Oracle WebLogic Server 10.3.5 Oracle Internet Directory 11.1.1.6.0 Oracle Database 11g Release 2 Benchmark Description Oracle Business Intelligence Enterprise Edition (Oracle BI EE) delivers a robust set of reporting, ad-hoc query and analysis, OLAP, dashboard, and scorecard functionality with a rich end-user experience that includes visualization, collaboration, and more. The Oracle BI EE benchmark test used five different business user roles - Marketing Executive, Sales Representative, Sales Manager, Sales Vice-President, and Service Manager. These roles included a maximum of 5 different pre-built dashboards. Each dashboard page had an average of 5 reports in the form of a mix of charts, tables and pivot tables, returning anywhere from 50 rows to approximately 500 rows of aggregated data. The test scenario also included drill-down into multiple levels from a table or chart within a dashboard. The benchmark test scenario uses a typical business user sequence of dashboard navigation, report viewing, and drill down. For example, a Service Manager logs into the system and navigates to his own set of dashboards using Service Manager. The BI user selects the Service Effectiveness dashboard, which shows him four distinct reports, Service Request Trend, First Time Fix Rate, Activity Problem Areas, and Cost Per Completed Service Call spanning 2002 to 2005. The user then proceeds to view the Customer Satisfaction dashboard, which also contains a set of 4 related reports, drills down on some of the reports to see the detail data. The BI user continues to view more dashboards – Customer Satisfaction and Service Request Overview, for example. After navigating through those dashboards, the user logs out of the application. The benchmark test is executed against a full production version of the Oracle Business Intelligence 11g Applications with a fully populated underlying database schema. The business processes in the test scenario closely represent a real world customer scenario. See Also SPARC T4-4 Server oracle.com OTN Oracle Business Intelligence oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN WebLogic Suite oracle.com OTN Oracle Solaris oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 30 September 2012.

    Read the article

  • Unique Business Value vs. Unique IT

    - by barry.perkins
    When the age of computing started, technology was new, exciting, full of potential and had a long way to grow. Vendor architectures were proprietary, and limited in function at first, growing in capability and complexity over time. There were few if any "standards", let alone "open standards" and the concepts of "open systems", and "open architectures" were far in the future. Companies employed intelligent, talented and creative people to implement the best possible solutions for their company. At first, those solutions were "unique" to each company. As time progressed, standards emerged, companies shared knowledge, business capability supplied by technology grew, and companies continued to expand their use of technology. Taking advantage of change required companies to struggle through periodic "revolutionary" change cycles, struggling through costly changes that were fraught with risk, resulted in solutions with an increasingly shorter half-life, and frequently required altering existing business processes and retraining employees and partner businesses. The pace of technological invention and implementation grew at an ever increasing rate, making the "revolutionary" approach based upon "proprietary" or "closed" architectures or technologies no longer viable. Concurrent with the advancement of technology, the rate of change in business increased, leading us to the incredibly fast paced, highly charged, and competitive global economy that we have today, where the most successful companies are companies that are good at implementing, leveraging and exploiting change. Fast forward to today, a world where dramatic changes in business and technology happen continually, a world where "evolutionary" change is crucial. Companies can no longer afford to build "unique IT", nor can they afford regular intervals of "revolutionary" change, with the associated costs and risks. Human ingenuity was once again up to the task, turning technology into a platform supporting business through evolutionary change, by employing "open": open standards; open systems; open architectures; and open solutions. Employing "open", enables companies to implement systems based upon technology, capability and standards that will evolve over time, providing a solid platform upon which a company can drive business needs, requirements, functions, and processes down into the technology, rather than exposing technology to the business, allowing companies to focus on providing "unique business value" rather than "unique IT". The big question! Does moving from "older" technology that no longer meets the needs of today's business, to new "open" technology require yet another "revolutionary change"? A "revolutionary" change with a short half-life, camouflaging reality with great marketing? The answer is "perhaps". With the endless options available to choose from, it is entirely possible to implement a solution that may work well today, but in 5 years time will become yet another albatross for the company to bear. Some solutions may look good today, solving a budget challenge by reducing cost, or solving a specific tactical challenge, but result in highly complex environments, that may be difficult to manage and maintain and limit the future potential of your business. Put differently, some solutions might push today's challenge into the future, resulting in a more complex and expensive solution. There is no such thing as a "1 size fits all" IT solution for business. If all companies implemented business solutions based upon technology that required, or forced the same business processes across all businesses in an industry, it would be extremely difficult to show competitive advantage through "unique business value". It would be equally difficult to "evolve" to meet or exceed business needs and keep up with today's rapid pace of change. How does one ensure that they do not jump from one trap directly into another? Or to put it positively, there are solutions available today that can address these challenges and issues. How does one ensure that the buying decision of today will serve the business well for years into the future? Intelligent & Informed decisions - "buying right" In a previous blog entry, we discussed the value of linking tactical to strategic The key is driving the focus to what is best for your business, handling today's tactical issues while also aligning with a roadmap/strategy that is tightly aligned with your strategic business objectives. When considering the plethora of possible options that provide various approaches to solving today's complex business problems, it is extremely important to ensure that vendors supplying those options, focus on what is best for your business, supplying sufficient information, providing adequate answers to questions, addressing challenges, issues, concerns and objections honestly and openly, and focus on supplying solutions that are tailored for, and deliver the most business value possible for your business. Here are a few questions to consider relative to the proposed options that should help ensure that today's solution doesn't become tomorrow's problem. Do the proposed solutions: Solve the problem(s) you are trying to address? Provide a solid foundation upon which to grow/enhance your business? Provide tactical gains that align with and enable your strategic business goals/objectives? Provide an infrastructure that can be leveraged with subsequent projects? Solve problems for the business overall, the lines of business, or just IT? Simplify your current environment Provide the basis for business: Efficiency Agility Clarity governance, risk, compliance real time business visibility and trend analysis Does your IT staff have the knowledge/experience to successfully manage the proposed systems once they are deployed in production? Done well, you will be presented with options tailored to your business, that enable you to drive the "unique business value" necessary to help your business stand out from others, creating a distinct competitive advantage, delivering what your customers need, when they need it, so you can attract new customers, new business, and grow top line revenue, all at a cost that provides a strong Return on Investment/Return on Assets. The net result is growth with managed cost providing significantly improved profit margin and shareholder value.

    Read the article

  • Dynamic Bursting ... no really!

    - by Tim Dexter
    If any of you have seen me or my colleagues present BI Publisher to you then we have hopefully mentioned 'bursting.' You may have even seen a demo where we talk about being able to take a batch of data, say invoices. Then split them by some criteria, say customer id; format them with a template; generate the output and then deliver the documents to the recipients with a click. We and especially I, always say this can be completely dynamic! By this I mean, that you could store customer preferences in a database. What layout would each customer like; what output format they would like and how they would like the document delivered. We (I) talk a good talk, but typically don't do the walk in a demo. We hard code everything in the bursting query or bursting control file to get the concept across. But no more peeps! I have finally put together a dynamic bursting demo! Its been minutes in the making but its been tough to find those minutes! Read on ... It's nothing amazing in terms of making the burst dynamic. I created a CUSTOMER_PREFS table with some simple UI in an APEX application so that I can maintain their requirements. In EBS you have descriptive flexfields that could do the same thing or probably even 'contact' fields to store most of the info. Here's my table structure: Name                           Type ------------------------------ -------- CUSTOMER_ID                    NUMBER(6) TEMPLATE_TYPE                  VARCHAR2(20) TEMPLATE_NAME                  VARCHAR2(120) OUTPUT_FORMAT                  VARCHAR2(20) DELIVERY_CHANNEL               VARCHAR2(50) EMAIL                          VARCHAR2(255) FAX                            VARCHAR2(20) ATTACH                         VARCHAR2(20) FILE_LOC                       VARCHAR2(255) Simple enough right? Just need CUSTOMER_ID as the key for the bursting engine to join it to the customer data at burst time. I have not covered the full delivery options, just email, fax and file location. Remember, its a demo people :0) However the principal is exactly the same for each delivery type. They each have a set of attributes that need to be provided and you will need to handle that in your bursting query. On a side note, in EBS, you use a bursting control file, you can apply the same principals that I'm laying out here you just need to get the customer bursting info into the XML data stream so that you can refer to it in the control file using XPATH expressions. Next, we need to look up what attributes or parameters are required for each delivery method. that can be found in the documentation here.  Now we know the combinations of parameters and delivery methods we can construct the query using a series a decode statements: select distinct cp.customer_id "KEY", cp.template_name TEMPLATE, cp.template_type TEMPLATE_FORMAT, 'en-US' LOCALE, cp.output_format OUTPUT_FORMAT, 'false' SAVE_FORMAT, cp.delivery_channel DEL_CHANNEL, decode(cp.delivery_channel,'FILE', cp.file_loc , 'EMAIL', cp.email , 'FAX', cp.fax) PARAMETER1, decode(cp.delivery_channel,'FILE', c.cust_last_name||'_orders.pdf' ,'EMAIL','[email protected]' ,'FAX', 'faxserver.com') PARAMETER2, decode(cp.delivery_channel,'FILE',NULL ,'EMAIL','[email protected]' ,'FAX', null) PARAMETER3, decode(cp.delivery_channel,'FILE',NULL ,'EMAIL','Your current orders' ,'FAX',NULL) PARAMETER4, decode(cp.delivery_channel,'FILE',NULL ,'EMAIL','Please find attached a copy of your current orders with BI Publisher, Inc' ,'FAX',NULL) PARAMETER5, decode(cp.delivery_channel,'FILE',NULL ,'EMAIL','false' ,'FAX',NULL) PARAMETER6, decode(cp.delivery_channel,'FILE',NULL ,'EMAIL','[email protected]' ,'FAX',NULL) PARAMETER7 from cust_prefs cp, customers c, orders_view ov where cp.customer_id = c.customer_id and cp.customer_id = ov.customer_id order by cp.customer_id Pretty straightforward, just need to test, test, test, the query and ensure it's bringing back the correct data based on each customers preferences. Notice the NULL values for parameters that are not relevant for a given delivery channel. You should end up with bursting control data that the bursting engine can use:  Now, your users can run the burst and documents will be formatted, generated and delivered based on the customer prefs. If you're interested in the example, I have used the sample OE schema data for the base report. The report files and CUST_PREFS table are zipped up here. The zip contains the data model (.xdmz), the report and templates (.xdoz) and the sql scripts to create and load data to the CUST_PREFS table.  Once you load the report into the catalog, you'll need to create the OE data connection and point the data model at it. You'll probably need to re-point the report to the data model too. Happy Bursting!

    Read the article

  • Cross-language Extension Method Calling

    - by Tom Hines
    Extension methods are a concise way of binding functions to particular types. In my last post, I showed how Extension methods can be created in the .NET 2.0 environment. In this post, I discuss calling the extensions from other languages. Most of the differences I find between the Dot Net languages are mainly syntax.  The declaration of Extensions is no exception.  There is, however, a distinct difference with the framework accepting excensions made with C++ that differs from C# and VB.  When calling the C++ extension from C#, the compiler will SOMETIMES say there is no definition for DoCPP with the error: 'string' does not contain a definition for 'DoCPP' and no extension method 'DoCPP' accepting a first argument of type 'string' could be found (are you missing a using directive or an assembly reference?) If I recompile, the error goes away. The strangest problem with calling the C++ extension from C# is that I first must make SOME type of reference to the class BEFORE using the extension or it will not be recognized at all.  So, if I first call the DoCPP() as a static method, the extension works fine later.  If I make a dummy instantiation of the class, it works.  If I have no forward reference of the class, I get the same error as before and recompiling does not fix it.  It seems as if this none of this is supposed to work across the languages. I have made a few work-arounds to get the examples to compile and run. Note the following examples: Extension in C# using System; namespace Extension_CS {    public static class CExtension_CS    {  //in C#, the "this" keyword is the key.       public static void DoCS(this string str)       {          Console.WriteLine("CS\t{0:G}\tCS", str);       }    } } Extension in C++ /****************************************************************************\  * Here is the C++ implementation.  It is the least elegant and most quirky,  * but it works. \****************************************************************************/ #pragma once using namespace System; using namespace System::Runtime::CompilerServices;     //<-Essential // Reference: System.Core.dll //<- Essential namespace Extension_CPP {        public ref class CExtension_CPP        {        public:               [Extension] // or [ExtensionAttribute] /* either works */               static void DoCPP(String^ str)               {                      Console::WriteLine("C++\t{0:G}\tC++", str);               }        }; } Extension in VB ' Here is the VB implementation.  This is not as elegant as the C#, but it's ' functional. Imports System.Runtime.CompilerServices ' Public Module modExtension_VB 'Extension methods can be defined only in modules.    <Extension()> _       Public Sub DoVB(ByVal str As String)       Console.WriteLine("VB" & Chr(9) & "{0:G}" & Chr(9) & "VB", str)    End Sub End Module   Calling program in C# /******************************************************************************\  * Main calling program  * Intellisense and VS2008 complain about the CPP implementation, but with a  * little duct-tape, it works just fine. \******************************************************************************/ using System; using Extension_CPP; using Extension_CS; using Extension_VB; // vitual namespace namespace TestExtensions {    public static class CTestExtensions    {       /**********************************************************************\        * For some reason, this needs a direct reference into the C++ version        * even though it does nothing than add a null reference.        * The constructor provides the fake usage to please the compiler.       \**********************************************************************/       private static CExtension_CPP x = null;   // <-DUCT_TAPE!       static CTestExtensions()       {          // Fake usage to stop compiler from complaining          if (null != x) {} // <-DUCT_TAPE       }       static void Main(string[] args)       {          string strData = "from C#";          strData.DoCPP();          strData.DoCS();          strData.DoVB();       }    } }   Calling program in VB  Imports Extension_CPP Imports Extension_CS Imports Extension_VB Imports System.Runtime.CompilerServices Module TestExtensions_VB    <Extension()> _       Public Sub DoCPP(ByVal str As String)       'Framework does not treat this as an extension, so use the static       CExtension_CPP.DoCPP(str)    End Sub    Sub Main()       Dim strData As String = "from VB"       strData.DoCS()       strData.DoVB()       strData.DoCPP() 'fake    End Sub End Module  Calling program in C++ // TestExtensions_CPP.cpp : main project file. #include "stdafx.h" using namespace System; using namespace Extension_CPP; using namespace Extension_CS; using namespace Extension_VB; void main(void) {        /*******************************************************\         * Extension methods are called like static methods         * when called from C++.  There may be a difference in         * syntax when calling the VB extension as VB Extensions         * are embedded in Modules instead of classes        \*******************************************************/     String^ strData = "from C++";     CExtension_CPP::DoCPP(strData);     CExtension_CS::DoCS(strData);     modExtension_VB::DoVB(strData); //since Extensions go in Modules }

    Read the article

  • Upgrading SSIS Custom Components for SQL Server 2012

    Having finally got around to upgrading my custom components to SQL Server 2012, I thought I’d share some notes on the process. One of the goals was minimal duplication, so the same code files are used to build the 2008 and 2012 components, I just have a separate project file. The high level steps are listed below, followed by some more details. Create a 2012 copy of the project file Upgrade project, just open the new project file is VS2010 Change target framework to .NET 4.0 Set conditional compilation symbol for DENALI Change any conditional code, including assembly version and UI type name Edit project file to change referenced assemblies for 2012 Change target framework to .NET 4.0 Open the project properties. On the Applications page, change the Target framework to .NET Framework 4. Set conditional compilation symbol for DENALI Re-open the project properties. On the Build tab, first change the Configuration to All Configurations, then set a Conditional compilation symbol of DENALI. Change any conditional code, including assembly version and UI type name The value doesn’t have to be DENALI, it can actually be anything you like, that is just what I use. It is how I control sections of code that vary between versions. There were several API changes between 2005 and 2008, as well as interface name changes. Whilst we don’t have the same issues between 2008 and 2012, I still have some sections of code that do change such as the assembly attributes. #if DENALI [assembly: AssemblyDescription("Data Generator Source for SQL Server Integration Services 2012")] [assembly: AssemblyCopyright("Copyright © 2012 Konesans Ltd")] [assembly: AssemblyVersion("3.0.0.0")] #else [assembly: AssemblyDescription("Data Generator Source for SQL Server Integration Services 2008")] [assembly: AssemblyCopyright("Copyright © 2008 Konesans Ltd")] [assembly: AssemblyVersion("2.0.0.0")] #endif The Visual Studio editor automatically formats the code based on the current compilation symbols, hence in this case the 2008 code is grey to indicate it is disabled. As you can see in the previous example I have distinct assembly version attributes, ensuring I can run both 2008 and 2012 versions of my component side by side. For custom components with a user interface, be sure to update the UITypeName property of the DtsTask or DtsPipelineComponent attributes. As above I use the conditional compilation symbol to control the code. #if DENALI [DtsTask ( DisplayName = "File Watcher Task", Description = "File Watcher Task", IconResource = "Konesans.Dts.Tasks.FileWatcherTask.FileWatcherTask.ico", UITypeName = "Konesans.Dts.Tasks.FileWatcherTask.FileWatcherTaskUI,Konesans.Dts.Tasks.FileWatcherTask,Version=3.0.0.0,Culture=Neutral,PublicKeyToken=b2ab4a111192992b", TaskContact = "File Watcher Task; Konesans Ltd; Copyright © 2012 Konesans Ltd; http://www.konesans.com" )] #else [DtsTask ( DisplayName = "File Watcher Task", Description = "File Watcher Task", IconResource = "Konesans.Dts.Tasks.FileWatcherTask.FileWatcherTask.ico", UITypeName = "Konesans.Dts.Tasks.FileWatcherTask.FileWatcherTaskUI,Konesans.Dts.Tasks.FileWatcherTask,Version=2.0.0.0,Culture=Neutral,PublicKeyToken=b2ab4a111192992b", TaskContact = "File Watcher Task; Konesans Ltd; Copyright © 2004-2008 Konesans Ltd; http://www.konesans.com" )] #endif public sealed class FileWatcherTask: Task, IDTSComponentPersist, IDTSBreakpointSite, IDTSSuspend { // .. code goes on... } Shown below is another example I found that needed changing. I borrow one of the MS editors, and use it against a custom property, but need to ensure I reference the correct version of the MS controls assembly. This section of code is actually shared between the 2005, 2008 and 2012 versions of my component hence it has test for both DENALI and KATMAI symbols. #if DENALI const string multiLineUI = "Microsoft.DataTransformationServices.Controls.ModalMultilineStringEditor, Microsoft.DataTransformationServices.Controls, Version=11.0.00.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"; #elif KATMAI const string multiLineUI = "Microsoft.DataTransformationServices.Controls.ModalMultilineStringEditor, Microsoft.DataTransformationServices.Controls, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"; #else const string multiLineUI = "Microsoft.DataTransformationServices.Controls.ModalMultilineStringEditor, Microsoft.DataTransformationServices.Controls, Version=9.0.242.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"; #endif // Create Match Expression parameter IDTSCustomPropertyCollection100 propertyCollection = outputColumn.CustomPropertyCollection; IDTSCustomProperty100 property = propertyCollection.New(); property = propertyCollection.New(); property.Name = MatchParams.Name; property.Description = MatchParams.Description; property.TypeConverter = typeof(MultilineStringConverter).AssemblyQualifiedName; property.UITypeEditor = multiLineUI; property.Value = MatchParams.DefaultValue; Edit project file to change referenced assemblies for 2012 We now need to edit the project file itself. Open the MyComponente2012.cproj  in you favourite text editor, and then perform a couple of find and replaces as listed below: Find Replace Comment Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 Change the assembly references version from SQL Server 2008 to SQL Server 2012. Microsoft SQL Server\100\ Microsoft SQL Server\110\ Change any assembly reference hint path locations from from SQL Server 2008 to SQL Server 2012. If you use any Build Events during development, such as copying the component assembly to the DTS folder, or calling GACUTIL to install it into the GAC, you can also change these now. An example of my new post-build event for a pipeline component is shown below, which uses the .NET 4.0 path for GACUTIL. It also uses the 110 folder location, instead of 100 for SQL Server 2008, but that was covered the the previous find and replace. "C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\Bin\NETFX 4.0 Tools\gacutil.exe" /if "$(TargetPath)" copy "$(TargetPath)" "%ProgramFiles%\Microsoft SQL Server\110\DTS\PipelineComponents" /Y

    Read the article

< Previous Page | 400 401 402 403 404 405 406 407 408 409 410 411  | Next Page >