Search Results

Search found 18466 results on 739 pages for 'static member'.

Page 118/739 | < Previous Page | 114 115 116 117 118 119 120 121 122 123 124 125  | Next Page >

  • Message Handlers and the WeakReference issue

    - by user1058647
    The following message Handler works fine receiving messages from my service... private Handler handler = new Handler() { public void handleMessage(Message message) { Object path = message.obj; if (message.arg1 == 5 && path != null) //5 means its a single mapleg to plot on the map { String myString = (String) message.obj; Gson gson = new Gson(); MapPlot mapleg = gson.fromJson(myString, MapPlot.class); myMapView.getOverlays().add(new DirectionPathOverlay(mapleg.fromPoint, mapleg.toPoint)); mc.animateTo(mapleg.toPoint); } else { if (message.arg1 == RESULT_OK && path != null) { Toast.makeText(PSActivity.this, "Service Started" + path.toString(), Toast.LENGTH_LONG).show(); } else { Toast.makeText(PSActivity.this,"Service error" + String.valueOf(message.arg1), Toast.LENGTH_LONG).show(); } } }; }; However, even though it tests out alright in the AVD (I'm feeding it a large KML file via DDMS) the "object path = message.obj;" line has a WARNING saying "this Handler class should be static else leaks might occur". But if I say "static Handler handler = new Handler()" it won't compile complaining that I "cannot make a static reference to a non-static field myMapView. If I can't make such references, I can't do anything useful. This led me into several hours of googling around on this issue and learning more about weakReferences than I ever wanted to know. The often found reccomendation I find is that I should replace... private Handler handler = new Handler() with static class handler extends Handler { private final WeakReference<PSActivity> mTarget; handler(PSActivity target) { mTarget = new WeakReference<PSActivity>(target); } But this won't compile still complaining that I can't make a static reference to a non-dtatic field. So, my question a week or to ago was "how can I write a message handler for android so my service can send data to my activity. Even though I have working code, the question still stands with the suffix "without leaking memory". Thanks, Gary

    Read the article

  • Why am I getting a ClassCastException here?

    - by Holly
    I'm creating an android application and i'm trying to use a PreferenceActivity. I'm getting the java.lang.ClassCastException: java.lang.String error when it gets to this line return PreferenceManager.getDefaultSharedPreferences(context).getInt(USER_TERM, USER_TERM_DEF); I thought it might be because I'm not converting it properly from it's string value in the EditText box to the int I need but I can't figure out how to fix this, or is that even the cause? I'm flummoxed. Here's my preference activity class: public class UserPrefs extends PreferenceActivity { //option names and default vals private static final String USER_TERM = "term_length"; private static final String USER_YEAR = "year_length"; private static final int USER_TERM_DEF = 12; private static final int USER_YEAR_DEF = 34; @Override protected void onCreate(Bundle savedInstanceState){ super.onCreate(savedInstanceState); addPreferencesFromResource(R.xml.preferences); } public static int getTermLength(Context context){ try{ return PreferenceManager.getDefaultSharedPreferences(context).getInt(USER_TERM, USER_TERM_DEF); }catch (ClassCastException e){Log.v("getTermLength", "error::: " + e); } //return 1;//temporary, needed to catch the error and couldn't without adding a return outside the block.// } public static int getYearLength(Context context){ return PreferenceManager.getDefaultSharedPreferences(context).getInt(USER_YEAR, USER_YEAR_DEF); } And here's the bit of code where I'm trying to use the the preferences inside another class: public float alterForFrequency(Context keypadContext, float enteredAmount, String spinnerPosition){ int termLength = UserPrefs.getTermLength(keypadContext); int yearLength = UserPrefs.getYearLength(keypadContext); } The complete android logcat, i've uploaded here: http://freetexthost.com/v3t4ta3wbi

    Read the article

  • how should i create my own 'now' / DateTime.Now ?

    - by Michel
    Hi all, i'm starting to build a part of a system which will hold a lot of DateTime validations, and a lot of 'if it was done before now' or 'if it will start in an hour etc'. Usual way to go is to use DateTime.Now to get the actual time. I predict however, that during unit test that will give me a real headache because i will have to setup my testdata for the time when the test will run in stead of use a default set of test data. So i thought: why not use my own 'now' so i can set the current datetime to any moment in time. As i don't want to set the testservers internal clock i was thinking about this solution, and i was wondering what you think of it. Base thought is that i use my own DateTime class. That class gives you the current datetime, but you can also set your own time from outside. public static class MyDateTime { private static TimeSpan _TimeDifference = TimeSpan.Zero; public static DateTime Now { get { return DateTime.Now + _TimeDifference; } } public static void SetNewNow(DateTime newNow) { _TimeDifference = newNow - DateTime.Now; } public static void AddToRealTime(TimeSpan timeSpan ) { _TimeDifference = timeSpan; } public static void SubtractFromRealTime(TimeSpan timeSpan) { _TimeDifference = - timeSpan; } }

    Read the article

  • [c++] - Help about class and error: C3861

    - by Chelsea_cole
    Can someone help me in this error? in "cDef.h" : #pragma once class cDef { public: static int STATE_LOGO; static int STATE_MENU; static int MESSAGE_ENTER; static int MESSAGE_UPDATE; static int MESSAGE_PAINT; static int MESSAGE_EXIT; }; in "GameState.h": #pragma once #ifndef _GameState_ #define _GameState_ #include "cDef.h" class MainGame; class GameState; class GameState { public: MainGame *mg; int GAME_STATE_DEF; virtual void MessengeEnter(int message) = 0; virtual void MessengeUpdate(int message,int keys) = 0; virtual void MessengePaint(int message,CDC *pDc) = 0; void StateHandler(int message,CDC *pDc,int keys); public: GameState(void); public: ~GameState(void); }; #endif in "GameState.cpp": #include "StdAfx.h" #include "GameState.h" GameState::GameState(void) { GAME_STATE_DEF = -1; } GameState::~GameState(void) { } void GameState::StateHandler(int message,CDC *pDc,int keys) { if(message == cDef.MESSAGE_ENTER) { MessageEnter(message); } if(message == cDef.MESSAGE_UPDATE) { MessageUpdate(message,keys); } if(message == cDef.MESSAGE_PAINT) { MessagePaint(message,pDC); } } error: warning C4832: token '.' is illegal after UDT 'cDef' see declaration of 'cDef' error C3861: 'MessageUpdate': identifier not found error C3861: 'MessageEnter': identifier not found error C3861: 'MessagePaint': identifier not found ..... Thanks in advance!

    Read the article

  • Click at specified client area

    - by VixinG
    Click doesn't work - I don't know why and can't find a solution :( ie. Click(150,215) should move mouse to the client area and click there. [DllImport("user32.dll")] private static extern bool ScreenToClient(IntPtr hWnd, ref Point lpPoint); [DllImport("user32", SetLastError = true)] private static extern int SetCursorPos(int x, int y); static void MouseMove(int x, int y) { Point p = new Point(x * -1, y * -1); ScreenToClient(hWnd, ref p); p = new Point(p.X * -1, p.Y * -1); SetCursorPos(p.X, p.Y); } static void Click(int x, int y) { MouseMove(x, y); SendMessage(hWnd, WM_LBUTTONDOWN, (IntPtr)0x1, new IntPtr(y * 0x10000 + x)); SendMessage(hWnd, WM_LBUTTONUP, (IntPtr)0x1, new IntPtr(y * 0x10000 + x)); } Edit: Of course I can use mouse_event for that, but I would like to see a solution for SendMessage()... [DllImport("user32.dll")] static extern void mouse_event(int dwFlags, int dx, int dy, int dwData, int dwExtraInfo); const int LEFTDOWN = 0x00000002; const int LEFTUP = 0x00000004; static void Click(int x, int y) { MouseMove(x, y); mouse_event((int)(LEFTDOWN), 0, 0, 0, 0); mouse_event((int)(LEFTUP), 0, 0, 0, 0); }

    Read the article

  • C++, inject additional data in a method

    - by justik
    I am adding the new modul in some large library. All methods here are implemented as static. Let mi briefly describe the simplified model: typedef std::vector<double> TData; double test ( const TData &arg ) { return arg ( 0 ) * sin ( arg ( 1 ) + ...;} double ( * p_test ) ( const TData> &arg) = &test; class A { public: static T f1 (TData &input) { .... //some computations B::f2 (p_test); } }; Inside f1() some computations are perfomed and a static method B::f2 is called. The f2 method is implemented by another author and represents some simulation algorithm (example here is siplified). class B { public: static double f2 (double ( * p_test ) ( const TData &arg ) ) { //difficult algorithm working p_test many times double res = p_test(arg); } }; The f2 method has a pointer to some weight function (here p_test). But in my case some additional parameters computed in f1 for test() methods are required double test ( const TData &arg, const TData &arg2, char *arg3.... ) { } How to inject these parameters into test() (and so to f2) to avoid changing the source code of the f2 methods (that is not trivial), redesign of the library and without dirty hacks :-) ? The most simple step is to override f2 static double f2 (double ( * p_test ) ( const TData &arg ), const TData &arg2, char *arg3.... ) But what to do later? Consider, that methods are static, so there will be problems with objects. Thanks for your help.

    Read the article

  • Code thinks Datagrid footer textbox is empty...

    - by The Sheek Geek
    Hello All, I am working on an .net (C#) web application. Recently a defect came my way that stated that when two users were logged into the application at the same time they both could not update values without one refreshing the page. When I looked into the issue I discovered that the author of the code has used static datasets. I changed the datasets to not be static and everything works great. However, This issue spans many pages in the application and I must fix it everywhere. On some of these pages the application uses datasets to bind data to datagrids. The datagrids are populated with the information in the dataset and the footer contains some textboxes and an add button to add extra rows. Here is where the problem starts: When the page was using static datasets and the user attempted to add a row through the interface everything worked fine. However, when I changed it to use datasets that were not static (they are loaded every time the page loads) and the user attempts to add a row, the code thinks that the textbox is empty (discovered when debugging even though I can see the text that I entered) and empty field validation fails and a message is displayed. Can someone please tell me why on Earth this is happening? Why does it see the text when the dataset is static (the dataset NEVER populates the foot row) and not see the text when it is not static? Some insight would be awesome! Thanks in advance!

    Read the article

  • question about permutation problem

    - by davit-datuashvili
    i have posted similar problem here http://stackoverflow.com/questions/2920315/permutation-of-array but i want following we know that with length n there is n! possible permutation from which one such that all element are in order they are in sorted variant so i want break permutation when array is in order and print result but something is wrong i think that problem is repeated of permutation here is my code import java.util.*; public class permut{ public static Random r=new Random(); public static void display(int a[],int n){ for (int i=0;i<n;i++){ System.out.println(a[i]); } } public static void Permut(int a[],int n){ int j=0; int k=0; while (j<fact(n)){ int s=r.nextInt(n); for (int i=0;i<n;i++){ k=a[i]; a[i]=a[s]; a[s]=k; } j++; if (sorted(a,n)) display(a,n); break; } } public static void main(String[]args){ int a[]=new int[]{3,4,1,2}; int n=a.length; Permut(a,n); } public static int fact(int n){ if (n==0 || (n==1) ) return 1; return n*fact(n-1); } public static boolean sorted(int a[],int n ){ boolean flag=false; for (int i=0;i<n-1;i++){ if (a[i]<a[i+1]){ flag=true; } else{ flag=false; } } return flag; } } can anybody help me? result is nothing

    Read the article

  • Clicking mouse by sending messages

    - by Frank Meulenaar
    I'm trying to send mouse clicks to a program. As I don't want the mouse to move, I don't want to use SendInput or mouse_event, and because the window that should receive the clicks doesn't really use Buttons or other GUI events, I can't send messages to these buttons. I'm trying to get this working using SendMessage, but for some reason it doesn't work. Relevant code is (in C#, but tried Java with jnative as well), trying this on Vista [DllImport("user32.dll", CharSet=CharSet.Auto)] public static extern int SendMessage(IntPtr A_0, int A_1, int A_2, int A_3); static int WM_CLOSE = 0x10; static int WM_LBUTTONDOWN = 0x201; static int WM_LBUTTONUP = 0x202; public static void click(IntPtr hWnd, int x, int y) { SendMessage(hWnd, WM_LBUTTONDOWN, 1, ((x << 0x10) ^ y)); SendMessage(hWnd, WM_LBUTTONUP, 0, ((x << 0x10) ^ y)); } public static void close(IntPtr hWnd) { SendMessage(hWnd, WM_CLOSE, 0, 0); } The close works fine, but the click doesn't do anything.

    Read the article

  • Generic Singleton Fasade design pattern

    - by Paul
    Hi I try write singleton fasede pattern with generics. I have one problem, how can I call method from generic variable. Something like this: T1 t1 = new T1(); //call method from t1 t1.Method(); In method SingletonFasadeMethod I have compile error: Error 1 'T1' does not contain a definition for 'Method' and no extension method 'Method' accepting a first argument of type 'T1' could be found (are you missing a using directive or an assembly reference?) Any advace? Thank, I am beginner in C#. All code is here: namespace GenericSingletonFasade { public interface IMyInterface { string Method(); } internal class ClassA : IMyInterface { public string Method() { return " Calling MethodA "; } } internal class ClassB : IMyInterface { public string Method() { return " Calling MethodB "; } } internal class ClassC : IMyInterface { public string Method() { return "Calling MethodC"; } } internal class ClassD : IMyInterface { public string Method() { return "Calling MethodD"; } } public class SingletonFasade<T1,T2,T3> where T1 : class,new() where T2 : class,new() where T3 : class,new() { private static T1 t1; private static T2 t2; private static T3 t3; private SingletonFasade() { t1 = new T1(); t2 = new T2(); t3 = new T3(); } class SingletonCreator { static SingletonCreator() { } internal static readonly SingletonFasade<T1,T2,T3> uniqueInstace = new SingletonFasade<T1,T2,T3>(); } public static SingletonFasade<T1,T2,T3> UniqueInstace { get { return SingletonCreator.uniqueInstace; } } public string SingletonFasadeMethod() { //Problem is here return t1.Method() + t2.Method() + t3.Method(); } } }

    Read the article

  • Singleton pattern in C++

    - by skydoor
    I have a question about the singleton pattern. I saw two cases concerning the static member in the singleton class. First it is an object, like this class CMySingleton { public: static CMySingleton& Instance() { static CMySingleton singleton; return singleton; } // Other non-static member functions private: CMySingleton() {} // Private constructor ~CMySingleton() {} CMySingleton(const CMySingleton&); // Prevent copy-construction CMySingleton& operator=(const CMySingleton&); // Prevent assignment }; One is an pointer, like this class GlobalClass { int m_value; static GlobalClass *s_instance; GlobalClass(int v = 0) { m_value = v; } public: int get_value() { return m_value; } void set_value(int v) { m_value = v; } static GlobalClass *instance() { if (!s_instance) s_instance = new GlobalClass; return s_instance; } }; What's the difference between the two cases? Which one is correct?

    Read the article

  • Dynamic Type to do away with Reflection

    - by Rick Strahl
    The dynamic type in C# 4.0 is a welcome addition to the language. One thing I’ve been doing a lot with it is to remove explicit Reflection code that’s often necessary when you ‘dynamically’ need to walk and object hierarchy. In the past I’ve had a number of ReflectionUtils that used string based expressions to walk an object hierarchy. With the introduction of dynamic much of the ReflectionUtils code can be removed for cleaner code that runs considerably faster to boot. The old Way - Reflection Here’s a really contrived example, but assume for a second, you’d want to dynamically retrieve a Page.Request.Url.AbsoluteUrl based on a Page instance in an ASP.NET Web Page request. The strongly typed version looks like this: string path = Page.Request.Url.AbsolutePath; Now assume for a second that Page wasn’t available as a strongly typed instance and all you had was an object reference to start with and you couldn’t cast it (right I said this was contrived :-)) If you’re using raw Reflection code to retrieve this you’d end up writing 3 sets of Reflection calls using GetValue(). Here’s some internal code I use to retrieve Property values as part of ReflectionUtils: /// <summary> /// Retrieve a property value from an object dynamically. This is a simple version /// that uses Reflection calls directly. It doesn't support indexers. /// </summary> /// <param name="instance">Object to make the call on</param> /// <param name="property">Property to retrieve</param> /// <returns>Object - cast to proper type</returns> public static object GetProperty(object instance, string property) { return instance.GetType().GetProperty(property, ReflectionUtils.MemberAccess).GetValue(instance, null); } If you want more control over properties and support both fields and properties as well as array indexers a little more work is required: /// <summary> /// Parses Properties and Fields including Array and Collection references. /// Used internally for the 'Ex' Reflection methods. /// </summary> /// <param name="Parent"></param> /// <param name="Property"></param> /// <returns></returns> private static object GetPropertyInternal(object Parent, string Property) { if (Property == "this" || Property == "me") return Parent; object result = null; string pureProperty = Property; string indexes = null; bool isArrayOrCollection = false; // Deal with Array Property if (Property.IndexOf("[") > -1) { pureProperty = Property.Substring(0, Property.IndexOf("[")); indexes = Property.Substring(Property.IndexOf("[")); isArrayOrCollection = true; } // Get the member MemberInfo member = Parent.GetType().GetMember(pureProperty, ReflectionUtils.MemberAccess)[0]; if (member.MemberType == MemberTypes.Property) result = ((PropertyInfo)member).GetValue(Parent, null); else result = ((FieldInfo)member).GetValue(Parent); if (isArrayOrCollection) { indexes = indexes.Replace("[", string.Empty).Replace("]", string.Empty); if (result is Array) { int Index = -1; int.TryParse(indexes, out Index); result = CallMethod(result, "GetValue", Index); } else if (result is ICollection) { if (indexes.StartsWith("\"")) { // String Index indexes = indexes.Trim('\"'); result = CallMethod(result, "get_Item", indexes); } else { // assume numeric index int index = -1; int.TryParse(indexes, out index); result = CallMethod(result, "get_Item", index); } } } return result; } /// <summary> /// Returns a property or field value using a base object and sub members including . syntax. /// For example, you can access: oCustomer.oData.Company with (this,"oCustomer.oData.Company") /// This method also supports indexers in the Property value such as: /// Customer.DataSet.Tables["Customers"].Rows[0] /// </summary> /// <param name="Parent">Parent object to 'start' parsing from. Typically this will be the Page.</param> /// <param name="Property">The property to retrieve. Example: 'Customer.Entity.Company'</param> /// <returns></returns> public static object GetPropertyEx(object Parent, string Property) { Type type = Parent.GetType(); int at = Property.IndexOf("."); if (at < 0) { // Complex parse of the property return GetPropertyInternal(Parent, Property); } // Walk the . syntax - split into current object (Main) and further parsed objects (Subs) string main = Property.Substring(0, at); string subs = Property.Substring(at + 1); // Retrieve the next . section of the property object sub = GetPropertyInternal(Parent, main); // Now go parse the left over sections return GetPropertyEx(sub, subs); } As you can see there’s a fair bit of code involved into retrieving a property or field value reliably especially if you want to support array indexer syntax. This method is then used by a variety of routines to retrieve individual properties including one called GetPropertyEx() which can walk the dot syntax hierarchy easily. Anyway with ReflectionUtils I can  retrieve Page.Request.Url.AbsolutePath using code like this: string url = ReflectionUtils.GetPropertyEx(Page, "Request.Url.AbsolutePath") as string; This works fine, but is bulky to write and of course requires that I use my custom routines. It’s also quite slow as the code in GetPropertyEx does all sorts of string parsing to figure out which members to walk in the hierarchy. Enter dynamic – way easier! .NET 4.0’s dynamic type makes the above really easy. The following code is all that it takes: object objPage = Page; // force to object for contrivance :) dynamic page = objPage; // convert to dynamic from untyped object string scriptUrl = page.Request.Url.AbsolutePath; The dynamic type assignment in the first two lines turns the strongly typed Page object into a dynamic. The first assignment is just part of the contrived example to force the strongly typed Page reference into an untyped value to demonstrate the dynamic member access. The next line then just creates the dynamic type from the Page reference which allows you to access any public properties and methods easily. It also lets you access any child properties as dynamic types so when you look at Intellisense you’ll see something like this when typing Request.: In other words any dynamic value access on an object returns another dynamic object which is what allows the walking of the hierarchy chain. Note also that the result value doesn’t have to be explicitly cast as string in the code above – the compiler is perfectly happy without the cast in this case inferring the target type based on the type being assigned to. The dynamic conversion automatically handles the cast when making the final assignment which is nice making for natural syntnax that looks *exactly* like the fully typed syntax, but is completely dynamic. Note that you can also use indexers in the same natural syntax so the following also works on the dynamic page instance: string scriptUrl = page.Request.ServerVariables["SCRIPT_NAME"]; The dynamic type is going to make a lot of Reflection code go away as it’s simply so much nicer to be able to use natural syntax to write out code that previously required nasty Reflection syntax. Another interesting thing about the dynamic type is that it actually works considerably faster than Reflection. Check out the following methods that check performance: void Reflection() { Stopwatch stop = new Stopwatch(); stop.Start(); for (int i = 0; i < reps; i++) { // string url = ReflectionUtils.GetProperty(Page,"Title") as string;// "Request.Url.AbsolutePath") as string; string url = Page.GetType().GetProperty("Title", ReflectionUtils.MemberAccess).GetValue(Page, null) as string; } stop.Stop(); Response.Write("Reflection: " + stop.ElapsedMilliseconds.ToString()); } void Dynamic() { Stopwatch stop = new Stopwatch(); stop.Start(); dynamic page = Page; for (int i = 0; i < reps; i++) { string url = page.Title; //Request.Url.AbsolutePath; } stop.Stop(); Response.Write("Dynamic: " + stop.ElapsedMilliseconds.ToString()); } The dynamic code runs in 4-5 milliseconds while the Reflection code runs around 200+ milliseconds! There’s a bit of overhead in the first dynamic object call but subsequent calls are blazing fast and performance is actually much better than manual Reflection. Dynamic is definitely a huge win-win situation when you need dynamic access to objects at runtime.© Rick Strahl, West Wind Technologies, 2005-2010Posted in .NET  CSharp  

    Read the article

  • How to fix “Module ndiswrapper not found"

    - by jason328
    I have Ubuntu 12.10 and whenever I run sudo modprobe ndiswrapper, I get the following error. FATAL: Module ndiswrapper not found. The command dkms status returns with... ndiswrapper, 1.57, 3.2.0-32-generic, i686: installed The make.log in ndiswrapper returns with... DKMS make.log for ndiswrapper-1.57 for kernel 3.5.0-18-generic (i686) Wed Nov 7 22:16:12 EST 2012 make -C /usr/src/linux-headers-3.5.0-18-generic M=/var/lib/dkms/ndiswrapper /1.57/build make[1]: Entering directory `/usr/src/linux-headers-3.5.0-18-generic' LD /var/lib/dkms/ndiswrapper/1.57/build/built-in.o MKEXPORT /var/lib/dkms/ndiswrapper/1.57/build/crt_exports.h MKEXPORT /var/lib/dkms/ndiswrapper/1.57/build/hal_exports.h MKEXPORT /var/lib/dkms/ndiswrapper/1.57/build/ndis_exports.h MKEXPORT /var/lib/dkms/ndiswrapper/1.57/build/ntoskernel_exports.h MKEXPORT /var/lib/dkms/ndiswrapper/1.57/build/ntoskernel_io_exports.h MKEXPORT /var/lib/dkms/ndiswrapper/1.57/build/rtl_exports.h MKEXPORT /var/lib/dkms/ndiswrapper/1.57/build/usb_exports.h CC [M] /var/lib/dkms/ndiswrapper/1.57/build/crt.o CC [M] /var/lib/dkms/ndiswrapper/1.57/build/hal.o CC [M] /var/lib/dkms/ndiswrapper/1.57/build/iw_ndis.o CC [M] /var/lib/dkms/ndiswrapper/1.57/build/loader.o CC [M] /var/lib/dkms/ndiswrapper/1.57/build/ndis.o /var/lib/dkms/ndiswrapper/1.57/build/ndis.c: In function ‘NdisGetCurrentProcessorCounts’: /var/lib/dkms/ndiswrapper/1.57/build/ndis.c:2657:24: error: ‘struct kernel_stat’ has no member named ‘cpustat’ /var/lib/dkms/ndiswrapper/1.57/build/ndis.c:2658:31: error: ‘struct kernel_stat’ has no member named ‘cpustat’ /var/lib/dkms/ndiswrapper/1.57/build/ndis.c:2659:17: error: ‘struct kernel_stat’ has no member named ‘cpustat’ make[2]: *** [/var/lib/dkms/ndiswrapper/1.57/build/ndis.o] Error 1 make[1]: *** [_module_/var/lib/dkms/ndiswrapper/1.57/build] Error 2 make[1]: Leaving directory `/usr/src/linux-headers-3.5.0-18-generic' make: *** [modules] Error 2 I have installed commons, utils-1.9, dkms, source but it's still returning this error. How do I fix this?

    Read the article

  • Is my sequence diagram correct?

    - by Dummy Derp
    NOTE: I am self studying UML so I have nobody to verify my diagrams and hence I am posting here, so please bear with me. This is the problem I got from some PDF available on Google that simply had the following problem statement: Problem Statement: A library contains books and journals. The task is to develop a computer system for borrowing books. In order to borrow a book the borrower must be a member of the library. There is a limit on the number of books that can be borrowed by each member of the library. The library may have several copies of a given book. It is possible to reserve a book. Some books are for short term loans only. Other books may be borrowed for 3 weeks. Users can extend the loans. Draw a use case diagram for a library. I already drew the Use Case diagram and had it checked by a community member. This time I drew sequence diagrams for borrowing a book and extending the date of return. Please let me know if they are correct. I drew them using Visual Paradigm and I dont know how to keep a control of the sequence numbers. If you do, please let me know :) Diagrams

    Read the article

  • About Entitlement Grants in ADF Security of JDeveloper 11.1.1.4

    - by frank.nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Oracle JDeveloper 11.1.1.4 comes with a new ADF Security feature called "entitlement grants". This has nothing to do with Oracle Entitlement Server (OES) but is the ability to group resources into permission sets so they can be granted with a single grant statement. For example, as good practices when organizing your projects, you may have grouped your bounded task flows by functionality and responsibility in sub folders under the WEB-INF directory. If one of the folders holds bounded task flows that are accessible to all authenticated users, you may create an entitlement grant allAuthUserBTF and select all bounded task flows that are accessible for authenticated users as resources. You can then grant allAuthUserBTF to the authenticated-role so that with only a single grant statement all selected bounded task flows are protected. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} <permission-sets>         <permission-set>             <name>PublicBoundedTaskFlows</name>             <member-resources>               <member-resource>                 <resource-name>                      /WEB-INF/public/home-btf.xml#home-btf                 </resource-name>                 <type-name-ref>TaskFlowResourceType</type-name-ref>                 <display-name> ... </display-name>                 <actions>view</actions>               </member-resource>               <member-resource>                 <resource-name>                         /WEB-INF/public/preferences-btf.xml#preferences-btf                </resource-name>                 <type-name-ref>TaskFlowResourceType</type-name-ref>                 <display-name>...</display-name>                 <actions>view</actions>               </member-resource>             </member-resources>           </permission-set>   </permission-sets> The grant statement for this permission set is added as shown below <grant>   <grantee>     <principals>        <principal>             <name>authenticated-role</name>             <class>oracle.security.jps.internal.core.principals.JpsAuthenticatedRoleImpl</class>         </principal>       </principals>     </grantee>     <permission-set-refs>         <permission-set-ref>            <name>PublicBoundedTaskFlows</name>         </permission-set-ref>      </permission-set-refs> </grant>

    Read the article

  • NetworkManager broken after upgrade to Kubuntu Saucy

    - by queueoverflow
    I had Kubuntu 13.04 on my ThinkPad X220, and I upgraded to 13.10 and I am not able to connect to a wired or wireless connection. The new network tray icon does not show any entries at all. In the menu of the tray icon, there is an error saying: Require NetworkManager 0.9.8, found . I then tried the following: nmcli con ** (process:3695): WARNING **: Could not initialize NMClient /org/freedesktop/NetworkManager: Rejected send message, 3 matched rules; type="method_call", sender=":1.64" (uid=1000 pid=3695 comm="nmcli con ") interface="org.freedesktop.DBus.Properties" member="GetAll" error name="(unset)" requested_reply="0" destination="org.freedesktop.NetworkManager" (uid=0 pid=1116 comm="NetworkManager ") Error: nmcli (0.9.8.0) and NetworkManager (unknown) versions don't match. Force execution using --nocheck, but the results are unpredictable. nmcli dev ** (process:3700): WARNING **: Could not initialize NMClient /org/freedesktop/NetworkManager: Rejected send message, 3 matched rules; type="method_call", sender=":1.65" (uid=1000 pid=3700 comm="nmcli dev ") interface="org.freedesktop.DBus.Properties" member="GetAll" error name="(unset)" requested_reply="0" destination="org.freedesktop.NetworkManager" (uid=0 pid=1116 comm="NetworkManager ") Error: nmcli (0.9.8.0) and NetworkManager (unknown) versions don't match. Force execution using --nocheck, but the results are unpredictable. nm-tool ** (process:3705): WARNING **: Could not initialize NMClient /org/freedesktop/NetworkManager: Rejected send message, 3 matched rules; type="method_call", sender=":1.66" (uid=1000 pid=3705 comm="nm-tool ") interface="org.freedesktop.DBus.Properties" member="GetAll" error name="(unset)" requested_reply="0" destination="org.freedesktop.NetworkManager" (uid=0 pid=1116 comm="NetworkManager ") NetworkManager Tool State: unknown ** (process:3705): WARNING **: error: could not connect to NetworkManager Running those as root works, however. I was also able to run nmcli con up id DHCP which got my DHCP connection working and giving me internet access. That did not work using a Wifi connection though, and I do need those. How can I get networking back to work without a reinstall?

    Read the article

  • Reflecting on 2010 and Looking into 2011

    - by Sam Abraham
    In early 2010, I had blogged and shared my excitement as I was about to embark on a new journey relocating to South Florida.     As I settled down and adjusted to my new life, I was presented with an opportunity to get actively involved and volunteer in the local Florida .Net and Project Management communities.  I have since devoted a significant portion of my time to community initiatives, coordinating the West Palm Beach .Net User Group, volunteering as a member of the INETA Speaker’s Bureau and traveling to attend/speak at .Net code camps and user groups throughout the states of Florida and New York. I have also taken on various volunteer roles at the South Florida Chapter of the Project Management Institute starting as core team member on the chapter’s mentoring initiative and ending the year as Project Manager of the chapter’s mentoring program and as Director of Electronic Communications on the chapter’s IT team. I am also serving a one year term (2010-2011) as secretary and founding board member of Florida’s first official chapter of the International Association for Software Architects (IASA).   A big thank you is due for those who afforded me the opportunity and privilege to take part of these initiatives and those who provided guidance and encouragement when I needed them the most.   Looking ahead into 2011, I hope to continue my community involvement and volunteer activities. I will start by dedicating the first 5 weekends in the New Year to teach a free comprehensive Microsoft PowerPoint class at church. My goal will be to start from scratch and slowly cover the various available PowerPoint features that can be leveraged to create captivating presentations. Starting February, I will be resuming my user group/code camp speaking engagements at our South Florida .Net Code Camp and the West Palm Beach .Net User Group.   I look forward to continuing to meet, chat and share with our technical community members and to another active year in community service.   All the best, --Sam Abraham

    Read the article

  • Choosing Technology To Include In Software Design

    How many of us have been forced to select one technology over another when designing a new system? What factors do we and should we consider? How can we ensure the correct business decision is made? When faced with this type of decision it is important to gather as much information possible regarding each technology being considered as well as the project itself. Additionally, I tend to delay my decision about the technology until it is ultimately necessary to be made. The reason why I tend to delay such an important design decision is due to the fact that as the project progresses requirements and other factors can alter a decision for selecting the best technology for a project. Important factors to consider when making technology decisions: Time to Implement and Maintain Total Cost of Technology (including Implementation and maintenance) Adaptability of Technology Implementation Team’s Skill Sets Complexity of Technology (including Implementation and maintenance) orecasted Return On Investment (ROI) Forecasted Profit on Investment (POI) Of the factors to consider the ROI and POI weigh the heaviest because the take in to consideration the other factors when calculating the profitability and return on investments.For a real world example let us consider developing a web based lead management system for a new company. This system can either be hosted on Microsoft Windows based web server or on a Linux based web server. Important Factors for this Example Implementation Team’s Skill Sets Member 1  Skill Set: Classic ASP, ASP.Net, and MS SQL Server Experience: 10 years Member 2  Skill Set: PHP, MySQL, Photoshop and MS SQL Server Experience: 3 years Member 3  Skill Set: C++, VB6, ASP.Net, and MS SQL Server Experience: 12 years Total Cost of Technology (including Implementation and maintenance) Linux Initial Year: $5,000 (Random Value) Additional Years: $3,000 (Random Value) Windows Initial Year: $10,000 (Random Value) Additional Years: $3,000 (Random Value) Complexity of Technology Linux Large Learning Curve with user driven documentation Estimated learning cost: $30,000 Windows Minimal based on Teams skills with Microsoft based documentation Estimated learning cost: $5,000 ROI Linux Total Cost Initial Total Cost: $35,000 Additional Cost $3,000 per year Windows Total Cost Initial Total Cost: $15,000 Additional Cost $3,000 per year Based on the hypothetical numbers it would make more sense to select windows based web server because the initial investment of the technology is much lower initially compared to the Linux based web server.

    Read the article

  • QA - Developer communication

    - by exiter2000
    I am a developer and have worked at this company 4~5 years by now. We have been practicing scrum for about 2 years. I think, I have been worked well with QAs. I believe QAs/developers/technical writers are all one team. We are also actively hiring new team members. As a legacy member of the team, I have faced to assist new member(including developers and testers) with my business knowledge. We work on 2 weeks base scrum. I usually deliver my user story completely by the first date of second week and do some qa build with partial functionality of my user story so that QA has a good idea about my implementation and flow. Recently, I have met some QAs. In first week, the QAs do not talk... In stand up meeting, they say they are developing test cases regardless I deliver the user story or not. In second week, I do not have a single defect till Thursday afternoon and suddenly I have a major defect with several minor UI defect, which I delivered one week ago. Or I have one or two minor defects on second week however major defects on Thursday afternoon or Friday morning. This eventually make the story rolls over to the next sprint. Major defect takes time to fix and more importantly it would trigger the regression test for the story... Even if I worked Thursday evening and fixed it, the testing will not finish. And this happens multiple times with certain QAs. As a same team member, I talked to the QAs if they could test major defect with higher priority... Rejected... Because I do not understand QA process.. So I asked roughly how many major test cases are covered so far in the stand up meeting on 2nd week Wednesday.. The response is I should not ask this to the QA in the stand up meeting... What do I do?

    Read the article

  • Prefer class members or passing arguments between internal methods?

    - by geoffjentry
    Suppose within the private portion of a class there is a value which is utilized by multiple private methods. Do people prefer having this defined as a member variable for the class or passing it as an argument to each of the methods - and why? On one hand I could see an argument to be made that reducing state (ie member variables) in a class is generally a good thing, although if the same value is being repeatedly used throughout a class' methods it seems like that would be an ideal candidate for representation as state for the class to make the code visibly cleaner if nothing else. Edit: To clarify some of the comments/questions that were raised, I'm not talking about constants and this isn't relating to any particular case rather just a hypothetical that I was talking to some other people about. Ignoring the OOP angle for a moment, the particular use case that I had in mind was the following (assume pass by reference just to make the pseudocode cleaner) int x doSomething(x) doAnotherThing(x) doYetAnotherThing(x) doSomethingElse(x) So what I mean is that there's some variable that is common between multiple functions - in the case I had in mind it was due to chaining of smaller functions. In an OOP system, if these were all methods of a class (say due to refactoring via extracting methods from a large method), that variable could be passed around them all or it could be a class member.

    Read the article

  • How to implement child-parent aggregation link in C++?

    - by Giorgio
    Suppose that I have three classes P, C1, C2, composition (strong aggregation) relations between P <>- C1 and P <>- C2, i.e. every instance of P contains an instance of C1 and an instance of C2, which are destroyed when the parent P instance is destroyed. an association relation between instances of C1 and C2 (not necessarily between children of the same P). To implement this, in C++ I normally define three classes P, C1, C2, define two member variables of P of type boost::shared_ptr<C1>, boost::shared_ptr<C2>, and initialize them with newly created objects in P's constructor, implement the relation between C1 and C2 using a boost::weak_ptr<C2> member variable in C1 and a boost::weak_ptr<C1> member variable in C2 that can be set later via appropriate methods, when the relation is established. Now, I also would like to have a link from each C1 and C2 object to its P parent object. What is a good way to implement this? My current idea is to use a simple constant raw pointer (P * const) that is set from the constructor of P (which, in turn, calls the constructors of C1 and C2), i.e. something like: class C1 { public: C1(P * const p, ...) : paren(p) { ... } private: P * const parent; ... }; class P { public: P(...) : childC1(new C1(this, ...)) ... { ... } private: boost::shared_ptr<C1> childC1; ... }; Honestly I see no risk in using a private constant raw pointer in this way but I know that raw pointers are often frowned upon in C++ so I was wondering if there is an alternative solution.

    Read the article

  • MOS Community rewards Ram Kasthuri w/ FREE OOW Pass!

    - by cwarticki
    Congratulations Ram Kasthuri on Receiving a Free Full Conference Pass to Oracle OpenWorld!  Thank you for helping other members through your participation in My Oracle Support Community My Oracle Support Community member Ram Kasthuri received a free Oracle OpenWorld Pass from the My Oracle Support Community in appreciation for his work in answering questions posted by other Community members. Ram, an independent consultant, is an Application Solution Architect with Canon. He has been a valued Oracle customer for over 13 years. Ram is an active member in several of the Oracle EBS communities. He has achieved the Expert Level of recognition through his active participation.   Ram described the value he receives from My Oracle Support Community when he said what “I like best about the communities is the vicarious learning from real business scenarios posted by other Community members. The questions are real opportunities to learn all things Oracle, and EBS especially.” Ram is one of those member's who answers more questions than he posts, so he must get a lot of that vicarious learning. Oracle Premier Support customers can get answers and learn from both peers who have faced similar situations and Oracle experts. Join us in My Oracle Support Community. Look for Ram this week at Oracle OpenWorld and join him in My Oracle Support Community when you return to work. And while you’re at Oracle OpenWorld, Oracle Customer Support Services invites you to expand your knowledge by meeting with Oracle Support experts. Learn more about our sessions and network opportunities today!

    Read the article

  • WebLogic Partner Community Newsletter October 2013

    - by JuergenKress
    Dear WebLogic Partner Community member, Our October newsletter edition focuses on Oracle OpenWorld 2013, highlights, keynotes and all presentations. Thanks to all the partners who made the conference a huge success, if you could not come to San Francisco, you can find all the details in this newsletter. We added additional locations for the free hands-on ADF & ADF Mobile Bootcamps & WebLogic Bootcamps. As a community member you can also get a free voucher to become a WebLogic Server 12c Certified Implementation Specialist or ADF 11g Certified Implementation Specialist (limited to partners from EMEA!) If you can not make it to a Bootcamp, do not miss the virtual developer days for WebLogic and ADF Mobile. If you plan to install WebLogic read first the article “Setup a 12c Fusion Middleware Infrastructure from René van Wijk. If you administrate Middleware make sure you read the documentation and support notes Weblogic Server Patching & Maintenance Information Center. In the ADF section of the newsletter our product management team continues with the ADF Architecture on-demand training. Andrejus released the latest version of the ADF Performance Audit Tool v 2.0. The summer is over, if you look for a Christmas present, for your kids or yourself maybe you want to run Java on LEGO® Mindstorms® EV3. Jürgen Kress To read the newsletter please visit http://tinyurl.com/WebLogicNewsOctober2013 (OPN Account required) To become a member of the WebLogic Partner Community please register at http://www.oracle.com/partners/goto/wls-emea ( OPN account required). If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Wiki Technorati Tags: WebLogic Community newsletter,newsletter,WebLogic,WebLogic Community,Oracle,OPN,Jürgen Kress

    Read the article

  • Is there an alternative to the term "calling object"?

    - by ybakos
    Let's suppose you've got a class defined (in pseudocode): class Puppy { // ... string sound = "Rawr!"; void bark() { print(sound); } } And say, given a Puppy instance, you call it's bark() method: Puppy p; p.bark(); Notice how bark() uses the member variable sound. In many contexts, I've seen folks describe sound as the member variable of the "calling object." My question is, what's a better term to use than "calling object?" To me, the object is not doing any calling. We know that member functions are in a way just functions with an implicit this or self parameter. I've come up with "receiving object," or "message recipient," which makes sense if you're down with the "messaging" paradigm. Do any of you happy hackers have a term that you like to use? I feel it should mean "the object upon which a method is called" and TOUWAMIC just doesn't cut it.

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

< Previous Page | 114 115 116 117 118 119 120 121 122 123 124 125  | Next Page >