Search Results

Search found 16162 results on 647 pages for 'property attribute'.

Page 151/647 | < Previous Page | 147 148 149 150 151 152 153 154 155 156 157 158  | Next Page >

  • Data-binding taking too long to update

    - by Justin
    In my application I have this code in my view model: hiddenTextContainer.PreHideVerticalOffset = VerticalOffset; hiddenTextContainer.HiddenText = Text.Remove(SelectionStart, SelectionLength); hiddenTextContainer.HasHiddenText = true; hiddenTextContainer.NonHiddenTextStart = SelectionStart; Text = Text.Substring(SelectionStart, SelectionLength); SelectionStart = Text.Length; hiddenTextContainer.ImmediatePostHideVerticalOffset = VerticalOffset; This code is used to hide selected text in a textbox. Text is a string property data bound to the text property of a textbox and VerticalOffset is a double property data bound to the VerticalOffset property of that same textbox. I need to save the VerticalOffset before and after the hiding of selected text takes place, but with my code below both hiddenTextContainer.PreHideVerticalOffset and hiddenTextContainer.ImmediatePostHideVerticalOffset are always set to the same value no matter what. I have figured out that this is because the text of the textbox has not been updated by the time the code reaches: hiddenTextContainer.ImmediatePostHideVerticalOffset = VerticalOffset; Is there any way I can fix this?

    Read the article

  • Linq to SQL DateTime values are local (Kind=Unspecified) - How do I make it UTC?

    - by ericsson007
    Isn't there a (simple) way to tell Linq To SQL classes that a particular DateTime property should be considered as UTC (i.e. having the Kind property of the DateTime type to be Utc by default), or is there a 'clean' workaround? The time zone on my app-server is not the same as the SQL 2005 Server (cannot change any), and none is UTC. When I persist a property of type DateTime to the dB I use the UTC value (so the value in the db column is UTC), but when I read the values back (using Linq To SQL) I get the .Kind property of the DateTime value to be 'Unspecified'. The problem is that when I 'convert' it to UTC it is 4 hours off. This also means that when it is serialized it it ends up on the client side with a 4 hour wrong offset (since it is serialized using the UTC).

    Read the article

  • Entity Association Mapping with Code First Part 1 : Mapping Complex Types

    - by mortezam
    Last week the CTP5 build of the new Entity Framework Code First has been released by data team at Microsoft. Entity Framework Code-First provides a pretty powerful code-centric way to work with the databases. When it comes to associations, it brings ultimate flexibility. I’m a big fan of the EF Code First approach and am planning to explain association mapping with code first in a series of blog posts and this one is dedicated to Complex Types. If you are new to Code First approach, you can find a great walkthrough here. In order to build a solid foundation for our discussion, we will start by learning about some of the core concepts around the relationship mapping.   What is Mapping?Mapping is the act of determining how objects and their relationships are persisted in permanent data storage, in our case, relational databases. What is Relationship mapping?A mapping that describes how to persist a relationship (association, aggregation, or composition) between two or more objects. Types of RelationshipsThere are two categories of object relationships that we need to be concerned with when mapping associations. The first category is based on multiplicity and it includes three types: One-to-one relationships: This is a relationship where the maximums of each of its multiplicities is one. One-to-many relationships: Also known as a many-to-one relationship, this occurs when the maximum of one multiplicity is one and the other is greater than one. Many-to-many relationships: This is a relationship where the maximum of both multiplicities is greater than one. The second category is based on directionality and it contains two types: Uni-directional relationships: when an object knows about the object(s) it is related to but the other object(s) do not know of the original object. To put this in EF terminology, when a navigation property exists only on one of the association ends and not on the both. Bi-directional relationships: When the objects on both end of the relationship know of each other (i.e. a navigation property defined on both ends). How Object Relationships Are Implemented in POCO domain models?When the multiplicity is one (e.g. 0..1 or 1) the relationship is implemented by defining a navigation property that reference the other object (e.g. an Address property on User class). When the multiplicity is many (e.g. 0..*, 1..*) the relationship is implemented via an ICollection of the type of other object. How Relational Database Relationships Are Implemented? Relationships in relational databases are maintained through the use of Foreign Keys. A foreign key is a data attribute(s) that appears in one table and must be the primary key or other candidate key in another table. With a one-to-one relationship the foreign key needs to be implemented by one of the tables. To implement a one-to-many relationship we implement a foreign key from the “one table” to the “many table”. We could also choose to implement a one-to-many relationship via an associative table (aka Join table), effectively making it a many-to-many relationship. Introducing the ModelNow, let's review the model that we are going to use in order to implement Complex Type with Code First. It's a simple object model which consist of two classes: User and Address. Each user could have one billing address. The Address information of a User is modeled as a separate class as you can see in the UML model below: In object-modeling terms, this association is a kind of aggregation—a part-of relationship. Aggregation is a strong form of association; it has some additional semantics with regard to the lifecycle of objects. In this case, we have an even stronger form, composition, where the lifecycle of the part is fully dependent upon the lifecycle of the whole. Fine-grained domain models The motivation behind this design was to achieve Fine-grained domain models. In crude terms, fine-grained means “more classes than tables”. For example, a user may have both a billing address and a home address. In the database, you may have a single User table with the columns BillingStreet, BillingCity, and BillingPostalCode along with HomeStreet, HomeCity, and HomePostalCode. There are good reasons to use this somewhat denormalized relational model (performance, for one). In our object model, we can use the same approach, representing the two addresses as six string-valued properties of the User class. But it’s much better to model this using an Address class, where User has the BillingAddress and HomeAddress properties. This object model achieves improved cohesion and greater code reuse and is more understandable. Complex Types: Splitting a Table Across Multiple Types Back to our model, there is no difference between this composition and other weaker styles of association when it comes to the actual C# implementation. But in the context of ORM, there is a big difference: A composed class is often a candidate Complex Type. But C# has no concept of composition—a class or property can’t be marked as a composition. The only difference is the object identifier: a complex type has no individual identity (i.e. no AddressId defined on Address class) which make sense because when it comes to the database everything is going to be saved into one single table. How to implement a Complex Types with Code First Code First has a concept of Complex Type Discovery that works based on a set of Conventions. The convention is that if Code First discovers a class where a primary key cannot be inferred, and no primary key is registered through Data Annotations or the fluent API, then the type will be automatically registered as a complex type. Complex type detection also requires that the type does not have properties that reference entity types (i.e. all the properties must be scalar types) and is not referenced from a collection property on another type. Here is the implementation: public class User{    public int UserId { get; set; }    public string FirstName { get; set; }    public string LastName { get; set; }    public string Username { get; set; }    public Address Address { get; set; }} public class Address {     public string Street { get; set; }     public string City { get; set; }            public string PostalCode { get; set; }        }public class EntityMappingContext : DbContext {     public DbSet<User> Users { get; set; }        } With code first, this is all of the code we need to write to create a complex type, we do not need to configure any additional database schema mapping information through Data Annotations or the fluent API. Database SchemaThe mapping result for this object model is as follows: Limitations of this mappingThere are two important limitations to classes mapped as Complex Types: Shared references is not possible: The Address Complex Type doesn’t have its own database identity (primary key) and so can’t be referred to by any object other than the containing instance of User (e.g. a Shipping class that also needs to reference the same User Address). No elegant way to represent a null reference There is no elegant way to represent a null reference to an Address. When reading from database, EF Code First always initialize Address object even if values in all mapped columns of the complex type are null. This means that if you store a complex type object with all null property values, EF Code First returns a initialized complex type when the owning entity object is retrieved from the database. SummaryIn this post we learned about fine-grained domain models which complex type is just one example of it. Fine-grained is fully supported by EF Code First and is known as the most important requirement for a rich domain model. Complex type is usually the simplest way to represent one-to-one relationships and because the lifecycle is almost always dependent in such a case, it’s either an aggregation or a composition in UML. In the next posts we will revisit the same domain model and will learn about other ways to map a one-to-one association that does not have the limitations of the complex types. References ADO.NET team blog Mapping Objects to Relational Databases Java Persistence with Hibernate

    Read the article

  • New Skool Crosstabbing

    - by Tim Dexter
    A while back I spoke about having to go back to BIP's original crosstabbing solution to achieve a certain layout. Hok Min has provided a 'man' page for the new crosstab/pivot builder for 10.1.3.4.1 users. This will make the documentation drop but for now, get it here! The old, hand method is still available but this new approach, is more efficient and flexible. That said you may need to get into the crosstab code to tweak it where the crosstab dialog can not help. I had to do this, this week but more on that later. The following explains how the crosstab wizard builds the crosstab and what the fields inside the resulting template structure are there for. To create the crosstab a new XDO command "<?crosstab:...?>" has been created. XDO Command: <?crosstab: ctvarname; data-element; rows; columns; measures; aggregation?> Parameter Description Example Ctvarname Crosstab variable name. This is automatically generated by the Add-in. C123 data-element This is the XML data element that contains the data. "//ROW" Rows This contains a list of XML elements for row headers. The ordering information is specified within "{" and "}". The first attribute is the sort element. Leaving it blank means the sort element is the same as the row header element. The attribute "o" means order. Its value can be "a" for ascending, or "d" for descending. The attribute "t" means type. Its value can be "t" for text, and "n" for numeric. There can be more than one sort elements, example: "emp-full-name {emp-lastname,o=a,t=n}{emp-firstname,o=a,t=n}. This will sort employee by last name and first name. "Region{,o=a,t=t}, District{,o=a,t=t}" In the example, the first row header is "Region". It is sort by "Region", order is ascending, and type is text. The second row header is "District". It is sort by "District", order is ascending, and type is text. Columns This contains a list of XML elements for columns headers. The ordering information is specified within "{" and "}". The first attribute is the sort element. Leaving it blank means the sort element is the same as the column header element. The attribute "o" means order. Its value can be "a" for ascending, or "d" for descending. The attribute "t" means type. Its value can be "t" for text, and "n" for numeric. There can be more than one sort elements, example: "emp-full-name {emp-lastname,o=a,t=n}{emp-firstname,o=a,t=n}. This will sort employee by last name and first name. "ProductsBrand{,o=a,t=t}, PeriodYear{,o=a,t=t}" In the example, the first column header is "ProductsBrand". It is sort by "ProductsBrand", order is ascending, and type is text. The second column header is "PeriodYear". It is sort by "District", order is ascending, and type is text. Measures This contains a list of XML elements for measures. "Revenue, PrevRevenue" Aggregation The aggregation function name. Currently, we only support "sum". "sum" Using the Oracle BI Publisher Template Builder for Word add-in, we are able to construct the following Pivot Table: The generated XDO command for this Pivot Table is as follow: <?crosstab:c547; "//ROW";"Region{,o=a,t=t}, District{,o=a,t=t}"; "ProductsBrand{,o=a,t=t},PeriodYear{,o=a,t=t}"; "Revenue, PrevRevenue";"sum"?> Running the command on the give XML data files generates this XML file "cttree.xml". Each XPath in the "cttree.xml" is described in the following table. Element XPath Count Description C0 /cttree/C0 1 This contains elements which are related to column. C1 /cttree/C0/C1 4 The first level column "ProductsBrand". There are four distinct values. They are shown in the label H element. CS /cttree/C0/C1/CS 4 The column-span value. It is used to format the crosstab table. H /cttree/C0/C1/H 4 The column header label. There are four distinct values "Enterprise", "Magicolor", "McCloskey" and "Valspar". T1 /cttree/C0/C1/T1 4 The sum for measure 1, which is Revenue. T2 /cttree/C0/C1/T2 4 The sum for measure 2, which is PrevRevenue. C2 /cttree/C0/C1/C2 8 The first level column "PeriodYear", which is the second group-by key. There are two distinct values "2001" and "2002". H /cttree/C0/C1/C2/H 8 The column header label. There are two distinct values "2001" and "2002". Since it is under C1, therefore the total number of entries is 4 x 2 => 8. T1 /cttree/C0/C1/C2/T1 8 The sum for measure 1 "Revenue". T2 /cttree/C0/C1/C2/T2 8 The sum for measure 2 "PrevRevenue". M0 /cttree/M0 1 This contains elements which are related to measures. M1 /cttree/M0/M1 1 This contains summary for measure 1. H /cttree/M0/M1/H 1 The measure 1 label, which is "Revenue". T /cttree/M0/M1/T 1 The sum of measure 1 for the entire xpath from "//ROW". M2 /cttree/M0/M2 1 This contains summary for measure 2. H /cttree/M0/M2/H 1 The measure 2 label, which is "PrevRevenue". T /cttree/M0/M2/T 1 The sum of measure 2 for the entire xpath from "//ROW". R0 /cttree/R0 1 This contains elements which are related to row. R1 /cttree/R0/R1 4 The first level row "Region". There are four distinct values, they are shown in the label H element. H /cttree/R0/R1/H 4 This is row header label for "Region". There are four distinct values "CENTRAL REGION", "EASTERN REGION", "SOUTHERN REGION" and "WESTERN REGION". RS /cttree/R0/R1/RS 4 The row-span value. It is used to format the crosstab table. T1 /cttree/R0/R1/T1 4 The sum of measure 1 "Revenue" for each distinct "Region" value. T2 /cttree/R0/R1/T2 4 The sum of measure 1 "Revenue" for each distinct "Region" value. R1C1 /cttree/R0/R1/R1C1 16 This contains elements from combining R1 and C1. There are 4 distinct values for "Region", and four distinct values for "ProductsBrand". Therefore, the combination is 4 X 4 è 16. T1 /cttree/R0/R1/R1C1/T1 16 The sum of measure 1 "Revenue" for each combination of "Region" and "ProductsBrand". T2 /cttree/R0/R1/R1C1/T2 16 The sum of measure 2 "PrevRevenue" for each combination of "Region" and "ProductsBrand". R1C2 /cttree/R0/R1/R1C1/R1C2 32 This contains elements from combining R1, C1 and C2. There are 4 distinct values for "Region", and four distinct values for "ProductsBrand", and two distinct values of "PeriodYear". Therefore, the combination is 4 X 4 X 2 è 32. T1 /cttree/R0/R1/R1C1/R1C2/T1 32 The sum of measure 1 "Revenue" for each combination of "Region", "ProductsBrand" and "PeriodYear". T2 /cttree/R0/R1/R1C1/R1C2/T2 32 The sum of measure 2 "PrevRevenue" for each combination of "Region", "ProductsBrand" and "PeriodYear". R2 /cttree/R0/R1/R2 18 This contains elements from combining R1 "Region" and R2 "District". Since the list of values in R2 has dependency on R1, therefore the number of entries is not just a simple multiplication. H /cttree/R0/R1/R2/H 18 The row header label for R2 "District". R1N /cttree/R0/R1/R2/R1N 18 The R2 position number within R1. This is used to check if it is the last row, and draw table border accordingly. T1 /cttree/R0/R1/R2/T1 18 The sum of measure 1 "Revenue" for each combination "Region" and "District". T2 /cttree/R0/R1/R2/T2 18 The sum of measure 2 "PrevRevenue" for each combination of "Region" and "District". R2C1 /cttree/R0/R1/R2/R2C1 72 This contains elements from combining R1, R2 and C1. T1 /cttree/R0/R1/R2/R2C1/T1 72 The sum of measure 1 "Revenue" for each combination of "Region", "District" and "ProductsBrand". T2 /cttree/R0/R1/R2/R2C1/T2 72 The sum of measure 2 "PrevRevenue" for each combination of "Region", "District" and "ProductsBrand". R2C2 /cttree/R0/R1/R2/R2C1/R2C2 144 This contains elements from combining R1, R2, C1 and C2, which gives the finest level of details. M1 /cttree/R0/R1/R2/R2C1/R2C2/M1 144 The sum of measure 1 "Revenue". M2 /cttree/R0/R1/R2/R2C1/R2C2/M2 144 The sum of measure 2 "PrevRevenue". Lots to read and digest I know! Customization One new feature I discovered this week is the ability to show one column and sort by another. I had a data set that was extracting month abbreviations, we wanted to show the months across the top and some row headers to the side. As you may know XSL is not great with dates, especially recognising month names. It just wants to sort them alphabetically, so Apr comes before Jan, etc. A way around this is to generate a month number alongside the month and use that to sort. We can do that in the crosstab, sadly its not exposed in the UI yet but its doable. Go back up and take a look a the initial crosstab command. especially the Rows and Columns entries. In there you will find the sort criteria. "ProductsBrand{,o=a,t=t}, PeriodYear{,o=a,t=t}" Notice those leading commas inside the curly braces? Because there is no field preceding them it means that the crosstab should sort on the column before the brace ie PeriodYear. But you can insert another column in the data set to sort by. To get my sort working how I needed. <?crosstab:c794;"current-group()";"_Fund_Type_._Fund_Type_Display_{_Fund_Type_._Fund_Type_Sort_,o=a,t=n}";"_Fiscal_Period__Amount__._Amt_Fm_Disp_Abbr_{_Fiscal_Period__Amount__._Amt_Fiscal_Month_Sort_,o=a,t=n}";"_Execution_Facts_._Amt_";"sum"?> Excuse the horribly verbose XML tags, good ol BIEE :0) The emboldened columns are not in the crosstab but are in the data set. I just opened up the field, dropped them in and changed the type(t) value to be 'n', for number, instead of the default 'a' and my crosstab started sorting how I wanted it. If you find other tips and tricks, please share in the comments.

    Read the article

  • OAF Page to Upload Files into Server from local Machine

    - by PRajkumar
    1. Create a New Workspace and Project File > New > General > Workspace Configured for Oracle Applications File Name – PrajkumarFileUploadDemo   Automatically a new OA Project will also be created   Project Name -- FileUploadDemo Default Package -- prajkumar.oracle.apps.fnd.fileuploaddemo   2. Create a New Application Module (AM) Right Click on FileUploadDemo > New > ADF Business Components > Application Module Name -- FileUploadAM Package -- prajkumar.oracle.apps.fnd.fileuploaddemo.server Check Application Module Class: FileUploadAMImpl Generate JavaFile(s)   3. Create a New Page Right click on FileUploadDemo > New > Web Tier > OA Components > Page Name -- FileUploadPG Package -- prajkumar.oracle.apps.fnd.fileuploaddemo.webui   4. Select the FileUploadPG and go to the strcuture pane where a default region has been created   5. Select region1 and set the following properties --     Attribute Property ID PageLayoutRN AM Definition prajkumar.oracle.apps.fnd.fileuploaddemo.server.FileUploadAM Window Title Uploading File into Server from Local Machine Demo Window Title Uploading File into Server from Local Machine Demo     6. Create Stack Layout Region Under Page Layout Region Right click PageLayoutRN > New > Region   Attribute Property ID MainRN AM Definition messageComponentLayout   7. Create a New Item messageFileUpload Bean under MainRN Right click on MainRN > New > messageFileUpload Set Following Properties for New Item --   Attribute Property ID MessageFileUpload Item Style messageFileUpload   8. Create a New Item Submit Button Bean under MainRN Right click on MainRN > New > messageLayout Set Following Properties for messageLayout --   Attribute Property ID ButtonLayout   Right Click on ButtonLayout > New > Item   Attribute Property ID Submit Item Style submitButton Attribute Set /oracle/apps/fnd/attributesets/Buttons/Go   9. Create Controller for page FileUploadPG Right Click on PageLayoutRN > Set New Controller Package Name: prajkumar.oracle.apps.fnd.fileuploaddemo.webui Class Name: FileUploadCO   Write Following Code in FileUploadCO processFormRequest   import oracle.cabo.ui.data.DataObject; import java.io.FileOutputStream; import java.io.InputStream; import oracle.jbo.domain.BlobDomain; import java.io.File; import oracle.apps.fnd.framework.OAException; public void processFormRequest(OAPageContext pageContext, OAWebBean webBean) { super.processFormRequest(pageContext, webBean);    if(pageContext.getParameter("Submit")!=null)  {   upLoadFile(pageContext,webBean);      } }   -- Use Following Code if want to Upload Files in Local Machine -- ----------------------------------------------------------------------------------- public void upLoadFile(OAPageContext pageContext,OAWebBean webBean) { String filePath = "D:\\PRajkumar";  System.out.println("Default File Path---->"+filePath);  String fileUrl = null;  try  {   DataObject fileUploadData =  pageContext.getNamedDataObject("MessageFileUpload"); //FileUploading is my MessageFileUpload Bean Id   if(fileUploadData!=null)   {    String uFileName = (String)fileUploadData.selectValue(null, "UPLOAD_FILE_NAME");  // include this line    String contentType = (String) fileUploadData.selectValue(null, "UPLOAD_FILE_MIME_TYPE");  // For Mime Type    System.out.println("User File Name---->"+uFileName);    FileOutputStream output = null;    InputStream input = null;    BlobDomain uploadedByteStream = (BlobDomain)fileUploadData.selectValue(null, uFileName);    System.out.println("uploadedByteStream---->"+uploadedByteStream);                               File file = new File("D:\\PRajkumar", uFileName);    System.out.println("File output---->"+file);    output = new FileOutputStream(file);    System.out.println("output----->"+output);    input = uploadedByteStream.getInputStream();    System.out.println("input---->"+input);    byte abyte0[] = new byte[0x19000];    int i;         while((i = input.read(abyte0)) > 0)    output.write(abyte0, 0, i);    output.close();    input.close();   }  }  catch(Exception ex)  {   throw new OAException(ex.getMessage(), OAException.ERROR);  }     }   -- Use Following Code if want to Upload File into Server -- ------------------------------------------------------------------------- public void upLoadFile(OAPageContext pageContext,OAWebBean webBean) { String filePath = "/u01/app/apnac03r12/PRajkumar/";  System.out.println("Default File Path---->"+filePath);  String fileUrl = null;  try  {   DataObject fileUploadData =  pageContext.getNamedDataObject("MessageFileUpload");  //FileUploading is my MessageFileUpload Bean Id     if(fileUploadData!=null)   {    String uFileName = (String)fileUploadData.selectValue(null, "UPLOAD_FILE_NAME");   // include this line    String contentType = (String) fileUploadData.selectValue(null, "UPLOAD_FILE_MIME_TYPE");   // For Mime Type    System.out.println("User File Name---->"+uFileName);    FileOutputStream output = null;    InputStream input = null;    BlobDomain uploadedByteStream = (BlobDomain)fileUploadData.selectValue(null, uFileName);    System.out.println("uploadedByteStream---->"+uploadedByteStream);                               File file = new File("/u01/app/apnac03r12/PRajkumar", uFileName);    System.out.println("File output---->"+file);    output = new FileOutputStream(file);    System.out.println("output----->"+output);    input = uploadedByteStream.getInputStream();    System.out.println("input---->"+input);    byte abyte0[] = new byte[0x19000];    int i;         while((i = input.read(abyte0)) > 0)    output.write(abyte0, 0, i);    output.close();    input.close();   }  }  catch(Exception ex)  {   throw new OAException(ex.getMessage(), OAException.ERROR);  }     }   10. Congratulation you have successfully finished. Run Your page and Test Your Work           -- Used Code to Upload files into Server   -- Before Upload files into Server     -- After Upload files into Server       -- Used Code to Upload files into Local Machine   -- Before Upload files into Local Machine       -- After Upload files into Local Machine

    Read the article

  • Suggestions for html tag info required for jQuery Plugin

    - by Toby Allen
    I have written a tiny bit of jQuery which simply selects all the Select form elements on the page and sets the selected property to the correct value. Previously I had to write code to generate the Select in php and specify the Selected attribute for the option that was selected or do loads of if statements in my php page or smarty template. Obviosly the information about what option is selected still needs to be specified somewhere in the page so the jQuery code can select it. I decided to create a new attribute on the Select item <Select name="MySelect" SelectedOption="2"> <-- Custom Attr SelectedOption <option value="1">My Option 1 </option> <option value="2">My Option 2 </option> <-- this option will be selected when jquery code runs <option value="3">My Option 3 </option> <option value="4">My Option 4 </option> </Select> Does anyone see a problem with using a custom attribute to do this, is there a more accepted way, or a better jquery way?

    Read the article

  • Enum.HasFlag

    - by Scott Dorman
    An enumerated type, also called an enumeration (or just an enum for short), is simply a way to create a numeric type restricted to a predetermined set of valid values with meaningful names for those values. While most enumerations represent discrete values, or well-known combinations of those values, sometimes you want to combine values in an arbitrary fashion. These enumerations are known as flags enumerations because the values represent flags which can be set or unset. To combine multiple enumeration values, you use the logical OR operator. For example, consider the following: public enum FileAccess { None = 0, Read = 1, Write = 2, }   class Program { static void Main(string[] args) { FileAccess access = FileAccess.Read | FileAccess.Write; Console.WriteLine(access); } } The output of this simple console application is: The value 3 is the numeric value associated with the combination of FileAccess.Read and FileAccess.Write. Clearly, this isn’t the best representation. What you really want is for the output to look like: To achieve this result, you simply add the Flags attribute to the enumeration. The Flags attribute changes how the string representation of the enumeration value is displayed when using the ToString() method. Although the .NET Framework does not require it, enumerations that will be used to represent flags should be decorated with the Flags attribute since it provides a clear indication of intent. One “problem” with Flags enumerations is determining when a particular flag is set. The code to do this isn’t particularly difficult, but unless you use it regularly it can be easy to forget. To test if the access variable has the FileAccess.Read flag set, you would use the following code: (access & FileAccess.Read) == FileAccess.Read Starting with .NET 4, a HasFlag static method has been added to the Enum class which allows you to easily perform these tests: access.HasFlag(FileAccess.Read) This method follows one of the “themes” for the .NET Framework 4, which is to simplify and reduce the amount of boilerplate code like this you must write. Technorati Tags: .NET,C# 4

    Read the article

  • 'Content' is NOT 'Text' in XAML

    - by psheriff
    One of the key concepts in XAML is that the Content property of a XAML control like a Button or ComboBoxItem does not have to contain just textual data. In fact, Content can be almost any other XAML that you want. To illustrate here is a simple example of how to spruce up your Button controls in Silverlight. Here is some very simple XAML that consists of two Button controls within a StackPanel on a Silverlight User Control. <StackPanel>  <Button Name="btnHome"          HorizontalAlignment="Left"          Content="Home" />  <Button Name="btnLog"          HorizontalAlignment="Left"          Content="Logs" /></StackPanel> The XAML listed above will produce a Silverlight control within a Browser that looks like Figure 1.   Figure 1: Normal button controls are quite boring. With just a little bit of refactoring to move the button attributes into Styles, we can make the buttons look a little better. I am a big believer in Styles, so I typically create a Resources section within my user control where I can factor out the common attribute settings for a particular set of controls. Here is a Resources section that I added to my Silverlight user control. <UserControl.Resources>  <Style TargetType="Button"         x:Key="NormalButton">    <Setter Property="HorizontalAlignment"            Value="Left" />    <Setter Property="MinWidth"            Value="50" />    <Setter Property="Margin"            Value="10" />  </Style></UserControl.Resources> Now back in the XAML within the Grid control I update the Button controls to use the Style attribute and have each button use the Static Resource called NormalButton. <StackPanel>  <Button Name="btnHome"          Style="{StaticResource NormalButton}"          Content="Home" />  <Button Name="btnLog"          Style="{StaticResource NormalButton}"          Content="Logs" /></StackPanel> With the additional attributes set in the Resources section on the Button, the above XAML will now display the two buttons as shown in Figure 2. Figure 2: Use Resources to Make Buttons More Consistent Now let’s re-design these buttons even more. Instead of using words for each button, let’s replace the Content property to use a picture. As they say… a picture is worth a thousand words, so let’s take advantage of that. Modify each of the Button controls and eliminate the Content attribute and instead, insert an <Image> control with the <Button> and the </Button> tags. Add a ToolTip to still display the words you had before in the Content and you will now have better looking buttons, as shown in Figure 3.   Figure 3: Using pictures instead of words can be an effective method of communication The XAML to produce Figure 3 is shown in the following listing: <StackPanel>  <Button Name="btnHome"          ToolTipService.ToolTip="Home"          Style="{StaticResource NormalButton}">    <Image Style="{StaticResource NormalImage}"            Source="Images/Home.jpg" />  </Button>  <Button Name="btnLog"          ToolTipService.ToolTip="Logs"          Style="{StaticResource NormalButton}">    <Image Style="{StaticResource NormalImage}"            Source="Images/Log.jpg" />  </Button></StackPanel> You will also need to add the following XAML to the User Control’s Resources section. <Style TargetType="Image"        x:Key="NormalImage">  <Setter Property="Width"          Value="50" /></Style> Add Multiple Controls to Content Now, since the Content can be whatever we want, you could also modify the Content of each button to be a StackPanel control. Then you can have an image and text within the button. <StackPanel>  <Button Name="btnHome"          ToolTipService.ToolTip="Home"          Style="{StaticResource NormalButton}">    <StackPanel>      <Image Style="{StaticResource NormalImage}"              Source="Images/Home.jpg" />      <TextBlock Text="Home"                  Style="{StaticResource NormalTextBlock}" />    </StackPanel>  </Button>  <Button Name="btnLog"          ToolTipService.ToolTip="Logs"          Style="{StaticResource NormalButton}">    <StackPanel>      <Image Style="{StaticResource NormalImage}"              Source="Images/Log.jpg" />      <TextBlock Text="Logs"                  Style="{StaticResource NormalTextBlock}" />    </StackPanel>  </Button></StackPanel> You will need to add one more resource for the TextBlock control too. <Style TargetType="TextBlock"        x:Key="NormalTextBlock">  <Setter Property="HorizontalAlignment"          Value="Center" /></Style> All of the above will now produce the following:   Figure 4: Add multiple controls to the content to make your buttons even more interesting. Summary While this is a simple example, you can see how XAML Content has great flexibility. You could add a MediaElement control as the content of a Button and play a video within the Button. Not that you would necessarily do this, but it does work. What is nice about adding different content within the Button control is you still get the Click event and other attributes of a button, but it does necessarily look like a normal button. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free video on Silverlight entitled "Silverlight XAML for the Complete Novice - Part 1."

    Read the article

  • 7u45 Caller-Allowable-Codebase and Trusted-Library

    - by costlow
    Java 7 update 45 (October 2013) changed the interactions between JavaScript and Java Applets made through LiveConnect. The 7u45 update is a critical patch update that has also raised the security baseline and users are strongly recommended to upgrade. Versions below the security baseline used to apply the Trusted-Library Manifest attribute to call between sandboxed code and higher-privileged code. The Trusted-Library value was a Boolean true or false. Security changes for the current security baseline (7u45) introduced a different Caller-Allowable-Codebase that indicates precisely where these LiveConnect calls can originate. For example, LiveConnect calls should not necessarily originate from 3rd party components of a web page or other DOM-based browser manipulations (pdf). Additional information about these can be located at “JAR File Manifest Attributes for Security.” The workaround for end-user dialogs is described on the 7u45 release notes, which explains removing the Trusted-Library attribute for LiveConnect calls in favor of Caller-Allowable-Codebase. This provides necessary protections (without warnings) for all users at or above the security baseline. Client installations automatically detect updates to the secure baseline and prompt users to upgrade. Warning dialogs above or below Both of these attributes should work together to support the various versions of client installations. We are aware of the issue that modifying the Manifest to use the newer Caller-Allowable-Codebase causes warnings for users below the security baseline and that not doing it displays a warning for users above. Manifest Attribute 7u45 7u40 and below Only Caller-Allowable-Codebase No dialog Displays prompt Only Trusted-Library Displays prompt No dialog Both Displays prompt (*) No dialog This will be fixed in a future release so that both attributes can co-exist. The current work-around would be to favor using Caller-Allowable-Codebase over the old Trusted-Library call. For users who need to stay below the security baseline System Administrators that schedule software deployments across managed computers may consider applying a Deployment Rule Set as described in Option 1 of “What to do if your applet is blocked or warns of mixed code.” System Administrators may also sign up for email notifications of Critical Patch Updates.

    Read the article

  • Is this method pure?

    - by Thomas Levesque
    I have the following extension method: public static IEnumerable<T> Apply<T>( [NotNull] this IEnumerable<T> source, [NotNull] Action<T> action) where T : class { source.CheckArgumentNull("source"); action.CheckArgumentNull("action"); return source.ApplyIterator(action); } private static IEnumerable<T> ApplyIterator<T>(this IEnumerable<T> source, Action<T> action) where T : class { foreach (var item in source) { action(item); yield return item; } } It just applies an action to each item of the sequence before returning it. I was wondering if I should apply the Pure attribute (from Resharper annotations) to this method, and I can see arguments for and against it. Pros: strictly speaking, it is pure; just calling it on a sequence doesn't alter the sequence (it returns a new sequence) or make any observable state change calling it without using the result is clearly a mistake, since it has no effect unless the sequence is enumerated, so I'd like Resharper to warn me if I do that. Cons: even though the Apply method itself is pure, enumerating the resulting sequence will make observable state changes (which is the point of the method). For instance, items.Apply(i => i.Count++) will change the values of the items every time it's enumerated. So applying the Pure attribute is probably misleading... What do you think? Should I apply the attribute or not?

    Read the article

  • The Return Of __FILE__ And __LINE__ In .NET 4.5

    - by Alois Kraus
    Good things are hard to kill. One of the most useful predefined compiler macros in C/C++ were __FILE__ and __LINE__ which do expand to the compilation units file name and line number where this value is encountered by the compiler. After 4.5 versions of .NET we are on par with C/C++ again. It is of course not a simple compiler expandable macro it is an attribute but it does serve exactly the same purpose. Now we do get CallerLineNumberAttribute  == __LINE__ CallerFilePathAttribute        == __FILE__ CallerMemberNameAttribute  == __FUNCTION__ (MSVC Extension)   The most important one is CallerMemberNameAttribute which is very useful to implement the INotifyPropertyChanged interface without the need to hard code the name of the property anymore. Now you can simply decorate your change method with the new CallerMemberName attribute and you get the property name as string directly inserted by the C# compiler at compile time.   public string UserName { get { return _userName; } set { _userName=value; RaisePropertyChanged(); // no more RaisePropertyChanged(“UserName”)! } } protected void RaisePropertyChanged([CallerMemberName] string member = "") { var copy = PropertyChanged; if(copy != null) { copy(new PropertyChangedEventArgs(this, member)); } } Nice and handy. This was obviously the prime reason to implement this feature in the C# 5.0 compiler. You can repurpose this feature for tracing to get your hands on the method name of your caller along other stuff very fast now. All infos are added during compile time which is much faster than other approaches like walking the stack. The example on MSDN shows the usage of this attribute with an example public static void TraceMessage(string message, [CallerMemberName] string memberName = "", [CallerFilePath] string sourceFilePath = "", [CallerLineNumber] int sourceLineNumber = 0) { Console.WriteLine("Hi {0} {1} {2}({3})", message, memberName, sourceFilePath, sourceLineNumber); }   When I do think of tracing I do usually want to have a API which allows me to Trace method enter and leave Trace messages with a severity like Info, Warning, Error When I do print a trace message it is very useful to print out method and type name as well. So your API must either be able to pass the method and type name as strings or extract it automatically via walking back one Stackframe and fetch the infos from there. The first glaring deficiency is that there is no CallerTypeAttribute yet because the C# compiler team was not satisfied with its performance.   A usable Trace Api might therefore look like   enum TraceTypes { None = 0, EnterLeave = 1 << 0, Info = 1 << 1, Warn = 1 << 2, Error = 1 << 3 } class Tracer : IDisposable { string Type; string Method; public Tracer(string type, string method) { Type = type; Method = method; if (IsEnabled(TraceTypes.EnterLeave,Type, Method)) { } } private bool IsEnabled(TraceTypes traceTypes, string Type, string Method) { // Do checking here if tracing is enabled return false; } public void Info(string fmt, params object[] args) { } public void Warn(string fmt, params object[] args) { } public void Error(string fmt, params object[] args) { } public static void Info(string type, string method, string fmt, params object[] args) { } public static void Warn(string type, string method, string fmt, params object[] args) { } public static void Error(string type, string method, string fmt, params object[] args) { } public void Dispose() { // trace method leave } } This minimal trace API is very fast but hard to maintain since you need to pass in the type and method name as hard coded strings which can change from time to time. But now we have at least CallerMemberName to rid of the explicit method parameter right? Not really. Since any acceptable usable trace Api should have a method signature like Tracexxx(… string fmt, params [] object args) we not able to add additional optional parameters after the args array. If we would put it before the format string we would need to make it optional as well which would mean the compiler would need to figure out what our trace message and arguments are (not likely) or we would need to specify everything explicitly just like before . There are ways around this by providing a myriad of overloads which in the end are routed to the very same method but that is ugly. I am not sure if nobody inside MS agrees that the above API is reasonable to have or (more likely) that the whole talk about you can use this feature for diagnostic purposes was not a core feature at all but a simple byproduct of making the life of INotifyPropertyChanged implementers easier. A way around this would be to allow for variable argument arrays after the params keyword another set of optional arguments which are always filled by the compiler but I do not know if this is an easy one. The thing I am missing much more is the not provided CallerType attribute. But not in the way you would think of. In the API above I did add some filtering based on method and type to stay as fast as possible for types where tracing is not enabled at all. It should be no more expensive than an additional method call and a bool variable check if tracing for this type is enabled at all. The data is tightly bound to the calling type and method and should therefore become part of the static type instance. Since extending the CLR type system for tracing is not something I do expect to happen I have come up with an alternative approach which allows me basically to attach run time data to any existing type object in super fast way. The key to success is the usage of generics.   class Tracer<T> : IDisposable { string Method; public Tracer(string method) { if (TraceData<T>.Instance.Enabled.HasFlag(TraceTypes.EnterLeave)) { } } public void Dispose() { if (TraceData<T>.Instance.Enabled.HasFlag(TraceTypes.EnterLeave)) { } } public static void Info(string fmt, params object[] args) { } /// <summary> /// Every type gets its own instance with a fresh set of variables to describe the /// current filter status. /// </summary> /// <typeparam name="T"></typeparam> internal class TraceData<UsingType> { internal static TraceData<UsingType> Instance = new TraceData<UsingType>(); public bool IsInitialized = false; // flag if we need to reinit the trace data in case of reconfigured trace settings at runtime public TraceTypes Enabled = TraceTypes.None; // Enabled trace levels for this type } } We do not need to pass the type as string or Type object to the trace Api. Instead we define a generic Api that accepts the using type as generic parameter. Then we can create a TraceData static instance which is due to the nature of generics a fresh instance for every new type parameter. My tests on my home machine have shown that this approach is as fast as a simple bool flag check. If you have an application with many types using tracing you do not want to bring the app down by simply enabling tracing for one special rarely used type. The trace filter performance for the types which are not enabled must be therefore the fasted code path. This approach has the nice side effect that if you store the TraceData instances in one global list you can reconfigure tracing at runtime safely by simply setting the IsInitialized flag to false. A similar effect can be achieved with a global static Dictionary<Type,TraceData> object but big hash tables have random memory access semantics which is bad for cache locality and you always need to pay for the lookup which involves hash code generation, equality check and an indexed array access. The generic version is wicked fast and allows you to add more features to your tracing Api with minimal perf overhead. But it is cumbersome to write the generic type argument always explicitly and worse if you do refactor code and move parts of it to other classes it might be that you cannot configure tracing correctly. I would like therefore to decorate my type with an attribute [CallerType] class Tracer<T> : IDisposable to tell the compiler to fill in the generic type argument automatically. class Program { static void Main(string[] args) { using (var t = new Tracer()) // equivalent to new Tracer<Program>() { That would be really useful and super fast since you do not need to pass any type object around but you do have full type infos at hand. This change would be breaking if another non generic type exists in the same namespace where now the generic counterpart would be preferred. But this is an acceptable risk in my opinion since you can today already get conflicts if two generic types of the same name are defined in different namespaces. This would be only a variation of this issue. When you do think about this further you can add more features like to trace the exception in your Dispose method if the method is left with an exception with that little trick I did write some time ago. You can think of tracing as a super fast and configurable switch to write data to an output destination or to execute alternative actions. With such an infrastructure you can e.g. Reconfigure tracing at run time. Take a memory dump when a specific method is left with a specific exception. Throw an exception when a specific trace statement is hit (useful for testing error conditions). Execute a passed delegate which e.g. dumps additional state when enabled. Write data to an in memory ring buffer and dump it when specific events do occur (e.g. method is left with an exception, triggered from outside). Write data to an output device. …. This stuff is really useful to have when your code is in production on a mission critical server and you need to find the root cause of sporadic crashes of your application. It could be a buggy graphics card driver which throws access violations into your application (ok with .NET 4 not anymore except if you enable a compatibility flag) where you would like to have a minidump or you have reached after two weeks of operation a state where you need a full memory dump at a specific point in time in the middle of an transaction. At my older machine I do get with this super fast approach 50 million traces/s when tracing is disabled. When I do know that tracing is enabled for this type I can walk the stack by using StackFrameHelper.GetStackFramesInternal to check further if a specific action or output device is configured for this method which is about 2-3 times faster than the regular StackTrace class. Even with one String.Format I am down to 3 million traces/s so performance is not so important anymore since I do want to do something now. The CallerMemberName feature of the C# 5 compiler is nice but I would have preferred to get direct access to the MethodHandle and not to the stringified version of it. But I really would like to see a CallerType attribute implemented to fill in the generic type argument of the call site to augment the static CLR type data with run time data.

    Read the article

  • Using Groovy Aggregate Functions in ADF BC

    - by Sireesha Pinninti
    This article explains how groovy aggregate functions(sum, count, min, max and avg) can be used in ADF Business components and demonstrates how these can be used at entity and view level Let's consider EMP and DEPT tables and an usecase to track number of employees in each department   Entity-Level To use aggregate functions at entity level, we need to have association between entities representing master and child relationship and the destination accessor name is what we are going to use in our groovy Syntax: <Accessor>.count(Groovyexpression) - Note down the destination accessor name(EMP) in the association or AccessorAttribute name in source entity - Add a transient attribute in source entity with persistent property set to false and provide the groovy expression in the syntax provided above - Finally, Add newly added attribute to view object View-Level To use aggregate functions at view level, we need to have a view link between viewobjects representing master and child relationship and the destination accessor name is what we are going to use in our groovy Syntax: <ViewLinkAccessor>.count(Groovyexpression) - Note down the destination accessor name(EmpView) in the view link or viewLinkAccessor name in source view - Add a transient attribute in view object and provide a groovy aggregate function count as a value to it in the syntax provided above Now, If you run application module tester and execute DeptView / ViewLink, you should see employee count in EmpCount field  In similar way, one can use other groovy aggregate functions sum, avg, min and max.

    Read the article

  • What is UVIndex and how do I use it on OpenGL?

    - by Delta
    I am a noob in OpenGL ES 2.0 (for WebGL) and I'm trying to draw a simple model I've made with a 3D tool and exported to .fbx format. I've been able to draw some models that only have: A vertex buffer, a index buffer for the vertices, a normal buffer and a texture coordinate buffer, but this model now has a "UVIndex" and I'm not sure where am I supposed to put this UVIndex. My code looks like this: GL.bindBuffer(GL.ARRAY_BUFFER, this.Model.House.VertexBuffer); GL.vertexAttribPointer(this.Shader.TextureAndLighting.Attribute["vPosition"],3,GL.FLOAT, false, 0, 0); GL.bindBuffer(GL.ARRAY_BUFFER, this.Model.House.NormalBuffer); GL.vertexAttribPointer(this.Shader.TextureAndLighting.Attribute["vNormal"], 3, GL.FLOAT, false, 0, 0); GL.bindBuffer(GL.ARRAY_BUFFER, this.Model.House.TexCoordBuffer); GL.vertexAttribPointer(this.Shader.TextureAndLighting.Attribute["TexCoord"], 2, GL.FLOAT, false, 0, 0); GL.bindBuffer(GL.ELEMENT_ARRAY_BUFFER, this.Model.House.IndexBuffer); GL.bindTexture(GL.TEXTURE_2D, this.Texture.HTex1); GL.activeTexture(GL.TEXTURE0); GL.drawElements(GL.TRIANGLES, this.Model.House.IndexBuffer.Length, GL.UNSIGNED_SHORT, 0); But my model renders totally incorrect and I think it has to do with the fact that I am ignoring this "UVIndex" in the .fbx file, since I've never drawn any model that uses this UVIndex I really have no clue on what to do with it. This is the json file containing the model's data: http://pastebin.com/raw.php?i=G294TVmz

    Read the article

  • Reusing Web Forms across BPM Roles

    - by Mona Rakibe
    Recently Varsha(another BPM Product Manager) approached me with a requirement where she wanted to reuse same Web Form for different task activity.We both knew this is easily achievable.The human task outcomes can differ to distinguish the submission based on roles.Her requirement was slightly more than this, she wanted to hide some data based on the logged in user. If you have worked on Web Form rules, dynamically showing and hiding data is common requirement and easily achievable using Form Rules. In this case the challenge was accessing BPM role inside the Web Form. Although, will be addressing this requirement in future release she wanted a immediate solution(Aha, after all customers are not the only one's who can not wait). Thankfully we managed to come-up with a solution and I hope this will be helpful to larger audience. Solution has 3 steps : Step 1: We added a hidden attribute in our form (Role). The purpose of this attribute is just to store the current logged in user's role and we pass the value during data association. Step 2 : In your data association step, pass the role value based on the Swimlane Step 3 : Now use this hidden attribute value in your Web Form rule for dynamic behavior Detailed steps and sample can be downloaded from Java.net.

    Read the article

  • Ubiquitous Language and Custom types

    - by EdvRusj
    Note that my question is referring to those attributes that even on their own already represent a concept ( ie on their own provide a cohesive meaning ). Thus such attribute needs no additional functional support and as such is self-contained. I'm also well-aware that even with self-contained attributes the custom types may prove beneficial ( for example, they give the ability to add new behavior later, when business requirements change ). Thus, my question focuses only on whether custom types for self-contained attributes really enrich Ubiquitous Language UL a) I've read that in most cases, even simple, self-contained attributes should have custom, more descriptive types rather than basic value types ( double, string ... ), because among other things, descriptive types add to the UL, while the use of basic types instead weakens the language. I understand the importance of UL, but how does having a basic type for a self-contained attribute weaken the language, since with self-contained attributes the name of the attribute already adequately describes the concept and thus contributes to the UL vocabulary? For example, the term person_age already adequately explains the concept of quantifying the number of years a person has: class Person { string person_age; } so what could we possibly gain by also introducing the term ThingAge to the UL: class person { ThingAge person_age; } thanks

    Read the article

  • I don't understand why one of my vbo is overwritten by another

    - by Alays
    to create a vbo I use this function: public void loadVBO(){ vboID = GL15.glGenBuffers(); GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, vboID); GL15.glBufferData(GL15.GL_ARRAY_BUFFER, buf, GL15.GL_STATIC_DRAW); // Put the position coordinates in attribute list 0 GL20.glVertexAttribPointer(0, 4, GL11.GL_FLOAT, false,4*4+4*4+4*4+2*4 , 0); // Put the color components in attribute list 1 GL20.glVertexAttribPointer(1, 4, GL11.GL_FLOAT, false,4*4+4*4+4*4+2*4 , 4*4); GL20.glVertexAttribPointer(2, 4, GL11.GL_FLOAT, false,4*4+4*4+4*4+2*4 , 4*4+4*4); // Put the texture coordinates in attribute list 2 GL20.glVertexAttribPointer(3, 4, GL11.GL_FLOAT, false,4*4+4*4+4*4+2*4 , 4*4+4*4+4*4); GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, 0); } to display a vbo I use this function: public void displayVBO(){ GL15.glBindBuffer(GL15.GL_ELEMENT_ARRAY_BUFFER, vboID); GL20.glEnableVertexAttribArray(0); GL20.glEnableVertexAttribArray(1); GL20.glEnableVertexAttribArray(2); GL20.glEnableVertexAttribArray(3); GL11.glDrawArrays(GL_TRIANGLES, 0, buf.capacity()); GL20.glDisableVertexAttribArray(0); GL20.glDisableVertexAttribArray(1); GL20.glDisableVertexAttribArray(2); GL20.glDisableVertexAttribArray(3); GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, 0); } So when I call map.loadVBO() and then ocean.loadVBO(), I think the second call overwrite the first vbo I don't know how ... When I call map.display() and ocean.display(), I have the ocean draw 2 times .... Thanks.

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • ASP.Net MVC Exception Logging combined with Error Handling

    - by Saajid Ismail
    Hi. I am looking for a simple solution to do Exception Logging combined with Error Handling in my ASP.Net MVC 1.0 application. I've read lots of articles, including Questions posted here on StackOverflow, which all provide varying solutions for different situations. I am still unable to come up with a solution that suits my needs. Here are my requirements: To be able to use the [HandleError] attribute (or something equivalent) on my Controller, to handle all exceptions that could be thrown from any of the Actions or Views. This should handle all exceptions that were not handled specifically on any of the Actions (as described in point 2). I would like to be able to specify which View a user must be redirected to in error cases, for all actions in the Controller. I want to be able to specify the [HandleError] attribute (or something equivalent) at the top of specific Actions to catch specific exceptions and redirect users to a View appropriate to the exception. All other exceptions must still be handled by the [HandleError] attribute on the Controller. In both cases above, I want the exceptions to be logged using log4net (or any other logging library). How do I go about achieving the above? I've read about making all my Controllers inherit from a base controller which overrides the OnException method, and wherein I do my logging. However this will mess around with redirecting users to the appropriate Views, or make it messy. I've read about writing my own Filter Action which implements IExceptionFilter to handle this, but this will conflict with the [HandleError] attribute. So far, my thoughts are that the best solution is to write my own attribute that inherits from HandleErrorAttribute. That way I get all the functionality of [HandleError], and can add my own log4net logging. The solution is as follows: public class HandleErrorsAttribute: HandleErrorAttribute { private log4net.ILog log = log4net.LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType); public override void OnException(ExceptionContext filterContext) { if (filterContext.Exception != null) { log.Error("Error in Controller", filterContext.Exception); } base.OnException(filterContext); } } Will the above code work for my requirements? If not, what solution does fulfill my requirements?

    Read the article

  • HTML Purifier: Removing an element conditionally based on its attributes

    - by pinkgothic
    As per the HTML Purifier smoketest, 'malformed' URIs are occasionally discarded to leave behind an attribute-less anchor tag, e.g. <a href="javascript:document.location='http://www.google.com/'">XSS</a> becomes <a>XSS</a> ...as well as occasionally being stripped down to the protocol, e.g. <a href="http://1113982867/">XSS</a> becomes <a href="http:/">XSS</a> While that's unproblematic, per se, it's a bit ugly. Instead of trying to strip these out with regular expressions, I was hoping to use HTML Purifier's own library capabilities / injectors / plug-ins / whathaveyou. Point of reference: Handling attributes Conditionally removing an attribute in HTMLPurifier is easy. Here the library offers the class HTMLPurifier_AttrTransform with the method confiscateAttr(). While I don't personally use the functionality of confiscateAttr(), I do use an HTMLPurifier_AttrTransform as per this thread to add target="_blank" to all anchors. // more configuration stuff up here $htmlDef = $htmlPurifierConfiguration->getHTMLDefinition(true); $anchor = $htmlDef->addBlankElement('a'); $anchor->attr_transform_post[] = new HTMLPurifier_AttrTransform_Target(); // purify down here HTMLPurifier_AttrTransform_Target is a very simple class, of course. class HTMLPurifier_AttrTransform_Target extends HTMLPurifier_AttrTransform { public function transform($attr, $config, $context) { // I could call $this->confiscateAttr() here to throw away an // undesired attribute $attr['target'] = '_blank'; return $attr; } } That part works like a charm, naturally. Handling elements Perhaps I'm not squinting hard enough at HTMLPurifier_TagTransform, or am looking in the wrong place(s), or generally amn't understanding it, but I can't seem to figure out a way to conditionally remove elements. Say, something to the effect of: // more configuration stuff up here $htmlDef = $htmlPurifierConfiguration->getHTMLDefinition(true); $anchor = $htmlDef->addElementHandler('a'); $anchor->elem_transform_post[] = new HTMLPurifier_ElementTransform_Cull(); // add target as per 'point of reference' here // purify down here With the Cull class extending something that has a confiscateElement() ability, or comparable, wherein I could check for a missing href attribute or a href attribute with the content http:/. HTMLPurifier_Filter I understand I could create a filter, but the examples (Youtube.php and ExtractStyleBlocks.php) suggest I'd be using regular expressions in that, which I'd really rather avoid, if it is at all possible. I'm hoping for an onboard or quasi-onboard solution that makes use of HTML Purifier's excellent parsing capabilities. Returning null in a child-class of HTMLPurifier_AttrTransform unfortunately doesn't cut it. Anyone have any smart ideas, or am I stuck with regexes? :)

    Read the article

  • Any way to override how <choice> element is binded by xsd.exe

    - by code4life
    I have the following elements in my schema: <xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema"> <xs:complexType name="optimizeModelBase"> <xs:attribute name="name" type="xs:string"/> </xs:complexType> <xs:complexType name="riskModel"> <xs:complexContent> <xs:extension base="optimizeModelBase"> <xs:attribute name="type" type="xs:string" use="required"/> </xs:extension> </xs:complexContent> </xs:complexType> <xs:complexType name="fullCovariance"> <xs:complexContent> <xs:extension base="optimizeModelBase"> <xs:attribute name="fromDate" type="xs:date" use="required"/> <xs:attribute name="toDate" type="xs:date" use="required"/> <xs:attribute name="windowSize" type="xs:int" use="required"/> </xs:extension> </xs:complexContent> </xs:complexType> In my main schema body, I use a element to specify a 1-of situation: <xs:choice id="RiskModelParameter"> <xs:element name="RiskModel" type="riskModel"/> <xs:element name="FullCovariance" type="fullCovariance"/> </xs:choice> When I run xsd.exe, the resulting code is: [System.Xml.Serialization.XmlElementAttribute("FullCovariance", typeof(fullCovariance))] [System.Xml.Serialization.XmlElementAttribute("RiskModel", typeof(riskModel))] public optimizeModelBase Item { get { return this.itemField; } set { this.itemField = value; } } The issue is that the element's ID tag is being ignored, and xsd.exe is arbitrarily naming the property "Item". I have to admit, it's not a big issue, but it's starting to annoy me. What makes this extra annoying is that if I have additional elements at the same level, xsd.exe binds them as "Item1", "Item2", etc. Does anyone know if it's possible to not have xsd.exe name my choice elements as "Item", and instead be able to put in my own property names?

    Read the article

  • How do I require that an element has either one set of attributes or another in an XSD schema?

    - by Eli Courtwright
    I'm working with an XML document where a tag must either have one set of attributes or another. For example, it needs to either look like <tag foo="hello" bar="kitty" /> or <tag spam="goodbye" eggs="world" /> e.g. <root> <tag foo="hello" bar="kitty" /> <tag spam="goodbye" eggs="world" /> </root> So I have an XSD schema where I use the xs:choice element to choose between two different attribute groups: <xsi:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema" attributeFormDefault="unqualified" elementFormDefault="qualified"> <xs:element name="root"> <xs:complexType> <xs:sequence> <xs:element maxOccurs="unbounded" name="tag"> <xs:choice> <xs:complexType> <xs:attribute name="foo" type="xs:string" use="required" /> <xs:attribute name="bar" type="xs:string" use="required" /> </xs:complexType> <xs:complexType> <xs:attribute name="spam" type="xs:string" use="required" /> <xs:attribute name="eggs" type="xs:string" use="required" /> </xs:complexType> </xs:choice> </xs:element> </xs:sequence> </xs:complexType> </xs:element> </xsi:schema> However, when using lxml to attempt to load this schema, I get the following error: >>> from lxml import etree >>> etree.XMLSchema( etree.parse("schema_choice.xsd") ) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "xmlschema.pxi", line 85, in lxml.etree.XMLSchema.__init__ (src/lxml/lxml.etree.c:118685) lxml.etree.XMLSchemaParseError: Element '{http://www.w3.org/2001/XMLSchema}element': The content is not valid. Expected is (annotation?, ((simpleType | complexType)?, (unique | key | keyref)*))., line 7 Since the error is with the placement of my xs:choice element, I've tried putting it in different places, but no matter what I try, I can't seem to use it to define a tag to have either one set of attributes (foo and bar) or another (spam and eggs). Is this even possible? And if so, then what is the correct syntax?

    Read the article

  • Including hibernate jar dependencies in ant build

    - by Patrick
    Hi, I'm trying to compile a runnable jar-file for a project that makes use of hibernate. I'm trying to construct an ant build.xml file to streamline my build process, but I'm having troubles with the inclusion of the hibernate3.jar inside the final jar-file. If I run the ant script I manage to include all my library jars, and they are put in the final jar-file's root. When I run the jar-file I get a java.lang.NoClassDefFoundError: org/hibernate/Session error. If I make use of the built-in export to jar in Eclipse, it works only if I choose "extract required libraries into jar". But that bloats the jar, and includes too much of my project (i.e. unit tests). Below is my generated manifest: Manifest-Version: 1.0 Main-Class: main.ServerImpl Class-Path: ./ antlr-2.7.6.jar commons-collections-3.1.jar dom4j-1.6.1.jar hibernate3.jar javassist-3.9.0.GA.jar jta-1.1.jar slf4j-api-1.5.11.jar slf4j-simple-1.5.11.jar mysql-connector-java-5.1.12-bin.jar rmiio-2.0.2.jar commons-logging-1.1.1.jar And the part of the build.xml looks like this: <target name="dist" depends="compile" description="Generates the Distribution Jar(s)"> <mkdir dir="${dist.dir}" /> <jar destfile="${dist.dir}/${dist.file.name}.jar" basedir="${build.prod.dir}" filesetmanifest="mergewithoutmain"> <manifest> <attribute name="Main-Class" value="${main.class}" /> <attribute name="Class-Path" value="./ ${manifest.classpath} " /> <attribute name="Implementation-Title" value="${app.name}" /> <attribute name="Implementation-Version" value="${app.version}" /> <attribute name="Implementation-Vendor" value="${app.vendor}" /> </manifest> <zipfileset refid="hibernatefiles" /> <zipfileset refid="slf4jfiles" /> <zipfileset refid="mysqlfiles" /> <zipfileset refid="commonsloggingfiles" /> <zipfileset refid="rmiiofiles" /> </jar> </target> The refids' for the zipfilesets point to the directories in a library directory lib in the root of the project. The manifest.classpath-variable takes the classpath of all those library jar-files, and flattens them with pathconvert and mapper. I've also tried to set the manifest classpath to ".", "./" and only the library jar, but to no difference at all. I'm hoping there's a simple remedy to my problems...

    Read the article

  • xsl:variable contains nodeset. How to output nth node of variable?

    - by dnagirl
    I am transforming an XML document. There is an attribute @prettydate that is a string similar to "Friday, May 7, 2010". I want to split that string and add links to the month and the year. I am using the exslt:strings module and I can add any other necessary EXSLT module. This is my code so far: <xsl:template match="//calendar"> <xsl:variable name="prettyparts"> <xsl:value-of select="str:split(@prettydate,', ')"/> </xsl:variable> <table class='day'> <thead> <caption><xsl:value-of select="$prettyparts[1]"/>, <a> <xsl:attribute name='href'><xsl:value-of select="$baseref"/>?date=<xsl:value-of select="@highlight"/>&amp;per=m</xsl:attribute> <xsl:value-of select='$prettyparts[2]'/> </a> <xsl:value-of select='$prettyparts[3]'/>, <a> <xsl:attribute name='href'><xsl:value-of select="$baseref"/>?date=<xsl:value-of select="@highlight"/>&amp;per=y</xsl:attribute> <xsl:value-of select='$prettyparts[4]'/> </a> </caption> <!--etcetera--> I have verified, by running $prettyparts through a <xml:for-each/> that I am getting the expected nodeset: <token>Friday</token> <token>May</token> <token>7</token> <token>2010</token> But no matter which way I attempt to refer to a particular <token> directly (not in a foreach) I get nothing or various errors to do with invalid types. Here's some of the syntax I've tried: <xsl:value-of select="$prettyparts[2]"/> <xsl:value-of select="$prettyparts/token[2]"/> <xsl:value-of select="exsl:node-set($prettyparts/token[2])"/> <xsl:value-of select="exsl:node-set($prettyparts/token)[2]"/> Any idea what the expression ought to be?

    Read the article

< Previous Page | 147 148 149 150 151 152 153 154 155 156 157 158  | Next Page >