Search Results

Search found 78653 results on 3147 pages for 'performance object name s'.

Page 490/3147 | < Previous Page | 486 487 488 489 490 491 492 493 494 495 496 497  | Next Page >

  • In WMI, can I use a join (or something similar) to acquire the IisWebServer object for a site, given

    - by Precipitous
    Given a server name and a physical path, I'd like to be able to hunt down the IISWebServer object and ApplicationPool. Website url is also an acceptable input. Our technologies are IIS 6, WMI, and access via C# or Powershell 2. I'm certain this would be easier with IIS 7 its managed API. We don't have that yet. Here's what I can do: Get a list of IIS virtual directories from IISWebVirtualDirSetting and filter (offline) for the matching physical path. $theVirtualDir = gwmi -Namespace "root/MicrosoftIISv2" ` -ComputerName $servername -authentication PacketPrivacy ` -class "IISWebVirtualDirSetting" ` | where-object {$_.Path -like $deployLocation} From the virtual directory object, I can get a name (like W3SVC/40565456/root). Given this name, I can get to other goodies, such as the IIS web server object. gwmi -Namespace "root/MicrosoftIISv2" ` -ComputerName $servername ` -authentication PacketPrivacy ` -Query "SELECT * FROM IisWebServer WHERE Name='W3SVC/40589473'" The questions, restated: 1) This is a query language. Can I join or subquery so that 1 WMI query statement gets web servers based on IISWebVirtualDir.Path? How? 2) In solving 1, you'll have to explain how to query on the Path property. Why is this an invalid query? "SELECT * FROM IISWebVirtualDirSetting WHERE Path='D:\sites\globaldominator'"

    Read the article

  • C# How to perform a live xslt transformation on an in memory object?

    - by JL
    I have a function that takes 2 parameters : 1 = XML file, 2 = XSLT file, then performs a transformation and returns the resulting HTML. Here is the function: /// <summary> /// Will apply an XSLT style to any XML file and return the rendered HTML. /// </summary> /// <param name="xmlFileName"> /// The file name of the XML document. /// </param> /// <param name="xslFileName"> /// The file name of the XSL document. /// </param> /// <returns> /// The rendered HTML. /// </returns> public string TransformXml(string xmlFileName, string xslFileName) { var xtr = new XmlTextReader(xmlFileName) { WhitespaceHandling = WhitespaceHandling.None }; var xd = new XmlDocument(); xd.Load(xtr); var xslt = new System.Xml.Xsl.XslCompiledTransform(); xslt.Load(xslFileName); var stm = new MemoryStream(); xslt.Transform(xd, null, stm); stm.Position = 1; var sr = new StreamReader(stm); xtr.Close(); return sr.ReadToEnd(); } I want to change the function not to accept a file for the XML, but instead just an object. The object is exactly compatible with the xslt, if it was serialized to file. But I don't want to have to serialize it to a file first. So to recap : keep the xslt coming from a file, but the xml input should an object I pass and would like to generate the xml from without any file system interaction.

    Read the article

  • WPF-Can a XAML object be a source as well as a target for bindings?

    - by iambic77
    I was wondering if it's possible to have a TextBlock as a target and a source? Basically I have a bunch of entities which have simple relationships to other entities (like Entity1 Knows Entity3, Entity3 WorksAt Entity2 etc.) I have a Link class that stores SourceEntity, Relationship and TargetEntity details. What I want to be able to do is to select an entity then display the relationships related to that entity, with the target entities of each relationship listed underneath the relationship names. When an entity is selected, an ObservableCollection is populated with the Links for that particular entity (SelectedEntityLinks<Link>). Because each entity could have the same relationship to more than one target entity (Entity1 could know both Entity3 and Entity4 for eg.), I've created a method GetThisRelationshipEntities() that takes a relationship name as a parameter, looks through SelectedEntityLinks for relationship names that match the parameter, and returns an ObservableCollection with the target entities of that relationship. Hope I'm making this clear. In my xaml I have a WrapPanel to display each relationship name in a TextBlock: <TextBlock x:Name="relationship" Text="{Binding Path=Relationship.Name}" /> Then underneath that another Textblock which should display the results of GetThisRelationshipEntities(String relationshipName). So I want the "relationship" TextBlock to both get its Text from the binding I've shown above, but also to provide its Text as a parameter to the GetThisRelationshipEntities() method which I've added to <UserControl.Resources> as an ObjectDataProvider. Sorry if this is a bit wordy but I hope it's clear. Any pointers/advice would be great. Many thanks.

    Read the article

  • Good practice to create extension methods that apply to System.Object?

    - by Christian
    Hello, I'm wondering whether I should create extension methods that apply on the object level or whether they should be located at a lower point in the class hierarchy. What I mean is something along the lines of: public static string SafeToString(this Object o) { if (o == null || o is System.DBNull) return ""; else { if (o is string) return (string)o; else return ""; } } public static int SafeToInt(this Object o) { if (o == null || o is System.DBNull) return 0; else { if (o.IsNumeric()) return Convert.ToInt32(o); else return 0; } } //same for double.. etc I wrote those methods since I have to deal a lot with database data (From the OleDbDataReader) that can be null (shouldn't, though) since the underlying database is unfortunately very liberal with columns that may be null. And to make my life a little easier, I came up with those extension methods. What I'd like to know is whether this is good style, acceptable style or bad style. I kinda have my worries about it since it kinda "pollutes" the Object-class. Thank you in advance & Best Regards :) Christian P.S. I didn't tag it as "subjective" intentionally.

    Read the article

  • ColdFusion 9 ORM - Securing an object at a low level...

    Hiya: I wonder if anybody has an idea on this... I'm looking at securing a low level object in my model (a "member" object) so by default only certain information can be accessed from it. Here's a possible approach (damn sexy if it would work!): 1) Add a property called "locked" - defaulting to "true" to the object itself. It appears that the only option to do this, and not tie it to a db table column, is to use the formula attribute that takes a query. So to default locked to TRUE I've got: <cfproperty name="locked" formula="select 1" /> 2) Then, I overwrite the existing set-ers and get-ers to use this: e.g. <cffunction name="getFullname" returnType="string"> <cfscript> if (this.getLocked()) { return this.getScreenName(); } else { return this.getFullname(); } </cfscript> </cffunction> 3) When i use it like this: <p> #oMember.getFullName()# </p> shows the ScreenName (great!) but... When I do this: <cfset oMember.setLocked(false)> <p> #oMember.getFullName()# </p> Just hangs!!! It appears that attempting to set a property that's been defined using "formula" is a no-no. Any ideas? Any other way we can have properties attached to an ORM object that are gettable and settable without them being present in the db? Ideas appreciated!

    Read the article

  • Can I detect whether an object has called GC.SuppressFinalize?

    - by Joe White
    Is there a way to detect whether or not an object has called GC.SuppressFinalize? I have an object that looks something like this (full-blown Dispose pattern elided for clarity): public class ResourceWrapper { private readonly bool _ownsResource; private readonly UnmanagedResource _resource; public ResourceWrapper(UnmanagedResource resource, bool ownsResource) { _resource = resource; _ownsResource = ownsResource; if (!ownsResource) GC.SuppressFinalize(this); } ~ResourceWrapper() { if (_ownsResource) // clean up the unmanaged resource } } If the ownsResource constructor parameter is false, then the finalizer will have nothing to do -- so it seems reasonable (if a bit quirky) to call GC.SuppressFinalize right from the constructor. However, because this behavior is quirky, I'm very tempted to note it in an XML doc comment... and if I'm tempted to comment it, then I ought to write a unit test for it. But while System.GC has methods to set an object's finalizability (SuppressFinalize, ReRegisterForFinalize), I don't see any methods to get an object's finalizability. Is there any way to query whether GC.SuppressFinalize has been called on a given instance, short of buying Typemock or writing my own CLR host?

    Read the article

  • How can I bind Wpf DataGridColumn to an object?

    - by John
    I want to bind the columns of my WPF DataGrid to some objects in a Dictionary like this: Binding Path=Objects[i] where Objects is my Dictionary of objects, so that each cell will represent an Object element. How can I do that? I suppose that I need to create a template for my cell, which I did, but how to get the result of column binding in my template? I know that by default the content of a DataGridCell is a TextBlock and it's Text property is set through column binding result, but if that result is an object I guess that I have to create a ContentTemplate. How do I do that, as the stuff I tried is not displaying anything. Here it is what I tried: <Style x:Key="CellStyle" TargetType="{x:Type dg:DataGridCell}"> <Setter Property="Template"> ---it should realy be ContentTemplate? <Setter.Value> <ControlTemplate> <controls:DataGridCellControl CurrentObject="{Binding }"/> -- I would expect to get the object like this for this column path : Path=Objects[i] but is not working </ControlTemplate> </Setter.Value> </Setter> </Style> So, to make myself completly clear, i want to get in CurrentObject property of my DataGridCellControl the current object that should result if I set the column binding in my data grid like this Path=Objects[i]. Thank you for any suggestion, John.

    Read the article

  • How can I pass in a params of Expression<Func<T, object>> to a method?

    - by Pure.Krome
    Hi folks, I have the following two methods :- public static IQueryable<T> IncludeAssociations<T>(this IQueryable<T> source, params string[] associations) { ... } public static IQueryable<T> IncludeAssociations<T>(this IQueryable<T> source, params Expression<Func<T, object>>[] expressions) { ... } Now, when I try and pass in a params of Expression<Func<T, object>>[], it always calls the first method (the string[]' and of course, that value isNULL`) Eg. Expression<Func<Order, object>> x1 = x => x.User; Expression<Func<Order, object>> x2 = x => x.User.Passport; var foo = _orderRepo .Find() .IncludeAssociations(new {x1, x2} ) .ToList(); Can anyone see what I've done wrong? Why is it thinking my params are a string? Can I force the type, of the 2x variables?

    Read the article

  • How to sum up a fetched result's number property based on the object's category?

    - by mr_kurrupt
    I have a NSFetchRequest that is returning all my saved objects (call them Items) and storing them in an NSMutableArray. Each of these Items have a category, an amount, and some other properties. My goal is to check the category of each Item and store the sum of the amounts for objects of the same category. So if I had these Items: Red; 10.00 Blue; 20.00 Green; 5.00 Red; 5.00 Green; 15.00 then I would have an array or other type of container than has: Red; 15.00 Blue; 20.00 Green; 20.00 What would be the best way to organize the data in such a manner? I was going to create a object class (call it Totals) that just has the category and amount. As I traverse through the fetch results in a for-loop, add Items with the same category in a Totals object an store them in a NSMutableArray. The problem I ran into with that is that I'm not sure how to check if an array contains a Totals object with a specific property. Specifically, a category that already exists. So if 'Red' exists, add the amount to it, otherwise create a new Totals object with category 'Red' and a the first Item's amount. Thanks.

    Read the article

  • Why won't WPF databindings show text when ToString() has a collaborating object?

    - by Jay
    In a simple form, I bind to a number of different objects -- some go in listboxes; some in textblocks. A couple of these objects have collaborating objects upon which the ToString() method calls when doing its work -- typically a formatter of some kind. When I step through the code I see that when the databinding is being set up, ToString() is called the collaborating object is not null and returns the expected result when inspected in the debugger, the objects return the expected result from ToString() BUT the text does not show up in the form. The only common thread I see is that these use a collaborating object, whereas the other bindings that show up as expected simply work from properties and methods of the containing object. If this is confusing, here is the gist in code: public class ThisThingWorks { private SomeObject some_object; public ThisThingWorks(SomeObject s) { some_object = s; } public override string ToString() { return some_object.name; } } public class ThisDoesntWork { private Formatter formatter; private SomeObject some_object; public ThisDoesntWork(SomeObject o, Formatter f) { formatter = f; some_object = o; } public override string ToString() { return formatter.Format(some_object.name); } } Again, let me reiterate -- the ToString() method works in every other context -- but when I bind to the object in WPF and expect it to display the result of ToString(), I get nothing. Update: The issue seems to be what I see as a buggy behaviour in the TextBlock binding. If I bind the Text property to a property of the DataContext that is declared as an interface type, ToString() is never called. If I change the property declaration to an implementation of the interface, it works as expected. Other controls, like Label work fine when binding the Content property to a DataContext property declared as either the implementation or the interface. Because this is so far removed from the title and content of this question, I've created a new question here: http://stackoverflow.com/questions/2917878/why-doesnt-textblock-databinding-call-tostring-on-a-property-whose-compile-tim

    Read the article

  • spring mvc, css and javascript is not working properly

    - by user2788424
    the css and javascript is not take effect on my page. I google online, people saying this is the magic, but not happening on my page. <mvc:resources mapping="/resources/**" location="/resources/" /> this is the error: Nov 02, 2013 9:19:29 PM org.springframework.web.servlet.DispatcherServlet noHandlerFound WARNING: No mapping found for HTTP request with URI [/myweb/resources/css/styles.css] in DispatcherServlet with name 'dispatcher' Nov 02, 2013 9:19:29 PM org.springframework.web.servlet.DispatcherServlet noHandlerFound WARNING: No mapping found for HTTP request with URI [/myweb/resources/script.js] in DispatcherServlet with name 'dispatcher' Nov 02, 2013 9:19:29 PM org.springframework.web.servlet.DispatcherServlet noHandlerFound WARNING: No mapping found for HTTP request with URI [/myweb/resources/js/jquery-1.10.2.min.js] in DispatcherServlet with name 'dispatcher' here is the applicationContext.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:mvc="http://www.springframework.org/schema/mvc" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xmlns:tx="http://www.springframework.org/schema/tx" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.2.xsd http://www.springframework.org/schema/mvc http://www.springframework.org/schema/mvc/spring-mvc-3.2.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.2.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-3.2.xsd"> <context:component-scan base-package="org.peterhuang.myweb" /> <mvc:resources mapping="/resources/**" location="/resources/" /> <bean class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter"> </bean> <bean class="org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping"> </bean> <!-- Hibernate Transaction Manager --> <bean id="transactionManager" class="org.springframework.orm.hibernate4.HibernateTransactionManager"> <property name="sessionFactory" ref="sessionFactory" /> </bean> <mvc:annotation-driven /> <!-- Activates annotation based transaction management --> <tx:annotation-driven /> <bean id="propertyConfigurer" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> <property name="location" value="classpath:jdbc.properties" /> </bean> <bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <property name="viewClass" value="org.springframework.web.servlet.view.JstlView" /> <property name="prefix" value="/WEB-INF/"></property> <property name="suffix" value=".jsp"></property> </bean> <bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource"> <property name="driverClassName" value="${jdbc.driverClassName}" /> <property name="url" value="${jdbc.url}" /> <property name="username" value="${jdbc.username}" /> <property name="password" value="${jdbc.password}" /> </bean> <bean id="sessionFactory" class="org.springframework.orm.hibernate4.LocalSessionFactoryBean"> <property name="dataSource" ref="dataSource" /> <property name="packagesToScan" value="org.peterhuang.myweb" /> <property name="hibernateProperties"> <props> <prop key="hibernate.dialect"> ${jdbc.dialect} </prop> <prop key="hibernate.show_sql"> ${hibernate.show_sql} </prop> <prop key="hibernate.format_sql"> ${hibernate.format_sql} </prop> </props> </property> </bean> here is the web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app id="WebApp_ID" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"> <display-name>my web</display-name> <servlet> <servlet-name>dispatcher</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <init-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/applicationContext.xml</param-value> </init-param> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>dispatcher</servlet-name> <url-pattern>/</url-pattern> </servlet-mapping> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> <welcome-file-list> <welcome-file>/WEB-INF/jsp/welcome.jsp</welcome-file> </welcome-file-list> this is the page got displaied: <%@taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%> <%@ taglib uri="http://www.springframework.org/tags" prefix="spring"%> <link type="text/css" rel="stylesheet" href="<spring:url value='resources/css/styles.css' />" /> <script type="text/javascript" src="<spring:url value='resources/js/jquery-1.10.2.min.js' />"></script> <script type="text/javascript" src="<spring:url value='resources/script.js'/>"</script> <ul id="button"> <c:forEach var="category" items="${categoryList}"> <li><a href="#">${category.categoryName}</a></li> </c:forEach> </ul> the folder structure in eclipse: myweb | | | |----Java Resources | | | | | |-----src/main/resources | | | | | | | | |------js | | | | | | | |-----jquery-1.10.2.min.js | | | | | | | | | | | |-----script.js | | | | | | | | |-----css | | | | | | | |-----style.css | | | | | | | | any tips would be appreciated!! thanks in advanced!

    Read the article

  • chrome extension: get specific part of the current tab page in DOM object and display it in either popup.html or new html page?

    - by sandeep
    IS there any way so that i can convert any DOM object into HTML page within the script ? suppose I have dom object like this: content script.js chrome.extension.onRequest.addListener(function(request, sender, sendResponse) { if (request.method == "fromPopup") { console.log("got Request from Popup"); var myDivObj = document.getElementById("definition"); //sendResponse({data: "from Content Script to Popup"}); if ( myDivObj ) { sendResponse({data:myDivObj}); } else{ sendResponse({data:"Empty or No Tag"}); } console.log("sent Response1"); } else { sendResponse({}); // snub them. console.log("sent Response2"); } }); here is my popup.html <body> <Div>Searching..</Div> <Div id="output">Response??</Div> <script> console.log("Pop UP Clicked"); chrome.tabs.getSelected(null, function(tab) { chrome.tabs.sendRequest(tab.id, {method: "fromPopup", tabid: tab.id}, function(response) { console.log("got Response from Content Script"); document.getElementById("output").innerHTML=response.data; }); }); </script> </body> I know we can send onaly JSON type of data to the popup.html page.. am i right ? If yes is ther any way that I can creat HTML page with DOM Object( myDivObj ) which I collected.. Any alternative solution..? In short i want get only specific part of the current tab page in DOM object and display it in either popup.html or separate html page..

    Read the article

  • Is locking on the requested object a bad idea?

    - by Quick Joe Smith
    Most advice on thread safety involves some variation of the following pattern: public class Thing { private static readonly object padlock = new object(); private string stuff, andNonsense; public string Stuff { get { lock (Thing.padlock) { if (this.stuff == null) this.stuff = "Threadsafe!"; } return this.stuff; } } public string AndNonsense { get { lock (Thing.padlock) { if (this.andNonsense == null) this.andNonsense = "Also threadsafe!"; } return this.andNonsense; } } // Rest of class... } In cases where the get operations are expensive and unrelated, a single locking object is unsuitable because a call to Stuff would block all calls to AndNonsense, degrading performance. And rather than create a lock object for each call, wouldn't it be better to acquire the lock on the member itself (assuming it is not something that implements SyncRoot or somesuch for that purpose? For example: public string Stuff { get { lock (this.stuff) { // Pretend that this is a very expensive operation. if (this.stuff == null) this.stuff = "Still threadsafe and good?"; } return this.stuff; } } Strangely, I have never seen this approach recommended or warned against. Am I missing something obvious?

    Read the article

  • assembling an object graph without an ORM -- in the service layer or data layer?

    - by Hans Gruber
    At my current gig, our persistence layer uses IBatis going against SQL Server stored procedures (puke). IMHO, this approach has many disadvantages over the use of a "true" ORM such NHibernate or EF, but the one I'm trying to address here revolves around all the boilerplate code needed to map data from a result set into an object graph. Say I have the following DTO object graph I want to return to my presentation layer: IEnumerable<CustomerDTO> |--> IEnumerable<AddressDTO> |--> LatestOrderDTO The way I've implemented this is to have a discrete method in my DAO class to return each IEnumerable<*DTO>, and then have my service class be responsible for orchestrating the calls to the DAO. It then returns the fully assembled object graph to the client: public class SomeService(){ public SomeService(IDao someDao){ this._someDao = someDao; } public IEnumerable<CustomerDTO> ListCustomersForHistory(int brokerId){ var customers = _someDao.ListCustomersForBroker(brokerId); foreach (customer in customers){ customer.Addresses = someDao.ListCustomersAddresses(brokerId); customer.LatestOrder = someDao.GetCustomerLatestOrder(brokerId); } } return customers; } My question is should this logic belong in the service layer or the should I make my DAO such that it instead returns the assembled object graph. If I was using NHibernate, I assume that this kind of relationship association between objects comes for "free"?

    Read the article

  • Pass object from JSON into MVC Controller - its always null ?

    - by SteveCl
    Hi I have seen a few questions on here related to the a similar issue, I have read them, followed them, but still i have the same problem. I am basically creating an object in javascript and trying to call a method on the controller that will return a string of html. Not JSON. I've been playing around with dataType and contentType but still no joy. So apologies if the code snippets are a bit messy. Build the object in JS. function GetCardModel() { var card = {}; card.CardTitle = $("#CardTitle").val(); card.TopicTitle = $("#TopicTitle").val(); card.TopicBody = $("#TopicBody").data("tEditor").value(); card.CardClose = $("#CardClose").val(); card.CardFromName = $("#CardFromName").val(); return card; } Take a look at the object - all looks good and as it should in JSON. var model = GetCardModel(); alert(JSON.stringify(GetCardModel())); Make the call... $.ajax({ type: "POST", url: "/Postcard/Create/Preview/", dataType: "json", //contentType: "application/json", date: GetCardModel(), processData: true, success: function (data) { alert("im back"); alert(data); }, error: function (xhr, ajaxOptions, error) { alert(xhr.status); alert("Error: " + xhr.responseText); //alert(error); } }); Always when I step into the controller, the object is ALWAYS there, but with null values for all the properties.

    Read the article

  • Can a PHP object respond to an undefined method?

    - by Nathan Long
    Rails relies on some of the neat aspects of Ruby. One of those is the ability to respond to an undefined method. Consider a relationship between Dog and Owner. Owner has_many :dogs and Dog belongs_to :owner. If you go into script/console, get a dog object with fido = Dog.find(1), and look at that object, you won't see a method or attribute called Owner. What you will see is an owner_id. And if you ask for fido.owner, the object will do something like this (at least, this is how it appears to me): I'm being asked for my .owner attribute. I don't have one of those! Before I throw a NoMethodError, do I have a rule about how to deal with this? Yes, I do: I should check and see if I have an owner_id. I do! OK, then I'll do a join and return that owner object. PHP's documentation is - ahem - a bit lacking sometimes, so I wonder if anyone here knows the answer to this: Can I define similar behavior for objects in PHP? If not, do you know of a workaround for flexible model joins like these?

    Read the article

  • Is there a way to deserialize an object into "$this"?

    - by Andreas Bonini
    I'm writing a class to handle a memcached object. The idea was to create abstract class Cachable and all the cachable objects (such as User, Post, etc) would be subclasses of said class. The class offers some method such as Load() which calls the abstract function LoadFromDB() if the object is not cached, functions to refresh/invalidate the cache, etc. The main problem is in Load(); I wanted to do something similar: protected function Load($id) { $this->memcacheId = $id; $this->Connect(); $cached = $this->memcache->get(get_class($this) . ':' . $id); if($cached === false) { $this->SetLoaded(LoadFromDB($id)); UpdateCache(); } else { $this = $cached; $this->SetLoaded(true); } } Unfortunately I need $this to become $cached (the cached object); is there any way to do that? Was the "every cachable object derives from the cachable class" a bad design idea?

    Read the article

  • XML Reader threw Object Null exception, but node exists(?!)

    - by Capt.Morgan
    I am hoping someone could enlighten me as to why I am getting the annoying - "xml object reference not set to an instance .." error. The elements (nodes?) I am looking for seem to exist and I have not misspelled it either :[ I might be doing something stupid here, but any help at all would be greatly appreciated. My Code: private void button1_Click(object sender, RoutedEventArgs e) { XmlDocument reader = new XmlDocument(); reader.Load("Kotaku - powered by FeedBurner.xml"); XmlNodeList titles = reader.GetElementsByTagName("title"); XmlNodeList dates = reader.GetElementsByTagName("pubDate"); XmlNodeList descriptions = reader.GetElementsByTagName("description"); XmlNodeList links = reader.GetElementsByTagName("link"); for (int i = 0; i < titles.Count; i++) { textBox1.AppendText(Environment.NewLine + titles[i].InnerText); textBox1.AppendText(Environment.NewLine + descriptions[i].InnerText); //<<-- Throws Object Ref Null Exception textBox1.AppendText(Environment.NewLine + links[i].InnerText); textBox1.AppendText(Environment.NewLine + dates[i].InnerText); //<<-- Throws Object Ref Null Exception } } The XML I am using is a saved XML page from: http://feeds.gawker.com/kotaku/full The way I am working on it now is as follows: I have saved the page from the above link (which is an XML page) and put it next to my EXE for easier access. Then I run the code.

    Read the article

  • How to know the type of an object in a list?

    - by nacho4d
    Hi, I want to know the type of object (or type) I have in my list so I wrote this: void **list; //list of references list = new void * [2]; Foo foo = Foo(); const char *not_table [] = {"tf", "ft", 0 }; list[0] = &foo; list[1] = not_table; if (dynamic_cast<LogicProcessor*>(list[0])) { //ERROR here ;( printf("Foo was found\n"); } if (dynamic_cast<char*> (list[0])) { //ERROR here ;( printf("char was found\n"); } but I get : error: cannot dynamic_cast '* list' (of type 'void*') to type 'class Foo*' (source is not a pointer to class) error: cannot dynamic_cast '* list' (of type 'void*') to type 'char*' (target is not pointer or reference to class) Why is this? what I am doing wrong here? Is dynamic_cast what I should use here? Thanks in advance EDIT: I know above code is much like plain C and surely sucks from the C++ point of view but is just I have the following situation and I was trying something before really implementing it: I have two arrays of length n but both arrays will never have an object at the same index. Hence, or I have array1[i]!=NULL or array2[i]!=NULL. This is obviously a waste of memory so I thought everything would be solved if I could have both kind of objects in a single array of length n. I am looking something like Cocoa's (Objective-C) NSArray where you don't care about the type of the object to be put in. Not knowing the type of the object is not a problem since you can use other method to get the class of a certain later. Is there something like it in c++ (preferably not third party C++ libraries) ? Thanks in advance ;)

    Read the article

  • C++: What is the size of an object of an empty class?

    - by Ashwin
    I was wondering what could be the size of an object of an empty class. It surely could not be 0 bytes since it should be possible to reference and point to it like any other object. But, how big is such an object? I used this small program: #include <iostream> using namespace std; class Empty {}; int main() { Empty e; cerr << sizeof(e) << endl; return 0; } The output I got on both Visual C++ and Cygwin-g++ compilers was 1 byte! This was a little surprising to me since I was expecting it to be of the size of the machine word (32 bits or 4 bytes). Can anyone explain why the size of 1 byte? Why not 4 bytes? Is this dependent on compiler or the machine too? Also, can someone give a more cogent reason for why an empty class object will not be of size 0 bytes?

    Read the article

  • How to create a datastore.Text object out of an array of dynamically created Strings?

    - by Adrogans
    I am creating a Google App Engine server for a project where I receive a large quantity of data via an HTTP POST request. The data is separated into lines, with 200 characters per line. The number of lines can go into the hundreds, so 10's of thousands of characters total. What I want to do is concatenate all of those lines into a single Text object, since Strings have a maximum length of 500 characters but the Text object can be as large as 1MB. Here is what I thought of so far: public void doPost(HttpServletRequest req, HttpServletResponse resp) { ... String[] audioSampleData = new String[numberOfLines]; for (int i = 0; i < numberOfLines; i++) { audioSampleData[i] = req.getReader().readLine(); } com.google.appengine.api.datastore.Text textAudioSampleData = new Text(audioSampleData[0] + audioSampleData[1] + ...); ... } But as you can see, I don't know how to do this without knowing the number of lines before-hand. Is there a way for me to iterate through the String indexes within the Text constructor? I can't seem to find anything on that. Of note is that the Text object can't be modified after being created, and it must have a String as parameter for the constructor. (Documentation here) Is there any way to this? I need all of the data in the String array in one Text object. Many Thanks!

    Read the article

  • An Introduction to ASP.NET Web API

    - by Rick Strahl
    Microsoft recently released ASP.NET MVC 4.0 and .NET 4.5 and along with it, the brand spanking new ASP.NET Web API. Web API is an exciting new addition to the ASP.NET stack that provides a new, well-designed HTTP framework for creating REST and AJAX APIs (API is Microsoft’s new jargon for a service, in case you’re wondering). Although Web API ships and installs with ASP.NET MVC 4, you can use Web API functionality in any ASP.NET project, including WebForms, WebPages and MVC or just a Web API by itself. And you can also self-host Web API in your own applications from Console, Desktop or Service applications. If you're interested in a high level overview on what ASP.NET Web API is and how it fits into the ASP.NET stack you can check out my previous post: Where does ASP.NET Web API fit? In the following article, I'll focus on a practical, by example introduction to ASP.NET Web API. All the code discussed in this article is available in GitHub: https://github.com/RickStrahl/AspNetWebApiArticle [republished from my Code Magazine Article and updated for RTM release of ASP.NET Web API] Getting Started To start I’ll create a new empty ASP.NET application to demonstrate that Web API can work with any kind of ASP.NET project. Although you can create a new project based on the ASP.NET MVC/Web API template to quickly get up and running, I’ll take you through the manual setup process, because one common use case is to add Web API functionality to an existing ASP.NET application. This process describes the steps needed to hook up Web API to any ASP.NET 4.0 application. Start by creating an ASP.NET Empty Project. Then create a new folder in the project called Controllers. Add a Web API Controller Class Once you have any kind of ASP.NET project open, you can add a Web API Controller class to it. Web API Controllers are very similar to MVC Controller classes, but they work in any kind of project. Add a new item to this folder by using the Add New Item option in Visual Studio and choose Web API Controller Class, as shown in Figure 1. Figure 1: This is how you create a new Controller Class in Visual Studio   Make sure that the name of the controller class includes Controller at the end of it, which is required in order for Web API routing to find it. Here, the name for the class is AlbumApiController. For this example, I’ll use a Music Album model to demonstrate basic behavior of Web API. The model consists of albums and related songs where an album has properties like Name, Artist and YearReleased and a list of songs with a SongName and SongLength as well as an AlbumId that links it to the album. You can find the code for the model (and the rest of these samples) on Github. To add the file manually, create a new folder called Model, and add a new class Album.cs and copy the code into it. There’s a static AlbumData class with a static CreateSampleAlbumData() method that creates a short list of albums on a static .Current that I’ll use for the examples. Before we look at what goes into the controller class though, let’s hook up routing so we can access this new controller. Hooking up Routing in Global.asax To start, I need to perform the one required configuration task in order for Web API to work: I need to configure routing to the controller. Like MVC, Web API uses routing to provide clean, extension-less URLs to controller methods. Using an extension method to ASP.NET’s static RouteTable class, you can use the MapHttpRoute() (in the System.Web.Http namespace) method to hook-up the routing during Application_Start in global.asax.cs shown in Listing 1.using System; using System.Web.Routing; using System.Web.Http; namespace AspNetWebApi { public class Global : System.Web.HttpApplication { protected void Application_Start(object sender, EventArgs e) { RouteTable.Routes.MapHttpRoute( name: "AlbumVerbs", routeTemplate: "albums/{title}", defaults: new { symbol = RouteParameter.Optional, controller="AlbumApi" } ); } } } This route configures Web API to direct URLs that start with an albums folder to the AlbumApiController class. Routing in ASP.NET is used to create extensionless URLs and allows you to map segments of the URL to specific Route Value parameters. A route parameter, with a name inside curly brackets like {name}, is mapped to parameters on the controller methods. Route parameters can be optional, and there are two special route parameters – controller and action – that determine the controller to call and the method to activate respectively. HTTP Verb Routing Routing in Web API can route requests by HTTP Verb in addition to standard {controller},{action} routing. For the first examples, I use HTTP Verb routing, as shown Listing 1. Notice that the route I’ve defined does not include an {action} route value or action value in the defaults. Rather, Web API can use the HTTP Verb in this route to determine the method to call the controller, and a GET request maps to any method that starts with Get. So methods called Get() or GetAlbums() are matched by a GET request and a POST request maps to a Post() or PostAlbum(). Web API matches a method by name and parameter signature to match a route, query string or POST values. In lieu of the method name, the [HttpGet,HttpPost,HttpPut,HttpDelete, etc] attributes can also be used to designate the accepted verbs explicitly if you don’t want to follow the verb naming conventions. Although HTTP Verb routing is a good practice for REST style resource APIs, it’s not required and you can still use more traditional routes with an explicit {action} route parameter. When {action} is supplied, the HTTP verb routing is ignored. I’ll talk more about alternate routes later. When you’re finished with initial creation of files, your project should look like Figure 2.   Figure 2: The initial project has the new API Controller Album model   Creating a small Album Model Now it’s time to create some controller methods to serve data. For these examples, I’ll use a very simple Album and Songs model to play with, as shown in Listing 2. public class Song { public string AlbumId { get; set; } [Required, StringLength(80)] public string SongName { get; set; } [StringLength(5)] public string SongLength { get; set; } } public class Album { public string Id { get; set; } [Required, StringLength(80)] public string AlbumName { get; set; } [StringLength(80)] public string Artist { get; set; } public int YearReleased { get; set; } public DateTime Entered { get; set; } [StringLength(150)] public string AlbumImageUrl { get; set; } [StringLength(200)] public string AmazonUrl { get; set; } public virtual List<Song> Songs { get; set; } public Album() { Songs = new List<Song>(); Entered = DateTime.Now; // Poor man's unique Id off GUID hash Id = Guid.NewGuid().GetHashCode().ToString("x"); } public void AddSong(string songName, string songLength = null) { this.Songs.Add(new Song() { AlbumId = this.Id, SongName = songName, SongLength = songLength }); } } Once the model has been created, I also added an AlbumData class that generates some static data in memory that is loaded onto a static .Current member. The signature of this class looks like this and that's what I'll access to retrieve the base data:public static class AlbumData { // sample data - static list public static List<Album> Current = CreateSampleAlbumData(); /// <summary> /// Create some sample data /// </summary> /// <returns></returns> public static List<Album> CreateSampleAlbumData() { … }} You can check out the full code for the data generation online. Creating an AlbumApiController Web API shares many concepts of ASP.NET MVC, and the implementation of your API logic is done by implementing a subclass of the System.Web.Http.ApiController class. Each public method in the implemented controller is a potential endpoint for the HTTP API, as long as a matching route can be found to invoke it. The class name you create should end in Controller, which is how Web API matches the controller route value to figure out which class to invoke. Inside the controller you can implement methods that take standard .NET input parameters and return .NET values as results. Web API’s binding tries to match POST data, route values, form values or query string values to your parameters. Because the controller is configured for HTTP Verb based routing (no {action} parameter in the route), any methods that start with Getxxxx() are called by an HTTP GET operation. You can have multiple methods that match each HTTP Verb as long as the parameter signatures are different and can be matched by Web API. In Listing 3, I create an AlbumApiController with two methods to retrieve a list of albums and a single album by its title .public class AlbumApiController : ApiController { public IEnumerable<Album> GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); return albums; } public Album GetAlbum(string title) { var album = AlbumData.Current .SingleOrDefault(alb => alb.AlbumName.Contains(title)); return album; }} To access the first two requests, you can use the following URLs in your browser: http://localhost/aspnetWebApi/albumshttp://localhost/aspnetWebApi/albums/Dirty%20Deeds Note that you’re not specifying the actions of GetAlbum or GetAlbums in these URLs. Instead Web API’s routing uses HTTP GET verb to route to these methods that start with Getxxx() with the first mapping to the parameterless GetAlbums() method and the latter to the GetAlbum(title) method that receives the title parameter mapped as optional in the route. Content Negotiation When you access any of the URLs above from a browser, you get either an XML or JSON result returned back. The album list result for Chrome 17 and Internet Explorer 9 is shown Figure 3. Figure 3: Web API responses can vary depending on the browser used, demonstrating Content Negotiation in action as these two browsers send different HTTP Accept headers.   Notice that the results are not the same: Chrome returns an XML response and IE9 returns a JSON response. Whoa, what’s going on here? Shouldn’t we see the same result in both browsers? Actually, no. Web API determines what type of content to return based on Accept headers. HTTP clients, like browsers, use Accept headers to specify what kind of content they’d like to see returned. Browsers generally ask for HTML first, followed by a few additional content types. Chrome (and most other major browsers) ask for: Accept: text/html, application/xhtml+xml,application/xml; q=0.9,*/*;q=0.8 IE9 asks for: Accept: text/html, application/xhtml+xml, */* Note that Chrome’s Accept header includes application/xml, which Web API finds in its list of supported media types and returns an XML response. IE9 does not include an Accept header type that works on Web API by default, and so it returns the default format, which is JSON. This is an important and very useful feature that was missing from any previous Microsoft REST tools: Web API automatically switches output formats based on HTTP Accept headers. Nowhere in the server code above do you have to explicitly specify the output format. Rather, Web API determines what format the client is requesting based on the Accept headers and automatically returns the result based on the available formatters. This means that a single method can handle both XML and JSON results.. Using this simple approach makes it very easy to create a single controller method that can return JSON, XML, ATOM or even OData feeds by providing the appropriate Accept header from the client. By default you don’t have to worry about the output format in your code. Note that you can still specify an explicit output format if you choose, either globally by overriding the installed formatters, or individually by returning a lower level HttpResponseMessage instance and setting the formatter explicitly. More on that in a minute. Along the same lines, any content sent to the server via POST/PUT is parsed by Web API based on the HTTP Content-type of the data sent. The same formats allowed for output are also allowed on input. Again, you don’t have to do anything in your code – Web API automatically performs the deserialization from the content. Accessing Web API JSON Data with jQuery A very common scenario for Web API endpoints is to retrieve data for AJAX calls from the Web browser. Because JSON is the default format for Web API, it’s easy to access data from the server using jQuery and its getJSON() method. This example receives the albums array from GetAlbums() and databinds it into the page using knockout.js.$.getJSON("albums/", function (albums) { // make knockout template visible $(".album").show(); // create view object and attach array var view = { albums: albums }; ko.applyBindings(view); }); Figure 4 shows this and the next example’s HTML output. You can check out the complete HTML and script code at http://goo.gl/Ix33C (.html) and http://goo.gl/tETlg (.js). Figu Figure 4: The Album Display sample uses JSON data loaded from Web API.   The result from the getJSON() call is a JavaScript object of the server result, which comes back as a JavaScript array. In the code, I use knockout.js to bind this array into the UI, which as you can see, requires very little code, instead using knockout’s data-bind attributes to bind server data to the UI. Of course, this is just one way to use the data – it’s entirely up to you to decide what to do with the data in your client code. Along the same lines, I can retrieve a single album to display when the user clicks on an album. The response returns the album information and a child array with all the songs. The code to do this is very similar to the last example where we pulled the albums array:$(".albumlink").live("click", function () { var id = $(this).data("id"); // title $.getJSON("albums/" + id, function (album) { ko.applyBindings(album, $("#divAlbumDialog")[0]); $("#divAlbumDialog").show(); }); }); Here the URL looks like this: /albums/Dirty%20Deeds, where the title is the ID captured from the clicked element’s data ID attribute. Explicitly Overriding Output Format When Web API automatically converts output using content negotiation, it does so by matching Accept header media types to the GlobalConfiguration.Configuration.Formatters and the SupportedMediaTypes of each individual formatter. You can add and remove formatters to globally affect what formats are available and it’s easy to create and plug in custom formatters.The example project includes a JSONP formatter that can be plugged in to provide JSONP support for requests that have a callback= querystring parameter. Adding, removing or replacing formatters is a global option you can use to manipulate content. It’s beyond the scope of this introduction to show how it works, but you can review the sample code or check out my blog entry on the subject (http://goo.gl/UAzaR). If automatic processing is not desirable in a particular Controller method, you can override the response output explicitly by returning an HttpResponseMessage instance. HttpResponseMessage is similar to ActionResult in ASP.NET MVC in that it’s a common way to return an abstract result message that contains content. HttpResponseMessage s parsed by the Web API framework using standard interfaces to retrieve the response data, status code, headers and so on[MS2] . Web API turns every response – including those Controller methods that return static results – into HttpResponseMessage instances. Explicitly returning an HttpResponseMessage instance gives you full control over the output and lets you mostly bypass WebAPI’s post-processing of the HTTP response on your behalf. HttpResponseMessage allows you to customize the response in great detail. Web API’s attention to detail in the HTTP spec really shows; many HTTP options are exposed as properties and enumerations with detailed IntelliSense comments. Even if you’re new to building REST-based interfaces, the API guides you in the right direction for returning valid responses and response codes. For example, assume that I always want to return JSON from the GetAlbums() controller method and ignore the default media type content negotiation. To do this, I can adjust the output format and headers as shown in Listing 4.public HttpResponseMessage GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); // Create a new HttpResponse with Json Formatter explicitly var resp = new HttpResponseMessage(HttpStatusCode.OK); resp.Content = new ObjectContent<IEnumerable<Album>>( albums, new JsonMediaTypeFormatter()); // Get Default Formatter based on Content Negotiation //var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); resp.Headers.ConnectionClose = true; resp.Headers.CacheControl = new CacheControlHeaderValue(); resp.Headers.CacheControl.Public = true; return resp; } This example returns the same IEnumerable<Album> value, but it wraps the response into an HttpResponseMessage so you can control the entire HTTP message result including the headers, formatter and status code. In Listing 4, I explicitly specify the formatter using the JsonMediaTypeFormatter to always force the content to JSON.  If you prefer to use the default content negotiation with HttpResponseMessage results, you can create the Response instance using the Request.CreateResponse method:var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); This provides you an HttpResponse object that's pre-configured with the default formatter based on Content Negotiation. Once you have an HttpResponse object you can easily control most HTTP aspects on this object. What's sweet here is that there are many more detailed properties on HttpResponse than the core ASP.NET Response object, with most options being explicitly configurable with enumerations that make it easy to pick the right headers and response codes from a list of valid codes. It makes HTTP features available much more discoverable even for non-hardcore REST/HTTP geeks. Non-Serialized Results The output returned doesn’t have to be a serialized value but can also be raw data, like strings, binary data or streams. You can use the HttpResponseMessage.Content object to set a number of common Content classes. Listing 5 shows how to return a binary image using the ByteArrayContent class from a Controller method. [HttpGet] public HttpResponseMessage AlbumArt(string title) { var album = AlbumData.Current.FirstOrDefault(abl => abl.AlbumName.StartsWith(title)); if (album == null) { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found")); return resp; } // kinda silly - we would normally serve this directly // but hey - it's a demo. var http = new WebClient(); var imageData = http.DownloadData(album.AlbumImageUrl); // create response and return var result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new ByteArrayContent(imageData); result.Content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg"); return result; } The image retrieval from Amazon is contrived, but it shows how to return binary data using ByteArrayContent. It also demonstrates that you can easily return multiple types of content from a single controller method, which is actually quite common. If an error occurs - such as a resource can’t be found or a validation error – you can return an error response to the client that’s very specific to the error. In GetAlbumArt(), if the album can’t be found, we want to return a 404 Not Found status (and realistically no error, as it’s an image). Note that if you are not using HTTP Verb-based routing or not accessing a method that starts with Get/Post etc., you have to specify one or more HTTP Verb attributes on the method explicitly. Here, I used the [HttpGet] attribute to serve the image. Another option to handle the error could be to return a fixed placeholder image if no album could be matched or the album doesn’t have an image. When returning an error code, you can also return a strongly typed response to the client. For example, you can set the 404 status code and also return a custom error object (ApiMessageError is a class I defined) like this:return Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found") );   If the album can be found, the image will be returned. The image is downloaded into a byte[] array, and then assigned to the result’s Content property. I created a new ByteArrayContent instance and assigned the image’s bytes and the content type so that it displays properly in the browser. There are other content classes available: StringContent, StreamContent, ByteArrayContent, MultipartContent, and ObjectContent are at your disposal to return just about any kind of content. You can create your own Content classes if you frequently return custom types and handle the default formatter assignments that should be used to send the data out . Although HttpResponseMessage results require more code than returning a plain .NET value from a method, it allows much more control over the actual HTTP processing than automatic processing. It also makes it much easier to test your controller methods as you get a response object that you can check for specific status codes and output messages rather than just a result value. Routing Again Ok, let’s get back to the image example. Using the original routing we have setup using HTTP Verb routing there's no good way to serve the image. In order to return my album art image I’d like to use a URL like this: http://localhost/aspnetWebApi/albums/Dirty%20Deeds/image In order to create a URL like this, I have to create a new Controller because my earlier routes pointed to the AlbumApiController using HTTP Verb routing. HTTP Verb based routing is great for representing a single set of resources such as albums. You can map operations like add, delete, update and read easily using HTTP Verbs. But you cannot mix action based routing into a an HTTP Verb routing controller - you can only map HTTP Verbs and each method has to be unique based on parameter signature. You can't have multiple GET operations to methods with the same signature. So GetImage(string id) and GetAlbum(string title) are in conflict in an HTTP GET routing scenario. In fact, I was unable to make the above Image URL work with any combination of HTTP Verb plus Custom routing using the single Albums controller. There are number of ways around this, but all involve additional controllers.  Personally, I think it’s easier to use explicit Action routing and then add custom routes if you need to simplify your URLs further. So in order to accommodate some of the other examples, I created another controller – AlbumRpcApiController – to handle all requests that are explicitly routed via actions (/albums/rpc/AlbumArt) or are custom routed with explicit routes defined in the HttpConfiguration. I added the AlbumArt() method to this new AlbumRpcApiController class. For the image URL to work with the new AlbumRpcApiController, you need a custom route placed before the default route from Listing 1.RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); Now I can use either of the following URLs to access the image: Custom route: (/albums/rpc/{title}/image)http://localhost/aspnetWebApi/albums/PowerAge/image Action route: (/albums/rpc/action/{title})http://localhost/aspnetWebAPI/albums/rpc/albumart/PowerAge Sending Data to the Server To send data to the server and add a new album, you can use an HTTP POST operation. Since I’m using HTTP Verb-based routing in the original AlbumApiController, I can implement a method called PostAlbum()to accept a new album from the client. Listing 6 shows the Web API code to add a new album.public HttpResponseMessage PostAlbum(Album album) { if (!this.ModelState.IsValid) { // my custom error class var error = new ApiMessageError() { message = "Model is invalid" }; // add errors into our client error model for client foreach (var prop in ModelState.Values) { var modelError = prop.Errors.FirstOrDefault(); if (!string.IsNullOrEmpty(modelError.ErrorMessage)) error.errors.Add(modelError.ErrorMessage); else error.errors.Add(modelError.Exception.Message); } return Request.CreateResponse<ApiMessageError>(HttpStatusCode.Conflict, error); } // update song id which isn't provided foreach (var song in album.Songs) song.AlbumId = album.Id; // see if album exists already var matchedAlbum = AlbumData.Current .SingleOrDefault(alb => alb.Id == album.Id || alb.AlbumName == album.AlbumName); if (matchedAlbum == null) AlbumData.Current.Add(album); else matchedAlbum = album; // return a string to show that the value got here var resp = Request.CreateResponse(HttpStatusCode.OK, string.Empty); resp.Content = new StringContent(album.AlbumName + " " + album.Entered.ToString(), Encoding.UTF8, "text/plain"); return resp; } The PostAlbum() method receives an album parameter, which is automatically deserialized from the POST buffer the client sent. The data passed from the client can be either XML or JSON. Web API automatically figures out what format it needs to deserialize based on the content type and binds the content to the album object. Web API uses model binding to bind the request content to the parameter(s) of controller methods. Like MVC you can check the model by looking at ModelState.IsValid. If it’s not valid, you can run through the ModelState.Values collection and check each binding for errors. Here I collect the error messages into a string array that gets passed back to the client via the result ApiErrorMessage object. When a binding error occurs, you’ll want to return an HTTP error response and it’s best to do that with an HttpResponseMessage result. In Listing 6, I used a custom error class that holds a message and an array of detailed error messages for each binding error. I used this object as the content to return to the client along with my Conflict HTTP Status Code response. If binding succeeds, the example returns a string with the name and date entered to demonstrate that you captured the data. Normally, a method like this should return a Boolean or no response at all (HttpStatusCode.NoConent). The sample uses a simple static list to hold albums, so once you’ve added the album using the Post operation, you can hit the /albums/ URL to see that the new album was added. The client jQuery code to call the POST operation from the client with jQuery is shown in Listing 7. var id = new Date().getTime().toString(); var album = { "Id": id, "AlbumName": "Power Age", "Artist": "AC/DC", "YearReleased": 1977, "Entered": "2002-03-11T18:24:43.5580794-10:00", "AlbumImageUrl": http://ecx.images-amazon.com/images/…, "AmazonUrl": http://www.amazon.com/…, "Songs": [ { "SongName": "Rock 'n Roll Damnation", "SongLength": 3.12}, { "SongName": "Downpayment Blues", "SongLength": 4.22 }, { "SongName": "Riff Raff", "SongLength": 2.42 } ] } $.ajax( { url: "albums/", type: "POST", contentType: "application/json", data: JSON.stringify(album), processData: false, beforeSend: function (xhr) { // not required since JSON is default output xhr.setRequestHeader("Accept", "application/json"); }, success: function (result) { // reload list of albums page.loadAlbums(); }, error: function (xhr, status, p3, p4) { var err = "Error"; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); The code in Listing 7 creates an album object in JavaScript to match the structure of the .NET Album class. This object is passed to the $.ajax() function to send to the server as POST. The data is turned into JSON and the content type set to application/json so that the server knows what to convert when deserializing in the Album instance. The jQuery code hooks up success and failure events. Success returns the result data, which is a string that’s echoed back with an alert box. If an error occurs, jQuery returns the XHR instance and status code. You can check the XHR to see if a JSON object is embedded and if it is, you can extract it by de-serializing it and accessing the .message property. REST standards suggest that updates to existing resources should use PUT operations. REST standards aside, I’m not a big fan of separating out inserts and updates so I tend to have a single method that handles both. But if you want to follow REST suggestions, you can create a PUT method that handles updates by forwarding the PUT operation to the POST method:public HttpResponseMessage PutAlbum(Album album) { return PostAlbum(album); } To make the corresponding $.ajax() call, all you have to change from Listing 7 is the type: from POST to PUT. Model Binding with UrlEncoded POST Variables In the example in Listing 7 I used JSON objects to post a serialized object to a server method that accepted an strongly typed object with the same structure, which is a common way to send data to the server. However, Web API supports a number of different ways that data can be received by server methods. For example, another common way is to use plain UrlEncoded POST  values to send to the server. Web API supports Model Binding that works similar (but not the same) as MVC's model binding where POST variables are mapped to properties of object parameters of the target method. This is actually quite common for AJAX calls that want to avoid serialization and the potential requirement of a JSON parser on older browsers. For example, using jQUery you might use the $.post() method to send a new album to the server (albeit one without songs) using code like the following:$.post("albums/",{AlbumName: "Dirty Deeds", YearReleased: 1976 … },albumPostCallback); Although the code looks very similar to the client code we used before passing JSON, here the data passed is URL encoded values (AlbumName=Dirty+Deeds&YearReleased=1976 etc.). Web API then takes this POST data and maps each of the POST values to the properties of the Album object in the method's parameter. Although the client code is different the server can both handle the JSON object, or the UrlEncoded POST values. Dynamic Access to POST Data There are also a few options available to dynamically access POST data, if you know what type of data you're dealing with. If you have POST UrlEncoded values, you can dynamically using a FormsDataCollection:[HttpPost] public string PostAlbum(FormDataCollection form) { return string.Format("{0} - released {1}", form.Get("AlbumName"),form.Get("RearReleased")); } The FormDataCollection is a very simple object, that essentially provides the same functionality as Request.Form[] in ASP.NET. Request.Form[] still works if you're running hosted in an ASP.NET application. However as a general rule, while ASP.NET's functionality is always available when running Web API hosted inside of an  ASP.NET application, using the built in classes specific to Web API makes it possible to run Web API applications in a self hosted environment outside of ASP.NET. If your client is sending JSON to your server, and you don't want to map the JSON to a strongly typed object because you only want to retrieve a few simple values, you can also accept a JObject parameter in your API methods:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } There quite a few options available to you to receive data with Web API, which gives you more choices for the right tool for the job. Unfortunately one shortcoming of Web API is that POST data is always mapped to a single parameter. This means you can't pass multiple POST parameters to methods that receive POST data. It's possible to accept multiple parameters, but only one can map to the POST content - the others have to come from the query string or route values. I have a couple of Blog POSTs that explain what works and what doesn't here: Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API   Handling Delete Operations Finally, to round out the server API code of the album example we've been discussin, here’s the DELETE verb controller method that allows removal of an album by its title:public HttpResponseMessage DeleteAlbum(string title) { var matchedAlbum = AlbumData.Current.Where(alb => alb.AlbumName == title) .SingleOrDefault(); if (matchedAlbum == null) return new HttpResponseMessage(HttpStatusCode.NotFound); AlbumData.Current.Remove(matchedAlbum); return new HttpResponseMessage(HttpStatusCode.NoContent); } To call this action method using jQuery, you can use:$(".removeimage").live("click", function () { var $el = $(this).parent(".album"); var txt = $el.find("a").text(); $.ajax({ url: "albums/" + encodeURIComponent(txt), type: "Delete", success: function (result) { $el.fadeOut().remove(); }, error: jqError }); }   Note the use of the DELETE verb in the $.ajax() call, which routes to DeleteAlbum on the server. DELETE is a non-content operation, so you supply a resource ID (the title) via route value or the querystring. Routing Conflicts In all requests with the exception of the AlbumArt image example shown so far, I used HTTP Verb routing that I set up in Listing 1. HTTP Verb Routing is a recommendation that is in line with typical REST access to HTTP resources. However, it takes quite a bit of effort to create REST-compliant API implementations based only on HTTP Verb routing only. You saw one example that didn’t really fit – the return of an image where I created a custom route albums/{title}/image that required creation of a second controller and a custom route to work. HTTP Verb routing to a controller does not mix with custom or action routing to the same controller because of the limited mapping of HTTP verbs imposed by HTTP Verb routing. To understand some of the problems with verb routing, let’s look at another example. Let’s say you create a GetSortableAlbums() method like this and add it to the original AlbumApiController accessed via HTTP Verb routing:[HttpGet] public IQueryable<Album> SortableAlbums() { var albums = AlbumData.Current; // generally should be done only on actual queryable results (EF etc.) // Done here because we're running with a static list but otherwise might be slow return albums.AsQueryable(); } If you compile this code and try to now access the /albums/ link, you get an error: Multiple Actions were found that match the request. HTTP Verb routing only allows access to one GET operation per parameter/route value match. If more than one method exists with the same parameter signature, it doesn’t work. As I mentioned earlier for the image display, the only solution to get this method to work is to throw it into another controller. Because I already set up the AlbumRpcApiController I can add the method there. First, I should rename the method to SortableAlbums() so I’m not using a Get prefix for the method. This also makes the action parameter look cleaner in the URL - it looks less like a method and more like a noun. I can then create a new route that handles direct-action mapping:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); As I am explicitly adding a route segment – rpc – into the route template, I can now reference explicit methods in the Web API controller using URLs like this: http://localhost/AspNetWebApi/rpc/SortableAlbums Error Handling I’ve already done some minimal error handling in the examples. For example in Listing 6, I detected some known-error scenarios like model validation failing or a resource not being found and returning an appropriate HttpResponseMessage result. But what happens if your code just blows up or causes an exception? If you have a controller method, like this:[HttpGet] public void ThrowException() { throw new UnauthorizedAccessException("Unauthorized Access Sucka"); } You can call it with this: http://localhost/AspNetWebApi/albums/rpc/ThrowException The default exception handling displays a 500-status response with the serialized exception on the local computer only. When you connect from a remote computer, Web API throws back a 500  HTTP Error with no data returned (IIS then adds its HTML error page). The behavior is configurable in the GlobalConfiguration:GlobalConfiguration .Configuration .IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never; If you want more control over your error responses sent from code, you can throw explicit error responses yourself using HttpResponseException. When you throw an HttpResponseException the response parameter is used to generate the output for the Controller action. [HttpGet] public void ThrowError() { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.BadRequest, new ApiMessageError("Your code stinks!")); throw new HttpResponseException(resp); } Throwing an HttpResponseException stops the processing of the controller method and immediately returns the response you passed to the exception. Unlike other Exceptions fired inside of WebAPI, HttpResponseException bypasses the Exception Filters installed and instead just outputs the response you provide. In this case, the serialized ApiMessageError result string is returned in the default serialization format – XML or JSON. You can pass any content to HttpResponseMessage, which includes creating your own exception objects and consistently returning error messages to the client. Here’s a small helper method on the controller that you might use to send exception info back to the client consistently:private void ThrowSafeException(string message, HttpStatusCode statusCode = HttpStatusCode.BadRequest) { var errResponse = Request.CreateResponse<ApiMessageError>(statusCode, new ApiMessageError() { message = message }); throw new HttpResponseException(errResponse); } You can then use it to output any captured errors from code:[HttpGet] public void ThrowErrorSafe() { try { List<string> list = null; list.Add("Rick"); } catch (Exception ex) { ThrowSafeException(ex.Message); } }   Exception Filters Another more global solution is to create an Exception Filter. Filters in Web API provide the ability to pre- and post-process controller method operations. An exception filter looks at all exceptions fired and then optionally creates an HttpResponseMessage result. Listing 8 shows an example of a basic Exception filter implementation.public class UnhandledExceptionFilter : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { HttpStatusCode status = HttpStatusCode.InternalServerError; var exType = context.Exception.GetType(); if (exType == typeof(UnauthorizedAccessException)) status = HttpStatusCode.Unauthorized; else if (exType == typeof(ArgumentException)) status = HttpStatusCode.NotFound; var apiError = new ApiMessageError() { message = context.Exception.Message }; // create a new response and attach our ApiError object // which now gets returned on ANY exception result var errorResponse = context.Request.CreateResponse<ApiMessageError>(status, apiError); context.Response = errorResponse; base.OnException(context); } } Exception Filter Attributes can be assigned to an ApiController class like this:[UnhandledExceptionFilter] public class AlbumRpcApiController : ApiController or you can globally assign it to all controllers by adding it to the HTTP Configuration's Filters collection:GlobalConfiguration.Configuration.Filters.Add(new UnhandledExceptionFilter()); The latter is a great way to get global error trapping so that all errors (short of hard IIS errors and explicit HttpResponseException errors) return a valid error response that includes error information in the form of a known-error object. Using a filter like this allows you to throw an exception as you normally would and have your filter create a response in the appropriate output format that the client expects. For example, an AJAX application can on failure expect to see a JSON error result that corresponds to the real error that occurred rather than a 500 error along with HTML error page that IIS throws up. You can even create some custom exceptions so you can differentiate your own exceptions from unhandled system exceptions - you often don't want to display error information from 'unknown' exceptions as they may contain sensitive system information or info that's not generally useful to users of your application/site. This is just one example of how ASP.NET Web API is configurable and extensible. Exception filters are just one example of how you can plug-in into the Web API request flow to modify output. Many more hooks exist and I’ll take a closer look at extensibility in Part 2 of this article in the future. Summary Web API is a big improvement over previous Microsoft REST and AJAX toolkits. The key features to its usefulness are its ease of use with simple controller based logic, familiar MVC-style routing, low configuration impact, extensibility at all levels and tight attention to exposing and making HTTP semantics easily discoverable and easy to use. Although none of the concepts used in Web API are new or radical, Web API combines the best of previous platforms into a single framework that’s highly functional, easy to work with, and extensible to boot. I think that Microsoft has hit a home run with Web API. Related Resources Where does ASP.NET Web API fit? Sample Source Code on GitHub Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API Creating a JSONP Formatter for ASP.NET Web API Removing the XML Formatter from ASP.NET Web API Applications© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • AutoMapper MappingFunction from Source Type of NameValueCollection

    - by REA_ANDREW
    I have had a situation arise today where I need to construct a complex type from a source of a NameValueCollection.  A little while back I submitted a patch for the Agatha Project to include REST (JSON and XML) support for the service contract.  I realized today that as useful as it is, it did not actually support true REST conformance, as REST should support GET so that you can use JSONP from JavaScript directly meaning you can query cross domain services.  My original implementation for POX and JSON used the POST method and this immediately rules out JSONP as from reading, JSONP only works with GET Requests. This then raised another issue.  The current operation contract of Agatha and one of its main benefits is that you can supply an array of Request objects in a single request, limiting the about of server requests you need to make.  Now, at the present time I am thinking that this will not be the case for the REST imlementation but will yield the benefits of the fact that : The same Request objects can be used for SOAP and RST (POX, JSON) The construct of the JavaScript functions will be simpler and more readable It will enable the use of JSONP for cross domain REST Services The current contract for the Agatha WcfRequestProcessor is at time of writing the following: [ServiceContract] public interface IWcfRequestProcessor { [OperationContract(Name = "ProcessRequests")] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] [TransactionFlow(TransactionFlowOption.Allowed)] Response[] Process(params Request[] requests); [OperationContract(Name = "ProcessOneWayRequests", IsOneWay = true)] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] void ProcessOneWayRequests(params OneWayRequest[] requests); }   My current proposed solution, and at the very early stages of my concept is as follows: [ServiceContract] public interface IWcfRestJsonRequestProcessor { [OperationContract(Name="process")] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] [TransactionFlow(TransactionFlowOption.Allowed)] [WebGet(UriTemplate = "process/{name}/{*parameters}", BodyStyle = WebMessageBodyStyle.WrappedResponse, ResponseFormat = WebMessageFormat.Json)] Response[] Process(string name, NameValueCollection parameters); [OperationContract(Name="processoneway",IsOneWay = true)] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] [WebGet(UriTemplate = "process-one-way/{name}/{*parameters}", BodyStyle = WebMessageBodyStyle.WrappedResponse, ResponseFormat = WebMessageFormat.Json)] void ProcessOneWayRequests(string name, NameValueCollection parameters); }   Now this part I have not yet implemented, it is the preliminart step which I have developed which will allow me to take the name of the Request Type and the NameValueCollection and construct the complex type which is that of the Request which I can then supply to a nested instance of the original IWcfRequestProcessor  and work as it should normally.  To give an example of some of the urls which you I envisage with this method are: http://www.url.com/service.svc/json/process/getweather/?location=london http://www.url.com/service.svc/json/process/getproductsbycategory/?categoryid=1 http://www.url.om/service.svc/json/process/sayhello/?name=andy Another reason why my direction has gone to a single request for the REST implementation is because of restrictions which are imposed by browsers on the length of the url.  From what I have read this is on average 2000 characters.  I think that this is a very acceptable usage limit in the context of using 1 request, but I do not think this is acceptable for accommodating multiple requests chained together.  I would love to be corrected on that one, I really would but unfortunately from what I have read I have come to the conclusion that this is not the case. The mapping function So, as I say this is just the first pass I have made at this, and I am not overly happy with the try catch for detecting types without default constructors.  I know there is a better way but for the minute, it escapes me.  I would also like to know the correct way for adding mapping functions and not using the anonymous way that I have used.  To achieve this I have used recursion which I am sure is what other mapping function use. As you do have to go as deep as the complex type is. public static object RecurseType(NameValueCollection collection, Type type, string prefix) { try { var returnObject = Activator.CreateInstance(type); foreach (var property in type.GetProperties()) { foreach (var key in collection.AllKeys) { if (String.IsNullOrEmpty(prefix) || key.Length > prefix.Length) { var propertyNameToMatch = String.IsNullOrEmpty(prefix) ? key : key.Substring(property.Name.IndexOf(prefix) + prefix.Length + 1); if (property.Name == propertyNameToMatch) { property.SetValue(returnObject, Convert.ChangeType(collection.Get(key), property.PropertyType), null); } else if(property.GetValue(returnObject,null) == null) { property.SetValue(returnObject, RecurseType(collection, property.PropertyType, String.Concat(prefix, property.PropertyType.Name)), null); } } } } return returnObject; } catch (MissingMethodException) { //Quite a blunt way of dealing with Types without default constructor return null; } }   Another thing is performance, I have not measured this in anyway, it is as I say the first pass, so I hope this can be the start of a more perfected implementation.  I tested this out with a complex type of three levels, there is no intended logical meaning to the properties, they are simply for the purposes of example.  You could call this a spiking session, as from here on in, now I know what I am building I would take a more TDD approach.  OK, purists, why did I not do this from the start, well I didn’t, this was a brain dump and now I know what I am building I can. The console test and how I used with AutoMapper is as follows: static void Main(string[] args) { var collection = new NameValueCollection(); collection.Add("Name", "Andrew Rea"); collection.Add("Number", "1"); collection.Add("AddressLine1", "123 Street"); collection.Add("AddressNumber", "2"); collection.Add("AddressPostCodeCountry", "United Kingdom"); collection.Add("AddressPostCodeNumber", "3"); AutoMapper.Mapper.CreateMap<NameValueCollection, Person>() .ConvertUsing(x => { return(Person) RecurseType(x, typeof(Person), null); }); var person = AutoMapper.Mapper.Map<NameValueCollection, Person>(collection); Console.WriteLine(person.Name); Console.WriteLine(person.Number); Console.WriteLine(person.Address.Line1); Console.WriteLine(person.Address.Number); Console.WriteLine(person.Address.PostCode.Country); Console.WriteLine(person.Address.PostCode.Number); Console.ReadLine(); }   Notice the convention that I am using and that this method requires you do use.  Each property is prefixed with the constructed name of its parents combined.  This is the convention used by AutoMapper and it makes sense. I can also think of other uses for this including using with ASP.NET MVC ModelBinders for creating a complex type from the QueryString which is itself is a NameValueCollection. Hope this is of some help to people and I would welcome any code reviews you could give me. References: Agatha : http://code.google.com/p/agatha-rrsl/ AutoMapper : http://automapper.codeplex.com/   Cheers for now, Andrew   P.S. I will have the proposed solution for a more complete REST implementation for AGATHA very soon. 

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

  • Creating New Scripts Dynamically in Lua

    - by bazola
    Right now this is just a crazy idea that I had, but I was able to implement the code and get it working properly. I am not entirely sure of what the use cases would be just yet. What this code does is create a new Lua script file in the project directory. The ScriptWriter takes as arguments the file name, a table containing any arguments that the script should take when created, and a table containing any instance variables to create by default. My plan is to extend this code to create new functions based on inputs sent in during its creation as well. What makes this cool is that the new file is both generated and loaded dynamically on the fly. Theoretically you could get this code to generate and load any script imaginable. One use case I can think of is an AI that creates scripts to map out it's functions, and creates new scripts for new situations or environments. At this point, this is all theoretical, though. Here is the test code that is creating the new script and then immediately loading it and calling functions from it: function Card:doScriptWriterThing() local scriptName = "ScriptIAmMaking" local scripter = scriptWriter:new(scriptName, {"argumentName"}, {name = "'test'", one = 1}) scripter:makeFileForLoadedSettings() local loadedScript = require (scriptName) local scriptInstance = loadedScript:new("sayThis") print(scriptInstance:get_name()) --will print test print(scriptInstance:get_one()) -- will print 1 scriptInstance:set_one(10000) print(scriptInstance:get_one()) -- will print 10000 print(scriptInstance:get_argumentName()) -- will print sayThis scriptInstance:set_argumentName("saySomethingElse") print(scriptInstance:get_argumentName()) --will print saySomethingElse end Here is ScriptWriter.lua local ScriptWriter = {} local twoSpaceIndent = " " local equalsWithSpaces = " = " local newLine = "\n" --scriptNameToCreate must be a string --argumentsForNew and instanceVariablesToCreate must be tables and not nil function ScriptWriter:new(scriptNameToCreate, argumentsForNew, instanceVariablesToCreate) local instance = setmetatable({}, { __index = self }) instance.name = scriptNameToCreate instance.newArguments = argumentsForNew instance.instanceVariables = instanceVariablesToCreate instance.stringList = {} return instance end function ScriptWriter:makeFileForLoadedSettings() self:buildInstanceMetatable() self:buildInstanceCreationMethod() self:buildSettersAndGetters() self:buildReturn() self:writeStringsToFile() end --very first line of any script that will have instances function ScriptWriter:buildInstanceMetatable() table.insert(self.stringList, "local " .. self.name .. " = {}" .. newLine) table.insert(self.stringList, newLine) end --every script made this way needs a new method to create its instances function ScriptWriter:buildInstanceCreationMethod() --new() function declaration table.insert(self.stringList, ("function " .. self.name .. ":new(")) self:buildNewArguments() table.insert(self.stringList, ")" .. newLine) --first line inside :new() function table.insert(self.stringList, twoSpaceIndent .. "local instance = setmetatable({}, { __index = self })" .. newLine) --add designated arguments inside :new() self:buildNewArgumentVariables() --create the instance variables with the loaded values for key,value in pairs(self.instanceVariables) do table.insert(self.stringList, twoSpaceIndent .. "instance." .. key .. equalsWithSpaces .. value .. newLine) end --close the :new() function table.insert(self.stringList, twoSpaceIndent .. "return instance" .. newLine) table.insert(self.stringList, "end" .. newLine) table.insert(self.stringList, newLine) end function ScriptWriter:buildNewArguments() --if there are arguments for :new(), add them for key,value in ipairs(self.newArguments) do table.insert(self.stringList, value) table.insert(self.stringList, ", ") end if next(self.newArguments) ~= nil then --makes sure the table is not empty first table.remove(self.stringList) --remove the very last element, which will be the extra ", " end end function ScriptWriter:buildNewArgumentVariables() --add the designated arguments to :new() for key, value in ipairs(self.newArguments) do table.insert(self.stringList, twoSpaceIndent .. "instance." .. value .. equalsWithSpaces .. value .. newLine) end end --the instance variables need separate code because their names have to be the key and not the argument name function ScriptWriter:buildSettersAndGetters() for key,value in ipairs(self.newArguments) do self:buildArgumentSetter(value) self:buildArgumentGetter(value) table.insert(self.stringList, newLine) end for key,value in pairs(self.instanceVariables) do self:buildInstanceVariableSetter(key, value) self:buildInstanceVariableGetter(key, value) table.insert(self.stringList, newLine) end end --code for arguments passed in function ScriptWriter:buildArgumentSetter(variable) table.insert(self.stringList, "function " .. self.name .. ":set_" .. variable .. "(newValue)" .. newLine) table.insert(self.stringList, twoSpaceIndent .. "self." .. variable .. equalsWithSpaces .. "newValue" .. newLine) table.insert(self.stringList, "end" .. newLine) end function ScriptWriter:buildArgumentGetter(variable) table.insert(self.stringList, "function " .. self.name .. ":get_" .. variable .. "()" .. newLine) table.insert(self.stringList, twoSpaceIndent .. "return " .. "self." .. variable .. newLine) table.insert(self.stringList, "end" .. newLine) end --code for instance variable values passed in function ScriptWriter:buildInstanceVariableSetter(key, variable) table.insert(self.stringList, "function " .. self.name .. ":set_" .. key .. "(newValue)" .. newLine) table.insert(self.stringList, twoSpaceIndent .. "self." .. key .. equalsWithSpaces .. "newValue" .. newLine) table.insert(self.stringList, "end" .. newLine) end function ScriptWriter:buildInstanceVariableGetter(key, variable) table.insert(self.stringList, "function " .. self.name .. ":get_" .. key .. "()" .. newLine) table.insert(self.stringList, twoSpaceIndent .. "return " .. "self." .. key .. newLine) table.insert(self.stringList, "end" .. newLine) end --last line of any script that will have instances function ScriptWriter:buildReturn() table.insert(self.stringList, "return " .. self.name) end function ScriptWriter:writeStringsToFile() local fileName = (self.name .. ".lua") file = io.open(fileName, 'w') for key,value in ipairs(self.stringList) do file:write(value) end file:close() end return ScriptWriter And here is what the code provided will generate: local ScriptIAmMaking = {} function ScriptIAmMaking:new(argumentName) local instance = setmetatable({}, { __index = self }) instance.argumentName = argumentName instance.name = 'test' instance.one = 1 return instance end function ScriptIAmMaking:set_argumentName(newValue) self.argumentName = newValue end function ScriptIAmMaking:get_argumentName() return self.argumentName end function ScriptIAmMaking:set_name(newValue) self.name = newValue end function ScriptIAmMaking:get_name() return self.name end function ScriptIAmMaking:set_one(newValue) self.one = newValue end function ScriptIAmMaking:get_one() return self.one end return ScriptIAmMaking All of this is generated with these calls: local scripter = scriptWriter:new(scriptName, {"argumentName"}, {name = "'test'", one = 1}) scripter:makeFileForLoadedSettings() I am not sure if I am correct that this could be useful in certain situations. What I am looking for is feedback on the readability of the code, and following Lua best practices. I would also love to hear whether this approach is a valid one, and whether the way that I have done things will be extensible.

    Read the article

< Previous Page | 486 487 488 489 490 491 492 493 494 495 496 497  | Next Page >