Search Results

Search found 15301 results on 613 pages for 'global assembly cache'.

Page 110/613 | < Previous Page | 106 107 108 109 110 111 112 113 114 115 116 117  | Next Page >

  • What's with the accesses to $random_existing_file/cache/df.php?

    - by Bernd Jendrissek
    Occasionally I eyeball Apache's access_log and lately I've been noticing these accesses to URLs that I don't serve. They're correctly 404'ed, but I'd like to know just who and what is involved here. "Obviously" it's some sort of vulnerability probing; I'd like to know which. (Not that it affects me, but I like to know the score.) Here's an example: 69.89.31.206 - - [28/Nov/2012:17:36:34 +0200] "GET /cvfull.pdf/cache/df.php HTTP/1.1" 404 489 "-" "-" Oddly, all 26 attempts are to either /cache/df.php, or to /cvfull.pdf/cache/df.php - they come in pairs. A few weeks ago it was zx.php, now it's df.php - I'm assuming the target is the same. Perhaps I should be flattered that a script is thinking of hiring me. Seriously, my CV is one of only two PDF files on my site, so I can only guess that non-PDF URLs aren't interesting? I've tried Googling for "cache df php", but my Google-fu is weak at the best of times, so I can only find a few reports of other script attacks. What's the vulnerability being scanned for here?

    Read the article

  • Can you share offline files cache with two user accounts?

    - by Joel Coehoorn
    I have a new laptop that I use for both home and work. It runs windows 7 ultimate, and is joined to the domain at work. It is okay to use this laptop for both work and personal activities, and I even have an account set up on the local machine in addition to the work domain account specifically for this to help keep the two separate. At home, I have a file server that I use to share files and printers with my wife's laptop, this new laptop, and my old desktop which will now become the family machine. My mp3 library is on there, among other things. What I want to do is use the windows Offline Files feature to keep a synced copy of my music library on the laptop. That part is easy. What's tricky is that I want to share this offline cache between both the local account on the laptop and my work domain account. I could do them both separately, but then I have two copies of a very large music library stored locally. This also means twice the sync burden, when the domain account is rarely connected to the file share. I really want to be able to sync from the local machine account only, and have the domain account be able to use the synced files. I know where the offline file cache is kept (\Windows\CSC) and I can find the cached files (not encrypted), but permissions on the cache are setup weird, and so using that cache directly is not trivial. Any ideas appreciated.

    Read the article

  • How can I configure apache to cache the images that it is serving? Right now it is giving headers t

    - by Tchalvak
    Serving up images that don't seem to cache There's a LAPP (postgresql instead of mysql) running over on http://ninjawars.net. I just recently noticed that images don't seem to be caching with any kind of good frequency as I was reloading a page with a few images on it here: http://www.ninjawars.net/attack_player.php Here is an example image (they're probably all being served exactly the same): http://www.ninjawars.net/images/characters/fighter.png Checking the header, it seems that the caching is set to: Cache-Control:max-age=0 (the full header for this image-like-all-the-others is... Request URL:http://www.ninjawars.net/images/characters/fighter.png Request Method:GET Status Code:200 OK Request Headers Accept:application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,/;q=0.5 Cache-Control:max-age=0 Referer:http://www.ninjawars.net/images/characters/fighter.png User-Agent:Mozilla/5.0 (X11; U; Linux x86_64; en-US) AppleWebKit/533.4 (KHTML, like Gecko) Chrome/5.0.375.3 Safari/533.4 Response Headers Accept-Ranges:bytes Content-Length:938 Content-Type:image/png Date:Thu, 13 May 2010 21:24:07 GMT ETag:"ffd4d-3aa-4837efc120540" Last-Modified:Mon, 05 Apr 2010 15:28:45 GMT Server:Apache ) So what modules or config or htaccess or whatever do I change to have it cache images, e.g. for 24 hours?

    Read the article

  • Installing Lubuntu 14.04.1 forcepae fails

    - by Rantanplan
    I tried to install Lubuntu 14.04.1 from a CD. First, I chose Try Lubuntu without installing which gave: ERROR: PAE is disabled on this Pentium M (PAE can potentially be enabled with kernel parameter "forcepae" ... Following the description on https://help.ubuntu.com/community/PAE, I used forcepae and tried Try Lubuntu without installing again. That worked fine. dmesg | grep -i pae showed: [ 0.000000] Kernel command line: file=/cdrom/preseed/lubuntu.seed boot=casper initrd=/casper/initrd.lz quiet splash -- forcepae [ 0.008118] PAE forced! On the live-CD session, I tried installing Lubuntu double clicking on the install button on the desktop. Here, the CD starts running but then stops running and nothing happens. Next, I rebooted and tried installing Lubuntu directly from the boot menu screen using forcepae again. After a while, I receive the following error message: The installer encountered an unrecoverable error. A desktop session will now be run so that you may investigate the problem or try installing again. Hitting Enter brings me to the desktop. For what errors should I search? And how? Finally, I rebooted once more and tried Check disc for defects with forcepae option; no errors have been found. Now, I am wondering how to find the error or whether it would be better to follow advice c in https://help.ubuntu.com/community/PAE: "Move the hard disk to a computer on which the processor has PAE capability and PAE flag (that is, almost everything else than a Banias). Install the system as usual but don't add restricted drivers. After the install move the disk back." Thanks for some hints! Perhaps some of the following can help: On Lubuntu 12.04: cat /proc/cpuinfo processor : 0 vendor_id : GenuineIntel cpu family : 6 model : 13 model name : Intel(R) Pentium(R) M processor 1.50GHz stepping : 6 microcode : 0x17 cpu MHz : 600.000 cache size : 2048 KB fdiv_bug : no hlt_bug : no f00f_bug : no coma_bug : no fpu : yes fpu_exception : yes cpuid level : 2 wp : yes flags : fpu vme de pse tsc msr mce cx8 mtrr pge mca cmov clflush dts acpi mmx fxsr sse sse2 ss tm pbe up bts est tm2 bogomips : 1284.76 clflush size : 64 cache_alignment : 64 address sizes : 32 bits physical, 32 bits virtual power management: uname -a Linux humboldt 3.2.0-67-generic #101-Ubuntu SMP Tue Jul 15 17:45:51 UTC 2014 i686 i686 i386 GNU/Linux lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 12.04.5 LTS Release: 12.04 Codename: precise cpuid eax in eax ebx ecx edx 00000000 00000002 756e6547 6c65746e 49656e69 00000001 000006d6 00000816 00000180 afe9f9bf 00000002 02b3b001 000000f0 00000000 2c04307d 80000000 80000004 00000000 00000000 00000000 80000001 00000000 00000000 00000000 00000000 80000002 20202020 20202020 65746e49 2952286c 80000003 6e655020 6d756974 20295228 7270204d 80000004 7365636f 20726f73 30352e31 007a4847 Vendor ID: "GenuineIntel"; CPUID level 2 Intel-specific functions: Version 000006d6: Type 0 - Original OEM Family 6 - Pentium Pro Model 13 - Stepping 6 Reserved 0 Brand index: 22 [not in table] Extended brand string: " Intel(R) Pentium(R) M processor 1.50GHz" CLFLUSH instruction cache line size: 8 Feature flags afe9f9bf: FPU Floating Point Unit VME Virtual 8086 Mode Enhancements DE Debugging Extensions PSE Page Size Extensions TSC Time Stamp Counter MSR Model Specific Registers MCE Machine Check Exception CX8 COMPXCHG8B Instruction SEP Fast System Call MTRR Memory Type Range Registers PGE PTE Global Flag MCA Machine Check Architecture CMOV Conditional Move and Compare Instructions FGPAT Page Attribute Table CLFSH CFLUSH instruction DS Debug store ACPI Thermal Monitor and Clock Ctrl MMX MMX instruction set FXSR Fast FP/MMX Streaming SIMD Extensions save/restore SSE Streaming SIMD Extensions instruction set SSE2 SSE2 extensions SS Self Snoop TM Thermal monitor 31 reserved TLB and cache info: b0: unknown TLB/cache descriptor b3: unknown TLB/cache descriptor 02: Instruction TLB: 4MB pages, 4-way set assoc, 2 entries f0: unknown TLB/cache descriptor 7d: unknown TLB/cache descriptor 30: unknown TLB/cache descriptor 04: Data TLB: 4MB pages, 4-way set assoc, 8 entries 2c: unknown TLB/cache descriptor On Lubuntu 14.04.1 live-CD with forcepae: cat /proc/cpuinfo processor : 0 vendor_id : GenuineIntel cpu family : 6 model : 13 model name : Intel(R) Pentium(R) M processor 1.50GHz stepping : 6 microcode : 0x17 cpu MHz : 600.000 cache size : 2048 KB physical id : 0 siblings : 1 core id : 0 cpu cores : 1 apicid : 0 initial apicid : 0 fdiv_bug : no f00f_bug : no coma_bug : no fpu : yes fpu_exception : yes cpuid level : 2 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 sep mtrr pge mca cmov clflush dts acpi mmx fxsr sse sse2 ss tm pbe bts est tm2 bogomips : 1284.68 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 32 bits virtual power management: uname -a Linux lubuntu 3.13.0-32-generic #57-Ubuntu SMP Tue Jul 15 03:51:12 UTC 2014 i686 i686 i686 GNU/Linux lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 14.04.1 LTS Release: 14.04 Codename: trusty cpuid CPU 0: vendor_id = "GenuineIntel" version information (1/eax): processor type = primary processor (0) family = Intel Pentium Pro/II/III/Celeron/Core/Core 2/Atom, AMD Athlon/Duron, Cyrix M2, VIA C3 (6) model = 0xd (13) stepping id = 0x6 (6) extended family = 0x0 (0) extended model = 0x0 (0) (simple synth) = Intel Pentium M (Dothan B1) / Celeron M (Dothan B1), 90nm miscellaneous (1/ebx): process local APIC physical ID = 0x0 (0) cpu count = 0x0 (0) CLFLUSH line size = 0x8 (8) brand index = 0x16 (22) brand id = 0x16 (22): Intel Pentium M, .13um feature information (1/edx): x87 FPU on chip = true virtual-8086 mode enhancement = true debugging extensions = true page size extensions = true time stamp counter = true RDMSR and WRMSR support = true physical address extensions = false machine check exception = true CMPXCHG8B inst. = true APIC on chip = false SYSENTER and SYSEXIT = true memory type range registers = true PTE global bit = true machine check architecture = true conditional move/compare instruction = true page attribute table = true page size extension = false processor serial number = false CLFLUSH instruction = true debug store = true thermal monitor and clock ctrl = true MMX Technology = true FXSAVE/FXRSTOR = true SSE extensions = true SSE2 extensions = true self snoop = true hyper-threading / multi-core supported = false therm. monitor = true IA64 = false pending break event = true feature information (1/ecx): PNI/SSE3: Prescott New Instructions = false PCLMULDQ instruction = false 64-bit debug store = false MONITOR/MWAIT = false CPL-qualified debug store = false VMX: virtual machine extensions = false SMX: safer mode extensions = false Enhanced Intel SpeedStep Technology = true thermal monitor 2 = true SSSE3 extensions = false context ID: adaptive or shared L1 data = false FMA instruction = false CMPXCHG16B instruction = false xTPR disable = false perfmon and debug = false process context identifiers = false direct cache access = false SSE4.1 extensions = false SSE4.2 extensions = false extended xAPIC support = false MOVBE instruction = false POPCNT instruction = false time stamp counter deadline = false AES instruction = false XSAVE/XSTOR states = false OS-enabled XSAVE/XSTOR = false AVX: advanced vector extensions = false F16C half-precision convert instruction = false RDRAND instruction = false hypervisor guest status = false cache and TLB information (2): 0xb0: instruction TLB: 4K, 4-way, 128 entries 0xb3: data TLB: 4K, 4-way, 128 entries 0x02: instruction TLB: 4M pages, 4-way, 2 entries 0xf0: 64 byte prefetching 0x7d: L2 cache: 2M, 8-way, sectored, 64 byte lines 0x30: L1 cache: 32K, 8-way, 64 byte lines 0x04: data TLB: 4M pages, 4-way, 8 entries 0x2c: L1 data cache: 32K, 8-way, 64 byte lines extended feature flags (0x80000001/edx): SYSCALL and SYSRET instructions = false execution disable = false 1-GB large page support = false RDTSCP = false 64-bit extensions technology available = false Intel feature flags (0x80000001/ecx): LAHF/SAHF supported in 64-bit mode = false LZCNT advanced bit manipulation = false 3DNow! PREFETCH/PREFETCHW instructions = false brand = " Intel(R) Pentium(R) M processor 1.50GHz" (multi-processing synth): none (multi-processing method): Intel leaf 1 (synth) = Intel Pentium M (Dothan B1), 90nm

    Read the article

  • Should I register the domain name that has not popular top level domain name

    - by sreginogemoh
    Lets say for example you want to register domain name assembly.com or assembly.net and find out that they are already registered(not available). Would you go with the domain name assemb.ly in such case? By having .ly the domain name represent word assembly but I think .ly domain is not so friendly for search engines? What do you think? Do you see any advantage of asemb.ly over assembly.com or assembly.net except it is shorter?

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

  • Silverlight and WCF caching

    - by subodhnpushpak
    There are scenarios where Silverlight client calls WCF (or REST) service for data. Now, if the data is cached on the WCF layer, the calls can take considerable resources at the server if NOT cached. Keeping that in mind along with the fact that cache is an cross-cutting aspect, and therefore it should be as easy as possible to put Cache wherever required. The good thing about the solution is that it caches based on the inputs. The input can be basic type of any complex type. If input changes the data is fetched and then cached for further used. If same input is provided again, data id fetched from the cache. The cache logic itself is implemented as PostSharp aspect, and it is as easy as putting an attribute over service call to switch on cache. Notice how clean the code is:        [OperationContract]       [CacheOnArgs(typeof(int))] // based on actual value of cache        public string DoWork(int value)        {            return string.Format("You entered: {0} @ cached time {1}", value, System.DateTime.Now);        } The cache is implemented as POST Sharp as below 1: public override void OnInvocation(MethodInvocationEventArgs eventArgs) 2: { 3: try 4: { 5: object value = new object(); 6: object[] args = eventArgs.GetArgumentArray(); 7: if (args != null || args.Count() > 0) 8: { 9:   10: string key = string.Format("{0}_{1}", eventArgs.Method.Name, XMLUtility<object>.GetDataContractXml(args[0], null));// Compute the cache key (details omitted). 11:   12: 13: value = GetFromCache(key); 14: if (value == null) 15: { 16: eventArgs.Proceed(); 17: value = XMLUtility<object>.GetDataContractXml(eventArgs.ReturnValue, null); 18: value = eventArgs.ReturnValue; 19: AddToCache(key, value); 20: return; 21: } 22:   23:   24: Log(string.Format("Data returned from Cache {0}",value)); 25: eventArgs.ReturnValue = value; 26: } 27: } 28: catch (Exception ex) 29: { 30: //ApplicationLogger.LogException(ex.Message, Source.UtilityService); 31: } 32: } 33:   34: private object GetFromCache(string inputKey) { if (ServerConfig.CachingEnabled) { return WCFCache.Current[inputKey]; } return null; }private void AddToCache(string inputKey,object outputValue) 35: { 36: if (ServerConfig.CachingEnabled) 37: { 38: if (WCFCache.Current.CachedItemsNumber < ServerConfig.NumberOfCachedItems) 39: { 40: if (ServerConfig.SlidingExpirationTime <= 0 || ServerConfig.SlidingExpirationTime == int.MaxValue) 41: { 42: WCFCache.Current[inputKey] = outputValue; 43: } 44: else 45: { 46: WCFCache.Current.Insert(inputKey, outputValue, new TimeSpan(0, 0, ServerConfig.SlidingExpirationTime), true); 47:   48: // _bw.DoWork += bw_DoWork; 49: //string arg = string.Format("{0}|{1}", inputKey,outputValue); 50: //_bw.RunWorkerAsync(inputKey ); 51: } 52: } 53: } 54: }     The cache class can be extended to support Velocity / memcahe / Nache. the attribute can be used over REST services as well. Hope the above helps. Here is the code base for the same.   Please do provide your inputs / comments.

    Read the article

  • UITableView UITableViewCell not reloading on reloadData

    - by David van Dugteren
    This question has been asked a few times now, but there exists no answer on the web that has solved the problem for me yet... See the code: { const NSInteger TOP_LABEL_TAG = 1001; static NSString *CellIdentifier = @"CellIdentifier"; UITableViewCell *cell = [theTableView dequeueReusableCellWithIdentifier:CellIdentifier]; if (cell == nil) { cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier] autorelease]; } getAQuestionToAnswer = [[QuestionsToAnswer sharedInstance] getLatestLoadedQuestion]; UILabel *topLabel; topLabel = [[[UILabel alloc] initWithFrame: CGRectMake ( 50, 18, 260, 75)] autorelease]; [cell.contentView addSubview:topLabel]; topLabel.tag = TOP_LABEL_TAG; topLabel.backgroundColor = [UIColor clearColor]; topLabel.textColor = [UIColor colorWithRed:0.25 green:0.0 blue:0.0 alpha:1.0]; topLabel.highlightedTextColor = [UIColor colorWithRed:1.0 green:1.0 blue:0.9 alpha:1.0]; [topLabel setFont:[UIFont fontWithName:@"MarkerFelt-Thin" size:13]]; topLabel.numberOfLines = 4; topLabel = (UILabel *)[cell viewWithTag:TOP_LABEL_TAG]; topLabel.text = [NSString stringWithFormat:@"%@", [getAQuestionToAnswer valueForKey:@"question"] ]; Some code is omitted but the basics is there, I'm updating by means of a shake gesture, the NSLog confirms that the getAQuestionToAnswer is indeed updated with a new question after the gesture. Yet at run time, no matter what I do... e.g. [self.tableview reloaddata]; nothing works. It just doesn't want to refresh.

    Read the article

  • Delphi label and asm weirdness?

    - by egon
    I written an asm function in Delphi 7 but it transforms my code to something else: function f(x: Cardinal): Cardinal; register; label err; asm not eax mov edx,eax shr edx, 1 and eax, edx bsf ecx, eax jz err mov eax, 1 shl eax, cl mov edx, eax add edx, edx or eax, edx ret err: xor eax, eax end; // compiled version f: push ebx // !!! not eax mov edx,eax shr edx, 1 and eax, edx bsf ecx, eax jz +$0e mov eax, 1 shl eax, cl mov edx, eax add edx, edx or eax, edx ret err: xor eax, eax mov eax, ebx // !!! pop ebx // !!! ret // the almost equivalent without asm function f(x: Cardinal): Cardinal; var c: Cardinal; begin x := not x; x := x and x shr 1; if x <> 0 then begin c := bsf(x); // bitscanforward x := 1 shl c; Result := x or (x shl 1) end else Result := 0; end; Why does it generate push ebx and pop ebx? And why does it do mov eax, ebx? It seems that it generates the partial stack frame because of the mov eax, ebx. This simple test generates mov eax, edx but doesn't generate that stack frame: function asmtest(x: Cardinal): Cardinal; register; label err; asm not eax and eax, 1 jz err ret err: xor eax, eax end; // compiled asmtest: not eax and eax, $01 jz +$01 ret xor eax, eax mov eax, edx // !!! ret It seems that it has something to do with the label err. If I remove that I don't get the mov eax, * part. Why does this happen? Made a bug report on Quality Central.

    Read the article

  • No Program Entry Point TASM Error

    - by Nathan Campos
    I'm trying to develop a simple kernel using TASM, using this code: ; beroset.asm ; ; This is a primitive operating system. ; ;********************************************************************** code segment para public use16 '_CODE' .386 assume cs:code, ds:code, es:code, ss:code org 0 Start: mov ax,cs mov ds,ax mov es,ax mov si,offset err_msg call DisplayMsg spin: jmp spin ;**************************************************************************** ; DisplayMsg ; ; displays the ASCIIZ message to the screen using int 10h calls ; ; Entry: ; ds:si ==> ASCII string ; ; Exit: ; ; Destroyed: ; none ; ; ;**************************************************************************** DisplayMsg proc push ax bx si cld nextchar: lodsb or al,al jz alldone mov bx,0007h mov ah,0eh int 10h jmp nextchar alldone: pop si bx ax ret DisplayMsg endp err_msg db "Operating system found and loaded.",0 code ends END Then I compile it like this: C:\DOCUME~1\Nathan\Desktop tasm /la /m2 beroset.asm Turbo Assembler Version 4.1 Copyright (c) 1988, 1996 Borland International Assembling file: beroset.asm Error messages: None Warning messages: None Passes: 2 Remaining memory: 406k C:\DOCUME~1\Nathan\Desktop tlink beroset, loader.bin Turbo Link Version 7.1.30.1. Copyright (c) 1987, 1996 Borland International Fatal: No program entry point C:\DOCUME~1\Nathan\Desktop What can I to correct this error?

    Read the article

  • C#.NET framework 3.5 SP1: satellite assemblies and FullTrust issues when the exe is on the network.

    - by leo
    Hi, I'm executing my .NET app from a network share. Since framework 3.5 SP1, and as explained here: http://blogs.msdn.com/shawnfa/archive/2008/05/12/fulltrust-on-the-localintranet.aspx, the main exe and all the DLLs located in the same folder (but not subfolders) are granted with FullTrust security policy. My problem is that I have subfolders for satellite assemblies with localized strings. Namely, I have: 1) FOLDER\APP.EXE 2) FOLDER\A whole bunch of DLLs 3) FOLDER\LANGUAGE1\Satellite assemblies 4) FOLDER\LANGUAGE2\Satellite assemblies 1 and 2 are automatically granted with FullTrust. 3 and 4 are not and my application is really slow because of that. Is there a way to grant 3 & 4 FullTrust security policy at runtime, since the application running has FullTrust? If not, is there a clean way to have satellite assemblies merged into only one DLL? Thanks a lot.

    Read the article

  • Question about Objective C calling convention and argument passing on ARM

    - by overboming
    I want to know how objective C runtime handle arguments when I call a objective C method like [NSString stringWithFomat:@"%@, %@", @"Hello", @"World"] There are three arguments for this objective C call, how does it work compared to typical way on a ARM system. I have known register r0, r1, r2, r3 will hold first 4 arguments, how about there are additional arguments? How does it put them on a stack and pop them later?

    Read the article

  • Get all Javascript Variables?

    - by Matrym
    Is there a way for javascript to detect all assigned variables? For example, if one js file creates a bunch of vars (globally scoped), can a subsequent file get all the vars without knowing what they're named and which might exist? Thanks in advance :)

    Read the article

  • InvalidCastException for two Objects of the same type

    - by LLEA
    hi, I have this weird problem that I cannot handle myself. A class in the model of my mvp-project designed as singleton causes an InvalidCastException. The source of error is found in this code line where the deserialised object is assigned to the instance variable of the class: engineObject = (ENGINE)xSerializer.Deserialize(str); It occurs whenever I try to add one of my UserControls to a Form or to a different UC. All of my UCs have a special presenter that access the above mentioned instance variable of the singleton class. This is what I get when trying to add a UC somewhere: 'System.TypeInitializationException: The type initializer for 'MVP.Model.EngineData' threw an exception. ---- System.InvalidCastException: [A]Engine cannot be cast to [B]Engine. Type A originates from 'MVP.Model, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null' in the context 'LoadNeither' at location '[...]\AppData\Roaming\Microsoft\VisualStudio\9.0\ProjectAssemblies\uankw1hh01\MVP.Model.dll'. Type B originates from 'MVP.Model, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null' in the context 'LoadNeither' at location '[...]\AppData\Roaming\Microsoft\VisualStudio\9.0\ProjectAssemblies\u_hge2de01\MVP.Model.dll'... So I somehow have two assemblies and they are not accessed from my project folder, but from a VS temp folder? I googled a lot and only found this: IronPython Exception: [A]Person cannot be cast to [B]Person. There is a solution offered, but first it concerns IronPhyton and second I don't know where to use it within my project? It would be just great, if u could help me out here :-) thx

    Read the article

  • fresh_when in ruby not working with xml rendering

    - by Guilherme Silveira
    While trying to implement support for conditional GETting in a rest system, we have come across the fresh_when and stale? methods. The following code works fine with 304 and not further rendering: if stale?(:etag = resource, :last_modified = resource.updated_at.utc) respond_to do |format| format.html # show.html.erb } end end But accessing 1.xml will try to render the resource twice: if stale?(:etag => resource, :last_modified => resource.updated_at.utc) respond_to do |format| format.html # show.html.erb format.xml { render :xml => @order.to_xml(:controller => self, :except => [:paid_at]) } end end The error message: ActionController::DoubleRenderError in OrdersController#show Can only render or redirect once per action RAILS_ROOT: /Users/guilherme/Documents/ruby/restfulie-test Application Trace | Framework Trace | Full Trace /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/base.rb:900:in render_without_benchmark' /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/benchmarking.rb:51:in render' /Library/Ruby/Gems/1.8/gems/activesupport-2.3.4/lib/active_support/core_ext/benchmark.rb:17:in ms' /Library/Ruby/Gems/1.8/gems/activesupport-2.3.4/lib/active_support/core_ext/benchmark.rb:10:in realtime' /Library/Ruby/Gems/1.8/gems/activesupport-2.3.4/lib/active_support/core_ext/benchmark.rb:17:in ms' /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/benchmarking.rb:51:in render' /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/base.rb:1331:in send' /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/base.rb:1331:in perform_action_without_filters' /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/filters.rb:617:in call_filters' /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/filters.rb:610:in perform_action_without_benchmark' /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/benchmarking.rb:68:in perform_action_without_rescue' /Library/Ruby/Gems/1.8/gems/activesupport-2.3.4/lib/active_support/core_ext/benchmark.rb:17:in ms' /Library/Ruby/Gems/1.8/gems/activesupport-2.3.4/lib/active_support/core_ext/benchmark.rb:10:in realtime' /Library/Ruby/Gems/1.8/gems/activesupport-2.3.4/lib/active_support/core_ext/benchmark.rb:17:in ms' /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/benchmarking.rb:68:in perform_action_without_rescue' /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/rescue.rb:160:in perform_action_without_flash' /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/flash.rb:146:in perform_action' /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/base.rb:532:in send' /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/base.rb:532:in process_without_filters' /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/filters.rb:606:in process' /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/base.rb:391:in process' /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/base.rb:386:in call' /Library/Ruby/Gems/1.8/gems/actionpack-2.3.4/lib/action_controller/routing/route_set.rb:437:in `call' Any suggestions? Regards

    Read the article

  • Explanation of the disassembly of the simplest program (x86)

    - by noname
    The following code int _main() {return 0;} Compiled using the command: gcc -s -nostdlib -nostartfiles 01-simple.c -o01-simple.exe gcc version 4.4.1 (TDM-1 mingw32) OllyDbg produced this output: http://imgur.com/g81vK.png Can you explain what happens here? Analysis so far: // these two seems to be an idiom: PUSH EBP // places EBP on stack MOV EBP, ESP // overwrites EBP with ESP MOV EAX, 0 // EAX = 0 LEAVE // == mov esp, ebp // pop ebp // according to // http://en.wikipedia.org/wiki/X86_instruction_listings What is the meaning of all this?

    Read the article

  • Using EHCache with ASP.NET?

    - by frankadelic
    I have heard of .NET APIs for memcached. Is there any equivalent for EHCache? I am envisioning a cluster of linux machines running EHCache, serving cached objects for a farm of ASP.NET webservers. Is this practical? Can this be done without installing Java on the ASP.NET servers?

    Read the article

  • Need to call COM component using reflections in C#.NET

    - by Usman
    Hello, I need to determin the COM component(unmanaged code) type and invoke the exposed interface's methods using reflection in C#.NET at runtime. 1 -- First What member of "Type" tells that type is COM component and we can take CLSID at runtime? Is Type.COMObject? 2 -- I need to call methods of exposed interfaces as they called in unmanaged code using CoCreateInstance by passing CLSID and REFID ... I am using InvokeMember but it returns null or 0 as out parameter. How to pass out parameter in this case.? Is there any need to pass out parameter? As all my COM unamanged code suppose to take las parameter as an OUT parameter and after executing it puts the result into that out param. But I've converted all my unmanged COM code to .NET managed assemblies using tlbimp.exe. Regards Usman

    Read the article

  • Is AutoIt "Managed Code"?

    - by Gio Borje
    An extension of my previous thread: http://stackoverflow.com/questions/2634531/c-wrapping-an-application-within-another-application So I'm launching embedded resource applications via Reflection and I'm unsure whether I can use AutoIt (.au3) files or not. People say it needs to be "Managed Code". I'm not completely sure what that means nor do I know if AutoIt has that characteristic.

    Read the article

  • MIPS return address in main

    - by Alexander
    I am confused why in the code below I need to decrement the stack pointer and store the return address again. If I don't do that... then PCSpim keeps on looping.. Why is that? ######################################################################################################################## ### main ######################################################################################################################## .text .globl main main: addi $sp, $sp, -4 # Make space on stack sw $ra, 0($sp) # Save return address # Start test 1 ############################################################ la $a0, asize1 # 1st parameter: address of asize1[0] la $a1, frame1 # 2nd parameter: address of frame1[0] la $a2, window1 # 3rd parameter: address of window1[0] jal vbsme # call function # Printing $v0 add $a0, $v0, $zero # Load $v0 for printing li $v0, 1 # Load the system call numbers syscall # Print newline. la $a0, newline # Load value for printing li $v0, 4 # Load the system call numbers syscall # Printing $v1 add $a0, $v1, $zero # Load $v1 for printing li $v0, 1 # Load the system call numbers syscall # Print newline. la $a0, newline # Load value for printing li $v0, 4 # Load the system call numbers syscall # Print newline. la $a0, newline # Load value for printing li $v0, 4 # Load the system call numbers syscall ############################################################ # End of test 1 lw $ra, 0($sp) # Restore return address addi $sp, $sp, 4 # Restore stack pointer jr $ra # Return ######################################################################################################################## ### vbsme ######################################################################################################################## #.text .globl vbsme vbsme: addi $sp, $sp, -4 # create space on the stack pointer sw $ra, 0($sp) # save return address exit: add $v1, $t5, $zero # (v1) x coordinate of the block in the frame with the minimum SAD add $v0, $t4, $zero # (v0) y coordinate of the block in the frame with the minimum SAD lw $ra, 0($sp) # restore return address addi $sp, $sp, 4 # restore stack pointer jr $ra # return If I delete: addi $sp, $sp, -4 # create space on the stack pointer sw $ra, 0($sp) # save return address and lw $ra, 0($sp) # restore return address addi $sp, $sp, 4 # restore stack pointer on vbsme: PCSpim keeps on running... Why??? I shouldn't have to increment/decrement the stack pointer on vbsme and then do the jr again right? The jal in main is supposed to handle that

    Read the article

  • C#: Cached Property: Easier way?

    - by Peterdk
    I have a object with properties that are expensive to compute, so they are only calculated on first access and then cached. private List<Note> notes; public List<Note> Notes { get { if (this.notes == null) { this.notes = CalcNotes(); } return this.notes; } } I wonder, is there a better way to do this? Is it somehow possible to create a Cached Property or something like that in C#?

    Read the article

  • why gcc 4.x default reserve 8 bytes for stack on linux when calling a method?

    - by nikcname
    as a beginner of asm, I am checking gcc -S generated asm code to learn. why gcc 4.x default reserve 8 bytes for stack when calling a method? func18 is the empty function with no return no param no local var defined. I can't figure out why 8 bytes is reserved here (neither any forum/site mention for the reason, ppl seems take it for granted) is it for the %ebp just push? or return type?! many thx! .globl _func18 _func18: pushl %ebp movl %esp, %ebp subl $8, %esp .text

    Read the article

  • why gcc 4.x default reserve 8 bytes for stack on linux when calling a method?

    - by nikcname
    as a beginner of asm, I am checking gcc -S generated asm code to learn. why gcc 4.x default reserve 8 bytes for stack when calling a method? func18 is the empty function with no return no param no local var defined. I can't figure out why 8 bytes is reserved here (neither any forum/site mention for the reason, ppl seems take it for granted) is it for the %ebp just push? or return type?! many thx! .globl _func18 _func18: pushl %ebp movl %esp, %ebp subl $8, %esp .text

    Read the article

  • teaching my self Z/OS assembler?

    - by Jared
    'I've interned at a company that does a lot of mainframe work. Most of my mainframe experience has been using Java and Unix System Services. I've had some experience with the ISPF interface and C but none with assembler. I’m graduating shortly and will be taking an independent study my last semester. I’d like to stick with the mainframe and was wondering what resources could teach me mainframe assembler? Note I don’t have experience writing assembler for any platform but do understand binary, hex, and have a theoretical understanding of registers.

    Read the article

< Previous Page | 106 107 108 109 110 111 112 113 114 115 116 117  | Next Page >