Search Results

Search found 18154 results on 727 pages for 'support multilanguage so'.

Page 654/727 | < Previous Page | 650 651 652 653 654 655 656 657 658 659 660 661  | Next Page >

  • Building a Mafia&hellip;TechFest Style

    - by David Hoerster
    It’s been a few months since I last blogged (not that I blog much to begin with), but things have been busy.  We all have a lot going on in our lives, but I’ve had one item that has taken up a surprising amount of time – Pittsburgh TechFest 2012.  After the event, I went through some minutes of the first meetings for TechFest, and I started to think about how it all came together.  I think what inspired me the most about TechFest was how people from various technical communities were able to come together and build and promote a common event.  As a result, I wanted to blog about this to show that people from different communities can work together to build something that benefits all communities.  (Hopefully I've got all my facts straight.)  TechFest started as an idea Eric Kepes and myself had when we were planning our next Pittsburgh Code Camp, probably in the summer of 2011.  Our Spring 2011 Code Camp was a little different because we had a great infusion of some folks from the Pittsburgh Agile group (especially with a few speakers from LeanDog).  The line-up was great, but we felt our audience wasn’t as broad as it should have been.  We thought it would be great to somehow attract other user groups around town and have a big, polyglot conference. We started contacting leaders from Pittsburgh’s various user groups.  Eric and I split up the ones that we knew about, and we just started making contacts.  Most of the people we started contacting never heard of us, nor we them.  But we all had one thing in common – we ran user groups who’s primary goal is educating our members to make them better at what they do. Amazingly, and I say this because I wasn’t sure what to expect, we started getting some interest from the various leaders.  One leader, Greg Akins, is, in my opinion, Pittsburgh’s poster boy for the polyglot programmer.  He’s helped us in the past with .NET Code Camps, is a Java developer (and leader in Pittsburgh’s Java User Group), works with Ruby and I’m sure a handful of other languages.  He helped make some e-introductions to other user group leaders, and the whole thing just started to snowball. Once we realized we had enough interest with the user group leaders, we decided to not have a Fall Code Camp and instead focus on this new entity. Flash-forward to October of 2011.  I set up a meeting, with the help of Jeremy Jarrell (Pittsburgh Agile leader) to hold a meeting with the leaders of many of Pittsburgh technical user groups.  We had representatives from 12 technical user groups (Python, JavaScript, Clojure, Ruby, PittAgile, jQuery, PHP, Perl, SQL, .NET, Java and PowerShell) – 14 people.  We likened it to a scene from a Godfather movie where the heads of all the families come together to make some deal.  As a result, the name “TechFest Mafia” was born and kind of stuck. Over the next 7 months or so, we had our starts and stops.  There were moments where I thought this event would not happen either because we wouldn’t have the right mix of topics (was I off there!), or enough people register (OK, I was wrong there, too!) or find an appropriate venue (hmm…wrong there, too) or find enough sponsors to help support the event (wow…not doing so well).  Overall, everything fell into place with a lot of hard work from Eric, Jen, Greg, Jeremy, Sean, Nicholas, Gina and probably a few others that I’m forgetting.  We also had a bit of luck, too.  But in the end, the passion that we had to put together an event that was really about making ourselves better at what we do really paid off. I’ve never been more excited about a project coming together than I have been with Pittsburgh TechFest 2012.  From the moment the first person arrived at the event to the final minutes of my closing remarks (where I almost lost my voice – I ended up being diagnosed with bronchitis the next day!), it was an awesome event.  I’m glad to have been part of bringing something like this to Pittsburgh…and I’m looking forward to Pittsburgh TechFest 2013.  See you there!

    Read the article

  • Why Haven’t NFC Payments Taken Off?

    - by David Dorf
    With the EMV 2015 milestone approaching rapidly, there’s been renewed interest in smartcards, those credit cards with an embedded computer chip.  Back in 1996 I was working for a vendor helping Visa introduce a stored-value smartcard to the US.  Visa Cash was debuted at the 1996 Olympics in Atlanta, and I firmly believed it was the beginning of a cashless society.  (I later worked on MasterCard’s system called Mondex, from the UK, which debuted the following year in Manhattan). But since you don’t have a Visa Cash card in your wallet, it’s obvious the project never took off.  It was convenient for consumers, faster for merchants, and more cost-effective for banks, so why did it fail?  All emerging payment systems suffer from the chicken-and-egg dilemma.  Consumers won’t carry the cards if few merchants accept them, and merchants won’t install the terminals if few consumers have cards. Today’s emerging payment providers are in a similar pickle.  There has to be enough value for all three constituents – consumers, merchants, banks – to change the status quo.  And it’s not enough to exceed the value, it’s got to be a leap in value, because people generally resist change.  ATMs and transit cards are great examples of this, and airline kiosks and self-checkout systems are to a lesser extent. Although Google Wallet and ISIS, the two leading NFC payment platforms in the US, have shown strong commitment, there’s been very little traction.  Yes, I can load my credit card number into my phone then tap to pay, but what was the incremental value over swiping my old card?  For it to be a leap in value, it has to offer more than just payment, which I can do very easily today.  The other two ingredients are thought to be loyalty programs and digital coupons, but neither Google nor ISIS really did them well. Of course a large portion of the mobile phone market doesn’t even support NFC thanks to Apple, and since it’s not in their best interest that situation is unlikely to change.  Another issue is getting access to the “secure element,” the chip inside the phone where accounts numbers can be held securely.  Telco providers and handset manufacturers own that area, and they’re not willing to share with banks.  (Host Card Emulation, which has been endorsed by MasterCard and Visa, might be a solution.) Square recently gave up on its wallet, and MCX (the group of retailers trying to create a mobile payment platform) is very slow out of the gate.  That leaves PayPal and a slew of smaller companies trying to introduce easier ways to pay. But is it really so cumbersome to carry and swipe (soon to insert) a credit card?  Aren’t there more important problems to solve in the retail customer experience?  Maybe Apple will come up with some novel way to use iBeacons and fingerprint identification to make payments, but for now I think we need to focus on upgrading to Chip-and-PIN and tightening security.  In the meantime, NFC payments will continue to struggle.

    Read the article

  • Calling XAI Inbound Services from Oracle BI Publisher

    - by ACShorten
    Note: This technique requires Oracle BI Publisher 1.1.3.4.1 which supports Service Complex Types. Web Services require credentials for authentication. Note: The deafults for the product installation are used in this article. If your site uses alternative values then substitute those alternatives where applicable. Note: Examples shown in this article are examples for illustrative purposes only. When building a report in Oracle BI Publisher it may be necessary to call an XAI Inbound Service to get information via the object rather than directly calling the database tables for various reasons: The CLOB fields used in the Object are accessible for a report. Note: CLOB fields cannot be used as criteria in the current release. Objects can take advantage of algorithms to format or calculate additional data that is not stored in the database directly. For example, Information format strings can automatically generated by the object which gives consistent information between a report and the online screens. To use this facility the following process must be performed: Ensure that the product group, cisusers by default, is enabled for the SPLServiceBean in the console. This allows BI Publisher access to call Web Services directly. To ensure this follow the instructions below: Logon to the Oracle WebLogic server console using an appropriate administrator account. By default the user system or weblogic is provided for this purpose. Navigate to the Security Realms section and select your configured realm. This is set to myrealm by default. In the Roles and Policies section, expand the SPLService section of the Deployments option to reveal the SPLServiceBean roles. If there is no role associated with the SPLServiceBean, create a new EJB role and specify the cisusers role, by default. For example:   Add a Role Condition to the role just created, with a Predicate List of Group and specify cisusers as the Group Argument Name. For example: Save all your changes. The XAI Inbound Services to be used by BI Publisher must be defined prior to using the interface. Refer to the XAI Best Practices (Doc Id: 942074.1) from My Oracle Support or via the online help for more information about this process. Inside BI Publisher create your report, according to the BI Publisher documentation. When specifying the dataset, under the Data Model Report option, specify the following to use an XAI Inbound Service as a data source: Parameter Comment Type Web Service Complex Type true Username Any valid user name within the product. This user MUST have security access to the objects referenced in the XAI Inbound Service Password Authentication password for Username Timeout Timeout, in seconds, set for the Web Service call. For example 60 seconds. WSDL URL Use the WSDL URL on the XAI Inbound Service definition as your WSDL URL. It will be in the following format by default:http://<host>:<port>/<server>/XAIApp/xaiserver/<service>?WSDLwhere: <host> - Host Name of Web Application Server <port> - Port allocated to Web Application Server for product access <server> - Server context for server <service> - XAI Inbound Service Name Note: For customers using secure transmission should substitute https instead of http and use the HTTPS port allocated to the product at installation time. Web Service Select the name of the service that shows in the drop-down menu. If no service name shows up, it means that Publisher could not establish a connection with the server or WSDL name provided in the above URL in order to get the service name. See BI Publisher server log for more information. Method Select the name of the Method that shows in the drop-down menu. A method name should show in the Method drop-down menu once the Web Service name is selected. For example: Additionally, filters can be used from the Web Service that can be generated, required or optional, from the WSDL in the Parameter List. For example:

    Read the article

  • Why Cornell University Chose Oracle Data Masking

    - by Troy Kitch
    One of the eight Ivy League schools, Cornell University found itself in the unfortunate position of having to inform over 45,000 University community members that their personal information had been breached when a laptop was stolen. To ensure this wouldn’t happen again, Cornell took steps to ensure that data used for non-production purposes is de-identified with Oracle Data Masking. A recent podcast highlights why organizations like Cornell are choosing Oracle Data Masking to irreversibly de-identify production data for use in non-production environments. Organizations often copy production data, that contains sensitive information, into non-production environments so they can test applications and systems using “real world” information. Data in non-production has increasingly become a target of cyber criminals and can be lost or stolen due to weak security controls and unmonitored access. Similar to production environments, data breaches in non-production environments can cost millions of dollars to remediate and cause irreparable harm to reputation and brand. Cornell’s applications and databases help carry out the administrative and academic mission of the university. They are running Oracle PeopleSoft Campus Solutions that include highly sensitive faculty, student, alumni, and prospective student data. This data is supported and accessed by a diverse set of developers and functional staff distributed across the university. Several years ago, Cornell experienced a data breach when an employee’s laptop was stolen.  Centrally stored backup information indicated there was sensitive data on the laptop. With no way of knowing what the criminal intended, the university had to spend significant resources reviewing data, setting up service centers to handle constituent concerns, and provide free credit checks and identity theft protection services—all of which cost money and took time away from other projects. To avoid this issue in the future Cornell came up with several options; one of which was to sanitize the testing and training environments. “The project management team was brought in and they developed a project plan and implementation schedule; part of which was to evaluate competing products in the market-space and figure out which one would work best for us.  In the end we chose Oracle’s solution based on its architecture and its functionality.” – Tony Damiani, Database Administration and Business Intelligence, Cornell University The key goals of the project were to mask the elements that were identifiable as sensitive in a consistent and efficient manner, but still support all the previous activities in the non-production environments. Tony concludes,  “What we saw was a very minimal impact on performance. The masking process added an additional three hours to our refresh window, but it was well worth that time to secure the environment and remove the sensitive data. I think some other key points you can keep in mind here is that there was zero impact on the production environment. Oracle Data Masking works in non-production environments only. Additionally, the risk of exposure has been significantly reduced and the impact to business was minimal.” With Oracle Data Masking organizations like Cornell can: Make application data securely available in non-production environments Prevent application developers and testers from seeing production data Use an extensible template library and policies for data masking automation Gain the benefits of referential integrity so that applications continue to work Listen to the podcast to hear the complete interview.  Learn more about Oracle Data Masking by registering to watch this SANS Institute Webcast and view this short demo.

    Read the article

  • Using Lambdas for return values in Rhino.Mocks

    - by PSteele
    In a recent StackOverflow question, someone showed some sample code they’d like to be able to use.  The particular syntax they used isn’t supported by Rhino.Mocks, but it was an interesting idea that I thought could be easily implemented with an extension method. Background When stubbing a method return value, Rhino.Mocks supports the following syntax: dependency.Stub(s => s.GetSomething()).Return(new Order()); The method signature is generic and therefore you get compile-time type checking that the object you’re returning matches the return value defined by the “GetSomething” method. You could also have Rhino.Mocks execute arbitrary code using the “Do” method: dependency.Stub(s => s.GetSomething()).Do((Func<Order>) (() => new Order())); This requires the cast though.  It works, but isn’t as clean as the original poster wanted.  They showed a simple example of something they’d like to see: dependency.Stub(s => s.GetSomething()).Return(() => new Order()); Very clean, simple and no casting required.  While Rhino.Mocks doesn’t support this syntax, it’s easy to add it via an extension method. The Rhino.Mocks “Stub” method returns an IMethodOptions<T>.  We just need to accept a Func<T> and use that as the return value.  At first, this would seem straightforward: public static IMethodOptions<T> Return<T>(this IMethodOptions<T> opts, Func<T> factory) { opts.Return(factory()); return opts; } And this would work and would provide the syntax the user was looking for.  But the problem with this is that you loose the late-bound semantics of a lambda.  The Func<T> is executed immediately and stored as the return value.  At the point you’re setting up your mocks and stubs (the “Arrange” part of “Arrange, Act, Assert”), you may not want the lambda executing – you probably want it delayed until the method is actually executed and Rhino.Mocks plugs in your return value. So let’s make a few small tweaks: public static IMethodOptions<T> Return<T>(this IMethodOptions<T> opts, Func<T> factory) { opts.Return(default(T)); // required for Rhino.Mocks on non-void methods opts.WhenCalled(mi => mi.ReturnValue = factory()); return opts; } As you can see, we still need to set up some kind of return value or Rhino.Mocks will complain as soon as it intercepts a call to our stubbed method.  We use the “WhenCalled” method to set the return value equal to the execution of our lambda.  This gives us the delayed execution we’re looking for and a nice syntax for lambda-based return values in Rhino.Mocks. Technorati Tags: .NET,Rhino.Mocks,Mocking,Extension Methods

    Read the article

  • New January 2013 Release of the Ajax Control Toolkit

    - by Stephen.Walther
    I am super excited to announce the January 2013 release of the Ajax Control Toolkit! I have one word to describe this release and that word is “Charts” – we’ve added lots of great new chart controls to the Ajax Control Toolkit. You can download the new release directly from http://AjaxControlToolkit.CodePlex.com – or, just fire the following command from the Visual Studio Library Package Manager Console Window (NuGet): Install-Package AjaxControlToolkit You also can view the new chart controls by visiting the “live” Ajax Control Toolkit Sample Site. 5 New Ajax Control Toolkit Chart Controls The Ajax Control Toolkit contains five new chart controls: the AreaChart, BarChart, BubbleChart, LineChart, and PieChart controls. Here is a sample of each of the controls: AreaChart: BarChart: BubbleChart: LineChart: PieChart: We realize that people love to customize the appearance of their charts so all of the chart controls include properties such as color properties. The chart controls render the chart on the browser using SVG. The chart controls are compatible with any browser which supports SVG including Internet Explorer 9 and new and recent versions of Google Chrome, Mozilla Firefox, and Apple Safari. (If you attempt to display a chart on a browser which does not support SVG then you won’t get an error – you just won’t get anything). Updates to the HTML Sanitizer If you are using the HtmlEditorExtender on a public-facing website then it is really important that you enable the HTML Sanitizer to prevent Cross-Site Scripting (XSS) attacks. The HtmlEditorExtender uses the HTML Sanitizer by default. The HTML Sanitizer strips out any suspicious content (like JavaScript code and CSS expressions) from the HTML submitted with the HtmlEditorExtender. We followed the recommendations of OWASP and ha.ckers.org to identify suspicious content. We updated the HTML Sanitizer with this release to protect against new types of XSS attacks. The HTML Sanitizer now has over 220 unit tests. The Ajax Control Toolkit team would like to thank Gil Cohen who helped us identify and block additional XSS attacks. Change in Ajax Control Toolkit Version Format We ran out of numbers. The Ajax Control Toolkit was first released way back in 2006. In previous releases, the version of the Ajax Control Toolkit followed the format: Release Year + Date. So, the previous release was 60919 where 6 represented the 6th release year and 0919 represent September 19. Unfortunately, the AssembyVersion attribute uses a UInt16 data type which has a maximum size of 65,534. The number 70123 is bigger than 65,534 so we had to change our version format with this release. Fortunately, the AssemblyVersion attribute actually accepts four UInt16 numbers so we used another one. This release of the Ajax Control Toolkit is officially version 7.0123. This new version format should work for another 65,000 years. And yes, I realize that 7.0123 is less than 60,919, but we ran out of numbers. Summary I hope that you find the chart controls included with this latest release of the Ajax Control Toolkit useful. Let me know if you use them in applications that you build. And, let me know if you run into any issues using the new chart controls. Next month, back to improving the File Upload control – more exciting stuff.

    Read the article

  • Fast Data: Go Big. Go Fast.

    - by Dain C. Hansen
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 For those of you who may have missed it, today’s second full day of Oracle OpenWorld 2012 started with a rumpus. Joe Tucci, from EMC outlined the human face of big data with real examples of how big data is transforming our world. And no not the usual tried-and-true weblog examples, but real stories about taxi cab drivers in Singapore using big data to better optimize their routes as well as folks just trying to get a better hair cut. Next we heard from Thomas Kurian who talked at length about the important platform characteristics of Oracle’s Cloud and more specifically Oracle’s expanded Cloud Services portfolio. Especially interesting to our integration customers are the messaging support for Oracle’s Cloud applications. What this means is that now Oracle’s Cloud applications have a lightweight integration fabric that on-premise applications can communicate to it via REST-APIs using Oracle SOA Suite. It’s an important element to our strategy at Oracle that supports this idea that whether your requirements are for private or public, Oracle has a solution in the Cloud for all of your applications and we give you more deployment choice than any vendor. If this wasn’t enough to get the juices flowing, later that morning we heard from Hasan Rizvi who outlined in his Fusion Middleware session the four most important enterprise imperatives: Social, Mobile, Cloud, and a brand new one: Fast Data. Today, Rizvi made an important step in the definition of this term to explain that he believes it’s a convergence of four essential technology elements: Event Processing for event filtering, business rules – with Oracle Event Processing Data Transformation and Loading - with Oracle Data Integrator Real-time replication and integration – with Oracle GoldenGate Analytics and data discovery – with Oracle Business Intelligence Each of these four elements can be considered (and architect-ed) together on a single integrated platform that can help customers integrate any type of data (structured, semi-structured) leveraging new styles of big data technologies (MapReduce, HDFS, Hive, NoSQL) to process more volume and variety of data at a faster velocity with greater results.  Fast data processing (and especially real-time) has always been our credo at Oracle with each one of these products in Fusion Middleware. For example, Oracle GoldenGate continues to be made even faster with the recent 11g R2 Release of Oracle GoldenGate which gives us some even greater optimization to Oracle Database with Integrated Capture, as well as some new heterogeneity capabilities. With Oracle Data Integrator with Big Data Connectors, we’re seeing much improved performance by running MapReduce transformations natively on Hadoop systems. And with Oracle Event Processing we’re seeing some remarkable performance with customers like NTT Docomo. Check out their upcoming session at Oracle OpenWorld on Wednesday to hear more how this customer is using Event processing and Big Data together. If you missed any of these sessions and keynotes, not to worry. There's on-demand versions available on the Oracle OpenWorld website. You can also checkout our upcoming webcast where we will outline some of these new breakthroughs in Data Integration technologies for Big Data, Cloud, and Real-time in more details. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";}

    Read the article

  • SQL SERVER – #TechEdIn – Presenting Tomorrow on SQL Server Misconception and Resolution with Vinod Kumar at TechEd India 2012

    - by pinaldave
    I am excited AND nervous at the same time. I am going to present a very interesting topic tomorrow at an SQL Server track in India. This will be my fourth time presenting at TechEd India. So far, I have received so much feedback about this one session. It seems like every single person out there has their own wishes and requests. I am sure that it is going to very challenging experience to satisfy everyone who attends the event through my presentation. Surprise Element Here is the good news: I am going to co-present this session with Vinod Kumar, my long time friend and co-worker. We have known each other for almost four years now, but this is the very first time that we are going to present together on the big stage of TechEd.  When there are more than two presenters, the usual trick is to practice the session multiple times and know exactly what each other is going to present and talk about. However, there’s a catch – we decided to make it different this time and have shared nothing to each other regarding what exactly we are going to present. This makes everything extremely interesting as each of us will be as clueless as the audience when other person is going to talk. Action Item Here are a few of the action items for all of those who are going to attend this session. Vinod and I will be present at the venue 15 minutes before the session. Do come in early and talk with us. We would be glad to talk with you and see if either of us can accommodate your suggestion in our session. If we do, we will give a surprise gift for you. As discussed, this session is going to be a unique two-presenter session. You will have chance to take a side with one speaker and stump the other speaker. Come early to decide which speaker you want to cheer during the session. Quiz and Goodies By now, you must have figured out that this session is going to be an extremely interactive session. We need your support through your active participation. We will have some really brain-twisting quiz line up just for you. You will have to take part and win surprises from us! Trust me. If you get it right, we will give you something which can help you learn more! We will have a quiz on Twitter as well. We will ask a question in person and you will be able to participate on Twitter. 10 – Demos As I said, both of us do not know what each other is going to present, but there are few things which we know very well. We have 10 demos and 6 slides. I think this is going to be an exciting demo marathon. Trust me, you will love it and the taste of this session will be in your mouth till the next TechEd. Session Details Title: SQL Server Misconceptions and Resolution – A Practical Perspective (Add to Calendar) Abstract: “The earth is flat”! – An ancient common misconception, which has been proven incorrect as we progressed in modern times. In this session, we will see various database misconceptions prevailing and their resolutions with the aid of the demos. In this unique session, the audience will be a part of the conversation and resolution. Date and Time: March 21, 2012, 15:15 to 16:15 Location: Hotel Lalit Ashok - Kumara Krupa High Grounds, Bengaluru – 560001, Karnataka, India. Add to Calendar Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Interview Questions and Answers, SQL Query, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • Session Update from IASA 2010

    - by [email protected]
    Below: Tom Kristensen, senior vice president at Marsh US Consumer, and Roger Soppe, CLU, LUTCF, senior director of insurance strategy, Oracle Insurance. Tom and Roger participated in a panel discussion on policy administration systems this week at IASA 2010. This week was the 82nd Annual IASA Educational Conference & Business Show held in Grapevine, Texas. While attending the conference, I had the pleasure of serving as a panelist in one of many of the outstanding sessions conducted this year. The session - entitled "Achieving Business Agility and Promoting Growth with a Modern Policy Administration System" - included industry experts Steve Forte from OneShield, Mike Sciole of IFG Companies, and Tom Kristensen, senior vice president at Marsh US Consumer. The session was conducted as a panel discussion and focused on how insurers can leverage best practices to mitigate risk while enabling rapid product innovation through a modern policy administration system. The panelists offered insight into business and technical challenges for both Life & Annuity and Property & Casualty carriers. The session had three primary learning objectives: Identifying how replacing a legacy system with a more modern policy administration solution can deliver agility and growth Identifying how processes and system should be re-engineered or replaced in order to improve speed-to-market and product support Uncovering how to leverage best practices to mitigate risk during a migration to a new platform Tom Kristensen, who is an industry veteran with over 20 years of experience, was able was able to offer a unique perspective as a business process outsourcer (BPO). Marsh US Consumer is currently implementing both the Oracle Insurance Policy Administration solution and the Oracle Revenue Management and Billing platform while at the same time implementing a new BPO customer. Tom offered insight on the need to replace their aging systems and Marsh's ability to drive new products and processes with a modern solution. As a best practice, their current project has empowered their business users to play a major role in both the requirements gathering and configuration phases. Tom stated that working with a modern solution has also enabled his organization to use a more agile implementation methodology and get hands-on experience with the software earlier in the project. He also indicated that Marsh was encouraged by how quickly it will be able to implement new products, which is another major advantage of a modern rules-based system. One of the more interesting issues was raised by an audience member who asked, "With all the vendor solutions available in North American and across Europe, what is going to make some of them more successful than others and help ensure their long term success?" Panelist Mike Sciole, IFG Companies suggested that carriers do their due diligence and follow a structured evaluation process focusing on vendors who demonstrate they have the "cash to invest in long term R&D" and evaluate audited annual statements for verification. Other panelists suggested that the vendor space will continue to evolve and those with a strong strategy focused on the insurance industry and a solid roadmap will likely separate themselves from the rest. The session concluded with the panelists offering advice about not being afraid to evaluate new modern systems. While migrating to a new platform can be challenging and is typically only undertaken every 15+ years by carriers, the ability to rapidly deploy and manage new products, create consistent processes to better service customers, and the ability to manage their business more effectively, transparently and securely are well worth the effort. Roger A.Soppe, CLU, LUTCF, is the Senior Director of Insurance Strategy, Oracle Insurance.

    Read the article

  • WEB203 &ndash; Jump into Silverlight!&hellip; and Become Effective Immediately with Tim Huckaby, Fou

    - by Robert Burger
    Getting ready for the good stuff. Definitely wish there were more Silverlight and WCF RIA sessions, but this is a start.  Was lucky to get a coveted power-enabled seat.  Luckily, due to my trustily slow Verizon data card, I can get these notes out amidst a total Internet outage here.  This is the second breakout session of the day, and is by far standing-room only.  I stepped out before the session started to get a cool Diet COKE and wouldn’t have gotten back in if I didn’t already have a seat. Tim says this is an intro session and that he’s been begging for intro sessions at TechEd for years and that by looking at this audience, he thinks the demand is there.  Admittedly, I didn’t know this was an intro session, or I might have gone elsewhere.  But, it was the very first Silverlight session, so I had to be here. Tim says he will be providing a very good comprehensive reference application at the end of the presentation.  He has just demoed it, and it is a full CRUD-based Sales Manager application based on…  AdventureWorks! Session Agenda What it is / How to get started Declarative Programming Layout and Controls, Events and Commands Working with Data Adding Style to Your Application   Silverlight…  “WPF Light” Why is the download 4.2MB?  Because the direct competitor is a 4.2MB download.  There is no technical reason it is not the entire framework.  It is purely to “be competitive”.   Getting Started Get all of the following downloads from www.silverlight.net/getstarted Install VS2010 or Visual Web Developer Express 2010 Install Silverlight 4 Tools for VS2010 Install Expression Blend 4 Install the Silverlight 4 Toolkit   Reference Application Features Uses MVVM pattern – a way to move data access code that would normally be inline within the UI and placing it in nice data access libraries Images loaded dynamically from the database, converting GIF to PNG because Silverlight does not support GIF. LINQ to SQL is the data access model WCF is the data provider and is using binary message encoding   Declarative Programming XAML replaces code for UI representation Attributes control Layout and Style Event handlers wired-up in XAML Declarative Data Binding   Layout Overview Content rendering flows inside of parent Fixed positioning (Canvas) is seldom used Panels are used to house content Margins and Padding over fixed size   Panels StackPanel – Arranges child elements into a single line oriented horizontally or vertically Grid – A flexible grid are that consists of rows and columns Canvas – An are where positions are specifically fixed WrapPanel (in Toolkit) – Positions child elements in sequential position left to right and top to bottom. DockPanel (in Toolkit) – Positions child controls within a dockable area   Positioning Horizontal and Vertical Alignment Margin – Separates an element from neighboring elements Padding – Enlarges the effective size of an element by a thickness   Controls Overview Not all controls created equal Silverlight, as a subset of WPF, so many WPF controls do not exist in the core Siverlight release Silverlight Toolkit continues to add controls, but are released in different quality bands Plenty of good 3rd party controls to fill the gaps Windows Phone 7 is to have 95% of controls available in Silverlight Core and Toolkit.   Events and Commands Standard .NET Events Routed Events Commands – based on the ICommand interface – logical action that can be invoked in several ways   Adding Style to Your Application Resource Dictionaries – Contains a hash table of key/value pairs.  Silverlight can only use Static Resources whereas WPF can also use Dynamic Resources Visual State Manager Silverlight 4 supports Implicit styles ResourceDictionary.MergedDictionaries combines many different file-based resources   Downloads

    Read the article

  • To sample or not to sample...

    - by [email protected]
    Ideally, we would know the exact answer to every question. How many people support presidential candidate A vs. B? How many people suffer from H1N1 in a given state? Does this batch of manufactured widgets have any defective parts? Knowing exact answers is expensive in terms of time and money and, in most cases, is impractical if not impossible. Consider asking every person in a region for their candidate preference, testing every person with flu symptoms for H1N1 (assuming every person reported when they had flu symptoms), or destructively testing widgets to determine if they are "good" (leaving no product to sell). Knowing exact answers, fortunately, isn't necessary or even useful in many situations. Understanding the direction of a trend or statistically significant results may be sufficient to answer the underlying question: who is likely to win the election, have we likely reached a critical threshold for flu, or is this batch of widgets good enough to ship? Statistics help us to answer these questions with a certain degree of confidence. This focuses on how we collect data. In data mining, we focus on the use of data, that is data that has already been collected. In some cases, we may have all the data (all purchases made by all customers), in others the data may have been collected using sampling (voters, their demographics and candidate choice). Building data mining models on all of your data can be expensive in terms of time and hardware resources. Consider a company with 40 million customers. Do we need to mine all 40 million customers to get useful data mining models? The quality of models built on all data may be no better than models built on a relatively small sample. Determining how much is a reasonable amount of data involves experimentation. When starting the model building process on large datasets, it is often more efficient to begin with a small sample, perhaps 1000 - 10,000 cases (records) depending on the algorithm, source data, and hardware. This allows you to see quickly what issues might arise with choice of algorithm, algorithm settings, data quality, and need for further data preparation. Instead of waiting for a model on a large dataset to build only to find that the results don't meet expectations, once you are satisfied with the results on the initial sample, you can  take a larger sample to see if model quality improves, and to get a sense of how the algorithm scales to the particular dataset. If model accuracy or quality continues to improve, consider increasing the sample size. Sampling in data mining is also used to produce a held-aside or test dataset for assessing classification and regression model accuracy. Here, we reserve some of the build data (data that includes known target values) to be used for an honest estimate of model error using data the model has not seen before. This sampling transformation is often called a split because the build data is split into two randomly selected sets, often with 60% of the records being used for model building and 40% for testing. Sampling must be performed with care, as it can adversely affect model quality and usability. Even a truly random sample doesn't guarantee that all values are represented in a given attribute. This is particularly troublesome when the attribute with omitted values is the target. A predictive model that has not seen any examples for a particular target value can never predict that target value! For other attributes, values may consist of a single value (a constant attribute) or all unique values (an identifier attribute), each of which may be excluded during mining. Values from categorical predictor attributes that didn't appear in the training data are not used when testing or scoring datasets. In subsequent posts, we'll talk about three sampling techniques using Oracle Database: simple random sampling without replacement, stratified sampling, and simple random sampling with replacement.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Anatomy of a serialization killer

    - by Brian Donahue
    As I had mentioned last month, I have been working on a project to create an easy-to-use managed debugger. It's still an internal tool that we use at Red Gate as part of product support to analyze application errors on customer's computers, and as such, should be easy to use and not require installation. Since the project has got rather large and important, I had decided to use SmartAssembly to protect all of my hard work. This was trivial for the most part, but the loading and saving of results was broken by SA after using the obfuscation, rendering the loading and saving of XML results basically useless, although the merging and error reporting was an absolute godsend and definitely worth the price of admission. (Well, I get my Red Gate licenses for free, but you know what I mean!)My initial reaction was to simply exclude the serializable results class and all of its' members from obfuscation, and that was just dandy, but a few weeks on I decided to look into exactly why serialization had broken and change the code to work with SA so I could write any new code to be compatible with SmartAssembly and save me some additional testing and changes to the SA project.In simple terms, SA does all that it can to prevent serialization problems, for instance, it will not obfuscate public members of a DLL and it will exclude any types with the Serializable attribute from obfuscation. This prevents public members and properties from being made private and having the name changed. If the serialization is done inside the executable, however, public members have the access changed to private and are renamed. That was my first problem, because my types were in the executable assembly and implemented ISerializable, but did not have the Serializable attribute set on them!public class RedFlagResults : ISerializable        {        }The second problem caused by the pruning feature. Although RedFlagResults had public members, they were not truly properties, and used the GetObjectData() method of ISerializable to serialize the members. For that reason, SA could not exclude these members from pruning and further broke the serialization. public class RedFlagResults : ISerializable        {                public List<RedFlag.Exception> Exceptions;                 #region ISerializable Members                 public void GetObjectData(SerializationInfo info, StreamingContext context)                {                                info.AddValue("Exceptions", Exceptions);                }                 #endregionSo to fix this, it was necessary to make Exceptions a proper property by implementing get and set on it. Also, I added the Serializable attribute so that I don't have to exclude the class from obfuscation in the SA project any more. The DoNotPrune attribute means I do not need to exclude the class from pruning.[Serializable, SmartAssembly.Attributes.DoNotPrune]        public class RedFlagResults        {                public List<RedFlag.Exception> Exceptions {get;set;}        }Similarly, the Exception class gets the Serializable and DoNotPrune attributes applied so all of its' properties are excluded from obfuscation.Now my project has some protection from prying eyes by scrambling up the code so it's harder to reverse-engineer, without breaking anything. SmartAssembly has also provided the benefit of merging so that the end-user doesn't need to extract all of the DLL files needed by RedFlag into a directory, and can be run directly from the .zip archive. When an error occurs (hey, I'm only human!), an exception report can be sent to me so I can see what went wrong without having to, er, debug the debugger.

    Read the article

  • SQL SERVER – Integrate Your Data with Skyvia – Cloud ETL Solution

    - by Pinal Dave
    In our days data integration often becomes a key aspect of business success. For business analysts it’s very important to get integrated data from various sources, such as relational databases, cloud CRMs, etc. to make correct and successful decisions. There are various data integration solutions on market, and today I will tell about one of them – Skyvia. Skyvia is a cloud data integration service, which allows integrating data in cloud CRMs and different relational databases. It is a completely online solution and does not require anything except for a browser. Skyvia provides powerful etl tools for data import, export, replication, and synchronization for SQL Server and other databases and cloud CRMs. You can use Skyvia data import tools to load data from various sources to SQL Server (and SQL Azure). Skyvia supports such cloud CRMs as Salesforce and Microsoft Dynamics CRM and such databases as MySQL and PostgreSQL. You even can migrate data from SQL Server to SQL Server, or from SQL Server to other databases and cloud CRMs. Additionally Skyvia supports import of CSV files, either uploaded manually or stored on cloud file storage services, such as Dropbox, Box, Google Drive, or FTP servers. When data import is not enough, Skyvia offers bidirectional data synchronization. With this tool, you can synchronize SQL Server data with other databases and cloud CRMs. After performing the first synchronization, Skyvia tracks data changes in the synchronized data storages. In SQL Server databases (and other relational databases) it creates additional tracking tables and triggers. This allows synchronizing only the changed data. Skyvia also maps records by their primary key values to each other, so it does not require different sources to have the same primary key structure. It still can match the corresponding records without having to add any additional columns or changing data structure. The only requirement for synchronization is that primary keys must be autogenerated. With Skyvia it’s not necessary for data to have the same structure in integrated data storages. Skyvia supports powerful mapping mechanisms that allow synchronizing data with completely different structure. It provides support for complex mathematical and string expressions when mapping data, using lookups, etc. You may use data splitting – loading data from a single CSV file or source table to multiple related target tables. Or you may load data from several source CSV files or tables to several related target tables. In each case Skyvia preserves data relations. It builds corresponding relations between the target data automatically. When you often work with cloud CRM data, native CRM data reporting and analysis tools may be not enough for you. And there is a vast set of professional data analysis and reporting tools available for SQL Server. With Skyvia you can quickly copy your cloud CRM data to an SQL Server database and apply corresponding SQL Server tools to the data. In such case you can use Skyvia data replication tools. It allows you to quickly copy cloud CRM data to SQL Server or other databases without customizing any mapping. You need just to specify columns to copy data from. Target database tables will be created automatically. Skyvia offers powerful filtering settings to replicate only the records you need. Skyvia also provides capability to export data from SQL Server (including SQL Azure) and other databases and cloud CRMs to CSV files. These files can be either downloadable manually or loaded to cloud file storages or FTP server. You can use export, for example, to backup SQL Azure data to Dropbox. Any data integration operation can be scheduled for automatic execution. Thus, you can automate your SQL Azure data backup or data synchronization – just configure it once, then schedule it, and benefit from automatic data integration with Skyvia. Currently registration and using Skyvia is completely free, so you can try it yourself and find out whether its data migration and integration tools suits for you. Visit this link to register on Skyvia: https://app.skyvia.com/register Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Cloud Computing

    Read the article

  • Oracle’s New Approach to Cloud-based Applications User Experiences

    - by Oracle OpenWorld Blog Team
    By Misha Vaughan It was an exciting Oracle OpenWorld this year for customers and partners, as they got to see what their input into the Oracle user experience research and development process has produced for cloud-delivered applications. The result of all this engagement and listening is a focus on simplicity, mobility, and extensibility. These were the core themes across Oracle OpenWorld sessions, executive roundtables, and analyst briefings given by Jeremy Ashley, Oracle's vice president of user experience. The highlight of every meeting with a customer featured the new simplified UI for Oracle’s cloud applications.    Attendees at some sessions and events also saw a vision of what is coming next in the Oracle user experience, and they gave direct feedback on whether this would help solve their business problems.  What did attendees think of what they saw this year? Rebecca Wettemann of Nucleus Research was part of  an analyst briefing on next-generation user experiences from Oracle. Here’s what she told CRM Buyer in an interview just after the event:  “Many of the improvements are incremental, which is not surprising, as Oracle regularly updates its application,” Rebecca Wettemann, vice president of Nucleus Research, told CRM Buyer. "Still, there are distinct themes to this latest set of changes. One is usability. Oracle Sales Cloud, for example, is designed to have zero training for onboarding sales reps, which it does," she explained. "It is quite impressive, actually—the intuitive nature of the application and the design work they have done with this goal in mind. The software uses as few buttons and fields as possible," she pointed out. "The sales rep doesn't have to ask, 'what is the next step?' because she can see what it is."  What else did we hear? Oracle OpenWorld is a time when we can take a broader pulse of our customers’ and partners’ concerns. This year we heard some common user experience themes on the following: · A desire to continue to simplify widely used self-service tasks · A need to understand how customers or partners could take some of the UX lessons learned on simplicity and mobility into their own custom areas and projects  · The continuing challenge of needing to support bring-your-own-device and corporate-provided mobile devices to end users · A desire to harmonize user experiences across platforms for specific business-use cases  What does this mean for next year? Well, there were a lot of things we could only show to smaller groups of customers in our Oracle OpenWorld usability labs and HQ lab tours, to partners at our Expo, and to analysts under non-disclosure agreements. But we used these events as a way to get some early feedback about where we are focusing for the year ahead. Attendees gave us a positive response: @bkhan Saw some excellent UX innovations at the expo “@usableapps: Great job @mishavaughan and @vinoskey on #oow13 UX partner expo!” @WarnerTim @usableapps @mishavaughan @vinoskey @ultan Thanks for an interesting afternoon definitely liked the UX tool kits for partners. You can expect Oracle to continue pushing themes of simplicity, mobility, and extensibility even more aggressively in the next year.  If you are interested to find out what really goes on in the UX labs, such as what we are doing with smartphones, tablets, heads-up displays, and the AppsLab robots, feel free to reach out to me for more information: Misha Vaughan or on Twitter: @mishavaughan.

    Read the article

  • Migrating SQL Server Compact Edition (SQL CE) database to SQL Server using Web Matrix

    - by Harish Ranganathan
    One of the things that is keeping us busy is the Web Camps we are delivering across 5 cities.  If you are a reader of this blog, and also attended one of these web camps, there is a good chance that you have seen me since I was there in all the places, so far.  The topics that we cover include Visual Studio 2010 SP1, SQL CE, ASP.NET MVC & HTML5.  Whenever I talk about SQL CE, the immediate response is that, people are wow that Microsoft has shipped a FREE compact edition database, which is an embedded database that can be x-copy deployed.  If you think, well didn’t Microsoft ship SQL Express which is FREE?  The difference is that, SQL Express runs as a service in the machine (if you open SQL Configuration Manager, you can notice that SQL Express is running as a service along with your SQL Server Engine (if you have installed ).  This makes it that, even if you are willing to use SQL Express when you deploy your application, it needs to be installed on the production machine (hosting provider) and it needs to run as a service.  Many hosters don’t allow such services to run on their space. SQL CE comes as a x-Copy deploy-able database with just a few DLLs required to run it on the machine and they don’t even need to be installed in GAC on the production machine.  In fact, if you have Visual Studio 2010 SP1 installed, you can use the “Add Deployable Dependencies” option in Project-Properties and it would detect that SQL CE is something you would probably want to add as a deploy-able dependency for your project.  With that, it bundles the required DLLs as a part of the “_bin_deployableAssemblies” folder.  So your project can be x-Copy deployed and just works fine. However, SQL CE has the limit of 4GB storage space.  Real world applications often require more than just 4GB of data storage and it often turns out that people would like to use SQL CE for development/ramp up stages but would like to migrate to full fledged SQL Server after a while.  So, its only natural that the question arises “How do I move my SQL CE database to SQL Server”  And honestly, it doesn’t come across as a straight forward support.  I was talking to Ambrish Mishra (PM in SQL CE Team, Hyderabad) since I got this question in almost all the places where we talked about SQL CE.   He was kind enough to demonstrate how this can be accomplished using Web Matrix.  Open Web Matrix (Web Matrix can be installed for free from www.microsoft.com/web) and click on “Site from Template” Click on the “Bakery” template (since by default it uses a SQL CE database and has all the required sample data) and click “Ok”. In the project, you can navigate to the Database tab and will be able to find that the Bakery site uses a SQL CE database “bakery.sdf” Select the “bakery.sdf” and you will be able to see the “Migrate” button on the top right Once you click on the “Migrate” button, you will notice that the popup wizard opens up and by default is configured for SQL Express.  You can edit the same to point to your local SQL Server instance, or a remote server. Upon filling in the Server Name, Username and Password, when you click “Ok”, couple of things happen.  1. The database is migrated to SQL Server (local or remote – subject to permissions on remote server).   You can open up SQL Server Management Studio and connect to the server to verify that the “bakery” database exists under “Databases” node. 2. You can also notice that in Web Matrix, when you navigate to the “Files” tab and open up the web.config file, connection string now points to the SQL Server instance (yes, the Migrate button was smart enough to make this change too ) And there it is, your SQL Server Compact Edition database, now migrated to SQL Server!! In a future post, I would explain the steps involved when using Visual Studio. Cheers !!!

    Read the article

  • PHP Web Services - Nice try

    Thanks to the membership in the O'Reilly User Group Programme the Mauritius Software Craftsmanship Community (short: MSCC) recently received a welcome package with several book titles. Among them is the latest publication of Lorna Jane Mitchell - 'PHP Web Services: APIs for the Modern Web'. Following is the book review I put on Amazon: Nice try! Initially, I was astonished that a small book like 'PHP Web Services' would be able to cover all the interesting topics about APIs and Web Services, independently whether they are written in PHP or not. And unfortunately, the title isn't able to stand up to the readers (or at least my) expectations. Maybe as a light defense, there is no usual paragraph about the intended audience of that book, but still I have to admit that the first half (chapters 1 to 8) are well written and Lorna has her points on the various technologies. Also, the code samples in PHP are clean and easy to understand. With chapter 'Debugging Web Services' the book started to change my mind about the clarity of advice and the instructions on designing and developing good APIs. Eventually, this might be related to the fact that I'm used to other tools since years, like Telerik Fiddler as HTTP proxy in order to trace and inspect any kind of request/response handling. Including localhost monitoring, SSL certification acceptance, and the ability to debug mobile devices, especially iOS-based ones. Compared to Charles, Fiddler is available for free. What really got me off the hook is the following statement in chapter 10 about Service Type Decisions: "For users who have larger systems using technology stacks such as Java, C++, or .NET, it may be easier for them to integrate with a SOAP service." WHAT? A couple of pages earlier the author recommends to stay away from 'old-fashioned' API styles like SOAP (if possible). And on top of that I wonder why there are tons of documentation towards development of RESTful Web Services based on WebAPI. The ASP.NET stack clearly moves away from SOAP to JSON and REST since years! Honestly, as a software developer on the .NET stack this leaves a mixed feeling after all. As for the remaining chapters I simply consider them as 'blah blah' without any real value and lots of theoretical advice. Related to the chapter 13 about 'Documentation', I just had the 'pleasure' to write a C#-based client against a Java-based SOAP Web Service. Personally, I take the WSDL as the master reference in the first place and Visual Studio generates all the stub types involved in the communication. During the implementation and testing I came across a 'java.lang.NullPointerException' in various methods and for various method parameters. The WSDL and the generated types were declared as Nullable, so nothing to worry about, or? Well, I logged in a support ticket, and guess what was the response to that scenario? "The service definition in the WSDL is wrong, please refer to the documentation in order to use the methods and parameters correctly" - No comment! Lorna's title is a quick read and in some areas she has good advice on designing and implementing Web Services and APIs. But roughly 100 pages aren't enough to cover a vast topic like that. After all, nice try and I'm looking forward to an improved second edition. Honestly, I never thought that I would come across a poor review. In general, it's a good book but it clearly has a lack of depth, the PHP code samples are incomplete (closing tags missing), and there are too many assumptions and theoretical statements.

    Read the article

  • Oracle Text query parser

    - by Roger Ford
    Oracle Text provides a rich query syntax which enables powerful text searches.However, this syntax isn't intended for use by inexperienced end-users.  If you provide a simple search box in your application, you probably want users to be able to type "Google-like" searches into the box, and have your application convert that into something that Oracle Text understands.For example if your user types "windows nt networking" then you probably want to convert this into something like"windows ACCUM nt ACCUM networking".  But beware - "NT" is a reserved word, and needs to be escaped.  So let's escape all words:"{windows} ACCUM {nt} ACCUM {networking}".  That's fine - until you start introducing wild cards. Then you must escape only non-wildcarded searches:"win% ACCUM {nt} ACCUM {networking}".  There are quite a few other "gotchas" that you might encounter along the way.Then there's the issue of scoring.  Given a query for "oracle text query syntax", it would be nice if we could score a full phrase match higher than a hit where all four words are present but not in a phrase.  And then perhaps lower than that would be a document where three of the four terms are present.  Progressive relaxation helps you with this, but you need to code the "progression" yourself in most cases.To help with this, I've developed a query parser which will take queries in Google-like syntax, and convert them into Oracle Text queries. It's designed to be as flexible as possible, and will generate either simple queries or progressive relaxation queries. The input string will typically just be a string of words, such as "oracle text query syntax" but the grammar does allow for more complex expressions:  word : score will be improved if word exists  +word : word must exist  -word : word CANNOT exist  "phrase words" : words treated as phrase (may be preceded by + or -)  field:(expression) : find expression (which allows +,- and phrase as above) within "field". So for example if I searched for   +"oracle text" query +syntax -ctxcatThen the results would have to contain the phrase "oracle text" and the word syntax. Any documents mentioning ctxcat would be excluded from the results. All the instructions are in the top of the file (see "Downloads" at the bottom of this blog entry).  Please download the file, read the instructions, then try it out by running "parser.pls" in either SQL*Plus or SQL Developer.I am also uploading a test file "test.sql". You can run this and/or modify it to run your own tests or run against your own text index. test.sql is designed to be run from SQL*Plus and may not produce useful output in SQL Developer (or it may, I haven't tried it).I'm putting the code up here for testing and comments. I don't consider it "production ready" at this point, but would welcome feedback.  I'm particularly interested in comments such as "The instructions are unclear - I couldn't figure out how to do XXX" "It didn't work in my environment" (please provide as many details as possible) "We can't use it in our application" (why not?) "It needs to support XXX feature" "It produced an invalid query output when I fed in XXXX" Downloads: parser.pls test.sql

    Read the article

  • MySQL for Excel 1.3.0 Beta has been released

    - by Javier Treviño
    The MySQL Windows Experience Team is proud to announce the release of MySQL for Excel version 1.3.0.  This is a beta release for 1.3.x. MySQL for Excel is an application plug-in enabling data analysts to very easily access and manipulate MySQL data within Microsoft Excel. It enables you to directly work with a MySQL database from within Microsoft Excel so you can easily do tasks such as: Importing MySQL data into Excel Exporting Excel data directly into MySQL to a new or existing table Editing MySQL data directly within Excel As this is a beta version the MySQL for Excel product can be downloaded only by using the product standalone installer at this link http://dev.mysql.com/downloads/windows/excel/ Your feedback on this beta version is very well appreciated, you can raise bugs on the MySQL bugs page or give us your comments on the MySQL for Excel forum. Changes in MySQL for Excel 1.3.0 (2014-06-06, Beta) This section documents all changes and bug fixes applied to MySQL for Excel since the release of 1.2.1. Several new features were added, for more information see What Is New In MySQL for Excel (http://dev.mysql.com/doc/refman/5.6/en/mysql-for-excel-what-is-new.html). Known limitations: Upgrading from versions MySQL for Excel 1.2.0 and lower is not possible due to a bug fixed in MySQL for Excel 1.2.1. In that scenario, the old version (MySQL for Excel 1.2.0 or lower) must be uninstalled first. Upgrading from version 1.2.1 works correctly. <CTRL> + <A> cannot be used to select all database objects. Either <SHIFT> + <Arrow Key> or <CTRL> + click must be used instead. PivotTables are normally placed to the right (skipping one column) of the imported data, they will not be created if there is another existing Excel object at that position. Functionality Added or Changed Imported data can now be refreshed by using the native Refresh feature. Fields in the imported data sheet are then updated against the live MySQL database using the saved connection ID. Functionality was added to import data directly into PivotTables, which can be created from any Import operation. Multiple objects (tables and views) can now be imported into Excel, when before only one object could be selected. Relational information is also utilized when importing multiple objects. All options now have descriptive tooltips. Hovering over an option/preference displays helpful information about its use. A new Export Data, Advanced Options option was added that shows all available data types in the Data Type combo box, instead of only showing a subset of the most popular data types. The option dialogs now include a Refresh to Defaults button that resets the dialog's options to their defaults values. Each option dialog is set individually. A new Add Summary Fields for Numeric Columns option was added to the Import Data dialog that automatically adds summary fields for numeric data after the last row of the imported data. The specific summary function is selectable from many options, such as "Total" and "Average." A new collation option was added for the schema and table creation wizards. The default schema collation is "Server Default", and the default table collation is "Schema Default". Collation options may be selected from a drop-down list of all available collations. Quick links: MySQL for Excel documentation: http://dev.mysql.com/doc/en/mysql-for-excel.html. MySQL on Windows blog: http://blogs.oracle.com/MySQLOnWindows. MySQL for Excel forum: http://forums.mysql.com/list.php?172. MySQL YouTube channel: http://www.youtube.com/user/MySQLChannel. Enjoy and thanks for the support! 

    Read the article

  • Determining Maximum Txpower a WiFi Card Supports?

    - by BigGenius
    I have a Atheros R9285 wifi card. How can i determine , what is max. Txpower it can support? biggenius@hackbook:~$ iwconfig lo no wireless extensions. wlan0 IEEE 802.11abgn ESSID:"Default" Mode:Managed Frequency:2.437 GHz Access Point: 00:08:5C:9D:4F:40 Bit Rate=2 Mb/s Tx-Power=35 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:on Link Quality=24/70 Signal level=-86 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:140 Invalid misc:247 Missed beacon:0 eth0 no wireless extensions. biggenius@hackbook:~$ iw phy0 info Wiphy phy0 Band 1: Capabilities: 0x11ce HT20/HT40 SM Power Save disabled RX HT40 SGI TX STBC RX STBC 1-stream Max AMSDU length: 3839 bytes DSSS/CCK HT40 Maximum RX AMPDU length 65535 bytes (exponent: 0x003) Minimum RX AMPDU time spacing: 8 usec (0x06) HT TX/RX MCS rate indexes supported: 0-7 Frequencies: * 2412 MHz [1] (35.0 dBm) * 2417 MHz [2] (35.0 dBm) * 2422 MHz [3] (35.0 dBm) * 2427 MHz [4] (35.0 dBm) * 2432 MHz [5] (35.0 dBm) * 2437 MHz [6] (35.0 dBm) * 2442 MHz [7] (35.0 dBm) * 2447 MHz [8] (35.0 dBm) * 2452 MHz [9] (35.0 dBm) * 2457 MHz [10] (35.0 dBm) * 2462 MHz [11] (35.0 dBm) * 2467 MHz [12] (35.0 dBm) * 2472 MHz [13] (35.0 dBm) * 2484 MHz [14] (35.0 dBm) Bitrates (non-HT): * 1.0 Mbps * 2.0 Mbps (short preamble supported) * 5.5 Mbps (short preamble supported) * 11.0 Mbps (short preamble supported) * 6.0 Mbps * 9.0 Mbps * 12.0 Mbps * 18.0 Mbps * 24.0 Mbps * 36.0 Mbps * 48.0 Mbps * 54.0 Mbps Band 2: Capabilities: 0x11ce HT20/HT40 SM Power Save disabled RX HT40 SGI TX STBC RX STBC 1-stream Max AMSDU length: 3839 bytes DSSS/CCK HT40 Maximum RX AMPDU length 65535 bytes (exponent: 0x003) Minimum RX AMPDU time spacing: 8 usec (0x06) HT TX/RX MCS rate indexes supported: 0-7 Frequencies: * 5180 MHz [36] (35.0 dBm) * 5200 MHz [40] (35.0 dBm) * 5220 MHz [44] (35.0 dBm) * 5240 MHz [48] (35.0 dBm) * 5260 MHz [52] (35.0 dBm) (passive scanning, no IBSS, radar detection) * 5280 MHz [56] (35.0 dBm) (passive scanning, no IBSS, radar detection) * 5300 MHz [60] (35.0 dBm) (passive scanning, no IBSS, radar detection) * 5320 MHz [64] (35.0 dBm) (passive scanning, no IBSS, radar detection) * 5500 MHz [100] (35.0 dBm) (passive scanning, no IBSS, radar detection) * 5520 MHz [104] (35.0 dBm) (passive scanning, no IBSS, radar detection) * 5540 MHz [108] (35.0 dBm) (passive scanning, no IBSS, radar detection) * 5560 MHz [112] (35.0 dBm) (passive scanning, no IBSS, radar detection) * 5580 MHz [116] (35.0 dBm) (passive scanning, no IBSS, radar detection) * 5600 MHz [120] (35.0 dBm) (passive scanning, no IBSS, radar detection) * 5620 MHz [124] (35.0 dBm) (passive scanning, no IBSS, radar detection) * 5640 MHz [128] (35.0 dBm) (passive scanning, no IBSS, radar detection) * 5660 MHz [132] (35.0 dBm) (passive scanning, no IBSS, radar detection) * 5680 MHz [136] (35.0 dBm) (passive scanning, no IBSS, radar detection) * 5700 MHz [140] (35.0 dBm) (passive scanning, no IBSS, radar detection) * 5745 MHz [149] (35.0 dBm) * 5765 MHz [153] (35.0 dBm) * 5785 MHz [157] (35.0 dBm) * 5805 MHz [161] (35.0 dBm) * 5825 MHz [165] (35.0 dBm) Bitrates (non-HT): * 6.0 Mbps * 9.0 Mbps * 12.0 Mbps * 18.0 Mbps * 24.0 Mbps * 36.0 Mbps * 48.0 Mbps * 54.0 Mbps max # scan SSIDs: 4 max scan IEs length: 2257 bytes Coverage class: 0 (up to 0m) Supported Ciphers: * WEP40 (00-0f-ac:1) * WEP104 (00-0f-ac:5) * TKIP (00-0f-ac:2) * CCMP (00-0f-ac:4) * CMAC (00-0f-ac:6) Available Antennas: TX 0x1 RX 0x3 Configured Antennas: TX 0x1 RX 0x3 Supported interface modes: * IBSS * managed * AP * AP/VLAN * WDS * monitor * mesh point * P2P-client * P2P-GO software interface modes (can always be added): * AP/VLAN * monitor valid interface combinations: * #{ managed, WDS, P2P-client } <= 2048, #{ AP, mesh point, P2P-GO } <= 8, total <= 2048, #channels <= 1 Supported commands: * new_interface * set_interface * new_key * new_beacon * new_station * new_mpath * set_mesh_params * set_bss * authenticate * associate * deauthenticate * disassociate * join_ibss * join_mesh * remain_on_channel * set_tx_bitrate_mask * action * frame_wait_cancel * set_wiphy_netns * set_channel * set_wds_peer * Unknown command (82) * Unknown command (81) * Unknown command (84) * Unknown command (87) * Unknown command (85) * testmode * connect * disconnect Supported TX frame types: * IBSS: 0x0000 0x0010 0x0020 0x0030 0x0040 0x0050 0x0060 0x0070 0x0080 0x0090 0x00a0 0x00b0 0x00c0 0x00d0 0x00e0 0x00f0 * managed: 0x0000 0x0010 0x0020 0x0030 0x0040 0x0050 0x0060 0x0070 0x0080 0x0090 0x00a0 0x00b0 0x00c0 0x00d0 0x00e0 0x00f0 * AP: 0x0000 0x0010 0x0020 0x0030 0x0040 0x0050 0x0060 0x0070 0x0080 0x0090 0x00a0 0x00b0 0x00c0 0x00d0 0x00e0 0x00f0 * AP/VLAN: 0x0000 0x0010 0x0020 0x0030 0x0040 0x0050 0x0060 0x0070 0x0080 0x0090 0x00a0 0x00b0 0x00c0 0x00d0 0x00e0 0x00f0 * mesh point: 0x0000 0x0010 0x0020 0x0030 0x0040 0x0050 0x0060 0x0070 0x0080 0x0090 0x00a0 0x00b0 0x00c0 0x00d0 0x00e0 0x00f0 * P2P-client: 0x0000 0x0010 0x0020 0x0030 0x0040 0x0050 0x0060 0x0070 0x0080 0x0090 0x00a0 0x00b0 0x00c0 0x00d0 0x00e0 0x00f0 * P2P-GO: 0x0000 0x0010 0x0020 0x0030 0x0040 0x0050 0x0060 0x0070 0x0080 0x0090 0x00a0 0x00b0 0x00c0 0x00d0 0x00e0 0x00f0 Supported RX frame types: * IBSS: 0x00d0 * managed: 0x0040 0x00d0 * AP: 0x0000 0x0020 0x0040 0x00a0 0x00b0 0x00c0 0x00d0 * AP/VLAN: 0x0000 0x0020 0x0040 0x00a0 0x00b0 0x00c0 0x00d0 * mesh point: 0x00b0 0x00c0 0x00d0 * P2P-client: 0x0040 0x00d0 * P2P-GO: 0x0000 0x0020 0x0040 0x00a0 0x00b0 0x00c0 0x00d0 Device supports RSN-IBSS.

    Read the article

  • Make Text and Images Easier to Read with the Windows 7 Magnifier

    - by DigitalGeekery
    Do you have impaired vision or find it difficult to read small print on your computer screen? Today, we’ll take a closer look at how to magnify that hard to read content with the Magnifier in Windows 7. Magnifier was available in previous versions of Windows, but the Windows 7 version comes with some notable improvements. There are now three screen modes in Magnifier. Full Screen and Lens mode, however, require Windows Aero to be enabled. If your computer doesn’t support Aero, or if you’re not using am Aero theme, Magnifier will only work in Docked mode. Using Magnifier in Windows 7 You can find the Magnifier by going to Start > All Programs > Accessories > Ease of Access > Magnifier.   Alternately, you can type magnifier into the Search box in the Start Menu and hit Enter. On the Magnifier toolbar, choose your View mode by clicking Views and choosing from the available options. Clicking the plus (+) and minus (-) buttons will zoom in or zoom out. You can change the zoom in/out percentage by adjusting the slider bar. You can also enable color inversion and select tracking options. Click OK when finished to save your settings.   After a brief period, the Magnifier Toolbar will switch to a magnifying glass icon. Simply click the magnifying glass to display the Magnifier Toolbar again.   Docked Mode In Docked mode, a portion of the screen is magnified and docked at the top of the screen. The rest of your desktop will remain in it’s normal state. You can then control which area of the screen is magnified by moving your mouse.   Full Screen Mode This magnifies your entire screen and follows your mouse as you move it around. If you loose track of where you are on the screen, use the Ctrl + Alt + Spacebar shortcut to preview where your mouse pointer is on the screen.   Lens Mode The Lens screen mode is similar to holding a magnifying glass up to your screen. Full screen mode magnifies the area around the mouse. The magnified area moves around the screen with your mouse.    Shortcut Keys Windows key + (+) to zoom in Windows key + (-) to zoom out Windows key + ESC to exit Ctrl + Alt + F – Full screen mode Ctrl + Alt + L – Lens mode Ctrl + Alt + D – Dock mode Ctrl + Alt + R – Resize the lens Ctrl + Alt + Spacebar – Preview full screen Conclusion Windows Magnifier is a nice little tool if you have impaired vision or just need to make items on the screen easier to read. Similar Articles Productive Geek Tips New Features in WordPad and Paint in Windows 7How-To Geek on Lifehacker: How to Make Windows Vista Less AnnoyingUsing Comments in Word 2007 DocumentsMake Your PC Look Like Windows Phone 7Use Image Placeholders to Display Documents Faster in Word TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips HippoRemote Pro 2.2 Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Windows Media Player Plus! – Cool WMP Enhancer Get Your Team’s World Cup Schedule In Google Calendar Backup Drivers With Driver Magician TubeSort: YouTube Playlist Organizer XPS file format & XPS Viewer Explained Microsoft Office Web Apps Guide

    Read the article

  • Danke für die gute Zusammenarbeit im FY12

    - by A&C Redaktion
    Liebe Oracle Partner, und schon wieder ist ein Geschäftsjahr zu Ende gegangen. Als erstes möchte ich Ihnen, unseren Partnern, sagen: Sie leisten seit Jahren einen fundamentalen Beitrag zum Erfolg von Oracle – auch im Fiskaljahr 2012. Herzlichen Dank dafür! Wenn wir auf das letzte Jahr zurückblicken, gab es unter dem Motto „Oracle on Oracle“ herausragende Produktvorstellungen, Events und Partner Programme. Zu den wichtigsten technischen Innovationen gehörte sicherlich die Oracle Database Appliance speziell für kleinere Unternehmen. Auch die Daten-Explosion, zu der wir jeden Tag beitragen, stellt für alle Unternehmen eine Herausforderung dar. Um diese „Big Data“ effizient zu verwalten, haben wir die Exa-Familie erweitert. So stehen neben der Exadata Database Machine nun auch Exalogic und Exalytics – mit zuverlässiger Hardware, ausgereifter Software und Support aus einer Hand – je nach Bedarf zur Verfügung. Da ist für jeden Kunden was dabei. Die Oracle Optimized Solutions unserer VADs waren ein weiteres wichtiges Thema, speziell für den Mittelstand, über das wir auch hier im Blog berichtet haben. Für ISVs wurden die Exastack Ready und Exastack Optimized Programme entwickelt. Speziell für Partner wurden Partner Sales Books zu den Fokus-Themen, wie beispielsweise Cloud Computing, erstellt. Im OPN stehen Ihnen mehr als 30 deutschsprachige Marketing-Kits zur Verfügung, um Sie bei der täglichen Vertriebsarbeit zu unterstützen. Und mit dem überarbeiteten und erweiterten Solutions Catalog im OPN können Sie von Endkunden ganz einfach nach Ihrem Lösungsangebot gefunden werden. Dies sind nur einige Beispiele, wie wir versuchen, Sie bei Ihrem Geschäft zu unterstützen. Ich hoffe, wir schaffen das auch weiterhin so gut wie bisher. Was das neue Fiskaljahr bringt, erfahren Sie beim EMEA Partner Kickoff am 29. Juni Normal 0 21 false false false DE X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} und demnächst hier im Blog. Aber soviel sei schon verraten: Meine Glückszahl ist die 13 – und Ihre? Herzlichst, Ihre Silvia Kaske Senior Direktor Alliances & Channel Tech Europe North Oracle Deutschland B.V. & Co. KG

    Read the article

  • Danke für die gute Zusammenarbeit im FY12

    - by A&C Redaktion
    Liebe Oracle Partner, und schon wieder ist ein Geschäftsjahr zu Ende gegangen. Als erstes möchte ich Ihnen, unseren Partnern, sagen: Sie leisten seit Jahren einen fundamentalen Beitrag zum Erfolg von Oracle – auch im Fiskaljahr 2012. Herzlichen Dank dafür! Wenn wir auf das letzte Jahr zurückblicken, gab es unter dem Motto „Oracle on Oracle“ herausragende Produktvorstellungen, Events und Partner Programme. Zu den wichtigsten technischen Innovationen gehörte sicherlich die Oracle Database Appliance speziell für kleinere Unternehmen. Auch die Daten-Explosion, zu der wir jeden Tag beitragen, stellt für alle Unternehmen eine Herausforderung dar. Um diese „Big Data“ effizient zu verwalten, haben wir die Exa-Familie erweitert. So stehen neben der Exadata Database Machine nun auch Exalogic und Exalytics – mit zuverlässiger Hardware, ausgereifter Software und Support aus einer Hand – je nach Bedarf zur Verfügung. Da ist für jeden Kunden was dabei. Die Oracle Optimized Solutions unserer VADs waren ein weiteres wichtiges Thema, speziell für den Mittelstand, über das wir auch hier im Blog berichtet haben. Für ISVs wurden die Exastack Ready und Exastack Optimized Programme entwickelt. Speziell für Partner wurden Partner Sales Books zu den Fokus-Themen, wie beispielsweise Cloud Computing, erstellt. Im OPN stehen Ihnen mehr als 30 deutschsprachige Marketing-Kits zur Verfügung, um Sie bei der täglichen Vertriebsarbeit zu unterstützen. Und mit dem überarbeiteten und erweiterten Solutions Catalog im OPN können Sie von Endkunden ganz einfach nach Ihrem Lösungsangebot gefunden werden. Dies sind nur einige Beispiele, wie wir versuchen, Sie bei Ihrem Geschäft zu unterstützen. Ich hoffe, wir schaffen das auch weiterhin so gut wie bisher. Was das neue Fiskaljahr bringt, erfahren Sie beim EMEA Partner Kickoff am 29. Juni Normal 0 21 false false false DE X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} und demnächst hier im Blog. Aber soviel sei schon verraten: Meine Glückszahl ist die 13 – und Ihre? Herzlichst, Ihre Silvia Kaske Senior Direktor Alliances & Channel Tech Europe North Oracle Deutschland B.V. & Co. KG

    Read the article

  • Analysis Services (SSAS) - Unexpected Internal Error when processing (ProcessUpdate). Workaround/Resolution

    - by James Rogers
    Many implementations require the use of ProcessUpdate to support Type 1 slowly changing dimensions. ProcessUpdate drops all of the affected indexes and aggregations in partitions affected by data that changes in the Dimension on which the ProcessUpdate is being performed. Twice now I have had situations where the processing fails with "Internal error: An unexpected exception occurred." Any subsequent ProcessUpdate processing will also fail with the same error. In talking with Microsoft the issue is corrupt indexes for the Dimension(s) being processed in the partitions of the affected measure group. I cannot guarantee that the following will correct your problem but it did in my case and saved us quite a bit of down time.   Workaround: ProcessIndexes on the entire cube that is being processed and throwing the error. This corrected the problem on both 2008 and 2008 R2.   Pros:  Does not require a complete rebuild of the data (ProcessFull) for either the Dimension or Cube. User access can continue while this ProcessIndexes in underway.   Cons: Can take a long time, especially on large cubes with many partitions, dimensions and/or aggregations. Query Performance is usually severely impacted due to the memory and CPU requirements for Aggregation and Index building   <Batch http://schemas.microsoft.com/analysisservices/2003/engine"http://schemas.microsoft.com/analysisservices/2003/engine">  <Parallel>     <Process xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ddl2="http://schemas.microsoft.com/analysisservices/2003/engine/2" xmlns:ddl2_2="http://schemas.microsoft.com/analysisservices/2003/engine/2/2" xmlns:ddl100_100="http://schemas.microsoft.com/analysisservices/2008/engine/100/100" xmlns:ddl200="http://schemas.microsoft.com/analysisservices/2010/engine/200" xmlns:ddl200_200="http://schemas.microsoft.com/analysisservices/2010/engine/200/200">       <Object>         <DatabaseID>MyDatabase</DatabaseID>         <CubeID>MyCube</CubeID>       </Object>       <Type>ProcessIndexes</Type>       <WriteBackTableCreation>UseExisting</WriteBackTableCreation>     </Process>  </Parallel> </Batch>   The cube where the corruption exists can be found by having Profiler running while the ProcessUpdate is executing. The first partition that displays the "The Job has ended in failure." message in the TextData column will be part of the cube/measuregroup that has the corruption. You can try to run ProcessIndexes on just that measure group. This may correct the problem and save additional time if you have other large measure groups in the cube that are not affected by the corruption.   Remember to execute your normal ProcessUpdate batch after the successful completion of the ProcessIndexes. The ProcessIndexes does not pick up data changes.   Things that did not work: ProcessClearIndexes - why this doesn't work and ProcessIndexes does is unclear at this point. ProcessFull on the partition in question. In my latest case, this would clear up the problem for that partition. However, the next partition the ProcessUpdate touched that had data in it would generate and error. This leads me to believe the corruption problem will exist in all partitions in the affected measure group that have data in them.   NOTE: I experience this problem in both a SQL 2008 and SQL 2008 R2 Analysis Services environment, on separate built from the same relational database. This leads me to believe that some data condition in the tables used for the Dimension processing caused the corruption since the two environments were on physically separate hardware. I am waiting on Microsoft to analyze the dumps to give us more insight into what actually caused the corruption and will update this post accordingly.

    Read the article

  • SOA Community Newsletter June 2013

    - by JuergenKress
    Dear SOA partner community member Thanks for showing us your interest to rerun the Fusion Middleware Summer Camps! After knowing your suggestions we are happy to announce the 3rd edition of our advanced Fusion Middleware training. The camps will take place from August 26th - 30th 2013 in Lisbon Portugal. Topics will include Adaptive Case Management (ACM) as part of BPM Suite, b2b, Advanced SOA and SOA Governance. Please make sure you plan and book your seat in advance - (Booking is on the basis of first come first seat!). Thanks for all your efforts to become certified and Specialized. For all the experts who achieved the SOA Suite 11g Essentials or BPM Suite 11g Certified Implementation Specialist, you can download a logo for your blog or business card at the Competence Center. For all the companies who achieved a SOA or BPM specialization you can request a nice Plaques for your office. As part of our Industrial SOA article services we published “Canonizing a Language for Architecture” in the Service Technology Magazine and on Oracle Technology Network. If you write books or a blog - make sure you share it with us! Cloud Computing is the hottest topic in IT, specially as an architect you should be aware of the concepts and technology, therefore I highly recommend you Thomas Erl’s latest book named “Cloud Computing”. In the BPM space, Adaptive Case Management (ACM) is the hottest topic, with BPM PS6 the backend ACM functionality and an ACM sample application are available. You can even combine this hype with Customer Experience. The BPM section in this newsletter reflects the high importance of the topic and includes BPM PS6 video showing process lifecycle,BPM Resource Kit, Functional Testing, Introduction to Web Forms, Customized Workspace Application and Instance Patching Demo. B2B also become more and more popular in the Oracle SOA Suite. If you could not attend the training organized in the month May, we offer you an additional B2B training as a part of the Summer Camps or you can download the B2B training material from our SOA Community Workspace (SOA Community membership required). Thanks to all for sharing the valuable SOA content with our community! Special thanks to ec4u for the new reference of SOA Suite and AIA Foundation Pack at a Swiss insurance company. It is time to submit a SOA and BPM  reference request today! In this edition of the newsletter you will see Guido and Ronald's second part of OSB article series and Kathiravan Udayakumar's published an exclusive article on SOA Suite best practice. If you want to submit your content for the next edition of the Newsletter then please feel free to submit it to myself. The A-Team is an excellent contributor to the best practice - make sure you visit the new A-Team page and read their articles such as Getting to know Maven. Also on the SOA side, we have published many new articles from the community Oracle SOA Suite for the Busy IT Professional by Frank Munz, SOA Suite Knowledge - Polyglot Service Implementation with Groovy by Alexander Suchier, QA82 Analyzer - Automated Quality Assurance for Oracle SOA Suite Projects, Verifying the Target by Anthony Reynolds and a new book called Oracle SOA Governance 11g Implementation book by Luis Augusto Weir. Two new SOA on-demand training courses NEW - Oracle Business Rules Self-Study Course & Introduction Human Workflow online course are available now! Make use of the Summer Time and get trained - hope to see you in Lisbon for the Summer Camps! Jürgen Kress Oracle SOA & BPM Partner Adoption EMEA To read the newsletter please visit http://tinyurl.com/soanewsJune2013 (OPN Account required) To become a member of the SOA Partner Community please register at http://www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Technorati Tags: SOA Community newsletter,SOA Community,Oracle,OPN,Jürgen Kress,SOA,BPM

    Read the article

< Previous Page | 650 651 652 653 654 655 656 657 658 659 660 661  | Next Page >