Search Results

Search found 31586 results on 1264 pages for 'custom result'.

Page 167/1264 | < Previous Page | 163 164 165 166 167 168 169 170 171 172 173 174  | Next Page >

  • Use a custom value object or a Guid as an entity identifier in a distributed system?

    - by Kazark
    tl;dr I've been told that in domain-driven design, an identifier for an entity could be a custom value object, i.e. something other than Guid, string, int, etc. Can this really be advisable in a distributed system? Long version I will invent an situation analogous to the one I am currently facing. Say I have a distributed system in which a central concept is an egg. The system allows you to order eggs and see spending reports and inventory-centric data such as quantity on hand, usage, valuation and what have you. There area variety of services backing these behaviors. And say there is also another app which allows you to compose recipes that link to a particular egg type. Now egg type is broken down by the species—ostrich, goose, duck, chicken, quail. This is fine and dandy because it means that users don't end up with ostrich eggs when they wanted quail eggs and whatnot. However, we've been getting complaints because jumbo chicken eggs are not even close to equivalent to small ones. The price is different, and they really aren't substitutable in recipes. And here we thought we were doing users a favor by not overwhelming them with too many options. Currently each of the services (say, OrderSubmitter, EggTypeDefiner, SpendingReportsGenerator, InventoryTracker, RecipeCreator, RecipeTracker, or whatever) are identifying egg types with an industry-standard integer representation the species (let's call it speciesCode). We realize we've goofed up because this change could effect every service. There are two basic proposed solutions: Use a predefined identifier type like Guid as the eggTypeID throughout all the services, but make EggTypeDefiner the only service that knows that this maps to a speciesCode and eggSizeCode (and potentially to an isOrganic flag in the future, or whatever). Use an EggTypeID value object which is a combination of speciesCode and eggSizeCode in every service. I've proposed the first solution because I'm hoping it better encapsulates the definition of what an egg type is in the EggTypeDefiner and will be more resilient to changes, say if some people now want to differentiate eggs by whether or not they are "organic". The second solution is being suggested by some people who understand DDD better than I do in the hopes that less enrichment and lookup will be necessary that way, with the justification that in DDD using a value object as an ID is fine. Also, they are saying that EggTypeDefiner is not a domain and EggType is not an entity and as such should not have a Guid for an ID. However, I'm not sure the second solution is viable. This "value object" is going to have to be serialized into JSON and URLs for GET requests and used with a variety of technologies (C#, JavaScript...) which breaks encapsulation and thus removes any behavior of the identifier value object (is either of the fields optional? etc.) Is this a case where we want to avoid something that would normally be fine in DDD because we are trying to do DDD in a distributed fashion? Summary Can it be a good idea to use a custom value object as an identifier in a distributed system (solution #2)?

    Read the article

  • Construct a Netflix Affiliate URL to a search result page?

    - by Felix
    I have a Netflix Affiliate account, but I don't want to direct users to the homepage for them to create an account, I want to direct them to a search result page. The reason for this is that on our site we have lots of titles but they can't be reliably linked to a single Netflix result programmatically, so we would prefer if we could direct users to a search page, and if the user signs up, get the revenue. Is this possible? I find the whole Netflix-Affiliate-but-Google-Affiliate scheme a bit daunting.

    Read the article

  • Best way to get a Web Service to return a database result as XML?

    - by John
    I am building a webservice using jax-rs and querying a DB2 z/OS database with SQLJ and getting the result set as an arraylist. I would like to return this list as XML, but not sure how to do it. Does anyone have an example of returning a result set as XML and is using an Arraylist the best way to do this? Should I use JAXB? if so how?

    Read the article

  • How do I get the desired result in T-SQL like ....

    - by Azhar
    How do I get the desired result in T-SQL like .... like I have a Record like UseriD InDate outDate 1 3/12/2010 3/12/2010 1 3/12/2010 3/13/2010 1 3/19/2010 3/30/2010 2 3/2/2010 3/3/2010 2 3/3/2010 3/4/2010 2 3/4/2010 3/29/2010 3 2/2/2010 2/28/2010 so our result must be like this UseriD InDate outDate 1 3/12/2010 3/13/2010 1 3/19/2010 3/30/2010 2 3/2/2010 3/29/2010 3 2/2/2010 2/28/2010 How can we do this is T-Sql

    Read the article

  • How to add a view for the json result in asp.net mvc?

    - by Pandiya Chendur
    I returned json result from a controller but how can i add a view that uses this json result.. public class MaterialsController : Controller { ConstructionRepository consRepository = new ConstructionRepository(); public JsonResult Index() { var materials = consRepository.FindAllMaterials().AsQueryable(); return Json(materials); } } How to add a view to this? Any suggestion...

    Read the article

  • What SQL query should I perform to get the result set expected?

    - by texai
    What SQL query should I perform to get the result set expected, giving the first element of the chain (2) as input data, or any of them ? table name: changes +----+---------------+---------------+ | id | new_record_id | old_record_id | +----+---------------+---------------+ | 1| 4| 2| | -- non relevant data -- | | 6| 7| 4| | -- non relevant data -- | | 11| 13| 7| | 12| 14| 13| | -- non relevant data -- | | 31| 20| 14| +----+---------------+---------------+ Result set expected: +--+ | 2| | 4| | 7| |13| |14| |20| +--+ I know I should consider change my data model, but: What if I couldn't? Thank you in advance!

    Read the article

  • An Introduction to ASP.NET Web API

    - by Rick Strahl
    Microsoft recently released ASP.NET MVC 4.0 and .NET 4.5 and along with it, the brand spanking new ASP.NET Web API. Web API is an exciting new addition to the ASP.NET stack that provides a new, well-designed HTTP framework for creating REST and AJAX APIs (API is Microsoft’s new jargon for a service, in case you’re wondering). Although Web API ships and installs with ASP.NET MVC 4, you can use Web API functionality in any ASP.NET project, including WebForms, WebPages and MVC or just a Web API by itself. And you can also self-host Web API in your own applications from Console, Desktop or Service applications. If you're interested in a high level overview on what ASP.NET Web API is and how it fits into the ASP.NET stack you can check out my previous post: Where does ASP.NET Web API fit? In the following article, I'll focus on a practical, by example introduction to ASP.NET Web API. All the code discussed in this article is available in GitHub: https://github.com/RickStrahl/AspNetWebApiArticle [republished from my Code Magazine Article and updated for RTM release of ASP.NET Web API] Getting Started To start I’ll create a new empty ASP.NET application to demonstrate that Web API can work with any kind of ASP.NET project. Although you can create a new project based on the ASP.NET MVC/Web API template to quickly get up and running, I’ll take you through the manual setup process, because one common use case is to add Web API functionality to an existing ASP.NET application. This process describes the steps needed to hook up Web API to any ASP.NET 4.0 application. Start by creating an ASP.NET Empty Project. Then create a new folder in the project called Controllers. Add a Web API Controller Class Once you have any kind of ASP.NET project open, you can add a Web API Controller class to it. Web API Controllers are very similar to MVC Controller classes, but they work in any kind of project. Add a new item to this folder by using the Add New Item option in Visual Studio and choose Web API Controller Class, as shown in Figure 1. Figure 1: This is how you create a new Controller Class in Visual Studio   Make sure that the name of the controller class includes Controller at the end of it, which is required in order for Web API routing to find it. Here, the name for the class is AlbumApiController. For this example, I’ll use a Music Album model to demonstrate basic behavior of Web API. The model consists of albums and related songs where an album has properties like Name, Artist and YearReleased and a list of songs with a SongName and SongLength as well as an AlbumId that links it to the album. You can find the code for the model (and the rest of these samples) on Github. To add the file manually, create a new folder called Model, and add a new class Album.cs and copy the code into it. There’s a static AlbumData class with a static CreateSampleAlbumData() method that creates a short list of albums on a static .Current that I’ll use for the examples. Before we look at what goes into the controller class though, let’s hook up routing so we can access this new controller. Hooking up Routing in Global.asax To start, I need to perform the one required configuration task in order for Web API to work: I need to configure routing to the controller. Like MVC, Web API uses routing to provide clean, extension-less URLs to controller methods. Using an extension method to ASP.NET’s static RouteTable class, you can use the MapHttpRoute() (in the System.Web.Http namespace) method to hook-up the routing during Application_Start in global.asax.cs shown in Listing 1.using System; using System.Web.Routing; using System.Web.Http; namespace AspNetWebApi { public class Global : System.Web.HttpApplication { protected void Application_Start(object sender, EventArgs e) { RouteTable.Routes.MapHttpRoute( name: "AlbumVerbs", routeTemplate: "albums/{title}", defaults: new { symbol = RouteParameter.Optional, controller="AlbumApi" } ); } } } This route configures Web API to direct URLs that start with an albums folder to the AlbumApiController class. Routing in ASP.NET is used to create extensionless URLs and allows you to map segments of the URL to specific Route Value parameters. A route parameter, with a name inside curly brackets like {name}, is mapped to parameters on the controller methods. Route parameters can be optional, and there are two special route parameters – controller and action – that determine the controller to call and the method to activate respectively. HTTP Verb Routing Routing in Web API can route requests by HTTP Verb in addition to standard {controller},{action} routing. For the first examples, I use HTTP Verb routing, as shown Listing 1. Notice that the route I’ve defined does not include an {action} route value or action value in the defaults. Rather, Web API can use the HTTP Verb in this route to determine the method to call the controller, and a GET request maps to any method that starts with Get. So methods called Get() or GetAlbums() are matched by a GET request and a POST request maps to a Post() or PostAlbum(). Web API matches a method by name and parameter signature to match a route, query string or POST values. In lieu of the method name, the [HttpGet,HttpPost,HttpPut,HttpDelete, etc] attributes can also be used to designate the accepted verbs explicitly if you don’t want to follow the verb naming conventions. Although HTTP Verb routing is a good practice for REST style resource APIs, it’s not required and you can still use more traditional routes with an explicit {action} route parameter. When {action} is supplied, the HTTP verb routing is ignored. I’ll talk more about alternate routes later. When you’re finished with initial creation of files, your project should look like Figure 2.   Figure 2: The initial project has the new API Controller Album model   Creating a small Album Model Now it’s time to create some controller methods to serve data. For these examples, I’ll use a very simple Album and Songs model to play with, as shown in Listing 2. public class Song { public string AlbumId { get; set; } [Required, StringLength(80)] public string SongName { get; set; } [StringLength(5)] public string SongLength { get; set; } } public class Album { public string Id { get; set; } [Required, StringLength(80)] public string AlbumName { get; set; } [StringLength(80)] public string Artist { get; set; } public int YearReleased { get; set; } public DateTime Entered { get; set; } [StringLength(150)] public string AlbumImageUrl { get; set; } [StringLength(200)] public string AmazonUrl { get; set; } public virtual List<Song> Songs { get; set; } public Album() { Songs = new List<Song>(); Entered = DateTime.Now; // Poor man's unique Id off GUID hash Id = Guid.NewGuid().GetHashCode().ToString("x"); } public void AddSong(string songName, string songLength = null) { this.Songs.Add(new Song() { AlbumId = this.Id, SongName = songName, SongLength = songLength }); } } Once the model has been created, I also added an AlbumData class that generates some static data in memory that is loaded onto a static .Current member. The signature of this class looks like this and that's what I'll access to retrieve the base data:public static class AlbumData { // sample data - static list public static List<Album> Current = CreateSampleAlbumData(); /// <summary> /// Create some sample data /// </summary> /// <returns></returns> public static List<Album> CreateSampleAlbumData() { … }} You can check out the full code for the data generation online. Creating an AlbumApiController Web API shares many concepts of ASP.NET MVC, and the implementation of your API logic is done by implementing a subclass of the System.Web.Http.ApiController class. Each public method in the implemented controller is a potential endpoint for the HTTP API, as long as a matching route can be found to invoke it. The class name you create should end in Controller, which is how Web API matches the controller route value to figure out which class to invoke. Inside the controller you can implement methods that take standard .NET input parameters and return .NET values as results. Web API’s binding tries to match POST data, route values, form values or query string values to your parameters. Because the controller is configured for HTTP Verb based routing (no {action} parameter in the route), any methods that start with Getxxxx() are called by an HTTP GET operation. You can have multiple methods that match each HTTP Verb as long as the parameter signatures are different and can be matched by Web API. In Listing 3, I create an AlbumApiController with two methods to retrieve a list of albums and a single album by its title .public class AlbumApiController : ApiController { public IEnumerable<Album> GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); return albums; } public Album GetAlbum(string title) { var album = AlbumData.Current .SingleOrDefault(alb => alb.AlbumName.Contains(title)); return album; }} To access the first two requests, you can use the following URLs in your browser: http://localhost/aspnetWebApi/albumshttp://localhost/aspnetWebApi/albums/Dirty%20Deeds Note that you’re not specifying the actions of GetAlbum or GetAlbums in these URLs. Instead Web API’s routing uses HTTP GET verb to route to these methods that start with Getxxx() with the first mapping to the parameterless GetAlbums() method and the latter to the GetAlbum(title) method that receives the title parameter mapped as optional in the route. Content Negotiation When you access any of the URLs above from a browser, you get either an XML or JSON result returned back. The album list result for Chrome 17 and Internet Explorer 9 is shown Figure 3. Figure 3: Web API responses can vary depending on the browser used, demonstrating Content Negotiation in action as these two browsers send different HTTP Accept headers.   Notice that the results are not the same: Chrome returns an XML response and IE9 returns a JSON response. Whoa, what’s going on here? Shouldn’t we see the same result in both browsers? Actually, no. Web API determines what type of content to return based on Accept headers. HTTP clients, like browsers, use Accept headers to specify what kind of content they’d like to see returned. Browsers generally ask for HTML first, followed by a few additional content types. Chrome (and most other major browsers) ask for: Accept: text/html, application/xhtml+xml,application/xml; q=0.9,*/*;q=0.8 IE9 asks for: Accept: text/html, application/xhtml+xml, */* Note that Chrome’s Accept header includes application/xml, which Web API finds in its list of supported media types and returns an XML response. IE9 does not include an Accept header type that works on Web API by default, and so it returns the default format, which is JSON. This is an important and very useful feature that was missing from any previous Microsoft REST tools: Web API automatically switches output formats based on HTTP Accept headers. Nowhere in the server code above do you have to explicitly specify the output format. Rather, Web API determines what format the client is requesting based on the Accept headers and automatically returns the result based on the available formatters. This means that a single method can handle both XML and JSON results.. Using this simple approach makes it very easy to create a single controller method that can return JSON, XML, ATOM or even OData feeds by providing the appropriate Accept header from the client. By default you don’t have to worry about the output format in your code. Note that you can still specify an explicit output format if you choose, either globally by overriding the installed formatters, or individually by returning a lower level HttpResponseMessage instance and setting the formatter explicitly. More on that in a minute. Along the same lines, any content sent to the server via POST/PUT is parsed by Web API based on the HTTP Content-type of the data sent. The same formats allowed for output are also allowed on input. Again, you don’t have to do anything in your code – Web API automatically performs the deserialization from the content. Accessing Web API JSON Data with jQuery A very common scenario for Web API endpoints is to retrieve data for AJAX calls from the Web browser. Because JSON is the default format for Web API, it’s easy to access data from the server using jQuery and its getJSON() method. This example receives the albums array from GetAlbums() and databinds it into the page using knockout.js.$.getJSON("albums/", function (albums) { // make knockout template visible $(".album").show(); // create view object and attach array var view = { albums: albums }; ko.applyBindings(view); }); Figure 4 shows this and the next example’s HTML output. You can check out the complete HTML and script code at http://goo.gl/Ix33C (.html) and http://goo.gl/tETlg (.js). Figu Figure 4: The Album Display sample uses JSON data loaded from Web API.   The result from the getJSON() call is a JavaScript object of the server result, which comes back as a JavaScript array. In the code, I use knockout.js to bind this array into the UI, which as you can see, requires very little code, instead using knockout’s data-bind attributes to bind server data to the UI. Of course, this is just one way to use the data – it’s entirely up to you to decide what to do with the data in your client code. Along the same lines, I can retrieve a single album to display when the user clicks on an album. The response returns the album information and a child array with all the songs. The code to do this is very similar to the last example where we pulled the albums array:$(".albumlink").live("click", function () { var id = $(this).data("id"); // title $.getJSON("albums/" + id, function (album) { ko.applyBindings(album, $("#divAlbumDialog")[0]); $("#divAlbumDialog").show(); }); }); Here the URL looks like this: /albums/Dirty%20Deeds, where the title is the ID captured from the clicked element’s data ID attribute. Explicitly Overriding Output Format When Web API automatically converts output using content negotiation, it does so by matching Accept header media types to the GlobalConfiguration.Configuration.Formatters and the SupportedMediaTypes of each individual formatter. You can add and remove formatters to globally affect what formats are available and it’s easy to create and plug in custom formatters.The example project includes a JSONP formatter that can be plugged in to provide JSONP support for requests that have a callback= querystring parameter. Adding, removing or replacing formatters is a global option you can use to manipulate content. It’s beyond the scope of this introduction to show how it works, but you can review the sample code or check out my blog entry on the subject (http://goo.gl/UAzaR). If automatic processing is not desirable in a particular Controller method, you can override the response output explicitly by returning an HttpResponseMessage instance. HttpResponseMessage is similar to ActionResult in ASP.NET MVC in that it’s a common way to return an abstract result message that contains content. HttpResponseMessage s parsed by the Web API framework using standard interfaces to retrieve the response data, status code, headers and so on[MS2] . Web API turns every response – including those Controller methods that return static results – into HttpResponseMessage instances. Explicitly returning an HttpResponseMessage instance gives you full control over the output and lets you mostly bypass WebAPI’s post-processing of the HTTP response on your behalf. HttpResponseMessage allows you to customize the response in great detail. Web API’s attention to detail in the HTTP spec really shows; many HTTP options are exposed as properties and enumerations with detailed IntelliSense comments. Even if you’re new to building REST-based interfaces, the API guides you in the right direction for returning valid responses and response codes. For example, assume that I always want to return JSON from the GetAlbums() controller method and ignore the default media type content negotiation. To do this, I can adjust the output format and headers as shown in Listing 4.public HttpResponseMessage GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); // Create a new HttpResponse with Json Formatter explicitly var resp = new HttpResponseMessage(HttpStatusCode.OK); resp.Content = new ObjectContent<IEnumerable<Album>>( albums, new JsonMediaTypeFormatter()); // Get Default Formatter based on Content Negotiation //var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); resp.Headers.ConnectionClose = true; resp.Headers.CacheControl = new CacheControlHeaderValue(); resp.Headers.CacheControl.Public = true; return resp; } This example returns the same IEnumerable<Album> value, but it wraps the response into an HttpResponseMessage so you can control the entire HTTP message result including the headers, formatter and status code. In Listing 4, I explicitly specify the formatter using the JsonMediaTypeFormatter to always force the content to JSON.  If you prefer to use the default content negotiation with HttpResponseMessage results, you can create the Response instance using the Request.CreateResponse method:var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); This provides you an HttpResponse object that's pre-configured with the default formatter based on Content Negotiation. Once you have an HttpResponse object you can easily control most HTTP aspects on this object. What's sweet here is that there are many more detailed properties on HttpResponse than the core ASP.NET Response object, with most options being explicitly configurable with enumerations that make it easy to pick the right headers and response codes from a list of valid codes. It makes HTTP features available much more discoverable even for non-hardcore REST/HTTP geeks. Non-Serialized Results The output returned doesn’t have to be a serialized value but can also be raw data, like strings, binary data or streams. You can use the HttpResponseMessage.Content object to set a number of common Content classes. Listing 5 shows how to return a binary image using the ByteArrayContent class from a Controller method. [HttpGet] public HttpResponseMessage AlbumArt(string title) { var album = AlbumData.Current.FirstOrDefault(abl => abl.AlbumName.StartsWith(title)); if (album == null) { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found")); return resp; } // kinda silly - we would normally serve this directly // but hey - it's a demo. var http = new WebClient(); var imageData = http.DownloadData(album.AlbumImageUrl); // create response and return var result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new ByteArrayContent(imageData); result.Content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg"); return result; } The image retrieval from Amazon is contrived, but it shows how to return binary data using ByteArrayContent. It also demonstrates that you can easily return multiple types of content from a single controller method, which is actually quite common. If an error occurs - such as a resource can’t be found or a validation error – you can return an error response to the client that’s very specific to the error. In GetAlbumArt(), if the album can’t be found, we want to return a 404 Not Found status (and realistically no error, as it’s an image). Note that if you are not using HTTP Verb-based routing or not accessing a method that starts with Get/Post etc., you have to specify one or more HTTP Verb attributes on the method explicitly. Here, I used the [HttpGet] attribute to serve the image. Another option to handle the error could be to return a fixed placeholder image if no album could be matched or the album doesn’t have an image. When returning an error code, you can also return a strongly typed response to the client. For example, you can set the 404 status code and also return a custom error object (ApiMessageError is a class I defined) like this:return Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found") );   If the album can be found, the image will be returned. The image is downloaded into a byte[] array, and then assigned to the result’s Content property. I created a new ByteArrayContent instance and assigned the image’s bytes and the content type so that it displays properly in the browser. There are other content classes available: StringContent, StreamContent, ByteArrayContent, MultipartContent, and ObjectContent are at your disposal to return just about any kind of content. You can create your own Content classes if you frequently return custom types and handle the default formatter assignments that should be used to send the data out . Although HttpResponseMessage results require more code than returning a plain .NET value from a method, it allows much more control over the actual HTTP processing than automatic processing. It also makes it much easier to test your controller methods as you get a response object that you can check for specific status codes and output messages rather than just a result value. Routing Again Ok, let’s get back to the image example. Using the original routing we have setup using HTTP Verb routing there's no good way to serve the image. In order to return my album art image I’d like to use a URL like this: http://localhost/aspnetWebApi/albums/Dirty%20Deeds/image In order to create a URL like this, I have to create a new Controller because my earlier routes pointed to the AlbumApiController using HTTP Verb routing. HTTP Verb based routing is great for representing a single set of resources such as albums. You can map operations like add, delete, update and read easily using HTTP Verbs. But you cannot mix action based routing into a an HTTP Verb routing controller - you can only map HTTP Verbs and each method has to be unique based on parameter signature. You can't have multiple GET operations to methods with the same signature. So GetImage(string id) and GetAlbum(string title) are in conflict in an HTTP GET routing scenario. In fact, I was unable to make the above Image URL work with any combination of HTTP Verb plus Custom routing using the single Albums controller. There are number of ways around this, but all involve additional controllers.  Personally, I think it’s easier to use explicit Action routing and then add custom routes if you need to simplify your URLs further. So in order to accommodate some of the other examples, I created another controller – AlbumRpcApiController – to handle all requests that are explicitly routed via actions (/albums/rpc/AlbumArt) or are custom routed with explicit routes defined in the HttpConfiguration. I added the AlbumArt() method to this new AlbumRpcApiController class. For the image URL to work with the new AlbumRpcApiController, you need a custom route placed before the default route from Listing 1.RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); Now I can use either of the following URLs to access the image: Custom route: (/albums/rpc/{title}/image)http://localhost/aspnetWebApi/albums/PowerAge/image Action route: (/albums/rpc/action/{title})http://localhost/aspnetWebAPI/albums/rpc/albumart/PowerAge Sending Data to the Server To send data to the server and add a new album, you can use an HTTP POST operation. Since I’m using HTTP Verb-based routing in the original AlbumApiController, I can implement a method called PostAlbum()to accept a new album from the client. Listing 6 shows the Web API code to add a new album.public HttpResponseMessage PostAlbum(Album album) { if (!this.ModelState.IsValid) { // my custom error class var error = new ApiMessageError() { message = "Model is invalid" }; // add errors into our client error model for client foreach (var prop in ModelState.Values) { var modelError = prop.Errors.FirstOrDefault(); if (!string.IsNullOrEmpty(modelError.ErrorMessage)) error.errors.Add(modelError.ErrorMessage); else error.errors.Add(modelError.Exception.Message); } return Request.CreateResponse<ApiMessageError>(HttpStatusCode.Conflict, error); } // update song id which isn't provided foreach (var song in album.Songs) song.AlbumId = album.Id; // see if album exists already var matchedAlbum = AlbumData.Current .SingleOrDefault(alb => alb.Id == album.Id || alb.AlbumName == album.AlbumName); if (matchedAlbum == null) AlbumData.Current.Add(album); else matchedAlbum = album; // return a string to show that the value got here var resp = Request.CreateResponse(HttpStatusCode.OK, string.Empty); resp.Content = new StringContent(album.AlbumName + " " + album.Entered.ToString(), Encoding.UTF8, "text/plain"); return resp; } The PostAlbum() method receives an album parameter, which is automatically deserialized from the POST buffer the client sent. The data passed from the client can be either XML or JSON. Web API automatically figures out what format it needs to deserialize based on the content type and binds the content to the album object. Web API uses model binding to bind the request content to the parameter(s) of controller methods. Like MVC you can check the model by looking at ModelState.IsValid. If it’s not valid, you can run through the ModelState.Values collection and check each binding for errors. Here I collect the error messages into a string array that gets passed back to the client via the result ApiErrorMessage object. When a binding error occurs, you’ll want to return an HTTP error response and it’s best to do that with an HttpResponseMessage result. In Listing 6, I used a custom error class that holds a message and an array of detailed error messages for each binding error. I used this object as the content to return to the client along with my Conflict HTTP Status Code response. If binding succeeds, the example returns a string with the name and date entered to demonstrate that you captured the data. Normally, a method like this should return a Boolean or no response at all (HttpStatusCode.NoConent). The sample uses a simple static list to hold albums, so once you’ve added the album using the Post operation, you can hit the /albums/ URL to see that the new album was added. The client jQuery code to call the POST operation from the client with jQuery is shown in Listing 7. var id = new Date().getTime().toString(); var album = { "Id": id, "AlbumName": "Power Age", "Artist": "AC/DC", "YearReleased": 1977, "Entered": "2002-03-11T18:24:43.5580794-10:00", "AlbumImageUrl": http://ecx.images-amazon.com/images/…, "AmazonUrl": http://www.amazon.com/…, "Songs": [ { "SongName": "Rock 'n Roll Damnation", "SongLength": 3.12}, { "SongName": "Downpayment Blues", "SongLength": 4.22 }, { "SongName": "Riff Raff", "SongLength": 2.42 } ] } $.ajax( { url: "albums/", type: "POST", contentType: "application/json", data: JSON.stringify(album), processData: false, beforeSend: function (xhr) { // not required since JSON is default output xhr.setRequestHeader("Accept", "application/json"); }, success: function (result) { // reload list of albums page.loadAlbums(); }, error: function (xhr, status, p3, p4) { var err = "Error"; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); The code in Listing 7 creates an album object in JavaScript to match the structure of the .NET Album class. This object is passed to the $.ajax() function to send to the server as POST. The data is turned into JSON and the content type set to application/json so that the server knows what to convert when deserializing in the Album instance. The jQuery code hooks up success and failure events. Success returns the result data, which is a string that’s echoed back with an alert box. If an error occurs, jQuery returns the XHR instance and status code. You can check the XHR to see if a JSON object is embedded and if it is, you can extract it by de-serializing it and accessing the .message property. REST standards suggest that updates to existing resources should use PUT operations. REST standards aside, I’m not a big fan of separating out inserts and updates so I tend to have a single method that handles both. But if you want to follow REST suggestions, you can create a PUT method that handles updates by forwarding the PUT operation to the POST method:public HttpResponseMessage PutAlbum(Album album) { return PostAlbum(album); } To make the corresponding $.ajax() call, all you have to change from Listing 7 is the type: from POST to PUT. Model Binding with UrlEncoded POST Variables In the example in Listing 7 I used JSON objects to post a serialized object to a server method that accepted an strongly typed object with the same structure, which is a common way to send data to the server. However, Web API supports a number of different ways that data can be received by server methods. For example, another common way is to use plain UrlEncoded POST  values to send to the server. Web API supports Model Binding that works similar (but not the same) as MVC's model binding where POST variables are mapped to properties of object parameters of the target method. This is actually quite common for AJAX calls that want to avoid serialization and the potential requirement of a JSON parser on older browsers. For example, using jQUery you might use the $.post() method to send a new album to the server (albeit one without songs) using code like the following:$.post("albums/",{AlbumName: "Dirty Deeds", YearReleased: 1976 … },albumPostCallback); Although the code looks very similar to the client code we used before passing JSON, here the data passed is URL encoded values (AlbumName=Dirty+Deeds&YearReleased=1976 etc.). Web API then takes this POST data and maps each of the POST values to the properties of the Album object in the method's parameter. Although the client code is different the server can both handle the JSON object, or the UrlEncoded POST values. Dynamic Access to POST Data There are also a few options available to dynamically access POST data, if you know what type of data you're dealing with. If you have POST UrlEncoded values, you can dynamically using a FormsDataCollection:[HttpPost] public string PostAlbum(FormDataCollection form) { return string.Format("{0} - released {1}", form.Get("AlbumName"),form.Get("RearReleased")); } The FormDataCollection is a very simple object, that essentially provides the same functionality as Request.Form[] in ASP.NET. Request.Form[] still works if you're running hosted in an ASP.NET application. However as a general rule, while ASP.NET's functionality is always available when running Web API hosted inside of an  ASP.NET application, using the built in classes specific to Web API makes it possible to run Web API applications in a self hosted environment outside of ASP.NET. If your client is sending JSON to your server, and you don't want to map the JSON to a strongly typed object because you only want to retrieve a few simple values, you can also accept a JObject parameter in your API methods:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } There quite a few options available to you to receive data with Web API, which gives you more choices for the right tool for the job. Unfortunately one shortcoming of Web API is that POST data is always mapped to a single parameter. This means you can't pass multiple POST parameters to methods that receive POST data. It's possible to accept multiple parameters, but only one can map to the POST content - the others have to come from the query string or route values. I have a couple of Blog POSTs that explain what works and what doesn't here: Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API   Handling Delete Operations Finally, to round out the server API code of the album example we've been discussin, here’s the DELETE verb controller method that allows removal of an album by its title:public HttpResponseMessage DeleteAlbum(string title) { var matchedAlbum = AlbumData.Current.Where(alb => alb.AlbumName == title) .SingleOrDefault(); if (matchedAlbum == null) return new HttpResponseMessage(HttpStatusCode.NotFound); AlbumData.Current.Remove(matchedAlbum); return new HttpResponseMessage(HttpStatusCode.NoContent); } To call this action method using jQuery, you can use:$(".removeimage").live("click", function () { var $el = $(this).parent(".album"); var txt = $el.find("a").text(); $.ajax({ url: "albums/" + encodeURIComponent(txt), type: "Delete", success: function (result) { $el.fadeOut().remove(); }, error: jqError }); }   Note the use of the DELETE verb in the $.ajax() call, which routes to DeleteAlbum on the server. DELETE is a non-content operation, so you supply a resource ID (the title) via route value or the querystring. Routing Conflicts In all requests with the exception of the AlbumArt image example shown so far, I used HTTP Verb routing that I set up in Listing 1. HTTP Verb Routing is a recommendation that is in line with typical REST access to HTTP resources. However, it takes quite a bit of effort to create REST-compliant API implementations based only on HTTP Verb routing only. You saw one example that didn’t really fit – the return of an image where I created a custom route albums/{title}/image that required creation of a second controller and a custom route to work. HTTP Verb routing to a controller does not mix with custom or action routing to the same controller because of the limited mapping of HTTP verbs imposed by HTTP Verb routing. To understand some of the problems with verb routing, let’s look at another example. Let’s say you create a GetSortableAlbums() method like this and add it to the original AlbumApiController accessed via HTTP Verb routing:[HttpGet] public IQueryable<Album> SortableAlbums() { var albums = AlbumData.Current; // generally should be done only on actual queryable results (EF etc.) // Done here because we're running with a static list but otherwise might be slow return albums.AsQueryable(); } If you compile this code and try to now access the /albums/ link, you get an error: Multiple Actions were found that match the request. HTTP Verb routing only allows access to one GET operation per parameter/route value match. If more than one method exists with the same parameter signature, it doesn’t work. As I mentioned earlier for the image display, the only solution to get this method to work is to throw it into another controller. Because I already set up the AlbumRpcApiController I can add the method there. First, I should rename the method to SortableAlbums() so I’m not using a Get prefix for the method. This also makes the action parameter look cleaner in the URL - it looks less like a method and more like a noun. I can then create a new route that handles direct-action mapping:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); As I am explicitly adding a route segment – rpc – into the route template, I can now reference explicit methods in the Web API controller using URLs like this: http://localhost/AspNetWebApi/rpc/SortableAlbums Error Handling I’ve already done some minimal error handling in the examples. For example in Listing 6, I detected some known-error scenarios like model validation failing or a resource not being found and returning an appropriate HttpResponseMessage result. But what happens if your code just blows up or causes an exception? If you have a controller method, like this:[HttpGet] public void ThrowException() { throw new UnauthorizedAccessException("Unauthorized Access Sucka"); } You can call it with this: http://localhost/AspNetWebApi/albums/rpc/ThrowException The default exception handling displays a 500-status response with the serialized exception on the local computer only. When you connect from a remote computer, Web API throws back a 500  HTTP Error with no data returned (IIS then adds its HTML error page). The behavior is configurable in the GlobalConfiguration:GlobalConfiguration .Configuration .IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never; If you want more control over your error responses sent from code, you can throw explicit error responses yourself using HttpResponseException. When you throw an HttpResponseException the response parameter is used to generate the output for the Controller action. [HttpGet] public void ThrowError() { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.BadRequest, new ApiMessageError("Your code stinks!")); throw new HttpResponseException(resp); } Throwing an HttpResponseException stops the processing of the controller method and immediately returns the response you passed to the exception. Unlike other Exceptions fired inside of WebAPI, HttpResponseException bypasses the Exception Filters installed and instead just outputs the response you provide. In this case, the serialized ApiMessageError result string is returned in the default serialization format – XML or JSON. You can pass any content to HttpResponseMessage, which includes creating your own exception objects and consistently returning error messages to the client. Here’s a small helper method on the controller that you might use to send exception info back to the client consistently:private void ThrowSafeException(string message, HttpStatusCode statusCode = HttpStatusCode.BadRequest) { var errResponse = Request.CreateResponse<ApiMessageError>(statusCode, new ApiMessageError() { message = message }); throw new HttpResponseException(errResponse); } You can then use it to output any captured errors from code:[HttpGet] public void ThrowErrorSafe() { try { List<string> list = null; list.Add("Rick"); } catch (Exception ex) { ThrowSafeException(ex.Message); } }   Exception Filters Another more global solution is to create an Exception Filter. Filters in Web API provide the ability to pre- and post-process controller method operations. An exception filter looks at all exceptions fired and then optionally creates an HttpResponseMessage result. Listing 8 shows an example of a basic Exception filter implementation.public class UnhandledExceptionFilter : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { HttpStatusCode status = HttpStatusCode.InternalServerError; var exType = context.Exception.GetType(); if (exType == typeof(UnauthorizedAccessException)) status = HttpStatusCode.Unauthorized; else if (exType == typeof(ArgumentException)) status = HttpStatusCode.NotFound; var apiError = new ApiMessageError() { message = context.Exception.Message }; // create a new response and attach our ApiError object // which now gets returned on ANY exception result var errorResponse = context.Request.CreateResponse<ApiMessageError>(status, apiError); context.Response = errorResponse; base.OnException(context); } } Exception Filter Attributes can be assigned to an ApiController class like this:[UnhandledExceptionFilter] public class AlbumRpcApiController : ApiController or you can globally assign it to all controllers by adding it to the HTTP Configuration's Filters collection:GlobalConfiguration.Configuration.Filters.Add(new UnhandledExceptionFilter()); The latter is a great way to get global error trapping so that all errors (short of hard IIS errors and explicit HttpResponseException errors) return a valid error response that includes error information in the form of a known-error object. Using a filter like this allows you to throw an exception as you normally would and have your filter create a response in the appropriate output format that the client expects. For example, an AJAX application can on failure expect to see a JSON error result that corresponds to the real error that occurred rather than a 500 error along with HTML error page that IIS throws up. You can even create some custom exceptions so you can differentiate your own exceptions from unhandled system exceptions - you often don't want to display error information from 'unknown' exceptions as they may contain sensitive system information or info that's not generally useful to users of your application/site. This is just one example of how ASP.NET Web API is configurable and extensible. Exception filters are just one example of how you can plug-in into the Web API request flow to modify output. Many more hooks exist and I’ll take a closer look at extensibility in Part 2 of this article in the future. Summary Web API is a big improvement over previous Microsoft REST and AJAX toolkits. The key features to its usefulness are its ease of use with simple controller based logic, familiar MVC-style routing, low configuration impact, extensibility at all levels and tight attention to exposing and making HTTP semantics easily discoverable and easy to use. Although none of the concepts used in Web API are new or radical, Web API combines the best of previous platforms into a single framework that’s highly functional, easy to work with, and extensible to boot. I think that Microsoft has hit a home run with Web API. Related Resources Where does ASP.NET Web API fit? Sample Source Code on GitHub Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API Creating a JSONP Formatter for ASP.NET Web API Removing the XML Formatter from ASP.NET Web API Applications© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Customizing Spaces UI

    - by vijaykumar.yenne
    In most common scenarios we stumble up on use cases to customize the Web center spaces UI. Is the Spaces UI customizable? What is the extent to which we can customize? How do i customize it? These are some questions that developers/architects normally come across. Well to clear the air, OOTB spaces comes with some default "site templates" and it also gives a flexibility to create custom site templates suiting the organization needs. The site templates concept has been introduced in the latest PS1 release of webcenter and to customize/create the the new site template, we have to leverage the Extend Spaces Project available on OTN. You could download the the project from here. Also there is white paper available on what all can be customized/extended from spaces perspective listed here . There is a specific details outlined on how to create custom site template in the Customizing Site Template white paper. One of the things the white paper high lights is "While you can create new site templates and modify the sample site templates but you cannot modify either of the out-of-the-box site templates ie the default and maximized. So if my need is to either increase the size of header to fit in a bigger logo or introduce couple of extra links on the default/maximized lay out how do i achieve this? All you need to do is customize the OOTB shell (shell-config.xml). 1. Copy the shell config's available in the Source Files Directory of the extended spaces unzipped directory into the CustomSite Template Project ExtendWebCenterSpaces\CustomSiteTemplate\custom\oracle\webcenter\webcenterapp\metadata\shell 2. Modify the appropriate shell 3. Deploy the CustomSite Template as ADF Jar 4. ensure you have the profile dependency on the aboproject int he custom webcenter spaces project 5. Deploy the Spaces Extension on the Webcenter Spaces Instance. (Details in the first white paper). You should see the changes immediately. eg: In the default shell, i have changed the height from 30 to 60 to increase the header size height="60" This is what i get to see : If you have worked on the R1 release time frame, where you created a custom shell/chrome, how do we make them compatible and make it available in the Spaces PS1 instance? All you need to do is the following: 1. Copy the custom shell in to the shell directory of the custom site template project 2. Register the shell with WCSiteTemplates.xml available in the same project. Eg : Yo can add the below entry pagePath="/oracle/webcenter/webcenterapp/view/templates/MyShellTemplate.jspx" pageDefPath="/oracle/webcenter/webcenterapp/bindings/pageDefs/oracle_webcenter_webcenterapp_view_templates_WebCenterAppShellTemplatePageDef.xml" displayName="myShell" chromeLevel="myShell"/ Note : pagePath - Absolute path of the template JSPX file. This path must be unique. So you might have to do the following to get your custom chrome working absolutely fine with no problems at all: 1. Create a jspx page, say /custom/mysite/SiteTemplate.jspx 2. Include the the default jspx in the new site template like following SiteTemplate.jspx ------------------ 3. Add the newly created site template in the WCSiteTemplate.xml file like following - pagePath="/custom/mysite/SiteTemplate.jspx" pageDefPath="/oracle/webcenter/webcenterapp/bindings/pageDefs/oracle_webcenter_webcenterapp_view_templates_WebCenterAppShellTemplatePageDef.xml" displayName="myShell" chromeLevel="myShell"/

    Read the article

  • 30 Steps to Master ASP.NET MVC Application development

    - by Rajesh Pillai
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Welcome Readers!,   I am starting out a new series on ASP.NET  MVC skill building which will be posted over the next couple of weeks.  Let me know your thoughts on the content, which I have planned and a couple of them has been taken from ASP.NET MVC2 Cookbook. (NOTE: Only the heading has been taken, the content will be not :)).   Do let me know what you would like to see, or any additional inputs or ideas to cover in this topics.  The 30 steps are oultined below for quick reference.  Will start filling this out quickly.   Outlined is the ‘30’ step to master ASP.NET MVC.   A Peek Into Model What is a model? Different types of model Presentation/ViewModel Model Mapping (AutoMapper)   A Peak into View How view works in ASP.NET MVC? View Engine Design Custom View Engine View Best Practices Templated Helpers Partial Views   A Peak into Controller Introduction Controller Design Controller Best Practices Asynchronous Controller Custom Action Result Action Filters Controller Factory to use with IOC   Routes Explanation Routes from the database Routes from XML More complex routing   Master Pages Basics Setting Master Page Dynamically   Working with data in the view Repeating Views Array of check boxes Array of radio buttons Paged data CRUD Client side action Confirmation Dialog (modal window) jqGrid   Working with Forms   Validation Model Validation with DataAnnotations Using the xVal validation framework Client side validation with jQuery Validation Fluent Validation Model Binders   Templating Create strongly typed helper using T4 Custom View Templates with T4 Create custom MVC project template using T4   IOC AutoFac Ninject Unity Application   Areas   jQuery, Ajax and jQuery Plugins   State Maintenance Application State User state Cookies Webfarm   Error Handling View error handling Controller error handling ELMAH (Error Logging Modules and Handlers)   Authentication and Authorization User Registration form SignOn Process Password Reminder Membership and Roles Windows authentication Restricting access to all pages Restricting access to selected pages Restricting access to pages by role Restricting access to a controller Restricting access to selected area   Profiles and Themes Using Profiles Inheriting a Profile Migrating an anonymous profile Creating custom themes Using themes User personalized themes   Configuration Adding custom application settings in web.config Displaying custom error messages Accessing other web.config configuration elements Adding custom configuration elements to web.config Encrypting web.config sections   Tracing, Debugging and Logging   Caching Caching a whole page Caching pages based on route details Caching pages based on browser type and version Caching pages based custom strings Caching partial pages Caching application data Object Caching Using Microsoft Velocity Using MemCache Using AppFabric cache   Localization   HTTP Handlers and Modules   Security XSS/CSRF AnitForgery Encoding   HtmlHelpers Strongly typed helpers Writing custom helpers   Repository Pattern (Data access)   WF/WCF   Unit Testing   Mocking Framework   Integration Testing   Load / Performance Testing   Deployment    Once again let me know your thoughts on this.   Till then, Enjoy MVC'ing!!!

    Read the article

  • Best Design Pattern for Coupling User Interface Components and Data Structures

    - by szahn
    I have a windows desktop application with a tree view. Due to lack of a sound data-binding solution for a tree view, I've implemented my own layer of abstraction on it to bind nodes to my own data structure. The requirements are as follows: Populate a tree view with nodes that resemble fields in a data structure. When a node is clicked, display the appropriate control to modify the value of that property in the instance of the data structure. The tree view is populated with instances of custom TreeNode classes that inherit from TreeNode. The responsibility of each custom TreeNode class is to (1) format the node text to represent the name and value of the associated field in my data structure, (2) return the control used to modify the property value, (3) get the value of the field in the control (3) set the field's value from the control. My custom TreeNode implementation has a property called "Control" which retrieves the proper custom control in the form of the base control. The control instance is stored in the custom node and instantiated upon first retrieval. So each, custom node has an associated custom control which extends a base abstract control class. Example TreeNode implementation: //The Tree Node Base Class public abstract class TreeViewNodeBase : TreeNode { public abstract CustomControlBase Control { get; } public TreeViewNodeBase(ExtractionField field) { UpdateControl(field); } public virtual void UpdateControl(ExtractionField field) { Control.UpdateControl(field); UpdateCaption(FormatValueForCaption()); } public virtual void SaveChanges(ExtractionField field) { Control.SaveChanges(field); UpdateCaption(FormatValueForCaption()); } public virtual string FormatValueForCaption() { return Control.FormatValueForCaption(); } public virtual void UpdateCaption(string newValue) { this.Text = Caption; this.LongText = newValue; } } //The tree node implementation class public class ExtractionTypeNode : TreeViewNodeBase { private CustomDropDownControl control; public override CustomControlBase Control { get { if (control == null) { control = new CustomDropDownControl(); control.label1.Text = Caption; control.comboBox1.Items.Clear(); control.comboBox1.Items.AddRange( Enum.GetNames( typeof(ExtractionField.ExtractionType))); } return control; } } public ExtractionTypeNode(ExtractionField field) : base(field) { } } //The custom control base class public abstract class CustomControlBase : UserControl { public abstract void UpdateControl(ExtractionField field); public abstract void SaveChanges(ExtractionField field); public abstract string FormatValueForCaption(); } //The custom control generic implementation (view) public partial class CustomDropDownControl : CustomControlBase { public CustomDropDownControl() { InitializeComponent(); } public override void UpdateControl(ExtractionField field) { //Nothing to do here } public override void SaveChanges(ExtractionField field) { //Nothing to do here } public override string FormatValueForCaption() { //Nothing to do here return string.Empty; } } //The custom control specific implementation public class FieldExtractionTypeControl : CustomDropDownControl { public override void UpdateControl(ExtractionField field) { comboBox1.SelectedIndex = comboBox1.FindStringExact(field.Extraction.ToString()); } public override void SaveChanges(ExtractionField field) { field.Extraction = (ExtractionField.ExtractionType) Enum.Parse(typeof(ExtractionField.ExtractionType), comboBox1.SelectedItem.ToString()); } public override string FormatValueForCaption() { return string.Empty; } The problem is that I have "generic" controls which inherit from CustomControlBase. These are just "views" with no logic. Then I have specific controls that inherit from the generic controls. I don't have any functions or business logic in the generic controls because the specific controls should govern how data is associated with the data structure. What is the best design pattern for this?

    Read the article

  • Platform jumping problems with AABB collisions

    - by Vee
    See the diagram first: When my AABB physics engine resolves an intersection, it does so by finding the axis where the penetration is smaller, then "push out" the entity on that axis. Considering the "jumping moving left" example: If velocityX is bigger than velocityY, AABB pushes the entity out on the Y axis, effectively stopping the jump (result: the player stops in mid-air). If velocityX is smaller than velocitY (not shown in diagram), the program works as intended, because AABB pushes the entity out on the X axis. How can I solve this problem? Source code: public void Update() { Position += Velocity; Velocity += World.Gravity; List<SSSPBody> toCheck = World.SpatialHash.GetNearbyItems(this); for (int i = 0; i < toCheck.Count; i++) { SSSPBody body = toCheck[i]; body.Test.Color = Color.White; if (body != this && body.Static) { float left = (body.CornerMin.X - CornerMax.X); float right = (body.CornerMax.X - CornerMin.X); float top = (body.CornerMin.Y - CornerMax.Y); float bottom = (body.CornerMax.Y - CornerMin.Y); if (SSSPUtils.AABBIsOverlapping(this, body)) { body.Test.Color = Color.Yellow; Vector2 overlapVector = SSSPUtils.AABBGetOverlapVector(left, right, top, bottom); Position += overlapVector; } if (SSSPUtils.AABBIsCollidingTop(this, body)) { if ((Position.X >= body.CornerMin.X && Position.X <= body.CornerMax.X) && (Position.Y + Height/2f == body.Position.Y - body.Height/2f)) { body.Test.Color = Color.Red; Velocity = new Vector2(Velocity.X, 0); } } } } } public static bool AABBIsOverlapping(SSSPBody mBody1, SSSPBody mBody2) { if(mBody1.CornerMax.X <= mBody2.CornerMin.X || mBody1.CornerMin.X >= mBody2.CornerMax.X) return false; if (mBody1.CornerMax.Y <= mBody2.CornerMin.Y || mBody1.CornerMin.Y >= mBody2.CornerMax.Y) return false; return true; } public static bool AABBIsColliding(SSSPBody mBody1, SSSPBody mBody2) { if (mBody1.CornerMax.X < mBody2.CornerMin.X || mBody1.CornerMin.X > mBody2.CornerMax.X) return false; if (mBody1.CornerMax.Y < mBody2.CornerMin.Y || mBody1.CornerMin.Y > mBody2.CornerMax.Y) return false; return true; } public static bool AABBIsCollidingTop(SSSPBody mBody1, SSSPBody mBody2) { if (mBody1.CornerMax.X < mBody2.CornerMin.X || mBody1.CornerMin.X > mBody2.CornerMax.X) return false; if (mBody1.CornerMax.Y < mBody2.CornerMin.Y || mBody1.CornerMin.Y > mBody2.CornerMax.Y) return false; if(mBody1.CornerMax.Y == mBody2.CornerMin.Y) return true; return false; } public static Vector2 AABBGetOverlapVector(float mLeft, float mRight, float mTop, float mBottom) { Vector2 result = new Vector2(0, 0); if ((mLeft > 0 || mRight < 0) || (mTop > 0 || mBottom < 0)) return result; if (Math.Abs(mLeft) < mRight) result.X = mLeft; else result.X = mRight; if (Math.Abs(mTop) < mBottom) result.Y = mTop; else result.Y = mBottom; if (Math.Abs(result.X) < Math.Abs(result.Y)) result.Y = 0; else result.X = 0; return result; }

    Read the article

  • What are the definitive guidelines for custom Error Handling in ASP.NET MVC 3?

    - by RyanW
    The process of doing custom error handling in ASP.NET MVC (3 in this case) seems to be incredibly neglected. I've read through the various questions and answers here, on the web, help pages for various tools (like Elmah), but I feel like I've gone in a complete circle and still don't have the best solution. With your help, perhaps we can set a new standard approach for error handling. I'd like to keep things simple and not over-engineer this. Here are my goals: For Server errors/exceptions: Display debugging information in dev Display friendly error page in production Log errors and email them to administrator in production Return 500 HTTP Status Code For 404 Not Found errors: Display friendly error page Log errors and email them to administrator in production Return 404 HTTP Status Code Is there a way to meet these goals with ASP.NET MVC?

    Read the article

  • How to display reboot required user notification after installing a custom package in linux?

    - by user284588
    After installing a custom package I should force a reboot of the system. I looked at couple of solutions to this use notify-send to display user notification followed by a reboot command, which did work as planned. But the user notification is only shown when I install the package from command line and not when I installed through Software Center. I came across some posts where they suggested adding the following to the postinst script [ -x /usr/share/update-notifier/notify-reboot-required ] && \ /usr/share/update-notifier/notify-reboot-required || true Tried including the above in the postinst script but all it does is updating the two files /var/run/reboot-required.pkgs and /var/run/reboot-required with restart information. It neither displayed user-notification nor rebooted the system after package is installed. Is there a way to display reboot required user notification in Ubuntu/Fedora/Open SUSE ?

    Read the article

  • Is there a program that gives the result of a chemical reaction?

    - by Semyon Perepelitsa
    Is there a program where I can type one, two or more components of chemical reaction and find out the result of it? For example, I enter "N2 + H2" and it gives me "N2 + H2 ? NH3". Or "C10H8 + O2" and it shows "C10H8 + O2 ? CO2 + H2O". I don't need coefficient calculator, where I type full reaction and it calculates coefficients (marked bold in next example): C10H8 + 12 O2 = 10 CO2 + 4 H2O.

    Read the article

  • Can the overuse of custom taglibs disrupt the outsourcing of html designers?

    - by Renato Gama
    Yesterday me and a friend were talking about the overuse of custom taglibs! We create taglibs for everything! We create taglibs in order to wrap jQuery UI elements (tabs, button, etc), and other plugins elements as well. We often wrap them together in a single component. We use taglibs in a point that we almost have no pure html within the body tag. Our question is: is this a healthy habit??? Imagine two situations: 1) We hire an html designer and have the cost of a month for him to learn all this stuff. 2) We want to outsource the html development but no company would get our taglib library to learn, OR it become more expensive. We love taglibs as its been a lovely shortcut for javascipt development as we write it only once. What would be the best practices in this sense, and what would you suggest? We are looking for a future-proof solution (or an argument that agrees with ours).

    Read the article

  • Can you recommend a good tutorial on building custom package versions?

    - by Ivan
    After installing Ubuntu 11.04 I was disappointed by the fact there are still Scala 2.7 (when 2.8 is long ago current actual branch) and Mono 2.6 (when pretty a time has passed after 2.8 release). I am not sure I could build all the packages for Mono myself, but I'd like to try making my own custom version of Scala package (and I want my system to accept it not as a different package but a version of the original, so that if I put it into a configured repository, the system will automatically upgrade to it from currently installed original 2.7). Can you recommend a good tutorial on this subject (Ubuntu deb packages building and hacking for beginners)?

    Read the article

  • How to get client machine ip address in custom realm? [on hold]

    - by Sumit
    I want to get client machine ip address in my custom Realm when client attempt to login basically here is detail requirement of project User having role 'Admin' can add new users and assign multiple roles and permission ,and at the same time specify list of ip address and countries to restrict them to access website. All these information i am storing in database. So basically till now i am using shiro default 'authc' filter but now i want ip address of client machine and get country from where request is coming and check it against database and then and then only allow access to website. Any help..? Thanks and regards

    Read the article

  • How to get the best LINPACK result and conquer the Top500?

    - by knweiss
    Given a large Linux HPC cluster with hundreds/thousands of nodes. What are your best practices to get the best possible LINPACK benchmark (HPL) result to submit for the Top500 supercomputer list? To give you an idea what kind of answers I would appreciate here are some sub-questions (with links): How to you tune the parameters (N, NB, P, Q, memory-alignment, etc) for the HPL.dat file (without spending too much time trying each possible permutation - esp with large problem sizes N)? Are there any Top500 submission rules to be aware of? What is allowed, what isn't? Which MPI product, which version? Does it make a difference? Any special host order in your MPI machine file? Do you use CPU pinning? How to you configure your interconnect? Which interconnect? Which BLAS package do you use for which CPU model? (Intel MKL, AMD ACML, GotoBLAS2, etc.) How do you prepare for the big run (on all nodes)? Start with small runs on a subset of nodes and then scale up? Is it really necessary to run LINPACK with a big run on all of the nodes (or is extrapolation allowed)? How do you optimize for the latest Intel/AMD CPUs? Hyperthreading? NUMA? Is it worth it to recompile the software stack or do you use precompiled binaries? Which settings? Which compiler optimizations, which compiler? (What about profile-based compilation?) How to get the best result given only a limited amount of time to do the benchmark run? (You can block a huge cluster forever) How do you prepare the individual nodes (stopping system daemons, freeing memory, etc)? How do you deal with hardware faults (ruining a huge run)? Are there any must-read documents or websites about this topic? E.g. I would love to hear about some background stories of some of the current Top500 systems and how they did their LINPACK benchmark. I deliberately don't want to mention concrete hardware details or discuss hardware recommendations because I don't want to limit the answers. However, feel free to mention hints e.g. for specific CPU models.

    Read the article

  • When Your ASP.NET MVC Custom Error Doesn't Render...

    You've put [HandleError] on your controller and you've set <customErrors mode="On"> in the web.config file. So why do you still see the yellow screen of death? I've heard various wrong explanations for this phenomena, including "it only works under IIS" and "it only works in release mode". But the custom error view does work in debug mode and it does work with the Visual Studio WebDev web server. I think the most common reason for the error view not to display is because the error view throws...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

< Previous Page | 163 164 165 166 167 168 169 170 171 172 173 174  | Next Page >