Search Results

Search found 26869 results on 1075 pages for 'library design'.

Page 425/1075 | < Previous Page | 421 422 423 424 425 426 427 428 429 430 431 432  | Next Page >

  • Unknown margin being added to a footer in IE6 + 7

    - by Qwibble
    So yeah, like I said, I've spent a few hours trying to fix this bug in the footer that add's an extra 20-30px on to the bottom of the page in IE6 and 7. I've currently set all bottom margins to 0 so as to find what's causing it, I then scoured ie developer tools but came up empty. Here's the homepage design hosted on my web design playground - Link Can anyone see the remedy?

    Read the article

  • Correct term for PSD to HTML to CMS

    - by John Magnolia
    Hi, I have heard a lot of different terms to describe the process of turning a website design into a editable CMS. Currently I take the design and "slice" this up into HTML and CSS then I "plug" this into a CMS. I would class this as frontend development depending on the level of customisation required for the CMS. The reason I ask is I am currently writing up my CV and have become stuck on the correct term for this. Kind Regards

    Read the article

  • How does one create an elegant iPhone GUI?

    - by jrtc27
    This is just one of those things where you feel like your own design is utterly terrible, and that all of the other apps have a beautiful design. This question is just about how you would go about creating a user interface that a user would actually want to use?

    Read the article

  • counting sub rows in mysql

    - by moustafa
    i have 2 table ok catgories and artilces i have this structure catgories web > design > photoshop > layers web > design > photoshop > effects and each one is a catgory and layers catgories has 100 article and effects catgories has 50 article now i want when count the articles 'web' catgory it show 150 article how i can do this give me an example

    Read the article

  • Keeping third-party libraries under a Mercurial project: Sub-repos or not?

    - by fraktal
    Hello, We are developing a closed-source project, versionned with Mercurial. We are using two libraries in our project : One of those libraries is being developed by a third-party. They are using git, and we usually just pull from their repo once in a week to get the latest changes. The other library is being developed by ourselves, and is under active development. It must live in its own public mercurial repository, as it is licensed under LGPL. (It's a fork of a third-party LGPL component, ported to our platform) So my question is: How should I organize the source to ensure that: A developer from our team should be able to get all the source (main project + libraries) with a single "clone" command We should be able to pull easily the latest changes from the libraries, even though one of them is managed by git Should we use mercurial sub-repos functionnality, with hg-git to access to the library under git? Is it well supported by TortoiseHg and BitBucket? (pros: easy to pull library changes / cons: does it works well?) Or should we keep only snapshots of the libraries under our project? (thus, when there are new upstream changes in the libraries, we pull them to a separate place, and then copy the whole source to our project? (pros: will work / cons: pain in the ass, especially for the library that is being developed by ourselves, which is subject to a lot of daily changes)

    Read the article

  • Component Level Documentation

    - by Jason Summers
    I'm trying to make good on a promise I've made to provide a decent set of documentation for a C# component that I've written. I've done some googling and found templates for software design at high and low level. The problem is that all of the templates seem to be geared towards a complete system design as opposed to individual components and are consequently overkill. Can anyone please point me in the direction of a template geared towards component documentation? Many thanks

    Read the article

  • GTK+ with any programs

    - by user565739
    I recently knew a latex-editor "gummi", see http://gummi.midnightcoding.org/ , which is written by GTK+ graphical interface toolkit. There are two panels, one in the left which is an editor (using the library gtksourceview) and on in the right which is a viewer (using the library poppler). I am curious that if we can do similary things for every program. For example, replace the editor with "terminal"?"emacs"?"vim"?"terminator (a multi-windows terminal)"...etc. And replace the viewer with other viewers, which in my mind is Adobe Reader. With discussion with the author, he mentioned: The viewer component is also replacable, but doing it with Adobe Reader would not be easy or perhaps even impossible. The reason for this being that Adobe Reader is a complete program instead of a library, and also closed-source So I have some questions: a) We can only make "library" embedded as a panel, but we can't do this for a (any) program? b) Could we replace the editor with emacs? with terminal? c) Could we replace the viewer with Adobe Reader? If not, why? Because it's a program or it's closed-source? I know the questions in this thread are not very precise, sorry.

    Read the article

  • WCF - Return object without serializing?

    - by Mayo
    One of my WCF functions returns an object that has a member variable of a type from another library that is beyond my control. I cannot decorate that library's classes. In fact, I cannot even use DataContractSurrogate because the library's classes have private member variables that are essential to operation (i.e. if I return the object without those private member variables, the public properties throw exceptions). If I say that interoperability for this particular method is not needed (at least until the owners of this library can revise to make their objects serializable), is it possible for me to use WCF to return this object such that it can at least be consumed by a .NET client? How do I go about doing that? Update: I am adding pseudo code below... // My code, I have control [DataContract] public class MyObject { private TheirObject theirObject; [DataMember] public int SomeNumber { get { return theirObject.SomeNumber; } // public property exposed private set { } } } // Their code, I have no control public class TheirObject { private TheirOtherObject theirOtherObject; public int SomeNumber { get { return theirOtherObject.SomeOtherProperty; } set { // ... } } } I've tried adding DataMember to my instance of their object, making it public, using a DataContractSurrogate, and even manually streaming the object. In all cases, I get some error that eventually leads back to their object not being explicitly serializable.

    Read the article

  • Experiences wanted: producing a jar artifact in IntelliJ

    - by skiaddict1
    Developing with IntelliJ 9.0.2 Community Edition, on the Mac. This is a follow-up to this post about including jar files in an artifact, which has not received any replies. I'm hoping that the reason is that somehow, in creating my artifact (or setting my project settings), I unwittingly did something which people don't tend to do, and which is causing my problem, and that by asking people here to share how they create jar artifacts and set up projects, I will discover what it is. To recap: I have a Java project which depends on two library files. I need to package up the entire thing, with the jars inlined (such that on doing jar -tfv <filename> I see ALL the classes listed, including the ones in the two libraries), into a single jar file. I can make an artifact, I can add the library files to the Output Layout pane, but I CANNOT, no matter what I do, I cannot get the "Inline Artifact" item in the context menu to be selectable (i.e. non-grey) when I right-click on one or other library file. The thing is, making a jar which contains library files as well as the project code is NOT an unusual situation in the Java world! So I figure there are lots of IntelliJ folks out there who have done what I need to do. And I would really like to hear from you folks. What project settings do you use? (be specific, please :-) And exactly how do you set up your jar artifacts? (again, as many specific details as possible, please :-) Clearly, I'd be particularly interested to hear from folks with similar setups to mine (above) who are successfully doing what I need to do. Grateful thanks in advance, folks.

    Read the article

  • Mutiple FK columns all pointing to the same parent table - a good idea?

    - by Randy Minder
    For those of you who live and breath database design, have you ever found compelling reasons to have multiple FK's in a table that all point to the same parent table? We recently had to deal with a situation where we had a table that contained six columns which were all FK columns to the same parent table. We're debating whether this indicates a poor design on our part or whether this is more common than we think. Thanks very much.

    Read the article

  • Where's the best place to find good senior web developers?

    - by bokani
    We are looking for a senior web developer for a business start up based in London Mayfair? • Demonstrable experience developing Web 2.0 projects • Complete fluency in HTML, Javascript, CSS, php and MySQL • Experience of jQuery, AJAX and php interaction • Ability to develop applications making use of APIs (Google Maps, Facebook, bespoke CRMs and similar) • Good design aesthetic, including familiarity with Photoshop and CSS • Substantial experience hand-coding • Familiarity with server administration including cPanel • Ability to design HTML newsletters • Progressive enhancement • AJAX application state-memory Salary : £30,000 to £40,000

    Read the article

  • magento show categories on left sidebar on a page

    - by misulicus
    I cant manage to show on a page, on the left side the categories. I selected for the page under Design - layout to 3 columns, Right side shows fine but nothing on left side. New to magento so i`m not sure in wich file in the template i have to look for. Its a custom template installed so i got so far to: app/design/frontend/default/f001/template/ but not sure now if to look under catalog or paeg folders

    Read the article

  • Location of DB models in Zend Framework - want them centralized

    - by jeffkolez
    Maybe I've been staring at the problem too long and it's much simpler than I think, but I'm stuck right now. I have three websites that are going to share database models. I've structured my applications so that I have an application directory for each site and a public directory for each site. The DB models live in a directory in the library along with Zend Framework and my third party libraries. I use the Autoloader class and when I try to instantiate one of my DB classes, it fails. The library directory is in my include path, but for whatever reason it refuses to instantiate my classes. It will work if I have my models in my application directory, but that's not the point. They're supposed to be shared classes in a Library. $model = new Model_Login(); $model->hello_world(); This fails when its in the library. The class is just a test: class Model_Login { public function hello_world() { echo "hello world"; } } Everything works until I try to instantiate one of my models. I've even tried renaming the class to something else (Db_Login), but that doesn't work either. Any ideas? Thanks in advance.

    Read the article

  • JQuery 1.3.1 doesn't find dynamically generated rows

    - by Bamelis Steve
    I have just installed in the ASP.NET MVC RC2 and with that also using the JQuery 1.3.1 library. Before I was using the 1.2.6 library. Our application works fine under that library. But now I have strange problem. We have a grid view that we build up with the result of an AJAX call. With the result returned we add new rows to a table through cloning a hidden row. The generated HTML from the JQuery is placing extra parameters to the tags. These are in the form of JQuery12345678="null". They all have the same name. In the head of the table there is a checkbox that selects/unselects all the rows of the table. This by iterating through the rows of the table. $("#selectAllCheckbox").click(function() { var checked = this.checked; $("#dgNewTasks tbody tr").find(':input[type="checkbox"]').each(function() { this.checked = checked; }); }); Now by using the new library the check box are no longer set. I have used IE Developer Tools to check the HTML. If I remove the JQuery12345678="null" parameter from my rows. It works fine. Could someone tell me what I have to do?

    Read the article

  • Intermediate values in C++

    - by sterh
    Hello. I can not find how to implement a design in C++. In the language of Delphi in case the operator can write the following design: case s[j] of '0'..'9','A'..'Z','a'..'z','_': doSomeThing(); How can i do the same in c++. Attracts me is the construction type 'a' .. 'z' and etc... Thank you

    Read the article

  • Getting Started with Boxee

    - by DigitalGeekery
    Boxee is a free Media PC application that runs on Windows, Mac, and Ubuntu Linux. With Boxee, you can integrate online video, music and pictures, with your own local media and social networking. Today we are going to take a closer look at Boxee and some of it’s features. Note: We used Windows 7 for this tutorial. Your experience on a Mac or Ubuntu Linux build may vary slightly. Hardware Requirements x86 (Intel/AMD processor) based system running at 1.0GHz or greater 512MB system memory (RAM) or more Video card capable of OpenGL 1.4, Direct X 9.0 Software Requirements Mac OS X 10.4+ (Intel based processor) Ubuntu Linux 9.04+ x86 only Windows XP / Vista / 7 (64 bit in Vista or 7) Installing Boxee Before downloading and installing Boxee, you’ll need to register for a free account. (See link below) Once your account is registered and verified, you’ll be able to log in and download the application. Installation is pretty straightforward…just take the defaults. Boxee will open in full screen mode and you’ll be prompted to login with your username and password. Before you login, you may want to take a moment to click on the “Guide” icon and learn a bit about navigating in Boxee. Some basic keyboard navigation is as follows. Move right, left, up, & down with the arrow keys. Hit “Enter” to make a selection, the forward slash key “\” to toggle between full screen and windowed mode, and “Esc” to go back to the previous screen. For Playback, the volume is controlled by plus & minus (+/-) keys, you can Play / Pause using the spacebar, and skip using the arrow keys. Boxee will also work with any infrared remote. If you have an iPhone or iPod Touch you can download software to enable them as a Boxee remote. If you’re using a mouse and keyboard, hover over the username and password boxes to enter your login credentials. If using a a remote, click your OK button and enter credentials with the on screen keyboard. Click “Done” when finished.   When you are ready to login, enter your credentials and click “Login.” On first login, you’ll be prompted to calibrate your screen. If you choose “Skip” you can always calibrate your screen later under Settings > Appearance > Screen. When Boxee opens, you’ll be greeted by the Home screen. To the left will be your Feeds. This will be any recommended content from friends on Boxee, and social networks such as Facebook and Twitter. Although, when you first login, it will mainly be info from the Boxee staff. You’ll have “Featured” content in the center and your Queue on the right. You’ll also have the Menu along the top.   Pop Up Menu The Pop Menu can be accessed by hitting the “Esc” key, or back on your remote. Depending on where you are located in Boxee, you may have to hit it a few time to “back out” to the Pop Up menu. From the Pop Up Menu, you can easily access any of the resources, settings, and favorites. Queue The Queue is your playlist of TV shows, movies, or Internet videos you wish to watch. When you find an offering you’d like to watch, select it and then click “Add to Queue.” The selected item will be added to your Queue and can be accessed at any time from the Menu. TV Show Library The TV Show library can contain files from your local hard drive or streaming content from the Web. Boxee pulls content from a variety of online locations such as Hulu and TV network sites. Click on the show to see which specific episodes are currently available. To search for your favorite shows, click on the yellow arrow to the left, or navigate to the left with your keyboard or remote. Enter your selection into the search box. My Apps By default, the “My Apps” section includes a list of the most popular apps, such as Netflix, Pandora, YouTube, and others. You can remove Apps from “My Apps,” or add new Apps from the Apps Library.   To access all the available Apps, click on the left arrow button, or click on the yellow arrow at the left, then select “App Library.” Choose an App from the Library and click it to open… … and then select “Add to My Apps.” Or, you can click start to play the App if you don’t wish to Add it to your “My Apps.”   Music, Pictures, and Movies Boxee will scan your PC for movies, pictures, and music. You can choose to scan specific folders by clicking on “Scan Media Folders…” … or from the Pop Up Menu, selecting Settings > Media, and then browsing for your media.   Conclusion Boxee to be a great way to integrate your local media with online streaming content. It can be run as an application on your home PC, or as a stand alone media PC. It should also be noted, however, that your access to online content will vary depending on your country. If you are a Windows Media Center user and and want to add the additional features of Boxee, check out our article on integrating Boxee with Windows 7 Media Center. Download Boxee Similar Articles Productive Geek Tips Integrate Boxee with Media Center in Windows 7Disable Fast User Switching on Windows XPOops! Sorry About the Feed ErrorsDisplay a list of Started Services from the Command Line (Windows)Feedburner to Google: Worst Transition Ever. TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Discover New Bundled Feeds in Google Reader Play Music in Chrome by Simply Dragging a File 15 Great Illustrations by Chow Hon Lam Easily Sync Files & Folders with Friends & Family Amazon Free Kindle for PC Download Stretch popurls.com with a Stylish Script (Firefox)

    Read the article

  • Stream Music and Video Over the Internet with Windows Media Player 12

    - by DigitalGeekery
    A new feature in Windows Media Player 12, which is included with Windows 7, is being able to stream media over the web to other Windows 7 computers.  Today we will take a look at how to set it up and what you need to begin. Note: You will need to perform this process on each computer that you want to use. What You’ll Need Two computers running Windows 7 Home Premium, Professional, or Ultimate. The host, or home computer that you will be streaming the media from, cannot be on a public network or part of domain. Windows Live ID UPnP or Port Forwarding enabled on your home router Media files added to your Windows Media Player library Windows Live ID Sign up online for a Windows Live ID if you do not already have one. See the link below for a link to Windows Live.   Configuring the Windows 7 Computers Open Windows Media Player and go to the library section. Click on Stream and then “Allow Internet access to home media.”   The Internet Home Media Access pop up window will prompt you to link your Windows Live ID to a user account. Click “Link an online ID.” If you haven’t already installed the Windows Live ID Sign-In Assistant, you will be taken to Microsoft’s website and prompted to download it. Once you have completed the Windows Live download assistant install, you will see Windows Live ID online provider appear in the “Link Online IDs” window. Click on “Link Online ID.” Next, you’ll be prompted for a Windows Live ID and password. Enter your Windows Live ID and password and click “Sign In.” A pop up window will notify you that you have successfully allowed Internet access to home media. Now, you will have to repeat the exact same configuration on the 2nd Windows 7 computer. Once you have completed the same configuration on your 2nd computer, you might also need to configure your home router for port forwarding. If your router supports UPnP, you may not need to manually forward any ports on your router. So, this would be a good time to test your connection. Go to a nearby hotspot, or perhaps a neighbor’s house, and test to see if you can stream your media. If not, you’ll need to manually forward the ports. You can always choose to forward the ports anyway, just in case. Note: We tested on a Linksys WRT54GL router, which supports UPnP, and found we still needed to manually forward the ports. Finding the ports to forward on the router Open Windows Media Player and make sure you are in Library view. Click on “Stream” on the top menu, and select “Allow Internet access to home media.”   On the “Internet Home Media Access” window, click on “Diagnose connections.” The “Internet Streaming Diagnostic Tool” will pop up. Click on “Port forwarding information” near the bottom.   On the “Port Forwarding Information” window you will find both the Internal and External Port numbers you will need to forward on your router. The Internal port number should always be 10245. The external number will be different depending on your computer. Microsoft also recommends forwarding port 443. Configuring the Router Next, you’ll need to configure Port Forwarding on your home router. We will show you the steps for a Linksys WRT54GL router, however, the steps for port forwarding will vary from router to router. On the Linksys configuration page, click on the Administration Tab along the top, click the “Applications & Gaming Tab, and then the “Port Range Forward” tab below it. Under “Application,” type in a name. It can be any name you choose. In both the “Start” and “End” boxes, type the port number. Enter the IP address of your home computer in the IP address column. Click the check box under “Enable.” Do this for both the internal and external port numbers and port 443. When finished, click the “Save Settings” button. Note: It’s highly recommended that you configure your home computer with a static IP address When you’re ready to play your media over the Internet, open up Windows Media Player and look for your host computer and username listed under “Other Libraries.” Click on it expand the list to see your media libraries. Choose a library and a file to play. Now you can enjoy your streaming media over the Internet. Conclusion We found media streaming over the Internet to work fairly well. However, we did see a loss of quality with streaming video. Also, Recorded TV .wtv and dvr-ms files did not play at all. Check out our previous article to see how to stream media share and stream media between Windows 7 computers on your home network. Similar Articles Productive Geek Tips Enable Media Streaming in Windows Home Server to Windows Media PlayerFixing When Windows Media Player Library Won’t Let You Add FilesShare Digital Media With Other Computers on a Home Network with Windows 7Share and Stream Digital Media Between Windows 7 Machines On Your Home NetworkLearning Windows 7: Manage Your Music with Windows Media Player TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Stormpulse provides slick, real time weather data Geek Parents – Did you try Parental Controls in Windows 7? Change DNS servers on the fly with DNS Jumper Live PDF Searches PDF Files and Ebooks Converting Mp4 to Mp3 Easily Use Quick Translator to Translate Text in 50 Languages (Firefox)

    Read the article

  • CodePlex Daily Summary for Sunday, September 30, 2012

    CodePlex Daily Summary for Sunday, September 30, 2012Popular ReleasesCAPTCHA Solver: Initial Release: This is the initial Release :) Still very much a WIP.MCEBuddy 2.x: MCEBuddy 2.2.17: Reccomended update to 2.2.16 Changelog for 2.2.17 (32bit and 64bit) 1. Fixed bugs around thread synchronization with new remote model (fixes cause the app to crash or hang) 2. Updated UPnP code base, faster and more reliable now 3. Now you can get audio/video properties for multiple files on main page. Selected multiple files and right click, all selected files properties will be shown. 4. Fix a bug, not able to enter a conversion task name in the GUIAggravation: Version 1.0: This version 1.0 release is pretty stable. You need the Silverlight 4 runtime, developer tools, and Experssion Blend 4 installed.Readable Passphrase Generator: KeePass Plugin 0.7.1: See the KeePass Plugin Step By Step Guide for instructions on how to install the plugin. Changes Built against KeePass 2.20Windows 8 Toolkit - Charts and More: Beta 1.0: The First Compiled Version of my LibraryPDF.NET: PDF.NET.Ver4.5-OpenSourceCode: PDF.NET Ver4.5 ????,????Web??????。 PDF.NET Ver4.5 Open Source Code,include a sample Web application project.D3 Loot Tracker: 1.4: Session name is displayed in the UI. Changes data directory for clickonce deployment so that sessions files are persisted between versions. Added a delete button in the sessions list window. Allow opening of the sessions local folder from the session list widow. Display the session name in the main window Ability to select which diablo process to hook up to when pressing new () function BUT only if multi-process support is selected in the generals settings tab menu. Session picker...CRM 2011 Visual Ribbon Editor: Visual Ribbon Editor 1.1 Beta: Visual Ribbon Editor 1.1 Beta What's New: Fixed scrolling issue in UnHide dialog Added support for connecting via ADFS / IFD Added support for more than one action for a button Added support for empty StringParameter for Javascript functions Fixed bug in rule CrmClientTypeRule when selecting Outlook option Extended Prefix field in New Button dialogVisual Studio Icon Patcher: Version 1.5.2: This version contains no new images from v1.5.1 Contains the following improvements: Better support for detecting the installed languages The extract & inject commands won’t run if Visual Studio is running You may now run in extract or inject mode The p/invoke code was cleaned up based on Code Analysis recommendations When a p/invoke method fails the Win32 error message is now displayed Error messages use red text Status messages use green textZXing.Net: ZXing.Net 0.9.0.0: On the way to a release 1.0 the API should be stable now with this version. sync with rev. 2393 of the java version improved api better Unity support Windows RT binaries Windows CE binaries new Windows Service demo new WPF demo WindowsCE Hotfix: Fixes an error with ISO8859-1 encoding and scannning of QR-Codes. The hotfix is only needed for the WindowsCE platform.C.B.R. : Comic Book Reader: CBR 0.7: Synthesis since 0.6 : ePUB : Complete refactoring Add a new dedicated feed viewer for opds stream PDF conversion : improved with image merge Make all backstage panel scrollable Integrate the new AvalonDock 2 library. Support multi-document. Library explorer and Table of content are now toolboxes Designer for dynamic books is now mvvm and much better New BrowserForControl Customized xps viewer to suppress toolbars and bind it to cbr commands Add quick start manual and button ...menu4web: menu4web 1.0 - free javascript menu for web sites: menu4web 1.0 has been tested with all major browsers: Firefox, Chrome, IE, Opera and Safari. Minified m4w.js library is less than 9K. Includes 21 menu examples of different styles. Can be freely distributed under The MIT License (MIT).Rawr: Rawr 5.0.0: This is the Downloadable WPF version of Rawr!For web-based version see http://elitistjerks.com/rawr.php You can find the version notes at: http://rawr.codeplex.com/wikipage?title=VersionNotes Rawr Addon (NOT UPDATED YET FOR MOP)We now have a Rawr Official Addon for in-game exporting and importing of character data hosted on Curse. The Addon does not perform calculations like Rawr, it simply shows your exported Rawr data in wow tooltips and lets you export your character to Rawr (including ba...Coevery - Free CRM: Coevery 1.0.0.26: The zh-CN issue has been solved. We also add a project management module.VidCoder: 1.4.1 Beta: Updated to HandBrake 4971. This should fix some issues with stuck PGS subtitles. Fixed build break which prevented pre-compiled XML serializers from showing up. Fixed problem where a preset would get errantly marked as modified when re-opening the encode settings window or importing a new preset.Snake!: Snake 1.0: Version 1 StablePaging SharePoint ListItems using listitems position: Paginglistitems V1.0: This is a console application which has two methods both on CSOM and SOM to display the listitems in a paged manner.SharePoint Move Discussion Threads: SharePoint Move Discussion Threads ver 0.1: ver 0.1NTCPMSG: V1.1.1.0: increase the performance. Support .net framework 4.0.BlackJumboDog: Ver5.7.2: 2012.09.23 Ver5.7.2 (1)InetTest?? (2)HTTP?????????????????100???????????New Projects2D Sprite Editor: This is a 2d sprite editor. Import your sprite sheet, trace your animations frame and export the coordinates points in a simple txt file, ready to import.caifenweb1: test project.CatchThatException: This is a small logging library We created at developerpath.com to help us log exceptions. It write it to a text file and you can easilay open that txt.FsxWs - WebServices for Microsoft FSX: WebServices for MS Flight Simulator. Get flights data as JSON, KML. !! Still in SetUp phase - be patient !!GetTPB: Some training in downloading and parsing web pages, with multithreading too.JSON-RPC Client Generator (for XBMC): The goal of this project is to provide a .Net client for the XBMC JSONRPC API. The main part is not XBMC dependent and may be used for any JSON-RPC client.matlab-silhouette-pose-wtf: Whatevermfp: this is random codeMVC Grid: MVC Grid ExampleMyWebSocketTry: sssssssssssssssssssssssssssssssssssssssNetduino Console: Netduino Console is an interface with built in messaging layers that allows you as a developer to dynamically create plugins following a provided interface to iSharePoint ASP.NET Verifier: Project will allow to verify SharePoint 2010 components using ASP.NET web applicationSharepoint Custom Upload: This is a SharePoint solution that allows an administrator to customize the upload page individually for each document library in a site.. It allows you to makeWinWeb Browser Deluxe: WinWeb Browser Deluxe es un navegador web de código abierto basado en Internet Explorer hecho en Visual Basic .NET. Descargalo ya!writethatoutput: This is the official release page for WriteThatOutPut from developerpath.com

    Read the article

  • CodePlex Daily Summary for Sunday, April 04, 2010

    CodePlex Daily Summary for Sunday, April 04, 2010New ProjectsAcervo 2 - Gerenciador de coleções: Acervo 2 is a web application developed in ASP.NET 3.5 with Entity Framework, Coolite UI web controls and MySQL database that helps to catalog and ...AssemblyInfo Editor: AssemblyInfo Editor is a small Visual Studio 2010 extension I developed for my personal use mainly for automatically incrementing AssemblyVersion a...CommLine: It's a Command Line Interpreter. At the moment, it's a beta version, so I wait for developers that wanna help meFlowgraph Viewer: The flowgraph viewer enables users to view, build and share flowgraphs for the Crysis-franchise. It's built on Silverlight4, using MEF and Mvvmlight.Hash Calculator: WPF Windows 7 program to compute SHA1 & MD5 hash functions.MediaRSS library for .NET: This is a small set of libraries that allow you to create, read, and write MediaRSS files. By leveraging the syndication model object in .NET this...MEF Visualizer Tool: Helps to see what is going on inside the CompositionContainerone framework for developing asp.net project more elegent、flexible、and testable: if you are familiar with jsf、cdi、scoped javabean and work under asp.net, you may want to support aop and max flexibility and testability , all of ...Picasa Manager: A Silverlight Out Of Browser Application that Helps you manage your PicasaWeb albums in the easyest way possible.SharePhone: Windows Phone 7 library for connecting to SharePoint 2007/2010. Lets you work with SPWeb, SPList, reading/writing strong typed list items, user ...Silverlight Resource Extension: Silverlight Resource Extension. Extension silverlight project for use ResX resources and localize satellite dll.Silverlight Streamgraph: Streamgraph component for SilverlightTFTP Server: Managed TFTP server implementation, written in C#. Supports: - IPv4 and IPv6 - correct retry behavior. - TFTP options: block size, transfer size, a...Virtual UserGroup Video Helpers: This is a project that holds all the tools used by the C4MVC Virtual Usergroup. Tools written in C# and Powershell to automate, Live Meeting, Expr...xBlog: xBlog is a project to build a simple and extensible Blog Engine based on xml and linqXmlCodeEditor: XmlCodeEditor is a Silverlight 4 control based on RichTextControl that creates coloring and intellisense similar to the one in Visual Studio for ed...Zinc Launcher: Zinc Launcher is a simple Windows Media Center plugin that launches Zinc and attempts to manage the windows as seamlessly as possible. In addition ...New ReleasesAcervo 2 - Gerenciador de coleções: Acervo 2 - v1.0: Arquivos para implantação do sistema Acervo2 Aplicação web Web service Smart ClientAssemblyInfo Editor: Beta 1: Initial release of Assembly Info Editor. At this point, it is feature-complete and is relatively stable. There are undoubtedly some bugs to work o...Box2D.XNA: Box2D.XNA r70 Source Code and Solution: This version is synced to changeset 44697. This represents our official port of the C Box2D up to r70 on the Google Code project. With this versi...Boxee Launcher: Boxee Launcher Release 1.0.1.2: Will now stop Media Center playback before launching BoxeeBoxee Launcher: Boxee Launcher Release 1.0.1.3: Added a background window that attempts to display over the desktop and taskbar, and below Boxee and Media Center so that the desktop and taskbar a...CommLine: Beta Version 0.1: First Beta Of the AppCommLine: Source v0.1 Beta: Source Code C of 0.1 beta versionEncrypted Notes: Encrypted Notes 1.6.2: This is the latest version of Encrypted Notes (1.6.2), with general changes and improved randomness for the key generator. It has an installer that...Hash Calculator: HashCalculator: HashCalculator 1.0Hash Calculator: HashCalculator Source code: HashCalculator 1.0Hulu Launcher: Hulu Launcher 1.0.1.3: Added a background window that attempts to display over the desktop and taskbar, and below Hulu and Media Center so that the desktop and taskbar ar...Hulu Launcher: Hulu Launcher Release 1.0.1.2: Hulu Launcher will now stop playback in Media Center before launching Hulu Desktop.Innovative Games: 4.3 - Sprite Effects: Source code download for chapter 4.3 - "Sprite Effects"MediaRSS library for .NET: 0.1: Alpha release. Majority of MediaRSS spec is supported. A small set of unit test / sample code are included. A lightly tested CustomFormatter object...MEF Visualizer Tool: MEF Visualizer Tool 0.1: Help to see what going on in side CompositionContainer Container = new CompositionContainer( new AggregateCatalog( ...Ncqrs Framework - A CQRS framework for .NET: Ncqrs with sample application: This is the first release of the Ncqrs Framework. It contains the Ncqrs source code and a runnable sample application. All the code in this release...Rubik Cube's 3D Silverlight 3.0 Animated Solution: Rubik Cube 3D with Animated Solution: This project is a realization of Silverlight 3.0 Rubik Cube 3D with Animated Solution. The Solution is available for 3x3x3 cube, other features are...Scrabler: scrabler release 0.6.2.5: fixed a bug that werent executed some scriptsSharePhone: SharePhone: Initial release with basic functionality: Open SharePoint webs and subwebs Retrieve lists on SPWeb objects Read metadata/properties on lists ...SharePhone: SharePhone v.1.0.1: Fixed a bug that prevented saving list items to SharePointSharePoint Labs: SPLab4001A-FRA-Level100: SPLab4001A-FRA-Level100 This SharePoint Lab will teach you the first best practice you should apply when writing code with the SharePoint API. Lab ...Silverlight Resource Extension: ResourceExtension (alpha): Alpha version is not stable. Only for review.Silverlight Streamgraph: Port from processing.org: A port from the processing.org streamgraph. Code-heavy with very little XAML involved at this point.Theocratic Ministry School System: TMSS - Ver 1.1.1: What’s New! Added Menu Options 2010 Schedule Access 2007 Runtime There are still many uncompleted items so this is still a conceptual release....Theocratic Ministry School System: TMSS - Ver 1.1.2: Fixed the Schedule Import. Need needs to be tested. Click import button and make sure you can get the 2010 Schedule from the internet.thinktecture Starter STS (Community Edition): StarterSTS v1.0 RTW: Version 1.0 RTWTribe.Cache: Tribe.Cache Alpha - 0.2.0.0: Tribe.Cache Alpha - 0.2.0.0 - Now has sliding and absolute expiration on cache entries. Functional Alpha Release - But do not use in productionTwitterVB - A .NET Twitter Library: TwitterVB-2.3.1: This is mostly a minor release that adds br.st URL shortening to the menu (API key from http://br.st required)Virtu: Virtu 0.8.1: Source Requirements.NET Framework 3.5 with Service Pack 1 Visual Studio 2008 with Service Pack 1, or Visual C# 2008 Express Edition with Service Pa...Visual Studio DSite: Advanced C++ Calculator: An advanced visual c 2008 calculator that can do all your basic operations, plus some advanced mathematical functions. Source Code Only.xnaWebcam: xnaWebcam 0.3: xnaWebcam 0.3 Version 0.3: -ResolutionSet: 400x300 (Default), 800x600, 1024x720 -Settings Window got Icon -Settings Window Changes -DevConsole.cs ...Most Popular ProjectsRawrWBFS ManagerMicrosoft SQL Server Product Samples: DatabaseASP.NET Ajax LibrarySilverlight ToolkitAJAX Control ToolkitWindows Presentation Foundation (WPF)ASP.NETMicrosoft SQL Server Community & SamplesDotNetNuke® Community EditionMost Active ProjectsGraffiti CMSnopCommerce. Open Source online shop e-commerce solution.RawrFacebook Developer ToolkitjQuery Library for SharePoint Web ServicesLINQ to TwitterBlogEngine.NETN2 CMSBase Class LibrariesFarseer Physics Engine

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

< Previous Page | 421 422 423 424 425 426 427 428 429 430 431 432  | Next Page >