Search Results

Search found 48396 results on 1936 pages for 'first person shooter'.

Page 103/1936 | < Previous Page | 99 100 101 102 103 104 105 106 107 108 109 110  | Next Page >

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • SpaceX’s Falcon 9 Launch Success And Reusable Rockets Test Partially Successful

    - by Gopinath
    Elon Musk’s SpaceX is closing on the dream of developing reusable rockets and likely in an year or two space launch rockets will be reusable just like flights, ships and cars. Today SpaceX launched an upgraded Falcon 9 rocket in to space to deliver satellites as well as to test their reusable rocket launching technology. All on board satellites were released on to the orbit and the first stage of rocket partially succeeded in returning back to Earth. This is a huge leap in space technology.   Couple of years ago reusable rockets were considered as impossible. NASA, Russian Space Agency, China, India or for that matter any other space agency never even attempted to build reusable rockets. But SpaceX’s revolutionary technology partially succeeded in doing the impossible! Elon Musk founded SpaceX with the goal of building reusable rockets and transporting humans to & from other planets like Mars. He says If one can figure out how to effectively reuse rockets just like airplanes, the cost of access to space will be reduced by as much as a factor of a hundred.  A fully reusable vehicle has never been done before. That really is the fundamental breakthrough needed to revolutionize access to space. Normally the first stage of a rocket falls back to Earth after burning out and is destroyed. But today SpaceX reignited first stage rocket after its separation and attempted to descend smoothly on to ocean’s surface. Though it did not fully succeed, the test was partially successful and SpaceX was able to recovers portions of first stage. Rocket booster relit twice (supersonic retro & landing), but spun up due to aero torque, so fuel centrifuged & we flamed out — Elon Musk (@elonmusk) September 29, 2013 With the partial success of recovering first stage, SpaceX gathered huge amount of information and experience it can use to improve Falcon 9 and build a fully reusable rocket. In post launch press conference Musk said if things go "super well", could refly a Falcon 9 1st stage by the end of next year. Falcon 9 Launch Video Next reusable first tests delayed by at least two launches SpaceX has a busy schedule for next several months with more than 50 missions scheduled using the new Falcon 9 rocket. Ten of those missions are to fly cargo to the International Space Shuttle for NASA.  SpaceX announced that they will not attempt to recover the first stage of Falcon 9 in next two missions. The next test will be conducted on  the fourth mission of Falcon 9 which is planned to carry cargo to Internation Space Station sometime next year. This will give time required for SpaceX to analyze the information gathered from today’s mission and improve first stage reentry systems. More reading Here are few interesting sources to read more about today’s SpaceX launch SpaceX post mission press conference details and discussion on Reddit Giant Leaps for Space Firms Orbital, SpaceX Hacker News community discussion on SpaceX launch SpaceX Launches Next-Generation Private Falcon 9 Rocket on Big Test Flight

    Read the article

  • The SSIS tuning tip that everyone misses

    - by Rob Farley
    I know that everyone misses this, because I’m yet to find someone who doesn’t have a bit of an epiphany when I describe this. When tuning Data Flows in SQL Server Integration Services, people see the Data Flow as moving from the Source to the Destination, passing through a number of transformations. What people don’t consider is the Source, getting the data out of a database. Remember, the source of data for your Data Flow is not your Source Component. It’s wherever the data is, within your database, probably on a disk somewhere. You need to tune your query to optimise it for SSIS, and this is what most people fail to do. I’m not suggesting that people don’t tune their queries – there’s plenty of information out there about making sure that your queries run as fast as possible. But for SSIS, it’s not about how fast your query runs. Let me say that again, but in bolder text: The speed of an SSIS Source is not about how fast your query runs. If your query is used in a Source component for SSIS, the thing that matters is how fast it starts returning data. In particular, those first 10,000 rows to populate that first buffer, ready to pass down the rest of the transformations on its way to the Destination. Let’s look at a very simple query as an example, using the AdventureWorks database: We’re picking the different Weight values out of the Product table, and it’s doing this by scanning the table and doing a Sort. It’s a Distinct Sort, which means that the duplicates are discarded. It'll be no surprise to see that the data produced is sorted. Obvious, I know, but I'm making a comparison to what I'll do later. Before I explain the problem here, let me jump back into the SSIS world... If you’ve investigated how to tune an SSIS flow, then you’ll know that some SSIS Data Flow Transformations are known to be Blocking, some are Partially Blocking, and some are simply Row transformations. Take the SSIS Sort transformation, for example. I’m using a larger data set for this, because my small list of Weights won’t demonstrate it well enough. Seven buffers of data came out of the source, but none of them could be pushed past the Sort operator, just in case the last buffer contained the data that would be sorted into the first buffer. This is a blocking operation. Back in the land of T-SQL, we consider our Distinct Sort operator. It’s also blocking. It won’t let data through until it’s seen all of it. If you weren’t okay with blocking operations in SSIS, why would you be happy with them in an execution plan? The source of your data is not your OLE DB Source. Remember this. The source of your data is the NCIX/CIX/Heap from which it’s being pulled. Picture it like this... the data flowing from the Clustered Index, through the Distinct Sort operator, into the SELECT operator, where a series of SSIS Buffers are populated, flowing (as they get full) down through the SSIS transformations. Alright, I know that I’m taking some liberties here, because the two queries aren’t the same, but consider the visual. The data is flowing from your disk and through your execution plan before it reaches SSIS, so you could easily find that a blocking operation in your plan is just as painful as a blocking operation in your SSIS Data Flow. Luckily, T-SQL gives us a brilliant query hint to help avoid this. OPTION (FAST 10000) This hint means that it will choose a query which will optimise for the first 10,000 rows – the default SSIS buffer size. And the effect can be quite significant. First let’s consider a simple example, then we’ll look at a larger one. Consider our weights. We don’t have 10,000, so I’m going to use OPTION (FAST 1) instead. You’ll notice that the query is more expensive, using a Flow Distinct operator instead of the Distinct Sort. This operator is consuming 84% of the query, instead of the 59% we saw from the Distinct Sort. But the first row could be returned quicker – a Flow Distinct operator is non-blocking. The data here isn’t sorted, of course. It’s in the same order that it came out of the index, just with duplicates removed. As soon as a Flow Distinct sees a value that it hasn’t come across before, it pushes it out to the operator on its left. It still has to maintain the list of what it’s seen so far, but by handling it one row at a time, it can push rows through quicker. Overall, it’s a lot more work than the Distinct Sort, but if the priority is the first few rows, then perhaps that’s exactly what we want. The Query Optimizer seems to do this by optimising the query as if there were only one row coming through: This 1 row estimation is caused by the Query Optimizer imagining the SELECT operation saying “Give me one row” first, and this message being passed all the way along. The request might not make it all the way back to the source, but in my simple example, it does. I hope this simple example has helped you understand the significance of the blocking operator. Now I’m going to show you an example on a much larger data set. This data was fetching about 780,000 rows, and these are the Estimated Plans. The data needed to be Sorted, to support further SSIS operations that needed that. First, without the hint. ...and now with OPTION (FAST 10000): A very different plan, I’m sure you’ll agree. In case you’re curious, those arrows in the top one are 780,000 rows in size. In the second, they’re estimated to be 10,000, although the Actual figures end up being 780,000. The top one definitely runs faster. It finished several times faster than the second one. With the amount of data being considered, these numbers were in minutes. Look at the second one – it’s doing Nested Loops, across 780,000 rows! That’s not generally recommended at all. That’s “Go and make yourself a coffee” time. In this case, it was about six or seven minutes. The faster one finished in about a minute. But in SSIS-land, things are different. The particular data flow that was consuming this data was significant. It was being pumped into a Script Component to process each row based on previous rows, creating about a dozen different flows. The data flow would take roughly ten minutes to run – ten minutes from when the data first appeared. The query that completes faster – chosen by the Query Optimizer with no hints, based on accurate statistics (rather than pretending the numbers are smaller) – would take a minute to start getting the data into SSIS, at which point the ten-minute flow would start, taking eleven minutes to complete. The query that took longer – chosen by the Query Optimizer pretending it only wanted the first 10,000 rows – would take only ten seconds to fill the first buffer. Despite the fact that it might have taken the database another six or seven minutes to get the data out, SSIS didn’t care. Every time it wanted the next buffer of data, it was already available, and the whole process finished in about ten minutes and ten seconds. When debugging SSIS, you run the package, and sit there waiting to see the Debug information start appearing. You look for the numbers on the data flow, and seeing operators going Yellow and Green. Without the hint, I’d sit there for a minute. With the hint, just ten seconds. You can imagine which one I preferred. By adding this hint, it felt like a magic wand had been waved across the query, to make it run several times faster. It wasn’t the case at all – but it felt like it to SSIS.

    Read the article

  • Event Driven Behavior Tree: deterministic traversal order with parallel

    - by Heisenbug
    I've studied several articles and listen some talks about behavior trees (mostly the resources available on AIGameDev by Alex J. Champandard). I'm particularly interested on event driven behavior trees, but I have still some doubts on how to implement them correctly using a scheduler. Just a quick recap: Standard Behavior Tree Each execution tick the tree is traversed from the root in depth-first order The execution order is implicitly expressed by the tree structure. So in the case of behaviors parented to a parallel node, even if both children are executed during the same traversing, the first leaf is always evaluated first. Event Driven BT During the first traversal the nodes (tasks) are enqueued using a scheduler which is responsible for updating only running ones every update The first traversal implicitly produce a depth-first ordered queue in the scheduler Non leaf nodes stays suspended mostly of the time. When a leaf node terminate(either with success or fail status) the parent (observer) is waked up allowing the tree traversing to continue and new tasks will be enqueued in the scheduler Without parallel nodes in the tree there will be up to 1 task running in the scheduler Without parallel nodes, the tasks in the queue(excluding dynamic priority implementation) will be always ordered in a depth-first order (is this right?) Now, from what is my understanding of a possible implementation, there are 2 requirements I think must be respected(I'm not sure though): Now, some requirements I think needs to be guaranteed by a correct implementation are: The result of the traversing should be independent from which implementation strategy is used. The traversing result must be deterministic. I'm struggling trying to guarantee both in the case of parallel nodes. Here's an example: Parallel_1 -->Sequence_1 ---->leaf_A ---->leaf_B -->leaf_C Considering a FIFO policy of the scheduler, before leaf_A node terminates the tasks in the scheduler are: P1(suspended),S1(suspended),leaf_A(running),leaf_C(running) When leaf_A terminate leaf_B will be scheduled (at the end of the queue), so the queue will become: P1(suspended),S1(suspended),leaf_C(running),leaf_B(running) In this case leaf_B will be executed after leaf_C at every update, meanwhile with a non event-driven traversing from the root node, the leaf_B will always be evaluated before leaf_A. So I have a couple of question: do I have understand correctly how event driven BT work? How can I guarantee the depth first order is respected with such an implementation? is this a common issue or am I missing something?

    Read the article

  • How to merge many text files data in databse

    - by Mirage
    i have around 100 text files. The files have questions and 3 choices. FIles are like below ab001.txt -- contains question ab001a.txt -- is the first choice ab001b.txt ---is second choice ab001c.txt --- is third choice There are thousnad files like this. now i want to insert them in sql or first may in excel like First columns questions and other three columns as answers First two characters are same for soom files , looks like it signifies osme category so around every 30 questioons have same first charaters Any ideas

    Read the article

  • adresse book with C programming, i have problem with library i think, couldn't complite my code

    - by osabri
    I've divided my code in small programm so it can be easy to excute /* ab_error.c : in case of errors following messages will be displayed */ #include "adressbook.h" static char *errormsg[] = { "", "\nNot enough space on disk", "\nCannot open file", "\nCannot read file", "\nCannot write file" }; void check(int error) { switch(error) { case 0: return; case 1: write_file(); case 2: case 3: case 4: system("cls"); fputs(errormsg[error], stderr); exit(error); } } 2nd /* ab_fileio.c : functions for file input/output */ include "adressbook.h" static char ab_file[] = "ADRESSBOOK.DAT"; //file to save the entries int read_file(void) { int error = 0; FILE *fp; ELEMENT *new_e, *last_e = NULL; DATA buffer; if( (fp = fopen(ab_file, "rb")) == NULL) return -1; //no file found while (fread(&buffer, sizeof(DATA), 1, fp) == 1) //reads one list element after another { if( (new_e = make_element()) == NULL) { error = 1; break; //not enough space } new_e->person = buffer; //copy data to new element new_e->next = NULL; if(hol.first == NULL) //list is empty? hol.first = new_e; //yes else last_e->next = new_e; //no last_e = new_e; ++hol.amount; } if( !error && !feof(fp) ) error = 3; //cannot read file fclose(fp); return error; } /-------------------------------/ int write_file(void) { int error = 0; FILE *fp; ELEMENT *p; if( (p = hol.first) == NULL) return 0; //list is empty if( (fp = fopen(ab_file, "wb")) == NULL) return 2; //cannot open while( p!= NULL) { if( fwrite(&p->person, sizeof(DATA), 1, fp) < 1) { error = 4; break; //cannot write } p = p->next; } fclose(fp); return error; } 3rd /* ab_list.c : functions to manipulate the list */ #include "adressbook.h" HOL hol = {0, NULL}; //global definition for head of list /* -------------------- */ ELEMENT *make_element(void) { return (ELEMENT *)malloc( sizeof(ELEMENT) ); } /* -------------------- */ int ins_element( DATA *newdata) { ELEMENT *new_e, *pre_p; if((new_e = make_element()) == NULL) return 1; new_e ->person = *newdata; // copy data to new element pre_p = search(new_e->person.family_name); if(pre_p == NULL) //no person in list { new_e->next = hol.first; //put it to the begin hol.first = new_e; } else { new_e->next = pre_p->next; pre_p->next = new_e; } ++hol.amount; return 0; } int erase_element( char name, char surname ) { return 0; } /* ---------------------*/ ELEMENT *search(char *name) { ELEMENT *sp, *retp; //searchpointer, returnpointer retp = NULL; sp = hol.first; while(sp != NULL && sp->person.family_name != name) { retp = sp; sp = sp->next; } return(retp); } 4th /* ab_screen.c : functions for printing information on screen */ #include "adressbook.h" #include <conio.h> #include <ctype.h> /* standard prompts for in- and output */ static char pgmname[] = "---- Oussama's Adressbook made in splendid C ----"; static char options[] = "\ 1: Enter new adress\n\n\ 2: Delete entry\n\n\ 3: Change entry\n\n\ 4: Print adress\n\n\ Esc: Exit\n\n\n\ Your choice . . .: "; static char prompt[] = "\ Name . . . .:\n\ Surname . . :\n\n\ Street . . .:\n\n\ House number:\n\n\ Postal code :\n\n\ Phone number:"; static char buttons[] = "\ <Esc> = cancel input <Backspace> = correct input\ <Return> = assume"; static char headline[] = "\ Name Surname Street House Postal code Phone number \n\ ------------------------------------------------------------------------"; static char further[] = "\ -------- continue with any key --------"; /* ---------------------------------- */ int menu(void) //show menu and read user input { int c; system ("cls"); set_cur(0,20); puts(pgmname); set_cur(6,0); printf("%s", options); while( (c = getch()) != ESC && (c < '1' || c > '4')) putch('\a'); return c; } /* ---------------------------------- */ int print_adr_book(void) //display adressbook { int line = 1; ELEMENT *p = hol.first; system("cls"); set_cur(0,20); puts(pgmname); set_cur(2,0); puts(headline); set_cur(5,0); while(p != NULL) //run through list and show entries { printf("%5d %-15s ",line, p->person.family_name); printf("%-12s %-15s ", p->person.given_name, p->person.street); printf("%-4d %-5d %-12d\n",p->person.house_number, p->person.postal_code, p->person.phone); p = p->next; if( p == NULL || ++line %16 == 1) //end of list or screen is full { set_cur(24,0); printf("%s",further); if( getch() == ESC) return 0; set_cur(5,0); scroll_up(0,5,24);//puts(headline); } } return 0; } /* -------------------------------------------*/ int make_entry(void) { char cache[50]; DATA newperson; ELEMENT *p; while(1) { system("cls"); set_cur(0,20); puts(pgmname); set_cur(6,0); puts("Please enter new data:"); set_cur(10,0); puts(prompt); set_cur(24,0); printf("%s",buttons); balken(10, 25, MAXL, ' ',0x70); //input name if(input(newperson.family_name, MAXL, ESC, CR) == ESC) return 0; balken(12,25, MAXL, ' ', 0x70); //surname if(input(newperson.given_name, MAXL, ESC, CR) == ESC) return 0; balken(14,25, 30, ' ', 0x70); //street if(input(newperson.street, 30, ESC, CR) == ESC) return 0; balken(16,25, 4, ' ',0x70); //housenumber if(input(cache, 4, ESC, CR) == ESC) return 0; newperson.house_number = atol(cache); //to string balken(18,25, 5, ' ',0x70); //postal code if(input(cache, 5, ESC, CR) == ESC) return 0; newperson.postal_code = atol(cache); //to string balken(20,25, 20, ' ',0x70); //phone number if(input(cache, 20, ESC, CR) == ESC) return 0; newperson.phone = atol(cache); //to string p = search(newperson.phone); if( p!= NULL && p->person.phone == newperson.phone) { set_cur(22,25); puts("phonenumber already exists!"); set_cur(24,0); printf("%s, further"); getch(); continue; } } } 5th /* adress_book_project.c : main program to create an adressbook */ /* copyrights by Oussama Sabri, June 2010 */ #include "adressbook.h" //project header file int main() { int rv, cmd; //return value, user command if ( (rv = read_file() ) == -1) // no data saved yet rv = make_entry(); check(rv); //prompts an error and quits program on disfunction do { switch (cmd = menu())//calls menu and gets user input back { case '1': rv = make_entry(); break; case '2': //delete entry case '3': //changes entry rv = change_entry(cmd); break; case '4': //prints adressbook on screen rv = print_adr_book(); break; case ESC: //end of program system ("cls"); rv = 0; break; } }while(cmd!= ESC); check ( write_file() ); //save adressbook return 0; } 6th /* Getcb.c --> Die Funktion getcb() liefert die naechste * * Tastatureingabe (ruft den BIOS-INT 0x16 auf). * * Return-Wert: * * ASCII-Code bzw. erweiterter Code + 256 */ /* Hinweis: Es muss ein DOS-Compiler verwendet werden. * * (z.B. der GNU-Compiler fuer DOS auf der CD) */ #include <dos.h> int getcb(void) { union REGS intregs; intregs.h.ah = 0; // Subfunktion 0: ein Zeichen // von der Tastatur lesen. int86( 0x16, &intregs, &intregs); if( intregs.h.al != 0) // Falls ASCII-Zeichen, return (intregs.h.al); // dieses zurueckgeben. else // Sonst den erweiterten return (intregs.h.ah + 0x100); // Code + 256 } 7th /* PUTCB.C --> enthaelt die Funktionen * * - putcb() * * - putcb9() * * - balken() * * - input() * * * * Es werden die Funktionen 9 und 14 des Video-Interrupts * * (ROM-BIOS-Interrupt 0x10) verwendet. * * * * Die Prototypen dieser Funktionen stehen in BIO.H */ /* Hinweis: Es muss ein DOS-Compiler verwendet werden. * * (z.B. der GNU-Compiler fuer DOS auf der CD) */ #include <dos.h> #define VIDEO_INT 0x10 /*---------------------------------------------------------------- * putcb(c) gibt das Zeichen auf der aktuellen Cursor-Position * am Bildschirm aus. Der Cursor wird versetzt. * Steuerzeichen Back-Space, CR, LF und BELL werden * ausgefuehrt. * Return-Wert: keiner */ void putcb(unsigned char c) /* Gibt das Zeichen in c auf */ { /* den Bildschirm aus. */ union REGS intregs; intregs.h.ah = 14; /* Subfunktion 14 ("Teletype") */ intregs.h.al = c; intregs.h.bl = 0xf; /* Vordergrund-Farbe im */ /* Grafik-Modus. */ int86(VIDEO_INT, &intregs, &intregs); } /*---------------------------------------------------------------- * putcb9(c,count,mode) gibt das Zeichen in c count-mal im * angegebenen Modus auf der aktuellen * Cursor-Position am Bildschirm aus. * Der Cursor wird nicht versetzt. * * Return-Wert: keiner */ void putcb9( unsigned char c, /* das Zeichen */ unsigned count, /* die Anzahl */ unsigned mode ) /* Low-Byte: das Atrribut */ { /* High-Byte: die Bildschirmseite*/ union REGS intregs; intregs.h.ah = 9; /* Subfunktion 9 des Int 0x10 */ intregs.h.al = c; intregs.x.bx = mode; intregs.x.cx = count; int86( VIDEO_INT, &intregs, &intregs); } /*---------------------------------------------------------------- * balken() positioniert den Cursor und zeichnet einen Balken, * wobei Position, L„nge, Fllzeichen und Attribut * als Argumente bergeben werden. * Der Cursor bleibt auf der ersten Position im Balken. */ void balken( unsigned int zeile, /* Start-Position */ unsigned int spalte, unsigned int laenge, /* Laenge des Balkens */ unsigned char c, /* Fuellzeichen */ unsigned int modus) /* Low-Byte: Attribut */ /* High-Byte: Bildschirmseite */ { union REGS intregs; intregs.h.ah = 2; /* Cursor auf der angegebenen */ intregs.h.dh = zeile; /* Bildschirmseite versetzen. */ intregs.h.dl = spalte; intregs.h.bh = (modus >> 8); int86(VIDEO_INT, &intregs, &intregs); putcb9(c, laenge, modus); /* Balken ausgeben. */ } /*---------------------------------------------------------------- * input() liest Zeichen von der Tastatur ein und haengt '\0' an. * Mit Backspace kann die Eingabe geloescht werden. * Das Attribut am Bildschirm bleibt erhalten. * * Argumente: 1. Zeiger auf den Eingabepuffer. * 2. Anzahl maximal einzulesender Zeichen. * 3. Die optionalen Argumente: Zeichen, mit denen die * Eingabe abgebrochen werden kann. * Diese Liste muá mit CR = '\r' enden! * Return-Wert: Das Zeichen, mit dem die Eingabe abgebrochen wurde. */ #include <stdarg.h> int getcb( void); /* Zum Lesen der Tastatur */ int input(char *puffer, int max,... ) { int c; /* aktuelles Zeichen */ int breakc; /* Abruchzeichen */ int nc = 0; /* Anzahl eingelesener Zeichen */ va_list argp; /* Zeiger auf die weiteren Arumente */ while(1) { *puffer = '\0'; va_start(argp, max); /* argp initialisieren */ c = getcb(); do /* Mit Zeichen der Abbruchliste vergleichen */ if(c == (breakc = va_arg(argp,int)) ) return(breakc); while( breakc != '\r' ); va_end( argp); if( c == '\b' && nc > 0) /* Backspace? */ { --nc; --puffer; putcb(c); putcb(' '); putcb(c); } else if( c >= 32 && c <= 255 && nc < max ) { ++nc; *puffer++ = c; putcb(c); } else if( nc == max) putcb('\7'); /* Ton ausgeben */ } } 8th /* Video.c --> Enthaelt die Funktionen * cls(), * scroll_up(), scroll_down(), * set_cur(), get_cur(), * set_screen_page(), get_screen_page() * * Die Prototypen dieser Funktionen befinden sich in BIO.H */ /* Hinweis: Es muss ein DOS-Compiler verwendet werden. * * (z.B. der GNU-Compiler fuer DOS auf der CD) */ #include <dos.h> #include "bio.h" #define VIDEO_INT 0x10 typedef unsigned char BYTE; void scroll_up( int anzahl, int anf_zeile, int end_zeile) { /* Fenster hoch rollen. */ union REGS intregs; intregs.x.ax = 0x600 + anzahl; /* Subfunktion AH = 6, */ /* AL = Anzahl Zeilen. */ intregs.x.cx = anf_zeile << 8; /* CH=anf_zeile, cl=0 */ intregs.x.dx = (end_zeile <<8) | 79; /* DH=end_zeile,DL=79 */ intregs.h.bh = 7; /* normales Attribut */ int86(VIDEO_INT, &intregs, &intregs); } void scroll_down( int anzahl, int anf_zeile, int end_zeile) { /* Fenster runter rollen. */ union REGS intregs; intregs.x.ax = 0x700 + anzahl; /* Subfunktion AH = 7, */ /* AL = Anzahl Zeilen. */ intregs.x.cx = anf_zeile << 8; /* CH=anf_zeile, cl=0 */ intregs.x.dx = (end_zeile <<8) | 79; /* DH=end_zeile,DL=79 */ intregs.h.bh = 7; /* normales Attribut */ int86(VIDEO_INT, &intregs, &intregs); } void set_cur( int zeile, int spalte) /* versetzt den Cursor */ { /* der aktuellen Bildschirmseite.*/ union REGS intregs; intregs.h.ah = 2; intregs.h.dh = (BYTE)zeile; intregs.h.dl = (BYTE)spalte; intregs.h.bh = (BYTE)get_screen_page(); int86(VIDEO_INT, &intregs, &intregs); } void get_cur(int *zeile, int *spalte) /* holt die Cursor- */ { /* Position der aktuellen Bildschirmseite.*/ union REGS intregs; intregs.h.ah = 3; intregs.h.bh = (BYTE)get_screen_page(); int86(VIDEO_INT, &intregs, &intregs); *zeile = (unsigned)intregs.h.dh; *spalte = (unsigned)intregs.h.dl; } void cls(void) { scroll_up(0,0,24); /* Gesamten Bildschirm loeschen. */ set_cur(0,0); /* Cursor in Home-Position. */ } int get_screen_page(void) /* Aktuelle Bildschirmseite holen.*/ { union REGS intregs; intregs.h.ah = 15; /* Subfunktion AH = 15: */ /* Bildschirm-Modus feststellen. */ int86(VIDEO_INT, &intregs, &intregs); return (intregs.h.bh); } void set_screen_page(int seite) /* setzt die aktive Seite des */ { /* Bildschirmpuffers auf die */ /* angegebene Seite. */ union REGS intregs; intregs.x.ax = 0x500 + seite; /* Subfunktion AH = 5 */ int86(VIDEO_INT, &intregs, &intregs); } /* ------------------------------------------------------------- Ein kleines Testprogramm : */ /* #include <stdio.h> int main() { cls(); set_cur(23, 0); printf("Weiter mit <Return>\n"); set_cur(12, 20); printf("Ein Test!\n"); getchar(); scroll_up(3, 5, 20); getchar(); scroll_down(6, 5, 20); getchar(); set_screen_page(1); printf("\nAuf der 2. Seite !\n"); getchar(); set_screen_page(0); set_cur(0,0); printf("\nWieder auf der 1. Seite !\n"); getchar(); cls(); return 0; } */ /* Video.c --> Enthaelt die Funktionen * cls(), * scroll_up(), scroll_down(), * set_cur(), get_cur(), * set_screen_page(), get_screen_page() * * Die Prototypen dieser Funktionen befinden sich in BIO.H */ /* Hinweis: Es muss ein DOS-Compiler verwendet werden. * * (z.B. der GNU-Compiler fuer DOS auf der CD) */ #include <dos.h> #include "bio.h" #define VIDEO_INT 0x10 typedef unsigned char BYTE; void scroll_up( int anzahl, int anf_zeile, int end_zeile) { /* Fenster hoch rollen. */ union REGS intregs; intregs.x.ax = 0x600 + anzahl; /* Subfunktion AH = 6, */ /* AL = Anzahl Zeilen. */ intregs.x.cx = anf_zeile << 8; /* CH=anf_zeile, cl=0 */ intregs.x.dx = (end_zeile <<8) | 79; /* DH=end_zeile,DL=79 */ intregs.h.bh = 7; /* normales Attribut */ int86(VIDEO_INT, &intregs, &intregs); } void scroll_down( int anzahl, int anf_zeile, int end_zeile) { /* Fenster runter rollen. */ union REGS intregs; intregs.x.ax = 0x700 + anzahl; /* Subfunktion AH = 7, */ /* AL = Anzahl Zeilen. */ intregs.x.cx = anf_zeile << 8; /* CH=anf_zeile, cl=0 */ intregs.x.dx = (end_zeile <<8) | 79; /* DH=end_zeile,DL=79 */ intregs.h.bh = 7; /* normales Attribut */ int86(VIDEO_INT, &intregs, &intregs); } void set_cur( int zeile, int spalte) /* versetzt den Cursor */ { /* der aktuellen Bildschirmseite.*/ union REGS intregs; intregs.h.ah = 2; intregs.h.dh = (BYTE)zeile; intregs.h.dl = (BYTE)spalte; intregs.h.bh = (BYTE)get_screen_page(); int86(VIDEO_INT, &intregs, &intregs); } void get_cur(int *zeile, int *spalte) /* holt die Cursor- */ { /* Position der aktuellen Bildschirmseite.*/ union REGS intregs; intregs.h.ah = 3; intregs.h.bh = (BYTE)get_screen_page(); int86(VIDEO_INT, &intregs, &intregs); *zeile = (unsigned)intregs.h.dh; *spalte = (unsigned)intregs.h.dl; } void cls(void) { scroll_up(0,0,24); /* Gesamten Bildschirm loeschen. */ set_cur(0,0); /* Cursor in Home-Position. */ } int get_screen_page(void) /* Aktuelle Bildschirmseite holen.*/ { union REGS intregs; intregs.h.ah = 15; /* Subfunktion AH = 15: */ /* Bildschirm-Modus feststellen. */ int86(VIDEO_INT, &intregs, &intregs); return (intregs.h.bh); } void set_screen_page(int seite) /* setzt die aktive Seite des */ { /* Bildschirmpuffers auf die */ /* angegebene Seite. */ union REGS intregs; intregs.x.ax = 0x500 + seite; /* Subfunktion AH = 5 */ int86(VIDEO_INT, &intregs, &intregs); } /* ------------------------------------------------------------- Ein kleines Testprogramm : */ /* #include <stdio.h> int main() { cls(); set_cur(23, 0); printf("Weiter mit <Return>\n"); set_cur(12, 20); printf("Ein Test!\n"); getchar(); scroll_up(3, 5, 20); getchar(); scroll_down(6, 5, 20); getchar(); set_screen_page(1); printf("\nAuf der 2. Seite !\n"); getchar(); set_screen_page(0); set_cur(0,0); printf("\nWieder auf der 1. Seite !\n"); getchar(); cls(); return 0; } */ /* BIO.H --> Enthaelt die Prototypen der BIOS-Funktionen. */ /* --- Funktionen in VIDEO.C --- */ extern void scroll_up(int anzahl, int anf_zeile,int end_zeile); extern void scroll_down(int anzahl, int anf_zeile, int end_zeile); extern void set_cur(int zeile, int spalte); extern void get_cur(int *zeile, int *spalte); extern void cls(void); extern int get_screen_page(void); extern void set_screen_page(int page); /* --- Funktionen in GETCB.C / PUTCB.C --- */ extern int getcb(void); extern void putcb(int c); extern void putcb9(int c, unsigned count, unsigned modus); extern void balken(int zeile, int spalte, int laenge, int c, unsigned modus); extern int input(char *puffer, int max,... ); need your help, can't find my mistakes:((

    Read the article

  • Address book with C programming; cannot compile my code.

    - by osabri
    I've divided my code into small programs so it can be easy to excute /* ab_error.c : in case of errors following messages will be displayed */ #include "adressbook.h" static char *errormsg[] = { "", "\nNot enough space on disk", "\nCannot open file", "\nCannot read file", "\nCannot write file" }; void check(int error) { switch(error) { case 0: return; case 1: write_file(); case 2: case 3: case 4: system("cls"); fputs(errormsg[error], stderr); exit(error); } } 2nd /* ab_fileio.c : functions for file input/output */ #include "adressbook.h" static char ab_file[] = "ADRESSBOOK.DAT"; //file to save the entries int read_file(void) { int error = 0; FILE *fp; ELEMENT *new_e, *last_e = NULL; DATA buffer; if( (fp = fopen(ab_file, "rb")) == NULL) return -1; //no file found while (fread(&buffer, sizeof(DATA), 1, fp) == 1) //reads one list element after another { if( (new_e = make_element()) == NULL) { error = 1; break; //not enough space } new_e->person = buffer; //copy data to new element new_e->next = NULL; if(hol.first == NULL) //list is empty? hol.first = new_e; //yes else last_e->next = new_e; //no last_e = new_e; ++hol.amount; } if( !error && !feof(fp) ) error = 3; //cannot read file fclose(fp); return error; } /*-------------------------------*/ int write_file(void) { int error = 0; FILE *fp; ELEMENT *p; if( (p = hol.first) == NULL) return 0; //list is empty if( (fp = fopen(ab_file, "wb")) == NULL) return 2; //cannot open while( p!= NULL) { if( fwrite(&p->person, sizeof(DATA), 1, fp) < 1) { error = 4; break; //cannot write } p = p->next; } fclose(fp); return error; } 3rd /* ab_list.c : functions to manipulate the list */ #include "adressbook.h" HOL hol = {0, NULL}; //global definition for head of list /* -------------------- */ ELEMENT *make_element(void) { return (ELEMENT *)malloc( sizeof(ELEMENT) ); } /* -------------------- */ int ins_element( DATA *newdata) { ELEMENT *new_e, *pre_p; if((new_e = make_element()) == NULL) return 1; new_e ->person = *newdata; // copy data to new element pre_p = search(new_e->person.family_name); if(pre_p == NULL) //no person in list { new_e->next = hol.first; //put it to the begin hol.first = new_e; } else { new_e->next = pre_p->next; pre_p->next = new_e; } ++hol.amount; return 0; } int erase_element( char name, char surname ) { return 0; } /* ---------------------*/ ELEMENT *search(char *name) { ELEMENT *sp, *retp; //searchpointer, returnpointer retp = NULL; sp = hol.first; while(sp != NULL && sp->person.family_name != name) { retp = sp; sp = sp->next; } return(retp); } 4th /* ab_screen.c : functions for printing information on screen */ #include "adressbook.h" #include <conio.h> #include <ctype.h> /* standard prompts for in- and output */ static char pgmname[] = "---- Oussama's Adressbook made in splendid C ----"; static char options[] = "\ 1: Enter new adress\n\n\ 2: Delete entry\n\n\ 3: Change entry\n\n\ 4: Print adress\n\n\ Esc: Exit\n\n\n\ Your choice . . .: "; static char prompt[] = "\ Name . . . .:\n\ Surname . . :\n\n\ Street . . .:\n\n\ House number:\n\n\ Postal code :\n\n\ Phone number:"; static char buttons[] = "\ <Esc> = cancel input <Backspace> = correct input\ <Return> = assume"; static char headline[] = "\ Name Surname Street House Postal code Phone number \n\ ------------------------------------------------------------------------"; static char further[] = "\ -------- continue with any key --------"; /* ---------------------------------- */ int menu(void) //show menu and read user input { int c; system ("cls"); set_cur(0,20); puts(pgmname); set_cur(6,0); printf("%s", options); while( (c = getch()) != ESC && (c < '1' || c > '4')) putch('\a'); return c; } /* ---------------------------------- */ int print_adr_book(void) //display adressbook { int line = 1; ELEMENT *p = hol.first; system("cls"); set_cur(0,20); puts(pgmname); set_cur(2,0); puts(headline); set_cur(5,0); while(p != NULL) //run through list and show entries { printf("%5d %-15s ",line, p->person.family_name); printf("%-12s %-15s ", p->person.given_name, p->person.street); printf("%-4d %-5d %-12d\n",p->person.house_number, p->person.postal_code, p->person.phone); p = p->next; if( p == NULL || ++line %16 == 1) //end of list or screen is full { set_cur(24,0); printf("%s",further); if( getch() == ESC) return 0; set_cur(5,0); scroll_up(0,5,24);//puts(headline); } } return 0; } /* -------------------------------------------*/ int make_entry(void) { char cache[50]; DATA newperson; ELEMENT *p; while(1) { system("cls"); set_cur(0,20); puts(pgmname); set_cur(6,0); puts("Please enter new data:"); set_cur(10,0); puts(prompt); set_cur(24,0); printf("%s",buttons); balken(10, 25, MAXL, ' ',0x70); //input name if(input(newperson.family_name, MAXL, ESC, CR) == ESC) return 0; balken(12,25, MAXL, ' ', 0x70); //surname if(input(newperson.given_name, MAXL, ESC, CR) == ESC) return 0; balken(14,25, 30, ' ', 0x70); //street if(input(newperson.street, 30, ESC, CR) == ESC) return 0; balken(16,25, 4, ' ',0x70); //housenumber if(input(cache, 4, ESC, CR) == ESC) return 0; newperson.house_number = atol(cache); //to string balken(18,25, 5, ' ',0x70); //postal code if(input(cache, 5, ESC, CR) == ESC) return 0; newperson.postal_code = atol(cache); //to string balken(20,25, 20, ' ',0x70); //phone number if(input(cache, 20, ESC, CR) == ESC) return 0; newperson.phone = atol(cache); //to string p = search(newperson.phone); if( p!= NULL && p->person.phone == newperson.phone) { set_cur(22,25); puts("phonenumber already exists!"); set_cur(24,0); printf("%s, further"); getch(); continue; } } } 5th /* adress_book_project.c : main program to create an adressbook */ /* copyrights by Oussama Sabri, June 2010 */ #include "adressbook.h" //project header file int main() { int rv, cmd; //return value, user command if ( (rv = read_file() ) == -1) // no data saved yet rv = make_entry(); check(rv); //prompts an error and quits program on disfunction do { switch (cmd = menu())//calls menu and gets user input back { case '1': rv = make_entry(); break; case '2': //delete entry case '3': //changes entry rv = change_entry(cmd); break; case '4': //prints adressbook on screen rv = print_adr_book(); break; case ESC: //end of program system ("cls"); rv = 0; break; } }while(cmd!= ESC); check ( write_file() ); //save adressbook return 0; } 6th /* Getcb.c --> Die Funktion getcb() liefert die naechste * * Tastatureingabe (ruft den BIOS-INT 0x16 auf). * * Return-Wert: * * ASCII-Code bzw. erweiterter Code + 256 */ /* Hinweis: Es muss ein DOS-Compiler verwendet werden. * * (z.B. der GNU-Compiler fuer DOS auf der CD) */ #include <dos.h> int getcb(void) { union REGS intregs; intregs.h.ah = 0; // Subfunktion 0: ein Zeichen // von der Tastatur lesen. int86( 0x16, &intregs, &intregs); if( intregs.h.al != 0) // Falls ASCII-Zeichen, return (intregs.h.al); // dieses zurueckgeben. else // Sonst den erweiterten return (intregs.h.ah + 0x100); // Code + 256 } 7th /* PUTCB.C --> enthaelt die Funktionen * * - putcb() * * - putcb9() * * - balken() * * - input() * * * * Es werden die Funktionen 9 und 14 des Video-Interrupts * * (ROM-BIOS-Interrupt 0x10) verwendet. * * * * Die Prototypen dieser Funktionen stehen in BIO.H */ /* Hinweis: Es muss ein DOS-Compiler verwendet werden. * * (z.B. der GNU-Compiler fuer DOS auf der CD) */ #include <dos.h> #define VIDEO_INT 0x10 /*---------------------------------------------------------------- * putcb(c) gibt das Zeichen auf der aktuellen Cursor-Position * am Bildschirm aus. Der Cursor wird versetzt. * Steuerzeichen Back-Space, CR, LF und BELL werden * ausgefuehrt. * Return-Wert: keiner */ void putcb(unsigned char c) /* Gibt das Zeichen in c auf */ { /* den Bildschirm aus. */ union REGS intregs; intregs.h.ah = 14; /* Subfunktion 14 ("Teletype") */ intregs.h.al = c; intregs.h.bl = 0xf; /* Vordergrund-Farbe im */ /* Grafik-Modus. */ int86(VIDEO_INT, &intregs, &intregs); } /*---------------------------------------------------------------- * putcb9(c,count,mode) gibt das Zeichen in c count-mal im * angegebenen Modus auf der aktuellen * Cursor-Position am Bildschirm aus. * Der Cursor wird nicht versetzt. * * Return-Wert: keiner */ void putcb9( unsigned char c, /* das Zeichen */ unsigned count, /* die Anzahl */ unsigned mode ) /* Low-Byte: das Atrribut */ { /* High-Byte: die Bildschirmseite*/ union REGS intregs; intregs.h.ah = 9; /* Subfunktion 9 des Int 0x10 */ intregs.h.al = c; intregs.x.bx = mode; intregs.x.cx = count; int86( VIDEO_INT, &intregs, &intregs); } /*---------------------------------------------------------------- * balken() positioniert den Cursor und zeichnet einen Balken, * wobei Position, L„nge, Fllzeichen und Attribut * als Argumente bergeben werden. * Der Cursor bleibt auf der ersten Position im Balken. */ void balken( unsigned int zeile, /* Start-Position */ unsigned int spalte, unsigned int laenge, /* Laenge des Balkens */ unsigned char c, /* Fuellzeichen */ unsigned int modus) /* Low-Byte: Attribut */ /* High-Byte: Bildschirmseite */ { union REGS intregs; intregs.h.ah = 2; /* Cursor auf der angegebenen */ intregs.h.dh = zeile; /* Bildschirmseite versetzen. */ intregs.h.dl = spalte; intregs.h.bh = (modus >> 8); int86(VIDEO_INT, &intregs, &intregs); putcb9(c, laenge, modus); /* Balken ausgeben. */ } /*---------------------------------------------------------------- * input() liest Zeichen von der Tastatur ein und haengt '\0' an. * Mit Backspace kann die Eingabe geloescht werden. * Das Attribut am Bildschirm bleibt erhalten. * * Argumente: 1. Zeiger auf den Eingabepuffer. * 2. Anzahl maximal einzulesender Zeichen. * 3. Die optionalen Argumente: Zeichen, mit denen die * Eingabe abgebrochen werden kann. * Diese Liste muá mit CR = '\r' enden! * Return-Wert: Das Zeichen, mit dem die Eingabe abgebrochen wurde. */ #include <stdarg.h> int getcb( void); /* Zum Lesen der Tastatur */ int input(char *puffer, int max,... ) { int c; /* aktuelles Zeichen */ int breakc; /* Abruchzeichen */ int nc = 0; /* Anzahl eingelesener Zeichen */ va_list argp; /* Zeiger auf die weiteren Arumente */ while(1) { *puffer = '\0'; va_start(argp, max); /* argp initialisieren */ c = getcb(); do /* Mit Zeichen der Abbruchliste vergleichen */ if(c == (breakc = va_arg(argp,int)) ) return(breakc); while( breakc != '\r' ); va_end( argp); if( c == '\b' && nc > 0) /* Backspace? */ { --nc; --puffer; putcb(c); putcb(' '); putcb(c); } else if( c >= 32 && c <= 255 && nc < max ) { ++nc; *puffer++ = c; putcb(c); } else if( nc == max) putcb('\7'); /* Ton ausgeben */ } } 8th /* Video.c --> Enthaelt die Funktionen * cls(), * scroll_up(), scroll_down(), * set_cur(), get_cur(), * set_screen_page(), get_screen_page() * * Die Prototypen dieser Funktionen befinden sich in BIO.H */ /* Hinweis: Es muss ein DOS-Compiler verwendet werden. * * (z.B. der GNU-Compiler fuer DOS auf der CD) */ #include <dos.h> #include "bio.h" #define VIDEO_INT 0x10 typedef unsigned char BYTE; void scroll_up( int anzahl, int anf_zeile, int end_zeile) { /* Fenster hoch rollen. */ union REGS intregs; intregs.x.ax = 0x600 + anzahl; /* Subfunktion AH = 6, */ /* AL = Anzahl Zeilen. */ intregs.x.cx = anf_zeile << 8; /* CH=anf_zeile, cl=0 */ intregs.x.dx = (end_zeile <<8) | 79; /* DH=end_zeile,DL=79 */ intregs.h.bh = 7; /* normales Attribut */ int86(VIDEO_INT, &intregs, &intregs); } void scroll_down( int anzahl, int anf_zeile, int end_zeile) { /* Fenster runter rollen. */ union REGS intregs; intregs.x.ax = 0x700 + anzahl; /* Subfunktion AH = 7, */ /* AL = Anzahl Zeilen. */ intregs.x.cx = anf_zeile << 8; /* CH=anf_zeile, cl=0 */ intregs.x.dx = (end_zeile <<8) | 79; /* DH=end_zeile,DL=79 */ intregs.h.bh = 7; /* normales Attribut */ int86(VIDEO_INT, &intregs, &intregs); } void set_cur( int zeile, int spalte) /* versetzt den Cursor */ { /* der aktuellen Bildschirmseite.*/ union REGS intregs; intregs.h.ah = 2; intregs.h.dh = (BYTE)zeile; intregs.h.dl = (BYTE)spalte; intregs.h.bh = (BYTE)get_screen_page(); int86(VIDEO_INT, &intregs, &intregs); } void get_cur(int *zeile, int *spalte) /* holt die Cursor- */ { /* Position der aktuellen Bildschirmseite.*/ union REGS intregs; intregs.h.ah = 3; intregs.h.bh = (BYTE)get_screen_page(); int86(VIDEO_INT, &intregs, &intregs); *zeile = (unsigned)intregs.h.dh; *spalte = (unsigned)intregs.h.dl; } void cls(void) { scroll_up(0,0,24); /* Gesamten Bildschirm loeschen. */ set_cur(0,0); /* Cursor in Home-Position. */ } int get_screen_page(void) /* Aktuelle Bildschirmseite holen.*/ { union REGS intregs; intregs.h.ah = 15; /* Subfunktion AH = 15: */ /* Bildschirm-Modus feststellen. */ int86(VIDEO_INT, &intregs, &intregs); return (intregs.h.bh); } void set_screen_page(int seite) /* setzt die aktive Seite des */ { /* Bildschirmpuffers auf die */ /* angegebene Seite. */ union REGS intregs; intregs.x.ax = 0x500 + seite; /* Subfunktion AH = 5 */ int86(VIDEO_INT, &intregs, &intregs); } /* ------------------------------------------------------------- Ein kleines Testprogramm : */ /* #include <stdio.h> int main() { cls(); set_cur(23, 0); printf("Weiter mit <Return>\n"); set_cur(12, 20); printf("Ein Test!\n"); getchar(); scroll_up(3, 5, 20); getchar(); scroll_down(6, 5, 20); getchar(); set_screen_page(1); printf("\nAuf der 2. Seite !\n"); getchar(); set_screen_page(0); set_cur(0,0); printf("\nWieder auf der 1. Seite !\n"); getchar(); cls(); return 0; } */ /* Video.c --> Enthaelt die Funktionen * cls(), * scroll_up(), scroll_down(), * set_cur(), get_cur(), * set_screen_page(), get_screen_page() * * Die Prototypen dieser Funktionen befinden sich in BIO.H */ /* Hinweis: Es muss ein DOS-Compiler verwendet werden. * * (z.B. der GNU-Compiler fuer DOS auf der CD) */ #include <dos.h> #include "bio.h" #define VIDEO_INT 0x10 typedef unsigned char BYTE; void scroll_up( int anzahl, int anf_zeile, int end_zeile) { /* Fenster hoch rollen. */ union REGS intregs; intregs.x.ax = 0x600 + anzahl; /* Subfunktion AH = 6, */ /* AL = Anzahl Zeilen. */ intregs.x.cx = anf_zeile << 8; /* CH=anf_zeile, cl=0 */ intregs.x.dx = (end_zeile <<8) | 79; /* DH=end_zeile,DL=79 */ intregs.h.bh = 7; /* normales Attribut */ int86(VIDEO_INT, &intregs, &intregs); } void scroll_down( int anzahl, int anf_zeile, int end_zeile) { /* Fenster runter rollen. */ union REGS intregs; intregs.x.ax = 0x700 + anzahl; /* Subfunktion AH = 7, */ /* AL = Anzahl Zeilen. */ intregs.x.cx = anf_zeile << 8; /* CH=anf_zeile, cl=0 */ intregs.x.dx = (end_zeile <<8) | 79; /* DH=end_zeile,DL=79 */ intregs.h.bh = 7; /* normales Attribut */ int86(VIDEO_INT, &intregs, &intregs); } void set_cur( int zeile, int spalte) /* versetzt den Cursor */ { /* der aktuellen Bildschirmseite.*/ union REGS intregs; intregs.h.ah = 2; intregs.h.dh = (BYTE)zeile; intregs.h.dl = (BYTE)spalte; intregs.h.bh = (BYTE)get_screen_page(); int86(VIDEO_INT, &intregs, &intregs); } void get_cur(int *zeile, int *spalte) /* holt die Cursor- */ { /* Position der aktuellen Bildschirmseite.*/ union REGS intregs; intregs.h.ah = 3; intregs.h.bh = (BYTE)get_screen_page(); int86(VIDEO_INT, &intregs, &intregs); *zeile = (unsigned)intregs.h.dh; *spalte = (unsigned)intregs.h.dl; } void cls(void) { scroll_up(0,0,24); /* Gesamten Bildschirm loeschen. */ set_cur(0,0); /* Cursor in Home-Position. */ } int get_screen_page(void) /* Aktuelle Bildschirmseite holen.*/ { union REGS intregs; intregs.h.ah = 15; /* Subfunktion AH = 15: */ /* Bildschirm-Modus feststellen. */ int86(VIDEO_INT, &intregs, &intregs); return (intregs.h.bh); } void set_screen_page(int seite) /* setzt die aktive Seite des */ { /* Bildschirmpuffers auf die */ /* angegebene Seite. */ union REGS intregs; intregs.x.ax = 0x500 + seite; /* Subfunktion AH = 5 */ int86(VIDEO_INT, &intregs, &intregs); } /* ------------------------------------------------------------- Ein kleines Testprogramm : */ /* #include <stdio.h> int main() { cls(); set_cur(23, 0); printf("Weiter mit <Return>\n"); set_cur(12, 20); printf("Ein Test!\n"); getchar(); scroll_up(3, 5, 20); getchar(); scroll_down(6, 5, 20); getchar(); set_screen_page(1); printf("\nAuf der 2. Seite !\n"); getchar(); set_screen_page(0); set_cur(0,0); printf("\nWieder auf der 1. Seite !\n"); getchar(); cls(); return 0; } */ /* BIO.H --> Enthaelt die Prototypen der BIOS-Funktionen. */ /* --- Funktionen in VIDEO.C --- */ extern void scroll_up(int anzahl, int anf_zeile,int end_zeile); extern void scroll_down(int anzahl, int anf_zeile, int end_zeile); extern void set_cur(int zeile, int spalte); extern void get_cur(int *zeile, int *spalte); extern void cls(void); extern int get_screen_page(void); extern void set_screen_page(int page); /* --- Funktionen in GETCB.C / PUTCB.C --- */ extern int getcb(void); extern void putcb(int c); extern void putcb9(int c, unsigned count, unsigned modus); extern void balken(int zeile, int spalte, int laenge, int c, unsigned modus); extern int input(char *puffer, int max,... ); need your help, can't find my mistakes:((

    Read the article

  • Who organizes your Matlab code?

    - by KE
    After reading How to organize MATLAB code?, I had a follow up question. If you work in a group of Matlab programmers, who enforces the organization of the shared Matlab code and project matfiles? For example do you have a dedicated Matlab IT person, or does the most senior programmer issue guidelines that everyone must follow, or does everyone agree to follow a system? In my small group, each person has their own 'system'. Matlab code and project matfiles are either piled into a shared drive or tucked away on people's own computers. Hard to recreate work done by another person, or even to locate their code. There were lots of good suggestions on how to get organized. But it seems like someone has to make the trains run on time. Who does it in your group?

    Read the article

  • HTG Explains: What The Windows Event Viewer Is and How You Can Use It

    - by Chris Hoffman
    The Windows Event Viewer shows a log of application and system messages – errors, information messages, and warnings. Scammers have used the Event Viewer to deceive people – event a properly functioning system will have error messages here. In one infamous scam, a person claiming to be from Microsoft phones someone up and instructs them to open the Event Viewer. The person is sure to see error messages here, and the scammer will ask for the person’s credit card number to fix them. As a rule of thumb, you can generally ignore all of the errors and warnings that appear in the Event Viewer – assuming your computer is working properly. HTG Explains: What The Windows Event Viewer Is and How You Can Use It HTG Explains: How Windows Uses The Task Scheduler for System Tasks HTG Explains: Why Do Hard Drives Show the Wrong Capacity in Windows?

    Read the article

  • BI Beginner: Excel 2013 Power View Maps

    - by John Paul Cook
    If you know how to use Excel, you can be productive in minutes with the new features of Excel 2013. Don’t be intimidated. Follow these simple steps and produce something snazzy! The Excel file used in this example comes from the following SQL Server query which was run against the AdventureWorks2012 database: SELECT Purchasing . Vendor . Name , Person . Address . City , Person . StateProvince . Name AS State FROM Purchasing . Vendor INNER JOIN Person . BusinessEntityAddress ON Purchasing . Vendor...(read more)

    Read the article

  • To Bit or Not To Bit

    - by Johnm
    'Twas a long day of troubleshooting and firefighting and now, with most of the office vacant, you face a blank scripting window to create a new table in his database. Many questions circle your mind like dirty water gurgling down the bathtub drain: "How normalized should this table be?", "Should I use an identity column?", "NVarchar or Varchar?", "Should this column be NULLABLE?", "I wonder what apple blue cheese bacon cheesecake tastes like?" Well, there are times when the mind goes it's own direction. A Bit About Bit At some point during your table creation efforts you will encounter the decision of whether to use the bit data type for a column. The bit data type is an integer data type that recognizes only the values of 1, 0 and NULL as valid. This data type is often utilized to store yes/no or true/false values. An example of its use would be a column called [IsGasoline] which would be intended to contain the value of 1 if the row's subject (a car) had a gasoline engine and a 0 if the subject did not have a gasoline engine. The bit data type can even be found in some of the system tables of SQL Server. For example, the sysssispackages table in the msdb database which contains SQL Server Integration Services Package information for the packages stored in SQL Server. This table contains a column called [IsEncrypted]. A value of 1 indicates that the package has been encrypted while the value of 0 indicates that it is not. I have learned that the most effective way to disperse the crowd that surrounds the office coffee machine is to engage into SQL Server debates. The bit data type has been one of the most reoccurring, as well as the most enjoyable, of these topics. It contains a practical side and a philosophical side. Practical Consideration This data type certainly has its place and is a valuable option for database design; but it is often used in situations where the answer is really not a pure true/false response. In addition, true/false values are not very informative or scalable. Let's use the previously noted [IsGasoline] column for illustration. While on the surface it appears to be a rather simple question when evaluating a car: "Does the car have a gasoline engine?" If the person entering data is entering a row for a Jeep Liberty, the response would be a 1 since it has a gasoline engine. If the person is entering data is entering a row for a Chevrolet Volt, the response would be a 0 since it is an electric engine. What happens when a person is entering a row for the gasoline/electric hybrid Toyota Prius? Would one person's conclusion be consistent with another person's conclusion? The argument could be made that the current intent for the database is to be used only for pure gasoline and pure electric engines; but this is where the scalability issue comes into play. With the use of a bit data type a database modification and data conversion would be required if the business decided to take on hybrid engines. Whereas, alternatively, if the int data type were used as a foreign key to a reference table containing the engine type options, the change to include the hybrid option would only require an entry into the reference table. Philosophical Consideration Since the bit data type is often used for true/false or yes/no data (also called Boolean) it presents a philosophical conundrum of what to do about the allowance of the NULL value. The inclusion of NULL in a true/false or yes/no response simply violates the logical principle of bivalence which states that "every proposition is either true or false". If NULL is not true, then it must be false. The mathematical laws of Boolean logic support this concept by stating that the only valid values of this scenario are 1 and 0. There is another way to look at this conundrum: NULL is also considered to be the absence of a response. In other words, it is the equivalent to "undecided". Anyone who watches the news can tell you that polls always include an "undecided" option. This could be considered a valid option in the world of yes/no/dunno. Through out all of these considerations I have discovered one absolute certainty: When you have found a person, or group of persons, who are willing to entertain a philosophical debate of the bit data type, you have found some true friends.

    Read the article

  • "Yes, but that's niche."

    - by Geertjan
    JavaOne 2012 has come to an end though it feels like it hasn't even started yet! What happened, time is a weird thing. Too many things to report on. James Gosling's appearance at the JavaOne community keynote was seen, by everyone (which is quite a lot) of people I talked to, as the highlight of the conference. It was interesting that the software for the Duke's Choice Award winning Liquid Robotics that James Gosling is now part of and came to talk about is a Swing application that uses the WorldWind libraries. It was also interesting that James Gosling pointed out to the conference: "There are things you can't do using HTML." That brings me to the wonderful counter argument to the above, which I spend my time running into a lot: "Yes, but that's niche." It's a killer argument, i.e., it kills all discussions completely in one fell swoop. Kind of when you're talking about someone and then this sentence drops into the conversation: "Yes, but she's got cancer now." Here's one implementation of "Yes, but that's niche": Person A: All applications are moving to the web, tablet, and mobile phone. That's especially true now with HTML5, which is going to wipe away everything everywhere and all applications are going to be browser based. Person B: What about air traffic control applications? Will they run on mobile phones too? And do you see defence applications running in a browser? Don't you agree that there are multiple scenarios imaginable where the Java desktop is the optimal platform for running applications? Person A: Yes, but that's niche. Here's another implementation, though it contradicts the above [despite often being used by the same people], since JavaFX is a Java desktop technology: Person A: Swing is dead. Everyone is going to be using purely JavaFX and nothing else. Person B: Does JavaFX have a docking framework and a module system? Does it have a plugin system?  These are some of the absolutely basic requirements of Java desktop software once you get to high end systems, e.g., banks, defence force, oil/gas services. Those kinds of applications need a web browser and so they love the JavaFX WebView component and they also love the animated JavaFX charting components. But they need so much more than that, i.e., an application framework. Aren't there requirements that JavaFX isn't meeting since it is a UI toolkit, just like Swing is a UI toolkit, and what they have in common is their lack, i.e., natively, of any kind of application framework? Don't people need more than a single window and a monolithic application structure? Person A: Yes, but that's niche. In other words, anything that doesn't fit within the currently dominant philosophy is "niche", for no other reason than that it doesn't fit within the currently dominant philosophy... regardless of the actual needs of real developers. Saying "Yes, but that's niche", kills the discussion completely, because it relegates one side of the conversation to the arcane and irrelevant corners of the universe. You're kind of like Cobol now, as soon as "Yes, but that's niche" is said. What's worst about "Yes, but that's niche" is that it doesn't enter into any discussion about user requirements, i.e., there's so few that need this particular solution that we don't even need to talk about them anymore. Note, of course, that I'm not referring specifically or generically to anyone or anything in particular. Just picking up from conversations I've picked up on as I was scurrying around the Hilton's corridors while looking for the location of my next presentation over the past few days. It does, however, mean that there were people thinking "Yes, but that's niche" while listening to James Gosling pointing out that HTML is not the be-all and end-all of absolutely everything. And so this all leaves me wondering: How many applications must be part of a niche for the niche to no longer be a niche? And what if there are multiple small niches that have the same requirements? Don't all those small niches together form a larger whole, one that should be taken seriously, i.e., a whole that is not a niche?

    Read the article

  • What would you think of a job based on mostly doing the proof of concept?

    - by davsan
    I'm working as a developer in a small software company whose main job is interfacing between separate applications, like between a telephony system and an environment control system, between IP TVs and hospitality systems, etc...And it seems like I am the candidate for a new job title in the company, as the person who does the proof of concept of a new interfacing project and does some R&D for prototyping. What do you think the pros and cons of such a job would be, considering mainly the individual progress/regress of a person as a software engineer? And what aspects would you consider essential in a person to put him/her in such a job position?

    Read the article

  • Can we put percentage on amount of work of a certain role in project's lifecycle?

    - by deviDave
    The title may be confusing, but I will elaborate it here. I am trying to figure our how much time and effort each person spend during some project. I divided roles into: - junior developer (works mainly on UI and some light things) - senior developer (develops complex logic, database structures, etc.) - lead developer (leads the team, usually most experienced person) - negotiator/resolver (a person who directly talk to a client trying to either negotiate terms and timeframe or to clarify vagueness presented by a team leader) My AIM is to calculate percentage of role's involvement based on quality, not time (obviously a junior will spend most time in project, but with the least quality). In the end I would get a table which may look like this: Total: 100% ---------------- Junior: 10% Senior: 50% Lead: 30% Negotiator: 10% Can this be achieved? Has anyone found any source which may help me?

    Read the article

  • Answers to Conference Revenue Tweet Questions

    - by D'Arcy Lussier
    Originally posted on: http://geekswithblogs.net/dlussier/archive/2014/05/27/156612.aspxI tweeted this the other day… …and I had some people tweet back questioning/asking about the profit number. So here’s how I came to that figure. Total Revenue Let’s talk total revenue first. This conference has a huge list of companies/organizations paying some amount for sponsorship. Platinum ($1500) x 5 = $7500 Gold ($1000) x 3 = $3000 Silver ($500) x 9 = $4500 Bronze ($250) x 13 = $3250 There’s also a title sponsor level but there’s no mention of how much that is…more than $1500 though, so let’s just say $2500. Total Sponsorship Revenue: $20750.00 For registrations, this conference is claiming over 300 attendees. We’ll just calculate at 300 and the discounted “member rate” – $249. Total Registration Revenue: $74700.00 Booth space is also sold for a vendor area, but let’s just leave that out of the calculation. Total Event Revenue: $95450.00 Now that we know how much money we’re playing with, let’s knock out the costs for the event. Total Costs Hard Costs Audio/Visual Services $2000 Conference Rooms (4 Breakouts + Plenary) $2500 Insurance $700 Printing/Signage $1500 Travel/Hotel Rooms $2000 Keynotes $2000 So let’s talk about these hard costs first. First you may be asking about the Audio Visual. Yes those services can be that high, actually higher. But since there’s an A/V company touted as the official A/V provider, I gotta think there’s some discount for being branded as such. Conference rooms are actually an inflated amount of $500 per. Venues make money on the food they sell at events, not on room rentals. The more food, the cheaper the rooms tend to be offered at. Still, for the sake of argument, let’s set the rooms at $500 each knowing that they could be lower. For travel and hotel rooms…it appears that most of the speakers at this conference are local, meaning there’s no travel or hotel cost. But a few of them I wasn’t too sure…so let’s factor in enough to cover two outside speakers (airfare and hotel). There are two keynotes for this event and depending on the event those may be paid gigs. I’m not sure if they are or not, but considering the closing one is a comedian I’m going to add some funds here for that just in case. Total Hard Costs: $10700 Now that the hard costs are out of the way, let’s talk about the food costs. Food Costs The conference is providing a continental breakfast (YEEEESH!), some level of luncheon, and I have to assume coffee breaks in between. Let’s look at those costs. Continental Breakfast $12 per person Lunch Buffet $18 per person Coffee Breaks (2) $6 per person (or $3 a cup) Snacks (2) $10 per person (or $5 each) Note that the lunch buffet assumes a *good* lunch buffet – two entrees, starch, vegetable, salads, and bread. Not sure if there’ll be snacks during coffee breaks but let’s assume so. Total Food Cost Per Person: $46 Food Cost: $14950 Gratuity: $2691 Total Food Cost: $17641 Total food cost is based on the $46 per person cost x 325. 300 for attendance, 12 for speakers, extra 13 for volunteers/organizers. Gratuity is 18%. Grand Totals So let’s sum things up here. Total Costs Hard Costs: $10700.00 Food Costs: $17641.00 Total:          $28341.00 Taxes:         $3685.00 Grand Total  $32026.00 Total Revenue Sponsorship  $20750 Registration   $74700 Grand Total   $95450.00 Total Profit $63424.00 Now what if the registration numbers were lower and they only got 100 people to show up. In that scenario there’d still be a profit of just under $26000. Closing Comments A couple of things to note: - I haven’t factored in anything for prizes. Not sure if any will be given out - We didn’t add in the booth space revenue - We’re assuming speakers aren’t getting paid, but even if they were at the high end its $12000 ($1000 per session), which is probably an inflated number for local speakers. - Note that all registrations were set to the “member” discounted price. The non-member registration price is higher. There is also an option for those that just want to show up for the opening keynote. There you have it! Let me know if you have any questions. D

    Read the article

  • What is the best database design for managing historical information? [closed]

    - by Emmad Kareem
    Say you have a Person table with columns such as: ID, FirstName, LastName, BirthCountry, ...etc. And you want to keep track of changes on such a table. For example, the user may want to see previous names of a person or previous addresses, etc. The normalized way is to keep names in separate table, addresses in a separate table,...etc. and the main person table will contain only the information that you are not interested in monitoring changes for (such information will be updated in place). The problem I see here, aside form the coding hassle due to the extensive number of joins required in a real-life situation, is that I have never seen this type of design in any real application (maybe because most did not provide this feature!). So, is there a better way to design this? Thanks.

    Read the article

  • A correct way for JAVA age calculation? [closed]

    - by Jhonnytunes
    I have already a Java calculation of age method. I have a Person Class where I have the method and I need to ask the current time each time the method is called. All I could do is make age a static field of person class, so all person classes use the same time now. Im worring about the Calendar.get() creating Calendar objects every time method is called. Am I doing it wrong? Can I make it better? public short getAge(){ now = Calendar.getInstance(); return (short) ( (now.getTimeInMillis() - birthDate.getTimeInMillis())/ 31536000000L); }

    Read the article

  • How are dependant quests generated in Guild Wars 2?

    - by Aufziehvogel
    I recently read that Guild Wars 2 uses a system where the creation of quests depends on which actions user took when they were presented another quest. An example was: There might be a quest to protect a person. If users do not take this action, the person might be kidnapped and later there is a quest to rescue this person. Is there any information on whether the creation of these quests is somehow automatic? From the article it sounded like automatically, but from the specific example you could also guess that people just created a task-set where they added conditions (Task 1 taken: OK; Task 1 not taken: Show Task 2). From what I heard about AI they might also have implemented some sort of a huge neural network to make decisions?

    Read the article

  • How do you track Production tasks.

    - by M.C
    I manage a team of coders (5people) that maintain a few modules in a large project. On top of doing coding, we also do production operational tasks (like doing server housekeeping, batch backlog tracking) These tasks are done daily, done by 1 person, and is rotated weekly The problem is this: These tasks are routine, but there I cant think of a practical way of ensuring the person does what he is supposed to do. I thought of using spreadsheets to track, or to the extent of doing a paper checklist, which the person on duty will have to physically sign off. I just want the guy on duty to remember and execute every daily item. What works on your project?

    Read the article

  • Interface hierarchy design for separate domains

    - by jerzi
    There are businesses and people. People could be liked and businesses could be commented on: class Like class Comment class Person implements iLikeTarget class Business implements iCommentTarget Likes and comments are performed by a user(person) so they are authored: class Like implements iAuthored class Comment implements iAuthored People's like could also be used in their history: class history class Like implements iAuthored, iHistoryTarget Now, a smart developer comes and says each history is attached to a user so history should be authored: interface iHistoryTarget extends iAuthored so it could be removed from class Like: class Person implements iLikeTarget class Business implements iCommentTarget class Like implements iHistoryTarget class Comment implements iAuthored class history interface iHistoryTarget extends iAuthored Here, another smart guy comes with a question: How could I capture the Authored fact in Like and Comment classes? He may knows nothing about history concept in the project. By scalling these kind of functionallities, interfaces may goes to their encapsulated types which cause more type strength, on the other hand explicitness suffered and also code end users will face much pain to process. So here is the question: Should I encapsulate those dependant types to their parent types (interface hierarchies) or not or explicitly repeat each type for every single level of my type system or ...?

    Read the article

  • Intent and OnActivityResult causing Activity to get restart Actuomatically : Require to solve this issues

    - by Parth Dani
    i am having 20 imageview and i am having 20 button for them when i click any 1 button it gives me option to select image from gallery or camera when i select any option for example galley it will take me to the gallery and let me select image from their and let me display those images on my imageview for respective button now the problem is sometimes when i do the whole above process my activity is getting restart actuomatically and all the image which were first selected get vanished from their imageview For Refernce my code is as follow: @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.new_upload); // **************Code to get Road worthy number and VIN number value in // Shared Preference starts here************************ SharedPreferences myPrefs1 = this.getSharedPreferences("myPrefs", MODE_WORLD_READABLE); roadworthynumber = myPrefs1.getString(MY_ROADWORTHY, "Road Worthy Number"); vinnumber = myPrefs1.getString(MY_VIN, "VIN Number"); // **************Code to get Road worthy number and VIN number value in // Shared Preference ends here************************ // **************Code to create Directory AUSRWC starts // here************************ if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { cacheDir = new File(Environment.getExternalStorageDirectory() + File.separator + "AUSRWC" + File.separator); cacheDir.mkdirs(); } // **************Code to Create Directory AUSRWC ends // here************************ // *****************Assigning Button variable their Id declare in XML // file starts here***************** new_select1 = (Button) findViewById(R.id.new_select1); new_select2 = (Button) findViewById(R.id.new_select2); new_select3 = (Button) findViewById(R.id.new_select3); new_select4 = (Button) findViewById(R.id.new_select4); new_select5 = (Button) findViewById(R.id.new_select5); new_select6 = (Button) findViewById(R.id.new_select6); new_select7 = (Button) findViewById(R.id.new_select7); new_select8 = (Button) findViewById(R.id.new_select8); new_select9 = (Button) findViewById(R.id.new_select9); new_select10 = (Button) findViewById(R.id.new_select10); new_select11 = (Button) findViewById(R.id.new_select11); new_select12 = (Button) findViewById(R.id.new_select12); new_select13 = (Button) findViewById(R.id.new_select13); new_select14 = (Button) findViewById(R.id.new_select14); new_select15 = (Button) findViewById(R.id.new_select15); new_select16 = (Button) findViewById(R.id.new_select16); new_select17 = (Button) findViewById(R.id.new_select17); new_select18 = (Button) findViewById(R.id.new_select18); new_select19 = (Button) findViewById(R.id.new_select19); new_select20 = (Button) findViewById(R.id.new_select20); // *****************Assigning Button variable their Id declare in XML // file ends here***************** // *****************Assigning Image variable their Id declare in XML // file starts here***************** new_selectimage1 = (ImageView) findViewById(R.id.new_selectImage1); new_selectimage2 = (ImageView) findViewById(R.id.new_selectImage2); new_selectimage3 = (ImageView) findViewById(R.id.new_selectImage3); new_selectimage4 = (ImageView) findViewById(R.id.new_selectImage4); new_selectimage5 = (ImageView) findViewById(R.id.new_selectImage5); new_selectimage6 = (ImageView) findViewById(R.id.new_selectImage6); new_selectimage7 = (ImageView) findViewById(R.id.new_selectImage7); new_selectimage8 = (ImageView) findViewById(R.id.new_selectImage8); new_selectimage9 = (ImageView) findViewById(R.id.new_selectImage9); new_selectimage10 = (ImageView) findViewById(R.id.new_selectImage10); new_selectimage11 = (ImageView) findViewById(R.id.new_selectImage11); new_selectimage12 = (ImageView) findViewById(R.id.new_selectImage12); new_selectimage13 = (ImageView) findViewById(R.id.new_selectImage13); new_selectimage14 = (ImageView) findViewById(R.id.new_selectImage14); new_selectimage15 = (ImageView) findViewById(R.id.new_selectImage15); new_selectimage16 = (ImageView) findViewById(R.id.new_selectImage16); new_selectimage17 = (ImageView) findViewById(R.id.new_selectImage17); new_selectimage18 = (ImageView) findViewById(R.id.new_selectImage18); new_selectimage19 = (ImageView) findViewById(R.id.new_selectImage19); new_selectimage20 = (ImageView) findViewById(R.id.new_selectImage20); // ****Assigning Image variable their Id declare in XML file ends // here***************** // **************Creating Dialog to give option to user to new_select // image from gallery or from camera starts here**************** final String[] items = new String[] { "From Camera", "From Gallery" }; ArrayAdapter<String> adapter = new ArrayAdapter<String>(this, android.R.layout.select_dialog_item, items); AlertDialog.Builder builder = new AlertDialog.Builder(this); builder.setTitle("select Image"); builder.setAdapter(adapter, new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int item) { if (item == 0) { if (android.os.Environment.getExternalStorageState() .equals(android.os.Environment.MEDIA_MOUNTED)) { Intent intent = new Intent( MediaStore.ACTION_IMAGE_CAPTURE); File file = new File(Environment .getExternalStorageDirectory(), "/AUSRWC/picture" + ".jpg"); mImageCaptureUri = Uri.fromFile(file); try { Toast.makeText(getBaseContext(), "Click Image", Toast.LENGTH_SHORT).show(); intent.putExtra( android.provider.MediaStore.EXTRA_OUTPUT, mImageCaptureUri); intent.putExtra("return-data", true); startActivityForResult(intent, PICK_FROM_CAMERA); } catch (Exception e) { e.printStackTrace(); } } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } dialog.cancel(); } else { Intent intent = new Intent(); Toast.makeText(getBaseContext(), "Select Image", Toast.LENGTH_SHORT).show(); intent.setType("image/*"); intent.setAction(Intent.ACTION_GET_CONTENT); startActivityForResult(Intent.createChooser(intent, "Complete action using"), PICK_FROM_FILE); } } }); dialog = builder.create(); // **************Creating Dialog to give option to user to new_select // image from gallery or from camera ends here**************** final Animation animAlpha = AnimationUtils.loadAnimation(this, R.anim.anim_alpha); // Animation Code for displaying Button // Clicked. // ********************Image 1 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select1.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 1; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 1 button code ends // here******************************* // ********************Image 2 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select2.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 2; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 2 button code ends // here******************************* // ********************Image 3 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select3.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 3; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 3 button code ends // here******************************* // ********************Image 4 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select4.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 4; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 4 button code ends // here******************************* // ********************Image 5 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select5.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 5; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 5 button code ends // here******************************* // ********************Image 6 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select6.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 6; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 6 button code ends // here******************************* // ********************Image 7 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select7.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 7; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 7 button code ends // here******************************* // ********************Image 8 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select8.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 8; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 8 button code ends // here******************************* // ********************Image 9 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select9.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 9; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 9 button code ends // here******************************* // ********************Image 10 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select10.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 10; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 10 button code ends // here******************************* // ********************Image 11 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select11.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 11; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 11 button code ends // here******************************* // ********************Image 12 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select12.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 12; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 12 button code ends // here******************************* // ********************Image 13 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select13.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 13; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 13 button code ends // here******************************* // ********************Image 14 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select14.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 14; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 14 button code ends // here******************************* // ********************Image 15 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select15.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 15; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 15 button code ends // here******************************* // ********************Image 16 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select16.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 16; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 16 button code ends // here******************************* // ********************Image 17 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select17.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 17; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 17 button code ends // here******************************* // ********************Image 18 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select18.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 18; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 18 button code ends // here******************************* // ********************Image 19 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select19.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 19; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 19 button code ends // here******************************* // ********************Image 20 button code starts // here******************************* if (android.os.Environment.getExternalStorageState().equals( android.os.Environment.MEDIA_MOUNTED)) { new_select20.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { v.startAnimation(animAlpha); buttonpressed = 20; dialog.show(); } }); } else { Toast.makeText(getBaseContext(), "Please insert SdCard First", Toast.LENGTH_SHORT).show(); } // ********************Image 20 button code ends // here******************************* } // *************************When Back Button is Pressed code begins // here************************************* @Override public void onBackPressed() { Toast.makeText(new_upload.this, "Sorry You are not allowed to go back", Toast.LENGTH_SHORT).show(); return; } // *************************When Back Button is Pressed code ends // here************************************* // ***********************To get Path of new_selected Image code starts // here************************************ public String getRealPathFromURI(Uri contentUri) { String[] proj = { MediaStore.Images.Media.DATA }; Cursor cursor = managedQuery(contentUri, proj, null, null, null); if (cursor == null) return null; int column_index = cursor .getColumnIndexOrThrow(MediaStore.Images.Media.DATA); cursor.moveToFirst(); return cursor.getString(column_index); } // ***********************To get Path of new_selected Image code ends // here************************************ // **********************Picture obtained from the camera or from gallery // code starts here************** @Override protected void onActivityResult(int requestCode, int resultCode, Intent data) { //path = ""; Log.e("","requestCode="+requestCode); switch (requestCode){ case PICK_FROM_FILE: if (resultCode == Activity.RESULT_OK) { mImageCaptureUri = data.getData(); path = getRealPathFromURI(mImageCaptureUri); // from Gallery Log.e("", "Imagepath from gallery=" + path); if (path == null) path = mImageCaptureUri.getPath(); // from File Manager if (path != null) { dialog1 = ProgressDialog.show(new_upload.this, "", "Processing Please wait...", true); new ImageDisplayTask().execute(); } } break; case PICK_FROM_CAMERA: if (resultCode == Activity.RESULT_OK) { try { path = mImageCaptureUri.getPath(); Log.e("", "Imagepath from Camera =" + path); // bitmap = BitmapFactory.decodeFile(path); } catch (Exception e) { e.printStackTrace(); } if (path != null) { dialog1 = ProgressDialog.show(new_upload.this, "", "Processing Please wait...", true); //new ImageDisplayTask1().execute(); new ImageDisplayTask().execute(); } } break; default: } } // ********************Picture obtained from the camera or from gallery code // ends here********************************************* // ******************Image Display on Button when new_selected from gallery // Ashynch Code starts here******************************** class ImageDisplayTask extends AsyncTask<Void, Void, String> { @Override protected String doInBackground(Void... unsued) { Bitmap src = BitmapFactory.decodeFile(path); Bitmap dest = Bitmap.createBitmap(src.getWidth(), src.getHeight(), Bitmap.Config.ARGB_8888); //Bitmap dest = Bitmap.createScaledBitmap(src, src.getWidth(),src.getHeight(), true); SimpleDateFormat sdf = new SimpleDateFormat("dd-MM-yyyy HH:mm:ss"); String dateTime = sdf.format(Calendar.getInstance().getTime()); // reading local `` String timestamp = dateTime + " " + roadworthynumber; SimpleDateFormat sdf1 = new SimpleDateFormat("dd-MM-yyyy HH:mm:ss"); String dateTime1 = sdf1.format(Calendar.getInstance().getTime()); Imagename = dateTime1.toString().trim().replaceAll(":", "") .replaceAll("-", "").replaceAll(" ", "") + roadworthynumber + ".jpg"; Canvas cs = new Canvas(dest); Paint tPaint = new Paint(); tPaint.setTextSize(100); tPaint.setTypeface(Typeface.SERIF); tPaint.setColor(Color.RED); tPaint.setStyle(Style.FILL); cs.drawBitmap(src, 0f, 0f, null); float height = tPaint.measureText("yY"); cs.drawText(timestamp, 5f, src.getHeight() - height + 5f, tPaint); try { dest.compress(Bitmap.CompressFormat.JPEG, 70, new FileOutputStream(new File(cacheDir, Imagename))); dest.recycle(); src.recycle(); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } return null; } @Override protected void onProgressUpdate(Void... unsued) { } @Override protected void onPostExecute(String serverresponse) { String error = "noerror"; Display currentDisplay = getWindowManager().getDefaultDisplay(); int dw = currentDisplay.getWidth(); int dh = currentDisplay.getHeight() - 100; Log.e("", "width= " + dw + " Height= " + dh); try { BitmapFactory.Options bmpFactoryOptions = new BitmapFactory.Options(); bmpFactoryOptions.inJustDecodeBounds = true; Bitmap bmp = BitmapFactory.decodeFile( Environment.getExternalStorageDirectory() + "/AUSRWC/" + Imagename, bmpFactoryOptions); int heightRatio = (int) Math.ceil(bmpFactoryOptions.outHeight / (float) dh); int widthRatio = (int) Math.ceil(bmpFactoryOptions.outWidth / (float) dw); if (heightRatio > 1 && widthRatio > 1) { if (heightRatio > widthRatio) { bmpFactoryOptions.inSampleSize = heightRatio; } else { bmpFactoryOptions.inSampleSize = widthRatio; } } bmpFactoryOptions.inJustDecodeBounds = false; bmp = BitmapFactory.decodeFile( Environment.getExternalStorageDirectory() + "/AUSRWC/" + Imagename, bmpFactoryOptions); if (buttonpressed == 1) { new_selectimage1.setImageBitmap(bmp); //Image set on ImageView } else if (buttonpressed == 2) { new_selectimage2.setImageBitmap(bmp);//Image set on ImageView } else if (buttonpressed == 3) { new_selectimage3.setImageBitmap(bmp);//Image set on ImageView } else if (buttonpressed == 4) { new_selectimage4.setImageBitmap(bmp);//Image set on ImageView } else if (buttonpressed == 5) { new_selectimage5.setImageBitmap(bmp);//Image set on ImageView } else if (buttonpressed == 6) { new_selectimage6.setImageBitmap(bmp);//Image set on ImageView } else if (buttonpressed == 7) { new_selectimage7.setImageBitmap(bmp);//Image set on ImageView } else if (buttonpressed == 8) { new_selectimage8.setImageBitmap(bmp);//Image set on ImageView } else if (buttonpressed == 9) { new_selectimage9.setImageBitmap(bmp);//Image set on ImageView } else if (buttonpressed == 10) { new_selectimage10.setImageBitmap(bmp); } else if (buttonpressed == 11) { new_selectimage11.setImageBitmap(bmp); } else if (buttonpressed == 12) { new_selectimage12.setImageBitmap(bmp); } else if (buttonpressed == 13) { new_selectimage13.setImageBitmap(bmp); } else if (buttonpressed == 14) { new_selectimage14.setImageBitmap(bmp); } else if (buttonpressed == 15) { new_selectimage15.setImageBitmap(bmp); } else if (buttonpressed == 16) { new_selectimage16.setImageBitmap(bmp); } else if (buttonpressed == 17) { new_selectimage17.setImageBitmap(bmp); } else if (buttonpressed == 18) { new_selectimage18.setImageBitmap(bmp); } else if (buttonpressed == 19) { new_selectimage19.setImageBitmap(bmp); } else if (buttonpressed == 20) { new_selectimage20.setImageBitmap(bmp); } } catch (Exc

    Read the article

  • LLBLGen Pro feature highlights: automatic element name construction

    - by FransBouma
    (This post is part of a series of posts about features of the LLBLGen Pro system) One of the things one might take for granted but which has a huge impact on the time spent in an entity modeling environment is the way the system creates names for elements out of the information provided, in short: automatic element name construction. Element names are created in both directions of modeling: database first and model first and the more names the system can create for you without you having to rename them, the better. LLBLGen Pro has a rich, fine grained system for creating element names out of the meta-data available, which I'll describe more in detail below. First the model element related element naming features are highlighted, in the section Automatic model element naming features and after that I'll go more into detail about the relational model element naming features LLBLGen Pro has to offer in the section Automatic relational model element naming features. Automatic model element naming features When working database first, the element names in the model, e.g. entity names, entity field names and so on, are in general determined from the relational model element (e.g. table, table field) they're mapped on, as the model elements are reverse engineered from these relational model elements. It doesn't take rocket science to automatically name an entity Customer if the entity was created after reverse engineering a table named Customer. It gets a little trickier when the entity which was created by reverse engineering a table called TBL_ORDER_LINES has to be named 'OrderLine' automatically. Automatic model element naming also takes into effect with model first development, where some settings are used to provide you with a default name, e.g. in the case of navigator name creation when you create a new relationship. The features below are available to you in the Project Settings. Open Project Settings on a loaded project and navigate to Conventions -> Element Name Construction. Strippers! The above example 'TBL_ORDER_LINES' shows that some parts of the table name might not be needed for name creation, in this case the 'TBL_' prefix. Some 'brilliant' DBAs even add suffixes to table names, fragments you might not want to appear in the entity names. LLBLGen Pro offers you to define both prefix and suffix fragments to strip off of table, view, stored procedure, parameter, table field and view field names. In the example above, the fragment 'TBL_' is a good candidate for such a strip pattern. You can specify more than one pattern for e.g. the table prefix strip pattern, so even a really messy schema can still be used to produce clean names. Underscores Be Gone Another thing you might get rid of are underscores. After all, most naming schemes for entities and their classes use PasCal casing rules and don't allow for underscores to appear. LLBLGen Pro can automatically strip out underscores for you. It's an optional feature, so if you like the underscores, you're not forced to see them go: LLBLGen Pro will leave them alone when ordered to to so. PasCal everywhere... or not, your call LLBLGen Pro can automatically PasCal case names on word breaks. It determines word breaks in a couple of ways: a space marks a word break, an underscore marks a word break and a case difference marks a word break. It will remove spaces in all cases, and based on the underscore removal setting, keep or remove the underscores, and upper-case the first character of a word break fragment, and lower case the rest. Say, we keep the defaults, which is remove underscores and PasCal case always and strip the TBL_ fragment, we get with our example TBL_ORDER_LINES, after stripping TBL_ from the table name two word fragments: ORDER and LINES. The underscores are removed, the first character of each fragment is upper-cased, the rest lower-cased, so this results in OrderLines. Almost there! Pluralization and Singularization In general entity names are singular, like Customer or OrderLine so LLBLGen Pro offers a way to singularize the names. This will convert OrderLines, the result we got after the PasCal casing functionality, into OrderLine, exactly what we're after. Show me the patterns! There are other situations in which you want more flexibility. Say, you have an entity Customer and an entity Order and there's a foreign key constraint defined from the target of Order and the target of Customer. This foreign key constraint results in a 1:n relationship between the entities Customer and Order. A relationship has navigators mapped onto the relationship in both entities the relationship is between. For this particular relationship we'd like to have Customer as navigator in Order and Orders as navigator in Customer, so the relationship becomes Customer.Orders 1:n Order.Customer. To control the naming of these navigators for the various relationship types, LLBLGen Pro defines a set of patterns which allow you, using macros, to define how the auto-created navigator names will look like. For example, if you rather have Customer.OrderCollection, you can do so, by changing the pattern from {$EndEntityName$P} to {$EndEntityName}Collection. The $P directive makes sure the name is pluralized, which is not what you want if you're going for <EntityName>Collection, hence it's removed. When working model first, it's a given you'll create foreign key fields along the way when you define relationships. For example, you've defined two entities: Customer and Order, and they have their fields setup properly. Now you want to define a relationship between them. This will automatically create a foreign key field in the Order entity, which reflects the value of the PK field in Customer. (No worries if you hate the foreign key fields in your classes, on NHibernate and EF these can be hidden in the generated code if you want to). A specific pattern is available for you to direct LLBLGen Pro how to name this foreign key field. For example, if all your entities have Id as PK field, you might want to have a different name than Id as foreign key field. In our Customer - Order example, you might want to have CustomerId instead as foreign key name in Order. The pattern for foreign key fields gives you that freedom. Abbreviations... make sense of OrdNr and friends I already described word breaks in the PasCal casing paragraph, how they're used for the PasCal casing in the constructed name. Word breaks are used for another neat feature LLBLGen Pro has to offer: abbreviation support. Burt, your friendly DBA in the dungeons below the office has a hate-hate relationship with his keyboard: he can't stand it: typing is something he avoids like the plague. This has resulted in tables and fields which have names which are very short, but also very unreadable. Example: our TBL_ORDER_LINES example has a lovely field called ORD_NR. What you would like to see in your fancy new OrderLine entity mapped onto this table is a field called OrderNumber, not a field called OrdNr. What you also like is to not have to rename that field manually. There are better things to do with your time, after all. LLBLGen Pro has you covered. All it takes is to define some abbreviation - full word pairs and during reverse engineering model elements from tables/views, LLBLGen Pro will take care of the rest. For the ORD_NR field, you need two values: ORD as abbreviation and Order as full word, and NR as abbreviation and Number as full word. LLBLGen Pro will now convert every word fragment found with the word breaks which matches an abbreviation to the given full word. They're case sensitive and can be found in the Project Settings: Navigate to Conventions -> Element Name Construction -> Abbreviations. Automatic relational model element naming features Not everyone works database first: it may very well be the case you start from scratch, or have to add additional tables to an existing database. For these situations, it's key you have the flexibility that you can control the created table names and table fields without any work: let the designer create these names based on the entity model you defined and a set of rules. LLBLGen Pro offers several features in this area, which are described in more detail below. These features are found in Project Settings: navigate to Conventions -> Model First Development. Underscores, welcome back! Not every database is case insensitive, and not every organization requires PasCal cased table/field names, some demand all lower or all uppercase names with underscores at word breaks. Say you create an entity model with an entity called OrderLine. You work with Oracle and your organization requires underscores at word breaks: a table created from OrderLine should be called ORDER_LINE. LLBLGen Pro allows you to do that: with a simple checkbox you can order LLBLGen Pro to insert an underscore at each word break for the type of database you're working with: case sensitive or case insensitive. Checking the checkbox Insert underscore at word break case insensitive dbs will let LLBLGen Pro create a table from the entity called Order_Line. Half-way there, as there are still lower case characters there and you need all caps. No worries, see below Casing directives so everyone can sleep well at night For case sensitive databases and case insensitive databases there is one setting for each of them which controls the casing of the name created from a model element (e.g. a table created from an entity definition using the auto-mapping feature). The settings can have the following values: AsProjectElement, AllUpperCase or AllLowerCase. AsProjectElement is the default, and it keeps the casing as-is. In our example, we need to get all upper case characters, so we select AllUpperCase for the setting for case sensitive databases. This will produce the name ORDER_LINE. Sequence naming after a pattern Some databases support sequences, and using model-first development it's key to have sequences, when needed, to be created automatically and if possible using a name which shows where they're used. Say you have an entity Order and you want to have the PK values be created by the database using a sequence. The database you're using supports sequences (e.g. Oracle) and as you want all numeric PK fields to be sequenced, you have enabled this by the setting Auto assign sequences to integer pks. When you're using LLBLGen Pro's auto-map feature, to create new tables and constraints from the model, it will create a new table, ORDER, based on your settings I previously discussed above, with a PK field ID and it also creates a sequence, SEQ_ORDER, which is auto-assigns to the ID field mapping. The name of the sequence is created by using a pattern, defined in the Model First Development setting Sequence pattern, which uses plain text and macros like with the other patterns previously discussed. Grouping and schemas When you start from scratch, and you're working model first, the tables created by LLBLGen Pro will be in a catalog and / or schema created by LLBLGen Pro as well. If you use LLBLGen Pro's grouping feature, which allows you to group entities and other model elements into groups in the project (described in a future blog post), you might want to have that group name reflected in the schema name the targets of the model elements are in. Say you have a model with a group CRM and a group HRM, both with entities unique for these groups, e.g. Employee in HRM, Customer in CRM. When auto-mapping this model to create tables, you might want to have the table created for Employee in the HRM schema but the table created for Customer in the CRM schema. LLBLGen Pro will do just that when you check the setting Set schema name after group name to true (default). This gives you total control over where what is placed in the database from your model. But I want plural table names... and TBL_ prefixes! For now we follow best practices which suggest singular table names and no prefixes/suffixes for names. Of course that won't keep everyone happy, so we're looking into making it possible to have that in a future version. Conclusion LLBLGen Pro offers a variety of options to let the modeling system do as much work for you as possible. Hopefully you enjoyed this little highlight post and that it has given you new insights in the smaller features available to you in LLBLGen Pro, ones you might not have thought off in the first place. Enjoy!

    Read the article

  • Linked list recursive reverse

    - by Phoenix
    I was looking at the code below from stanford library: void recursiveReverse(struct node** head_ref) { struct node* first; struct node* rest; /* empty list */ if (*head_ref == NULL) return; /* suppose first = {1, 2, 3}, rest = {2, 3} */ first = *head_ref; rest = first->next; /* List has only one node */ if (rest == NULL) return; /* put the first element on the end of the list */ recursiveReverse(&rest); first->next->next = first; /* tricky step -- see the diagram */ first->next = NULL; /* fix the head pointer */ *head_ref = rest; } What I don't understand is in the last recursive step for e.g if list is 1-2-3-4 Now for the last recursive step first will be 1 and rest will be 2. So if you set *head_ref = rest .. that makes the head of the list 2 ?? Can someone please explain how after reversing the head of the list becomes 4 ??

    Read the article

  • when compiling,I write " gcc -g -Wall dene2 dene2.c", then gcc emits some trace

    - by gcc
    when I compile my code,I write " gcc -g -Wall dene2 dene2.c" in the console. then gcc emits some things on the screen. I havenot understand what it is and I cannot consturct any meaning. I have sorted in google but I havenot seen any information about thing which gcc emits on screen I am not saying examining all of the things which is at below,just show me "how to catch fish". (I couldnot find meaningful title ,for that reason ,sorry,) dene2: In function `_start': /build/buildd/eglibc-2.10.1/csu/../sysdeps/i386/elf/start.S:65: multiple definition of `_start' /usr/lib/gcc/i486-linux-gnu/4.4.1/../../../../lib/crt1.o:/build/buildd/eglibc-2.10.1 /csu/../sysdeps/i386/elf/start.S:65: first defined here dene2:(.rodata+0x0): multiple definition of `_fp_hw' /usr/lib/gcc/i486-linux-gnu/4.4.1/../../../../lib/crt1.o:(.rodata+0x0): first defined here dene2: In function `_fini': (.fini+0x0): multiple definition of `_fini' /usr/lib/gcc/i486-linux-gnu/4.4.1/../../../../lib/crti.o:(.fini+0x0): first defined here dene2:(.rodata+0x4): multiple definition of `_IO_stdin_used' /usr/lib/gcc/i486-linux-gnu/4.4.1/../../../../lib/crt1.o:(.rodata.cst4+0x0): first defined here dene2: In function `__data_start': (.data+0x0): multiple definition of `__data_start' /usr/lib/gcc/i486-linux-gnu/4.4.1/../../../../lib/crt1.o:(.data+0x0): first defined here dene2: In function `__data_start': (.data+0x4): multiple definition of `__dso_handle' /usr/lib/gcc/i486-linux-gnu/4.4.1/crtbegin.o:(.data+0x0): first defined here dene2: In function `_init': (.init+0x0): multiple definition of `_init' /usr/lib/gcc/i486-linux-gnu/4.4.1/../../../../lib/crti.o:(.init+0x0): first defined here /tmp/ccMlGkkV.o: In function `main': /home/fatih/Desktop/dene2.c:5: multiple definition of `main' dene2:(.text+0xb4): first defined here /usr/lib/gcc/i486-linux-gnu/4.4.1/crtend.o:(.dtors+0x0): multiple definition of `__DTOR_END__' dene2:(.dtors+0x4): first defined here collect2: ld returned 1 exit status

    Read the article

  • Error trying to use rand from std library cstdlib with g++

    - by Matt
    I was trying to use the random function in Ubuntu compiling with g++ on a larger program and for some reason rand just gave weird compile errors. For testing purposes I made the simplest program I could and it still gives errors. Program: #include <iostream> using std::cout; using std::endl; #include <cstdlib> int main() { cout << "Random number " << rand(); return 0; } Error when compiling with the terminal sudo g++ chapter_3/tester.cpp ./test ./test: In function _start': /build/buildd/eglibc-2.10.1/csu/../sysdeps/i386/elf/start.S:65: multiple definition of_start' /usr/lib/gcc/i486-linux-gnu/4.4.1/../../../../lib/crt1.o:/build/buildd/eglibc-2.10.1/csu/../sysdeps/i386/elf/start.S:65: first defined here ./test:(.rodata+0x0): multiple definition of _fp_hw' /usr/lib/gcc/i486-linux-gnu/4.4.1/../../../../lib/crt1.o:(.rodata+0x0): first defined here ./test: In function_fini': (.fini+0x0): multiple definition of _fini' /usr/lib/gcc/i486-linux-gnu/4.4.1/../../../../lib/crti.o:(.fini+0x0): first defined here ./test:(.rodata+0x4): multiple definition of_IO_stdin_used' /usr/lib/gcc/i486-linux-gnu/4.4.1/../../../../lib/crt1.o:(.rodata.cst4+0x0): first defined here ./test: In function __data_start': (.data+0x0): multiple definition ofdata_start' /usr/lib/gcc/i486-linux-gnu/4.4.1/../../../../lib/crt1.o:(.data+0x0): first defined here ./test: In function __data_start': (.data+0x4): multiple definition of__dso_handle' /usr/lib/gcc/i486-linux-gnu/4.4.1/crtbegin.o:(.data+0x0): first defined here ./test: In function main': (.text+0xb4): multiple definition ofmain' /tmp/cceF0x0p.o:tester.cpp:(.text+0x0): first defined here ./test: In function _init': (.init+0x0): multiple definition ofinit' /usr/lib/gcc/i486-linux-gnu/4.4.1/../../../../lib/crti.o:(.init+0x0): first defined here /usr/lib/gcc/i486-linux-gnu/4.4.1/crtend.o:(.dtors+0x0): multiple definition of `_DTOR_END' ./test:(.dtors+0x4): first defined here /usr/bin/ld: error in ./test(.eh_frame); no .eh_frame_hdr table will be created. collect2: ld returned 1 exit status

    Read the article

< Previous Page | 99 100 101 102 103 104 105 106 107 108 109 110  | Next Page >