Search Results

Search found 12 results on 1 pages for 'alb'.

Page 1/1 | 1 

  • An Introduction to ASP.NET Web API

    - by Rick Strahl
    Microsoft recently released ASP.NET MVC 4.0 and .NET 4.5 and along with it, the brand spanking new ASP.NET Web API. Web API is an exciting new addition to the ASP.NET stack that provides a new, well-designed HTTP framework for creating REST and AJAX APIs (API is Microsoft’s new jargon for a service, in case you’re wondering). Although Web API ships and installs with ASP.NET MVC 4, you can use Web API functionality in any ASP.NET project, including WebForms, WebPages and MVC or just a Web API by itself. And you can also self-host Web API in your own applications from Console, Desktop or Service applications. If you're interested in a high level overview on what ASP.NET Web API is and how it fits into the ASP.NET stack you can check out my previous post: Where does ASP.NET Web API fit? In the following article, I'll focus on a practical, by example introduction to ASP.NET Web API. All the code discussed in this article is available in GitHub: https://github.com/RickStrahl/AspNetWebApiArticle [republished from my Code Magazine Article and updated for RTM release of ASP.NET Web API] Getting Started To start I’ll create a new empty ASP.NET application to demonstrate that Web API can work with any kind of ASP.NET project. Although you can create a new project based on the ASP.NET MVC/Web API template to quickly get up and running, I’ll take you through the manual setup process, because one common use case is to add Web API functionality to an existing ASP.NET application. This process describes the steps needed to hook up Web API to any ASP.NET 4.0 application. Start by creating an ASP.NET Empty Project. Then create a new folder in the project called Controllers. Add a Web API Controller Class Once you have any kind of ASP.NET project open, you can add a Web API Controller class to it. Web API Controllers are very similar to MVC Controller classes, but they work in any kind of project. Add a new item to this folder by using the Add New Item option in Visual Studio and choose Web API Controller Class, as shown in Figure 1. Figure 1: This is how you create a new Controller Class in Visual Studio   Make sure that the name of the controller class includes Controller at the end of it, which is required in order for Web API routing to find it. Here, the name for the class is AlbumApiController. For this example, I’ll use a Music Album model to demonstrate basic behavior of Web API. The model consists of albums and related songs where an album has properties like Name, Artist and YearReleased and a list of songs with a SongName and SongLength as well as an AlbumId that links it to the album. You can find the code for the model (and the rest of these samples) on Github. To add the file manually, create a new folder called Model, and add a new class Album.cs and copy the code into it. There’s a static AlbumData class with a static CreateSampleAlbumData() method that creates a short list of albums on a static .Current that I’ll use for the examples. Before we look at what goes into the controller class though, let’s hook up routing so we can access this new controller. Hooking up Routing in Global.asax To start, I need to perform the one required configuration task in order for Web API to work: I need to configure routing to the controller. Like MVC, Web API uses routing to provide clean, extension-less URLs to controller methods. Using an extension method to ASP.NET’s static RouteTable class, you can use the MapHttpRoute() (in the System.Web.Http namespace) method to hook-up the routing during Application_Start in global.asax.cs shown in Listing 1.using System; using System.Web.Routing; using System.Web.Http; namespace AspNetWebApi { public class Global : System.Web.HttpApplication { protected void Application_Start(object sender, EventArgs e) { RouteTable.Routes.MapHttpRoute( name: "AlbumVerbs", routeTemplate: "albums/{title}", defaults: new { symbol = RouteParameter.Optional, controller="AlbumApi" } ); } } } This route configures Web API to direct URLs that start with an albums folder to the AlbumApiController class. Routing in ASP.NET is used to create extensionless URLs and allows you to map segments of the URL to specific Route Value parameters. A route parameter, with a name inside curly brackets like {name}, is mapped to parameters on the controller methods. Route parameters can be optional, and there are two special route parameters – controller and action – that determine the controller to call and the method to activate respectively. HTTP Verb Routing Routing in Web API can route requests by HTTP Verb in addition to standard {controller},{action} routing. For the first examples, I use HTTP Verb routing, as shown Listing 1. Notice that the route I’ve defined does not include an {action} route value or action value in the defaults. Rather, Web API can use the HTTP Verb in this route to determine the method to call the controller, and a GET request maps to any method that starts with Get. So methods called Get() or GetAlbums() are matched by a GET request and a POST request maps to a Post() or PostAlbum(). Web API matches a method by name and parameter signature to match a route, query string or POST values. In lieu of the method name, the [HttpGet,HttpPost,HttpPut,HttpDelete, etc] attributes can also be used to designate the accepted verbs explicitly if you don’t want to follow the verb naming conventions. Although HTTP Verb routing is a good practice for REST style resource APIs, it’s not required and you can still use more traditional routes with an explicit {action} route parameter. When {action} is supplied, the HTTP verb routing is ignored. I’ll talk more about alternate routes later. When you’re finished with initial creation of files, your project should look like Figure 2.   Figure 2: The initial project has the new API Controller Album model   Creating a small Album Model Now it’s time to create some controller methods to serve data. For these examples, I’ll use a very simple Album and Songs model to play with, as shown in Listing 2. public class Song { public string AlbumId { get; set; } [Required, StringLength(80)] public string SongName { get; set; } [StringLength(5)] public string SongLength { get; set; } } public class Album { public string Id { get; set; } [Required, StringLength(80)] public string AlbumName { get; set; } [StringLength(80)] public string Artist { get; set; } public int YearReleased { get; set; } public DateTime Entered { get; set; } [StringLength(150)] public string AlbumImageUrl { get; set; } [StringLength(200)] public string AmazonUrl { get; set; } public virtual List<Song> Songs { get; set; } public Album() { Songs = new List<Song>(); Entered = DateTime.Now; // Poor man's unique Id off GUID hash Id = Guid.NewGuid().GetHashCode().ToString("x"); } public void AddSong(string songName, string songLength = null) { this.Songs.Add(new Song() { AlbumId = this.Id, SongName = songName, SongLength = songLength }); } } Once the model has been created, I also added an AlbumData class that generates some static data in memory that is loaded onto a static .Current member. The signature of this class looks like this and that's what I'll access to retrieve the base data:public static class AlbumData { // sample data - static list public static List<Album> Current = CreateSampleAlbumData(); /// <summary> /// Create some sample data /// </summary> /// <returns></returns> public static List<Album> CreateSampleAlbumData() { … }} You can check out the full code for the data generation online. Creating an AlbumApiController Web API shares many concepts of ASP.NET MVC, and the implementation of your API logic is done by implementing a subclass of the System.Web.Http.ApiController class. Each public method in the implemented controller is a potential endpoint for the HTTP API, as long as a matching route can be found to invoke it. The class name you create should end in Controller, which is how Web API matches the controller route value to figure out which class to invoke. Inside the controller you can implement methods that take standard .NET input parameters and return .NET values as results. Web API’s binding tries to match POST data, route values, form values or query string values to your parameters. Because the controller is configured for HTTP Verb based routing (no {action} parameter in the route), any methods that start with Getxxxx() are called by an HTTP GET operation. You can have multiple methods that match each HTTP Verb as long as the parameter signatures are different and can be matched by Web API. In Listing 3, I create an AlbumApiController with two methods to retrieve a list of albums and a single album by its title .public class AlbumApiController : ApiController { public IEnumerable<Album> GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); return albums; } public Album GetAlbum(string title) { var album = AlbumData.Current .SingleOrDefault(alb => alb.AlbumName.Contains(title)); return album; }} To access the first two requests, you can use the following URLs in your browser: http://localhost/aspnetWebApi/albumshttp://localhost/aspnetWebApi/albums/Dirty%20Deeds Note that you’re not specifying the actions of GetAlbum or GetAlbums in these URLs. Instead Web API’s routing uses HTTP GET verb to route to these methods that start with Getxxx() with the first mapping to the parameterless GetAlbums() method and the latter to the GetAlbum(title) method that receives the title parameter mapped as optional in the route. Content Negotiation When you access any of the URLs above from a browser, you get either an XML or JSON result returned back. The album list result for Chrome 17 and Internet Explorer 9 is shown Figure 3. Figure 3: Web API responses can vary depending on the browser used, demonstrating Content Negotiation in action as these two browsers send different HTTP Accept headers.   Notice that the results are not the same: Chrome returns an XML response and IE9 returns a JSON response. Whoa, what’s going on here? Shouldn’t we see the same result in both browsers? Actually, no. Web API determines what type of content to return based on Accept headers. HTTP clients, like browsers, use Accept headers to specify what kind of content they’d like to see returned. Browsers generally ask for HTML first, followed by a few additional content types. Chrome (and most other major browsers) ask for: Accept: text/html, application/xhtml+xml,application/xml; q=0.9,*/*;q=0.8 IE9 asks for: Accept: text/html, application/xhtml+xml, */* Note that Chrome’s Accept header includes application/xml, which Web API finds in its list of supported media types and returns an XML response. IE9 does not include an Accept header type that works on Web API by default, and so it returns the default format, which is JSON. This is an important and very useful feature that was missing from any previous Microsoft REST tools: Web API automatically switches output formats based on HTTP Accept headers. Nowhere in the server code above do you have to explicitly specify the output format. Rather, Web API determines what format the client is requesting based on the Accept headers and automatically returns the result based on the available formatters. This means that a single method can handle both XML and JSON results.. Using this simple approach makes it very easy to create a single controller method that can return JSON, XML, ATOM or even OData feeds by providing the appropriate Accept header from the client. By default you don’t have to worry about the output format in your code. Note that you can still specify an explicit output format if you choose, either globally by overriding the installed formatters, or individually by returning a lower level HttpResponseMessage instance and setting the formatter explicitly. More on that in a minute. Along the same lines, any content sent to the server via POST/PUT is parsed by Web API based on the HTTP Content-type of the data sent. The same formats allowed for output are also allowed on input. Again, you don’t have to do anything in your code – Web API automatically performs the deserialization from the content. Accessing Web API JSON Data with jQuery A very common scenario for Web API endpoints is to retrieve data for AJAX calls from the Web browser. Because JSON is the default format for Web API, it’s easy to access data from the server using jQuery and its getJSON() method. This example receives the albums array from GetAlbums() and databinds it into the page using knockout.js.$.getJSON("albums/", function (albums) { // make knockout template visible $(".album").show(); // create view object and attach array var view = { albums: albums }; ko.applyBindings(view); }); Figure 4 shows this and the next example’s HTML output. You can check out the complete HTML and script code at http://goo.gl/Ix33C (.html) and http://goo.gl/tETlg (.js). Figu Figure 4: The Album Display sample uses JSON data loaded from Web API.   The result from the getJSON() call is a JavaScript object of the server result, which comes back as a JavaScript array. In the code, I use knockout.js to bind this array into the UI, which as you can see, requires very little code, instead using knockout’s data-bind attributes to bind server data to the UI. Of course, this is just one way to use the data – it’s entirely up to you to decide what to do with the data in your client code. Along the same lines, I can retrieve a single album to display when the user clicks on an album. The response returns the album information and a child array with all the songs. The code to do this is very similar to the last example where we pulled the albums array:$(".albumlink").live("click", function () { var id = $(this).data("id"); // title $.getJSON("albums/" + id, function (album) { ko.applyBindings(album, $("#divAlbumDialog")[0]); $("#divAlbumDialog").show(); }); }); Here the URL looks like this: /albums/Dirty%20Deeds, where the title is the ID captured from the clicked element’s data ID attribute. Explicitly Overriding Output Format When Web API automatically converts output using content negotiation, it does so by matching Accept header media types to the GlobalConfiguration.Configuration.Formatters and the SupportedMediaTypes of each individual formatter. You can add and remove formatters to globally affect what formats are available and it’s easy to create and plug in custom formatters.The example project includes a JSONP formatter that can be plugged in to provide JSONP support for requests that have a callback= querystring parameter. Adding, removing or replacing formatters is a global option you can use to manipulate content. It’s beyond the scope of this introduction to show how it works, but you can review the sample code or check out my blog entry on the subject (http://goo.gl/UAzaR). If automatic processing is not desirable in a particular Controller method, you can override the response output explicitly by returning an HttpResponseMessage instance. HttpResponseMessage is similar to ActionResult in ASP.NET MVC in that it’s a common way to return an abstract result message that contains content. HttpResponseMessage s parsed by the Web API framework using standard interfaces to retrieve the response data, status code, headers and so on[MS2] . Web API turns every response – including those Controller methods that return static results – into HttpResponseMessage instances. Explicitly returning an HttpResponseMessage instance gives you full control over the output and lets you mostly bypass WebAPI’s post-processing of the HTTP response on your behalf. HttpResponseMessage allows you to customize the response in great detail. Web API’s attention to detail in the HTTP spec really shows; many HTTP options are exposed as properties and enumerations with detailed IntelliSense comments. Even if you’re new to building REST-based interfaces, the API guides you in the right direction for returning valid responses and response codes. For example, assume that I always want to return JSON from the GetAlbums() controller method and ignore the default media type content negotiation. To do this, I can adjust the output format and headers as shown in Listing 4.public HttpResponseMessage GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); // Create a new HttpResponse with Json Formatter explicitly var resp = new HttpResponseMessage(HttpStatusCode.OK); resp.Content = new ObjectContent<IEnumerable<Album>>( albums, new JsonMediaTypeFormatter()); // Get Default Formatter based on Content Negotiation //var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); resp.Headers.ConnectionClose = true; resp.Headers.CacheControl = new CacheControlHeaderValue(); resp.Headers.CacheControl.Public = true; return resp; } This example returns the same IEnumerable<Album> value, but it wraps the response into an HttpResponseMessage so you can control the entire HTTP message result including the headers, formatter and status code. In Listing 4, I explicitly specify the formatter using the JsonMediaTypeFormatter to always force the content to JSON.  If you prefer to use the default content negotiation with HttpResponseMessage results, you can create the Response instance using the Request.CreateResponse method:var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); This provides you an HttpResponse object that's pre-configured with the default formatter based on Content Negotiation. Once you have an HttpResponse object you can easily control most HTTP aspects on this object. What's sweet here is that there are many more detailed properties on HttpResponse than the core ASP.NET Response object, with most options being explicitly configurable with enumerations that make it easy to pick the right headers and response codes from a list of valid codes. It makes HTTP features available much more discoverable even for non-hardcore REST/HTTP geeks. Non-Serialized Results The output returned doesn’t have to be a serialized value but can also be raw data, like strings, binary data or streams. You can use the HttpResponseMessage.Content object to set a number of common Content classes. Listing 5 shows how to return a binary image using the ByteArrayContent class from a Controller method. [HttpGet] public HttpResponseMessage AlbumArt(string title) { var album = AlbumData.Current.FirstOrDefault(abl => abl.AlbumName.StartsWith(title)); if (album == null) { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found")); return resp; } // kinda silly - we would normally serve this directly // but hey - it's a demo. var http = new WebClient(); var imageData = http.DownloadData(album.AlbumImageUrl); // create response and return var result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new ByteArrayContent(imageData); result.Content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg"); return result; } The image retrieval from Amazon is contrived, but it shows how to return binary data using ByteArrayContent. It also demonstrates that you can easily return multiple types of content from a single controller method, which is actually quite common. If an error occurs - such as a resource can’t be found or a validation error – you can return an error response to the client that’s very specific to the error. In GetAlbumArt(), if the album can’t be found, we want to return a 404 Not Found status (and realistically no error, as it’s an image). Note that if you are not using HTTP Verb-based routing or not accessing a method that starts with Get/Post etc., you have to specify one or more HTTP Verb attributes on the method explicitly. Here, I used the [HttpGet] attribute to serve the image. Another option to handle the error could be to return a fixed placeholder image if no album could be matched or the album doesn’t have an image. When returning an error code, you can also return a strongly typed response to the client. For example, you can set the 404 status code and also return a custom error object (ApiMessageError is a class I defined) like this:return Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found") );   If the album can be found, the image will be returned. The image is downloaded into a byte[] array, and then assigned to the result’s Content property. I created a new ByteArrayContent instance and assigned the image’s bytes and the content type so that it displays properly in the browser. There are other content classes available: StringContent, StreamContent, ByteArrayContent, MultipartContent, and ObjectContent are at your disposal to return just about any kind of content. You can create your own Content classes if you frequently return custom types and handle the default formatter assignments that should be used to send the data out . Although HttpResponseMessage results require more code than returning a plain .NET value from a method, it allows much more control over the actual HTTP processing than automatic processing. It also makes it much easier to test your controller methods as you get a response object that you can check for specific status codes and output messages rather than just a result value. Routing Again Ok, let’s get back to the image example. Using the original routing we have setup using HTTP Verb routing there's no good way to serve the image. In order to return my album art image I’d like to use a URL like this: http://localhost/aspnetWebApi/albums/Dirty%20Deeds/image In order to create a URL like this, I have to create a new Controller because my earlier routes pointed to the AlbumApiController using HTTP Verb routing. HTTP Verb based routing is great for representing a single set of resources such as albums. You can map operations like add, delete, update and read easily using HTTP Verbs. But you cannot mix action based routing into a an HTTP Verb routing controller - you can only map HTTP Verbs and each method has to be unique based on parameter signature. You can't have multiple GET operations to methods with the same signature. So GetImage(string id) and GetAlbum(string title) are in conflict in an HTTP GET routing scenario. In fact, I was unable to make the above Image URL work with any combination of HTTP Verb plus Custom routing using the single Albums controller. There are number of ways around this, but all involve additional controllers.  Personally, I think it’s easier to use explicit Action routing and then add custom routes if you need to simplify your URLs further. So in order to accommodate some of the other examples, I created another controller – AlbumRpcApiController – to handle all requests that are explicitly routed via actions (/albums/rpc/AlbumArt) or are custom routed with explicit routes defined in the HttpConfiguration. I added the AlbumArt() method to this new AlbumRpcApiController class. For the image URL to work with the new AlbumRpcApiController, you need a custom route placed before the default route from Listing 1.RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); Now I can use either of the following URLs to access the image: Custom route: (/albums/rpc/{title}/image)http://localhost/aspnetWebApi/albums/PowerAge/image Action route: (/albums/rpc/action/{title})http://localhost/aspnetWebAPI/albums/rpc/albumart/PowerAge Sending Data to the Server To send data to the server and add a new album, you can use an HTTP POST operation. Since I’m using HTTP Verb-based routing in the original AlbumApiController, I can implement a method called PostAlbum()to accept a new album from the client. Listing 6 shows the Web API code to add a new album.public HttpResponseMessage PostAlbum(Album album) { if (!this.ModelState.IsValid) { // my custom error class var error = new ApiMessageError() { message = "Model is invalid" }; // add errors into our client error model for client foreach (var prop in ModelState.Values) { var modelError = prop.Errors.FirstOrDefault(); if (!string.IsNullOrEmpty(modelError.ErrorMessage)) error.errors.Add(modelError.ErrorMessage); else error.errors.Add(modelError.Exception.Message); } return Request.CreateResponse<ApiMessageError>(HttpStatusCode.Conflict, error); } // update song id which isn't provided foreach (var song in album.Songs) song.AlbumId = album.Id; // see if album exists already var matchedAlbum = AlbumData.Current .SingleOrDefault(alb => alb.Id == album.Id || alb.AlbumName == album.AlbumName); if (matchedAlbum == null) AlbumData.Current.Add(album); else matchedAlbum = album; // return a string to show that the value got here var resp = Request.CreateResponse(HttpStatusCode.OK, string.Empty); resp.Content = new StringContent(album.AlbumName + " " + album.Entered.ToString(), Encoding.UTF8, "text/plain"); return resp; } The PostAlbum() method receives an album parameter, which is automatically deserialized from the POST buffer the client sent. The data passed from the client can be either XML or JSON. Web API automatically figures out what format it needs to deserialize based on the content type and binds the content to the album object. Web API uses model binding to bind the request content to the parameter(s) of controller methods. Like MVC you can check the model by looking at ModelState.IsValid. If it’s not valid, you can run through the ModelState.Values collection and check each binding for errors. Here I collect the error messages into a string array that gets passed back to the client via the result ApiErrorMessage object. When a binding error occurs, you’ll want to return an HTTP error response and it’s best to do that with an HttpResponseMessage result. In Listing 6, I used a custom error class that holds a message and an array of detailed error messages for each binding error. I used this object as the content to return to the client along with my Conflict HTTP Status Code response. If binding succeeds, the example returns a string with the name and date entered to demonstrate that you captured the data. Normally, a method like this should return a Boolean or no response at all (HttpStatusCode.NoConent). The sample uses a simple static list to hold albums, so once you’ve added the album using the Post operation, you can hit the /albums/ URL to see that the new album was added. The client jQuery code to call the POST operation from the client with jQuery is shown in Listing 7. var id = new Date().getTime().toString(); var album = { "Id": id, "AlbumName": "Power Age", "Artist": "AC/DC", "YearReleased": 1977, "Entered": "2002-03-11T18:24:43.5580794-10:00", "AlbumImageUrl": http://ecx.images-amazon.com/images/…, "AmazonUrl": http://www.amazon.com/…, "Songs": [ { "SongName": "Rock 'n Roll Damnation", "SongLength": 3.12}, { "SongName": "Downpayment Blues", "SongLength": 4.22 }, { "SongName": "Riff Raff", "SongLength": 2.42 } ] } $.ajax( { url: "albums/", type: "POST", contentType: "application/json", data: JSON.stringify(album), processData: false, beforeSend: function (xhr) { // not required since JSON is default output xhr.setRequestHeader("Accept", "application/json"); }, success: function (result) { // reload list of albums page.loadAlbums(); }, error: function (xhr, status, p3, p4) { var err = "Error"; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); The code in Listing 7 creates an album object in JavaScript to match the structure of the .NET Album class. This object is passed to the $.ajax() function to send to the server as POST. The data is turned into JSON and the content type set to application/json so that the server knows what to convert when deserializing in the Album instance. The jQuery code hooks up success and failure events. Success returns the result data, which is a string that’s echoed back with an alert box. If an error occurs, jQuery returns the XHR instance and status code. You can check the XHR to see if a JSON object is embedded and if it is, you can extract it by de-serializing it and accessing the .message property. REST standards suggest that updates to existing resources should use PUT operations. REST standards aside, I’m not a big fan of separating out inserts and updates so I tend to have a single method that handles both. But if you want to follow REST suggestions, you can create a PUT method that handles updates by forwarding the PUT operation to the POST method:public HttpResponseMessage PutAlbum(Album album) { return PostAlbum(album); } To make the corresponding $.ajax() call, all you have to change from Listing 7 is the type: from POST to PUT. Model Binding with UrlEncoded POST Variables In the example in Listing 7 I used JSON objects to post a serialized object to a server method that accepted an strongly typed object with the same structure, which is a common way to send data to the server. However, Web API supports a number of different ways that data can be received by server methods. For example, another common way is to use plain UrlEncoded POST  values to send to the server. Web API supports Model Binding that works similar (but not the same) as MVC's model binding where POST variables are mapped to properties of object parameters of the target method. This is actually quite common for AJAX calls that want to avoid serialization and the potential requirement of a JSON parser on older browsers. For example, using jQUery you might use the $.post() method to send a new album to the server (albeit one without songs) using code like the following:$.post("albums/",{AlbumName: "Dirty Deeds", YearReleased: 1976 … },albumPostCallback); Although the code looks very similar to the client code we used before passing JSON, here the data passed is URL encoded values (AlbumName=Dirty+Deeds&YearReleased=1976 etc.). Web API then takes this POST data and maps each of the POST values to the properties of the Album object in the method's parameter. Although the client code is different the server can both handle the JSON object, or the UrlEncoded POST values. Dynamic Access to POST Data There are also a few options available to dynamically access POST data, if you know what type of data you're dealing with. If you have POST UrlEncoded values, you can dynamically using a FormsDataCollection:[HttpPost] public string PostAlbum(FormDataCollection form) { return string.Format("{0} - released {1}", form.Get("AlbumName"),form.Get("RearReleased")); } The FormDataCollection is a very simple object, that essentially provides the same functionality as Request.Form[] in ASP.NET. Request.Form[] still works if you're running hosted in an ASP.NET application. However as a general rule, while ASP.NET's functionality is always available when running Web API hosted inside of an  ASP.NET application, using the built in classes specific to Web API makes it possible to run Web API applications in a self hosted environment outside of ASP.NET. If your client is sending JSON to your server, and you don't want to map the JSON to a strongly typed object because you only want to retrieve a few simple values, you can also accept a JObject parameter in your API methods:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } There quite a few options available to you to receive data with Web API, which gives you more choices for the right tool for the job. Unfortunately one shortcoming of Web API is that POST data is always mapped to a single parameter. This means you can't pass multiple POST parameters to methods that receive POST data. It's possible to accept multiple parameters, but only one can map to the POST content - the others have to come from the query string or route values. I have a couple of Blog POSTs that explain what works and what doesn't here: Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API   Handling Delete Operations Finally, to round out the server API code of the album example we've been discussin, here’s the DELETE verb controller method that allows removal of an album by its title:public HttpResponseMessage DeleteAlbum(string title) { var matchedAlbum = AlbumData.Current.Where(alb => alb.AlbumName == title) .SingleOrDefault(); if (matchedAlbum == null) return new HttpResponseMessage(HttpStatusCode.NotFound); AlbumData.Current.Remove(matchedAlbum); return new HttpResponseMessage(HttpStatusCode.NoContent); } To call this action method using jQuery, you can use:$(".removeimage").live("click", function () { var $el = $(this).parent(".album"); var txt = $el.find("a").text(); $.ajax({ url: "albums/" + encodeURIComponent(txt), type: "Delete", success: function (result) { $el.fadeOut().remove(); }, error: jqError }); }   Note the use of the DELETE verb in the $.ajax() call, which routes to DeleteAlbum on the server. DELETE is a non-content operation, so you supply a resource ID (the title) via route value or the querystring. Routing Conflicts In all requests with the exception of the AlbumArt image example shown so far, I used HTTP Verb routing that I set up in Listing 1. HTTP Verb Routing is a recommendation that is in line with typical REST access to HTTP resources. However, it takes quite a bit of effort to create REST-compliant API implementations based only on HTTP Verb routing only. You saw one example that didn’t really fit – the return of an image where I created a custom route albums/{title}/image that required creation of a second controller and a custom route to work. HTTP Verb routing to a controller does not mix with custom or action routing to the same controller because of the limited mapping of HTTP verbs imposed by HTTP Verb routing. To understand some of the problems with verb routing, let’s look at another example. Let’s say you create a GetSortableAlbums() method like this and add it to the original AlbumApiController accessed via HTTP Verb routing:[HttpGet] public IQueryable<Album> SortableAlbums() { var albums = AlbumData.Current; // generally should be done only on actual queryable results (EF etc.) // Done here because we're running with a static list but otherwise might be slow return albums.AsQueryable(); } If you compile this code and try to now access the /albums/ link, you get an error: Multiple Actions were found that match the request. HTTP Verb routing only allows access to one GET operation per parameter/route value match. If more than one method exists with the same parameter signature, it doesn’t work. As I mentioned earlier for the image display, the only solution to get this method to work is to throw it into another controller. Because I already set up the AlbumRpcApiController I can add the method there. First, I should rename the method to SortableAlbums() so I’m not using a Get prefix for the method. This also makes the action parameter look cleaner in the URL - it looks less like a method and more like a noun. I can then create a new route that handles direct-action mapping:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); As I am explicitly adding a route segment – rpc – into the route template, I can now reference explicit methods in the Web API controller using URLs like this: http://localhost/AspNetWebApi/rpc/SortableAlbums Error Handling I’ve already done some minimal error handling in the examples. For example in Listing 6, I detected some known-error scenarios like model validation failing or a resource not being found and returning an appropriate HttpResponseMessage result. But what happens if your code just blows up or causes an exception? If you have a controller method, like this:[HttpGet] public void ThrowException() { throw new UnauthorizedAccessException("Unauthorized Access Sucka"); } You can call it with this: http://localhost/AspNetWebApi/albums/rpc/ThrowException The default exception handling displays a 500-status response with the serialized exception on the local computer only. When you connect from a remote computer, Web API throws back a 500  HTTP Error with no data returned (IIS then adds its HTML error page). The behavior is configurable in the GlobalConfiguration:GlobalConfiguration .Configuration .IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never; If you want more control over your error responses sent from code, you can throw explicit error responses yourself using HttpResponseException. When you throw an HttpResponseException the response parameter is used to generate the output for the Controller action. [HttpGet] public void ThrowError() { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.BadRequest, new ApiMessageError("Your code stinks!")); throw new HttpResponseException(resp); } Throwing an HttpResponseException stops the processing of the controller method and immediately returns the response you passed to the exception. Unlike other Exceptions fired inside of WebAPI, HttpResponseException bypasses the Exception Filters installed and instead just outputs the response you provide. In this case, the serialized ApiMessageError result string is returned in the default serialization format – XML or JSON. You can pass any content to HttpResponseMessage, which includes creating your own exception objects and consistently returning error messages to the client. Here’s a small helper method on the controller that you might use to send exception info back to the client consistently:private void ThrowSafeException(string message, HttpStatusCode statusCode = HttpStatusCode.BadRequest) { var errResponse = Request.CreateResponse<ApiMessageError>(statusCode, new ApiMessageError() { message = message }); throw new HttpResponseException(errResponse); } You can then use it to output any captured errors from code:[HttpGet] public void ThrowErrorSafe() { try { List<string> list = null; list.Add("Rick"); } catch (Exception ex) { ThrowSafeException(ex.Message); } }   Exception Filters Another more global solution is to create an Exception Filter. Filters in Web API provide the ability to pre- and post-process controller method operations. An exception filter looks at all exceptions fired and then optionally creates an HttpResponseMessage result. Listing 8 shows an example of a basic Exception filter implementation.public class UnhandledExceptionFilter : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { HttpStatusCode status = HttpStatusCode.InternalServerError; var exType = context.Exception.GetType(); if (exType == typeof(UnauthorizedAccessException)) status = HttpStatusCode.Unauthorized; else if (exType == typeof(ArgumentException)) status = HttpStatusCode.NotFound; var apiError = new ApiMessageError() { message = context.Exception.Message }; // create a new response and attach our ApiError object // which now gets returned on ANY exception result var errorResponse = context.Request.CreateResponse<ApiMessageError>(status, apiError); context.Response = errorResponse; base.OnException(context); } } Exception Filter Attributes can be assigned to an ApiController class like this:[UnhandledExceptionFilter] public class AlbumRpcApiController : ApiController or you can globally assign it to all controllers by adding it to the HTTP Configuration's Filters collection:GlobalConfiguration.Configuration.Filters.Add(new UnhandledExceptionFilter()); The latter is a great way to get global error trapping so that all errors (short of hard IIS errors and explicit HttpResponseException errors) return a valid error response that includes error information in the form of a known-error object. Using a filter like this allows you to throw an exception as you normally would and have your filter create a response in the appropriate output format that the client expects. For example, an AJAX application can on failure expect to see a JSON error result that corresponds to the real error that occurred rather than a 500 error along with HTML error page that IIS throws up. You can even create some custom exceptions so you can differentiate your own exceptions from unhandled system exceptions - you often don't want to display error information from 'unknown' exceptions as they may contain sensitive system information or info that's not generally useful to users of your application/site. This is just one example of how ASP.NET Web API is configurable and extensible. Exception filters are just one example of how you can plug-in into the Web API request flow to modify output. Many more hooks exist and I’ll take a closer look at extensibility in Part 2 of this article in the future. Summary Web API is a big improvement over previous Microsoft REST and AJAX toolkits. The key features to its usefulness are its ease of use with simple controller based logic, familiar MVC-style routing, low configuration impact, extensibility at all levels and tight attention to exposing and making HTTP semantics easily discoverable and easy to use. Although none of the concepts used in Web API are new or radical, Web API combines the best of previous platforms into a single framework that’s highly functional, easy to work with, and extensible to boot. I think that Microsoft has hit a home run with Web API. Related Resources Where does ASP.NET Web API fit? Sample Source Code on GitHub Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API Creating a JSONP Formatter for ASP.NET Web API Removing the XML Formatter from ASP.NET Web API Applications© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Are very short or abbreviated method/function names that don't use full words bad practice or a matter of style.

    - by Alb
    Is there nowadays any case for brevity over clarity with method names? Tonight I came across the Python method repr() which seems like a bad name for a method to me. It's not an English word. It apparently is an abbreviation of 'representation' and even if you can deduce that, it still doesn't tell you what the method does. A good method name is subjective to a certain degree, but I had assumed that modern best practices agreed that names should be at least full words and descriptive enough to reveal enough about the method that you would easily find one when looking for it. Method names made from words help let your code read like English. repr() seems to have no advantages as a name other than being short and IDE auto-complete makes this a non-issue. An additional reason given in an answer is that python names are brief so that you can do many things on one line. Surely the better way is to just extract the many things to their own function, and repeat until lines are not too long. Are these just a hangover from the unix way of doing things? Commands with names like ls, rm, ps and du (if you could call those names) were hard to find and hard to remember. I know that the everyday usage of commands such as these is different than methods in code so the matter of whether those are bad names is a different matter.

    Read the article

  • Are short abbreviated method/function names that don't use full words bad practice or a matter of style?

    - by Alb
    Is there nowadays any case for brevity over clarity with method names? Tonight I came across the Python method repr() which seems like a bad name for a method to me. It's not an English word. It apparently is an abbreviation of 'representation' and even if you can deduce that, it still doesn't tell you what the method does. A good method name is subjective to a certain degree, but I had assumed that modern best practices agreed that names should be at least full words and descriptive enough to reveal enough about the method that you would easily find one when looking for it. Method names made from words help let your code read like English. repr() seems to have no advantages as a name other than being short and IDE auto-complete makes this a non-issue. An additional reason given in an answer is that python names are brief so that you can do many things on one line. Surely the better way is to just extract the many things to their own function, and repeat until lines are not too long. Are these just a hangover from the unix way of doing things? Commands with names like ls, rm, ps and du (if you could call those names) were hard to find and hard to remember. I know that the everyday usage of commands such as these is different than methods in code so the matter of whether those are bad names is a different matter.

    Read the article

  • Cluster failover and strange gratuitous arp behavior

    - by lazerpld
    I am experiencing a strange Windows 2008R2 cluster related issue that is bothering me. I feel that I have come close as to what the issue is, but still don't fully understand what is happening. I have a two node exchange 2007 cluster running on two 2008R2 servers. The exchange cluster application works fine when running on the "primary" cluster node. The problem occurs when failing over the cluster ressource to the secondary node. When failing over the cluster to the "secondary" node, which for instance is on the same subnet as the "primary", the failover initially works ok and the cluster ressource continues to work for a couple of minutes on the new node. Which means that the recieving node does send out a gratuitous arp reply packet that updated the arp tables on the network. But after x amount of time (typically within 5 minutes time) something updates the arp-tables again because all of a sudden the cluster service does not answer to pings. So basically I start a ping to the exchange cluster address when its running on the "primary node". It works just great. I failover the cluster ressource group to the "secondary node" and I only have loss of one ping which is acceptable. The cluster ressource still answers for some time after being failed over and all of a sudden the ping starts timing out. This is telling me that the arp table initially is updated by the secondary node, but then something (which I haven't found out yet) wrongfully updates it again, probably with the primary node's MAC. Why does this happen - has anyone experienced the same problem? The cluster is NOT running NLB and the problem stops immidiately after failing over back to the primary node where there are no problems. Each node is using NIC teaming (intel) with ALB. Each node is on the same subnet and has gateway and so on entered correctly as far as I am concerned. Edit: I was wondering if it could be related to network binding order maybe? Because I have noticed that the only difference I can see from node to node is when showing the local arp table. On the "primary" node the arp table is generated on the cluster address as the source. While on the "secondary" its generated from the nodes own network card. Any input on this? Edit: Ok here is the connection layout. Cluster address: A.B.6.208/25 Exchange application address: A.B.6.212/25 Node A: 3 physical nics. Two teamed using intels teaming with the address A.B.6.210/25 called public The last one used for cluster traffic called private with 10.0.0.138/24 Node B: 3 physical nics. Two teamed using intels teaming with the address A.B.6.211/25 called public The last one used for cluster traffic called private with 10.0.0.139/24 Each node sits in a seperate datacenter connected together. End switches being cisco in DC1 and NEXUS 5000/2000 in DC2. Edit: I have been testing a little more. I have now created an empty application on the same cluster, and given it another ip address on the same subnet as the exchange application. After failing this empty application over, I see the exact same problem occuring. After one or two minutes clients on other subnets cannot ping the virtual ip of the application. But while clients on other subnets cannot, another server from another cluster on the same subnet has no trouble pinging. But if i then make another failover to the original state, then the situation is the opposite. So now clients on same subnet cannot, and on other they can. We have another cluster set up the same way and on the same subnet, with the same intel network cards, the same drivers and same teaming settings. Here we are not seeing this. So its somewhat confusing. Edit: OK done some more research. Removed the NIC teaming of the secondary node, since it didnt work anyway. After some standard problems following that, I finally managed to get it up and running again with the old NIC teaming settings on one single physical network card. Now I am not able to reproduce the problem described above. So it is somehow related to the teaming - maybe some kind of bug? Edit: Did some more failing over without being able to make it fail. So removing the NIC team looks like it was a workaround. Now I tried to reestablish the intel NIC teaming with ALB (as it was before) and i still cannot make it fail. This is annoying due to the fact that now i actually cannot pinpoint the root of the problem. Now it just seems to be some kind of MS/intel hick-up - which is hard to accept because what if the problem reoccurs in 14 days? There is a strange thing that happened though. After recreating the NIC team I was not able to rename the team to "PUBLIC" which the old team was called. So something has not been cleaned up in windows - although the server HAS been restarted! Edit: OK after restablishing the ALB teaming the error came back. So I am now going to do some thorough testing and i will get back with my observations. One thing is for sure. It is related to Intel 82575EB NICS, ALB and Gratuitous Arp.

    Read the article

  • Problem upgrading eclipse rcp app from 3.3 to 3.5 on Mac OS

    - by Alb
    I previously had an eclipse rcp app based on eclipse 3.3 pugins deployed on both windows and mac OS X 10.4. i'm now trying to port the app to java 1.6 and eclipse 3.5 (Build id: 20100218-1602) plugins on Mac OS X 10.5.8 (Leopard). I can launch the product from eclipse 3.5 on windows but not on Mac OS X. I have the 64bit cocoa eclipse IDE and java 6. In the launch configuration I set runtime JRE to JVM 1.6.0 and added required plugins. The plugins validate and everything else looks similar to windows configuration where it works, but when I launch i only get the following two lines in the console: 2010-03-16 13:29:32.742 java[758:10b] [Java CocoaComponent compatibility mode]: Enabled 2010-03-16 13:29:32.744 java[758:10b] [Java CocoaComponent compatibility mode]: Setting timeout for SWT to 0.100000 and then the program appears to just hang indefinitely. There is nothing written to the .log file so I'm not sure what error there is. EDIT: Here's what Yourkit profiling says before all cpu activity stops. +----------------------------------------------------------------------------+----------------+-----------------+ | Name | Time (ms) | Own Time (ms) | +----------------------------------------------------------------------------+----------------+-----------------+ | +---<All threads> | 2,799 100 % | | | | | | | | +---org.eclipse.equinox.launcher.Main.main(String[]) | 1,924 69% | 0 | | | | | | | +---org.eclipse.osgi.framework.eventmgr.EventManager$EventThread.run() | 632 23 % | 0 | | | | | | | +---java.lang.Thread.run() | 135 5 % | 0 | | | | | | | +---java.lang.ClassLoader.loadClassInternal(String) | 106 4 % | 0 | +----------------------------------------------------------------------------+----------------+-----------------+ , and this in the exceptions tab: Exception staticstics +----------------------------------------+--------------+ | Name | Count | +----------------------------------------+--------------+ | +---java.lang.ClassNotFoundException | 102 11 % | | | | | | +---java.net.MalformedURLException | 4 0 % | | | | | | +---java.lang.NoSuchMethodException | 3 0 % | | | | | | +---java.lang.NumberFormatException | 2 0 % | | | | | | +---java.io.FileNotFoundException | 1 0 % | | | | | | +---java.lang.UnsatisfiedLinkError | 1 0 % | +----------------------------------------+--------------+ and here's more details on the ClassNotFoundExceptions mentioned above: java.lang.ClassNotFoundException Start Level Event Dispatcher native ID: 0x8B0B group: 'main' 78 Thread-4 native ID: 0x10B group: 'main' 22 Framework Event Dispatcher native ID: 0xD207 group: 'main' 2 Anyone know why I don't see a trace for this in Eclipse or in any log files? any ideas where I should look? [Updated on: Tue, 16 March 2010 09:37]

    Read the article

  • "Forked Java VM exited abnormally" error from junit tests

    - by Alb
    I have a java junit test that passes when run alone on a development machine. We also have a hudson job which runs all the tests, invoked via ant, on a Mac OS X 10.4 node with Java 1.5. The test was passing in the hudson build until recently but now (with no related code changes) one test fails everytime with the following error: Error Message Forked Java VM exited abnormally. Please note the time in the report does not reflect the time until the VM exit. Stacktrace junit.framework.AssertionFailedError: Forked Java VM exited abnormally. Please note the time in the report does not reflect the time until the VM exit. googling shows many others seem to have run into the same problem but there I couldn't find any answer.

    Read the article

  • Switch flooding when bonding interfaces in Linux

    - by John Philips
    +--------+ | Host A | +----+---+ | eth0 (AA:AA:AA:AA:AA:AA) | | +----+-----+ | Switch 1 | (layer2/3) +----+-----+ | +----+-----+ | Switch 2 | +----+-----+ | +----------+----------+ +-------------------------+ Switch 3 +-------------------------+ | +----+-----------+----+ | | | | | | | | | | eth0 (B0:B0:B0:B0:B0:B0) | | eth4 (B4:B4:B4:B4:B4:B4) | | +----+-----------+----+ | | | Host B | | | +----+-----------+----+ | | eth1 (B1:B1:B1:B1:B1:B1) | | eth5 (B5:B5:B5:B5:B5:B5) | | | | | | | | | +------------------------------+ +------------------------------+ Topology overview Host A has a single NIC. Host B has four NICs which are bonded using the balance-alb mode. Both hosts run RHEL 6.0, and both are on the same IPv4 subnet. Traffic analysis Host A is sending data to Host B using some SQL database application. Traffic from Host A to Host B: The source int/MAC is eth0/AA:AA:AA:AA:AA:AA, the destination int/MAC is eth5/B5:B5:B5:B5:B5:B5. Traffic from Host B to Host A: The source int/MAC is eth0/B0:B0:B0:B0:B0:B0, the destination int/MAC is eth0/AA:AA:AA:AA:AA:AA. Once the TCP connection has been established, Host B sends no further frames out eth5. The MAC address of eth5 expires from the bridge tables of both Switch 1 & Switch 2. Switch 1 continues to receive frames from Host A which are destined for B5:B5:B5:B5:B5:B5. Because Switch 1 and Switch 2 no longer have bridge table entries for B5:B5:B5:B5:B5:B5, they flood the frames out all ports on the same VLAN (except for the one it came in on, of course). Reproduce If you ping Host B from a workstation which is connected to either Switch 1 or 2, B5:B5:B5:B5:B5:B5 re-enters the bridge tables and the flooding stops. After five minutes (the default bridge table timeout), flooding resumes. Question It is clear that on Host B, frames arrive on eth5 and exit out eth0. This seems ok as that's what the Linux bonding algorithm is designed to do - balance incoming and outgoing traffic. But since the switch stops receiving frames with the source MAC of eth5, it gets timed out of the bridge table, resulting in flooding. Is this normal? Why aren't any more frames originating from eth5? Is it because there is simply no other traffic going on (the only connection is a single large data transfer from Host A)? I've researched this for a long time and haven't found an answer. Documentation states that no switch changes are necessary when using mode 6 of the Linux interface bonding (balance-alb). Is this behavior occurring because Host B doesn't send any further packets out of eth5, whereas in normal circumstances it's expected that it would? One solution is to setup a cron job which pings Host B to keep the bridge table entries from timing out, but that seems like a dirty hack.

    Read the article

  • How to split a space separated file?

    - by simplesimon
    Hi I am trying to import this: http://en.wikipedia.org/wiki/List_of_countries_by_continent_%28data_file%29 which is of the format like: AS AF AFG 004 Afghanistan, Islamic Republic of EU AX ALA 248 Åland Islands EU AL ALB 008 Albania, Republic of AF DZ DZA 012 Algeria, People's Democratic Republic of OC AS ASM 016 American Samoa EU AD AND 020 Andorra, Principality of AF AO AGO 024 Angola, Republic of NA AI AIA 660 Anguilla if i do <? explode(" ",$data"); ?> that works fine apart from countries with more than 1 word. how can i split it so i get the first 4 bits of data (the chars/ints) and the 5th bit of data being whatever remains? this is in php thank you

    Read the article

  • bonding module parameters are not shown in /sys/module/bonding/parameters/

    - by c4f4t0r
    I have a server with Suse 11 sp1 kernel 2.6.32.54-0.3-default, with modinfo bonding i see all parameters, but under /sys/module/bonding/parameters/ not modinfo bonding | grep ^parm parm: max_bonds:Max number of bonded devices (int) parm: num_grat_arp:Number of gratuitous ARP packets to send on failover event (int) parm: num_unsol_na:Number of unsolicited IPv6 Neighbor Advertisements packets to send on failover event (int) parm: miimon:Link check interval in milliseconds (int) parm: updelay:Delay before considering link up, in milliseconds (int) parm: downdelay:Delay before considering link down, in milliseconds (int) parm: use_carrier:Use netif_carrier_ok (vs MII ioctls) in miimon; 0 for off, 1 for on (default) (int) parm: mode:Mode of operation : 0 for balance-rr, 1 for active-backup, 2 for balance-xor, 3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, 6 for balance-alb (charp) parm: primary:Primary network device to use (charp) parm: lacp_rate:LACPDU tx rate to request from 802.3ad partner (slow/fast) (charp) parm: ad_select:803.ad aggregation selection logic: stable (0, default), bandwidth (1), count (2) (charp) parm: xmit_hash_policy:XOR hashing method: 0 for layer 2 (default), 1 for layer 3+4 (charp) parm: arp_interval:arp interval in milliseconds (int) parm: arp_ip_target:arp targets in n.n.n.n form (array of charp) parm: arp_validate:validate src/dst of ARP probes: none (default), active, backup or all (charp) parm: fail_over_mac:For active-backup, do not set all slaves to the same MAC. none (default), active or follow (charp) in /sys/module/bonding/parameters ls -l /sys/module/bonding/parameters/ total 0 -rw-r--r-- 1 root root 4096 2013-10-17 11:22 num_grat_arp -rw-r--r-- 1 root root 4096 2013-10-17 11:22 num_unsol_na I found some of this parameters under /sys/class/net/bond0/bonding/, but when i try to change one i got the following error echo layer2+3 > /sys/class/net/bond0/bonding/xmit_hash_policy -bash: echo: write error: Operation not permitted

    Read the article

  • Importing XML into an AWS RDS instance

    - by RoyHB
    I'm trying to load some xml into an AWS RDS (mySql) instance. The xml looks like: (it's an xml dump of the ISO-3661 codes) <?xml version="1.0" encoding="UTF-8"?> <countries> <countries name="Afghanistan" alpha-2="AF" alpha-3="AFG" country-code="004" iso_3166-2="ISO 3166-2:AF" region-code="142" sub-region-code="034"/> <countries name="Åland Islands" alpha-2="AX" alpha-3="ALA" country-code="248" iso_3166-2="ISO 3166-2:AX" region-code="150" sub-region-code="154"/> <countries name="Albania" alpha-2="AL" alpha-3="ALB" country-code="008" iso_3166-2="ISO 3166-2:AL" region-code="150" sub-region-code="039"/> <countries name="Algeria" alpha-2="DZ" alpha-3="DZA" country-code="012" iso_3166-2="ISO 3166-2:DZ" region-code="002" sub-region-code="015"/> The command that I'm running is: LOAD XML LOCAL INFILE '/var/www/ISO-3166_SMS_Country_Codes.xml' INTO TABLE `ISO-3661-codes`(`name`,`alpha-2`,`alpha-3`,`country-code`,`region-code`,`sub-region-code`); The error message I get is: ERROR 1148 (42000): The used command is not allowed with this MySQL version The infile that is referenced exists, I've selected a database before running the command and I have appropriate privileges on the database. The column names in the database table exactly match the xml field names.

    Read the article

  • Can't get bonding and bridging to work for KVM

    - by user9546
    Hi everyone. I can't for the life of me get bonding and bridging to work for the KVM setup I'm building. I'm using a fresh install (not an upgrade) of Ubuntu Server 10.10. I have 4 NICs on the same subnet (two intended for each of my two VMs). I'm trying to achieve the setup that Uthark describes here. But following his guidelines didn't work for me. My eth0 and eth1 did not come up, and "brctl show" showed that br0 didn't have any interfaces (the bond). I assumed it didn't work because he's using 10.4, and this article says there's a recent change in bonding: [I can't post more than one hyperlink per post because I'm a newbie.] I had to use this article to get my interfaces to work at all on the same subnet, which is why I have the post-up lines on some of my interfaces: [I can't post more than one hyperlink per post because I'm a newbie.] I installed ifenslave and ethtool. I also created /etc/modprobe.d/aliases.conf with the following content: alias bond0 bonding options bonding mode=6 miimon=100 downdelay=200 updelay=200 And I included "bonding" in /etc/modules So, after several approaches, here is my latest interfaces file: auto lo iface lo inet loopback auto eth5 iface eth5 inet manual auto br5 iface br5 inet static post-up /sbin/ip rule add from [network].79 lookup 10 post-up /sbin/ip route add table 10 default via [network].1 src [network].79 dev br5 address [network].79 netmask 255.255.255.0 network [network].0 broadcast [network].255 gateway [network].1 bridge_ports eth5 bridge_stp off bridge_fd 0 bridge_maxwait 0 auto eth2 iface eth2 inet manual auto br2 iface br2 inet static post-up /sbin/ip rule add from [network].78 lookup 11 post-up /sbin/ip route add table 11 default via [network].1 src [network].78 dev br2 address [network].78 netmask 255.255.255.0 network [network].0 broadcast [network].255 gateway [network].1 bridge_ports eth2 bridge_stp off bridge_fd 0 bridge_maxwait 0 iface eth0 inet manual iface eth1 inet manual auto bond0 iface bond0 inet static bond_miimon 100 bond_mode balance-alb up /sbin/ifenslave bond0 eth0 eth1 down /sbin/ifenslave -d bond0 eth0 eth1 auto br0 iface br0 inet static address [network].60 netmask 255.255.255.0 network [network].0 broadcast [network].255 gateway [network].1 bridge_ports bond0 eth2, eth5, br2, and br5 all seem to be working fine. The only other thing I could find that looked suspicious is an error regarding bonding in /var/log/messages: kernel: [ 3.828684] bonding: Warning: either miimon or arp_interval and arp_ip_target module parameters must be specified, otherwise bonding will not detect link failures! see bonding.txt for details. even though there is a bond-miimon line in /etc/network/interfaces (if that's what they're talking about). Also, the bond seems to go in and out of promiscuous mode several times on boot: Jan 20 14:19:02 kvmhost kernel: [ 3.902378] device bond0 entered promiscuous mode Jan 20 14:19:02 kvmhost kernel: [ 3.902390] device bond0 left promiscuous mode Jan 20 14:19:02 kvmhost kernel: [ 3.902393] device bond0 entered promiscuous mode Jan 20 14:19:02 kvmhost kernel: [ 3.902397] device bond0 left promiscuous mode Jan 20 14:19:03 kvmhost kernel: [ 4.998990] device bond0 entered promiscuous mode Jan 20 14:19:03 kvmhost kernel: [ 4.999005] device bond0 left promiscuous mode Jan 20 14:19:03 kvmhost kernel: [ 4.999008] device bond0 entered promiscuous mode Jan 20 14:19:03 kvmhost kernel: [ 4.999012] device bond0 left promiscuous mode Any advice would be greatly appreciated. It seems that this must be possible, based on other posts, but I can't see what I'm doing wrong. Thanks.

    Read the article

  • Load-balancing between a Procurve switch and a server

    - by vlad
    Hello I've been searching around the web for this problem i've been having. It's similar in a way to this question: How exactly & specifically does layer 3 LACP destination address hashing work? My setup is as follows: I have a central switch, a Procurve 2510G-24, image version Y.11.16. It's the center of a star topology, there are four switches connected to it via a single gigabit link. Those switches service the users. On the central switch, I have a server with two gigabit interfaces that I want to bond together in order to achieve higher throughput, and two other servers that have single gigabit connections to the switch. The topology looks as follows: sw1 sw2 sw3 sw4 | | | | --------------------- | sw0 | --------------------- || | | srv1 srv2 srv3 The servers were running FreeBSD 8.1. On srv1 I set up a lagg interface using the lacp protocol, and on the switch I set up a trunk for the two ports using lacp as well. The switch showed that the server was a lacp partner, I could ping the server from another computer, and the server could ping other computers. If I unplugged one of the cables, the connection would keep working, so everything looked fine. Until I tested throughput. There was only one link used between srv1 and sw0. All testing was conducted with iperf, and load distribution was checked with systat -ifstat. I was looking to test the load balancing for both receive and send operations, as I want this server to be a file server. There were therefore two scenarios: iperf -s on srv1 and iperf -c on the other servers iperf -s on the other servers and iperf -c on srv1 connected to all the other servers. Every time only one link was used. If one cable was unplugged, the connections would keep going. However, once the cable was plugged back in, the load was not distributed. Each and every server is able to fill the gigabit link. In one-to-one test scenarios, iperf was reporting around 940Mbps. The CPU usage was around 20%, which means that the servers could withstand a doubling of the throughput. srv1 is a dell poweredge sc1425 with onboard intel 82541GI nics (em driver on freebsd). After troubleshooting a previous problem with vlan tagging on top of a lagg interface, it turned out that the em could not support this. So I figured that maybe something else is wrong with the em drivers and / or lagg stack, so I started up backtrack 4r2 on this same server. So srv1 now uses linux kernel 2.6.35.8. I set up a bonding interface bond0. The kernel module was loaded with option mode=4 in order to get lacp. The switch was happy with the link, I could ping to and from the server. I could even put vlans on top of the bonding interface. However, only half the problem was solved: if I used srv1 as a client to the other servers, iperf was reporting around 940Mbps for each connection, and bwm-ng showed, of course, a nice distribution of the load between the two nics; if I run the iperf server on srv1 and tried to connect with the other servers, there was no load balancing. I thought that maybe I was out of luck and the hashes for the two mac addresses of the clients were the same, so I brought in two new servers and tested with the four of them at the same time, and still nothing changed. I tried disabling and reenabling one of the links, and all that happened was the traffic switched from one link to the other and back to the first again. I also tried setting the trunk to "plain trunk mode" on the switch, and experimented with other bonding modes (roundrobin, xor, alb, tlb) but I never saw any traffic distribution. One interesting thing, though: one of the four switches is a Cisco 2950, image version 12.1(22)EA7. It has 48 10/100 ports and 2 gigabit uplinks. I have a server (call it srv4) with a 4 channel trunk connected to it (4x100), FreeBSD 8.0 release. The switch is connected to sw0 via gigabit. If I set up an iperf server on one of the servers connected to sw0 and a client on srv4, ALL 4 links are used, and iperf reports around 330Mbps. systat -ifstat shows all four interfaces are used. The cisco port-channel uses src-mac to balance the load. The HP should use both the source and destination according to the manual, so it should work as well. Could this mean there is some bug in the HP firmware? Am I doing something wrong?

    Read the article

1