Search Results

Search found 27684 results on 1108 pages for 'computer management'.

Page 173/1108 | < Previous Page | 169 170 171 172 173 174 175 176 177 178 179 180  | Next Page >

  • Math for core animation?

    - by jasonbogd
    What is a good level of math required for, like, advanced core animation? Take this for example: http://cocoadex.com/2008/01/lemur-math.html And what's a good book/resource to learn it? -Jason

    Read the article

  • Boosting my GA with Neural Networks and/or Reinforcement Learning

    - by AlexT
    As I have mentioned in previous questions I am writing a maze solving application to help me learn about more theoretical CS subjects, after some trouble I've got a Genetic Algorithm working that can evolve a set of rules (handled by boolean values) in order to find a good solution through a maze. That being said, the GA alone is okay, but I'd like to beef it up with a Neural Network, even though I have no real working knowledge of Neural Networks (no formal theoretical CS education). After doing a bit of reading on the subject I found that a Neural Network could be used to train a genome in order to improve results. Let's say I have a genome (group of genes), such as 1 0 0 1 0 1 0 1 0 1 1 1 0 0... How could I use a Neural Network (I'm assuming MLP?) to train and improve my genome? In addition to this as I know nothing about Neural Networks I've been looking into implementing some form of Reinforcement Learning, using my maze matrix (2 dimensional array), although I'm a bit stuck on what the following algorithm wants from me: (from http://people.revoledu.com/kardi/tutorial/ReinforcementLearning/Q-Learning-Algorithm.htm) 1. Set parameter , and environment reward matrix R 2. Initialize matrix Q as zero matrix 3. For each episode: * Select random initial state * Do while not reach goal state o Select one among all possible actions for the current state o Using this possible action, consider to go to the next state o Get maximum Q value of this next state based on all possible actions o Compute o Set the next state as the current state End Do End For The big problem for me is implementing a reward matrix R and what a Q matrix exactly is, and getting the Q value. I use a multi-dimensional array for my maze and enum states for every move. How would this be used in a Q-Learning algorithm? If someone could help out by explaining what I would need to do to implement the following, preferably in Java although C# would be nice too, possibly with some source code examples it'd be appreciated.

    Read the article

  • two's complement, why the name "two"

    - by lenatis
    i know unsigned,two's complement, ones' complement and sign magnitude, and the difference between these, but what i'm curious about is: why it's called two's(or ones') complement, so is there a more generalize N's complement? in which way did these genius deduce such a natural way to represent negative numbers?

    Read the article

  • Image Erosion for face detection in C#

    - by Chris Dobinson
    Hi, I'm trying to implement face detection in C#. I currently have a black + white outline of a photo with a face within it (Here). However i'm now trying to remove the noise and then dilate the image in order to improve reliability when i implement the detection. The method I have so far is here: unsafe public Image Process(Image input) { Bitmap bmp = (Bitmap)input; Bitmap bmpSrc = (Bitmap)input; BitmapData bmData = bmp.LockBits(new Rectangle(0, 0, bmp.Width, bmp.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb); int stride = bmData.Stride; int stride2 = bmData.Stride * 2; IntPtr Scan0 = bmData.Scan0; byte* p = (byte*)(void*)Scan0; int nOffset = stride - bmp.Width * 3; int nWidth = bmp.Width - 2; int nHeight = bmp.Height - 2; var w = bmp.Width; var h = bmp.Height; var rp = p; var empty = CompareEmptyColor; byte c, cm; int i = 0; // Erode every pixel for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++, i++) { // Middle pixel cm = p[y * w + x]; if (cm == empty) { continue; } // Row 0 // Left pixel if (x - 2 > 0 && y - 2 > 0) { c = p[(y - 2) * w + (x - 2)]; if (c == empty) { continue; } } // Middle left pixel if (x - 1 > 0 && y - 2 > 0) { c = p[(y - 2) * w + (x - 1)]; if (c == empty) { continue; } } if (y - 2 > 0) { c = p[(y - 2) * w + x]; if (c == empty) { continue; } } if (x + 1 < w && y - 2 > 0) { c = p[(y - 2) * w + (x + 1)]; if (c == empty) { continue; } } if (x + 2 < w && y - 2 > 0) { c = p[(y - 2) * w + (x + 2)]; if (c == empty) { continue; } } // Row 1 // Left pixel if (x - 2 > 0 && y - 1 > 0) { c = p[(y - 1) * w + (x - 2)]; if (c == empty) { continue; } } if (x - 1 > 0 && y - 1 > 0) { c = p[(y - 1) * w + (x - 1)]; if (c == empty) { continue; } } if (y - 1 > 0) { c = p[(y - 1) * w + x]; if (c == empty) { continue; } } if (x + 1 < w && y - 1 > 0) { c = p[(y - 1) * w + (x + 1)]; if (c == empty) { continue; } } if (x + 2 < w && y - 1 > 0) { c = p[(y - 1) * w + (x + 2)]; if (c == empty) { continue; } } // Row 2 if (x - 2 > 0) { c = p[y * w + (x - 2)]; if (c == empty) { continue; } } if (x - 1 > 0) { c = p[y * w + (x - 1)]; if (c == empty) { continue; } } if (x + 1 < w) { c = p[y * w + (x + 1)]; if (c == empty) { continue; } } if (x + 2 < w) { c = p[y * w + (x + 2)]; if (c == empty) { continue; } } // Row 3 if (x - 2 > 0 && y + 1 < h) { c = p[(y + 1) * w + (x - 2)]; if (c == empty) { continue; } } if (x - 1 > 0 && y + 1 < h) { c = p[(y + 1) * w + (x - 1)]; if (c == empty) { continue; } } if (y + 1 < h) { c = p[(y + 1) * w + x]; if (c == empty) { continue; } } if (x + 1 < w && y + 1 < h) { c = p[(y + 1) * w + (x + 1)]; if (c == empty) { continue; } } if (x + 2 < w && y + 1 < h) { c = p[(y + 1) * w + (x + 2)]; if (c == empty) { continue; } } // Row 4 if (x - 2 > 0 && y + 2 < h) { c = p[(y + 2) * w + (x - 2)]; if (c == empty) { continue; } } if (x - 1 > 0 && y + 2 < h) { c = p[(y + 2) * w + (x - 1)]; if (c == empty) { continue; } } if (y + 2 < h) { c = p[(y + 2) * w + x]; if (c == empty) { continue; } } if (x + 1 < w && y + 2 < h) { c = p[(y + 2) * w + (x + 1)]; if (c == empty) { continue; } } if (x + 2 < w && y + 2 < h) { c = p[(y + 2) * w + (x + 2)]; if (c == empty) { continue; } } // If all neighboring pixels are processed // it's clear that the current pixel is not a boundary pixel. rp[i] = cm; } } bmpSrc.UnlockBits(bmData); return bmpSrc; } As I understand it, in order to erode the image (and remove the noise), we need to check each pixel to see if it's surrounding pixels are black, and if so, then it is a border pixel and we need not keep it, which i believe my code does, so it is beyond me why it doesn't work. Any help or pointers would be greatly appreciated Thanks, Chris

    Read the article

  • Dynamic programming - Coin change decision problem?

    - by Tony
    I'm reviewing some old notes from my algorithms course and the dynamic programming problems are seeming a bit tricky to me. I have a problem where we have an unlimited supply of coins, with some denominations x1, x2, ... xn and we want to make change for some value X. We are trying to design a dynamic program to decide whether change for X can be made or not (not minimizing the number of coins, or returning which coins, just true or false). I've done some thinking about this problem, and I can see a recursive method of doing this where it's something like... MakeChange(X, x[1..n this is the coins]) for (int i = 1; i < n; i++) { if ( (X - x[i] ==0) || MakeChange(X - x[i]) ) return true; } return false; Converting this a dynamic program is not coming so easily to me. How might I approach this?

    Read the article

  • I dont understand Access modifiers in OOP (JAVA)

    - by Imran
    I know this is a silly question but i don't understand Access Modifiers in OOP. Why do we make for example in JAVA instance variables private and then use public getter and setter methods to access them? I mean whats the reasoning/logic behind this? You still get to the instance variable but why use setter and getter methods when you can just make your variables public? please excuse my ignorance as i'm simply trying to understand why we do this? Thank you in advance;-)

    Read the article

  • WLS MBeans

    - by Jani Rautiainen
    WLS provides a set of Managed Beans (MBeans) to configure, monitor and manage WLS resources. We can use the WLS MBeans to automate some of the tasks related to the configuration and maintenance of the WLS instance. The MBeans can be accessed a number of ways; using various UIs and programmatically using Java or WLST Python scripts.For customization development we can use the features to e.g. manage the deployed customization in MDS, control logging levels, automate deployment of dependent libraries etc. This article is an introduction on how to access and use the WLS MBeans. The goal is to illustrate the various access methods in a single article; the details of the features are left to the linked documentation.This article covers Windows based environment, steps for Linux would be similar however there would be some differences e.g. on how the file paths are defined. MBeansThe WLS MBeans can be categorized to runtime and configuration MBeans.The Runtime MBeans can be used to access the runtime information about the server and its resources. The data from runtime beans is only available while the server is running. The runtime beans can be used to e.g. check the state of the server or deployment.The Configuration MBeans contain information about the configuration of servers and resources. The configuration of the domain is stored in the config.xml file and the configuration MBeans can be used to access and modify the configuration data. For more information on the WLS MBeans refer to: Understanding WebLogic Server MBeans WLS MBean reference Java Management Extensions (JMX)We can use JMX APIs to access the WLS MBeans. This allows us to create Java programs to configure, monitor, and manage WLS resources. In order to use the WLS MBeans we need to add the following library into the class-path: WL_HOME\lib\wljmxclient.jar Connecting to a WLS MBean server The WLS MBeans are contained in a Mbean server, depending on the requirement we can connect to (MBean Server / JNDI Name): Domain Runtime MBean Server weblogic.management.mbeanservers.domainruntime Runtime MBean Server weblogic.management.mbeanservers.runtime Edit MBean Server weblogic.management.mbeanservers.edit To connect to the WLS MBean server first we need to create a map containing the credentials; Hashtable<String, String> param = new Hashtable<String, String>(); param.put(Context.SECURITY_PRINCIPAL, "weblogic");        param.put(Context.SECURITY_CREDENTIALS, "weblogic1");        param.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES, "weblogic.management.remote"); These define the user, password and package containing the protocol. Next we create the connection: JMXServiceURL serviceURL =     new JMXServiceURL("t3","127.0.0.1",7101,     "/jndi/weblogic.management.mbeanservers.domainruntime"); JMXConnector connector = JMXConnectorFactory.connect(serviceURL, param); MBeanServerConnection connection = connector.getMBeanServerConnection(); With the connection we can now access the MBeans for the WLS instance. For a complete example see Appendix A of this post. For more details refer to Accessing WebLogic Server MBeans with JMX Accessing WLS MBeans The WLS MBeans are structured hierarchically; in order to access content we need to know the path to the MBean we are interested in. The MBean is accessed using “MBeanServerConnection. getAttribute” API.  WLS provides entry points to the hierarchy allowing us to navigate all the WLS MBeans in the hierarchy (MBean Server / JMX object name): Domain Runtime MBean Server com.bea:Name=DomainRuntimeService,Type=weblogic.management.mbeanservers.domainruntime.DomainRuntimeServiceMBean Runtime MBean Servers com.bea:Name=RuntimeService,Type=weblogic.management.mbeanservers.runtime.RuntimeServiceMBean Edit MBean Server com.bea:Name=EditService,Type=weblogic.management.mbeanservers.edit.EditServiceMBean For example we can access the Domain Runtime MBean using: ObjectName service = new ObjectName( "com.bea:Name=DomainRuntimeService," + "Type=weblogic.management.mbeanservers.domainruntime.DomainRuntimeServiceMBean"); Same syntax works for any “child” WLS MBeans e.g. to find out all application deployments we can: ObjectName domainConfig = (ObjectName)connection.getAttribute(service,"DomainConfiguration"); ObjectName[] appDeployments = (ObjectName[])connection.getAttribute(domainConfig,"AppDeployments"); Alternatively we could access the same MBean using the full syntax: ObjectName domainConfig = new ObjectName("com.bea:Location=DefaultDomain,Name=DefaultDomain,Type=Domain"); ObjectName[] appDeployments = (ObjectName[])connection.getAttribute(domainConfig,"AppDeployments"); For more details refer to Accessing WebLogic Server MBeans with JMX Invoking operations on WLS MBeans The WLS MBean operations can be invoked with MBeanServerConnection. invoke API; in the following example we query the state of “AppsLoggerService” application: ObjectName appRuntimeStateRuntime = new ObjectName("com.bea:Name=AppRuntimeStateRuntime,Type=AppRuntimeStateRuntime"); Object[] parameters = { "AppsLoggerService", "DefaultServer" }; String[] signature = { "java.lang.String", "java.lang.String" }; String result = (String)connection.invoke(appRuntimeStateRuntime,"getCurrentState",parameters, signature); The result returned should be "STATE_ACTIVE" assuming the "AppsLoggerService" application is up and running. WebLogic Scripting Tool (WLST) The WebLogic Scripting Tool (WLST) is a command-line scripting environment that we can access the same WLS MBeans. The tool is located under: $MW_HOME\oracle_common\common\bin\wlst.bat Do note that there are several instances of the wlst script under the $MW_HOME, each of them works, however the commands available vary, so we want to use the one under “oracle_common”. The tool is started in offline mode. In offline mode we can access and manipulate the domain configuration. In online mode we can access the runtime information. We connect to the Administration Server : connect("weblogic","weblogic1", "t3://127.0.0.1:7101") In both online and offline modes we can navigate the WLS MBean using commands like "ls" to print content and "cd" to navigate between objects, for example: All the commands available can be obtained with: help('all') For details of the tool refer to WebLogic Scripting Tool and for the commands available WLST Command and Variable Reference. Also do note that the WLST tool can be invoked from Java code in Embedded Mode. Running Scripts The WLST tool allows us to automate tasks using Python scripts in Script Mode. The script can be manually created or recorded by the WLST tool. Example commands of recording a script: startRecording("c:/temp/recording.py") <commands that we want to record> stopRecording() We can run the script from WLST: execfile("c:/temp/recording.py") We can also run the script from the command line: C:\apps\Oracle\Middleware\oracle_common\common\bin\wlst.cmd c:/temp/recording.py There are various sample scripts are provided with the WLS instance. UI to Access the WLS MBeans There are various UIs through which we can access the WLS MBeans. Oracle Enterprise Manager Fusion Middleware Control Oracle WebLogic Server Administration Console Fusion Middleware Control MBean Browser In the integrated JDeveloper environment only the Oracle WebLogic Server Administration Console is available to us. For more information refer to the documentation, one noteworthy feature in the console is the ability to record WLST scripts based on the navigation. In addition to the UIs above the JConsole included in the JDK can be used to access the WLS MBeans. The JConsole needs to be started with specific parameter to force WLS objects to be used and jar files in the classpath: "C:\apps\Oracle\Middleware\jdk160_24\bin\jconsole" -J-Djava.class.path=C:\apps\Oracle\Middleware\jdk160_24\lib\jconsole.jar;C:\apps\Oracle\Middleware\jdk160_24\lib\tools.jar;C:\apps\Oracle\Middleware\wlserver_10.3\server\lib\wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote For more details refer to the Accessing Custom MBeans from JConsole. Summary In this article we have covered various ways we can access and use the WLS MBeans in context of integrated WLS in JDeveloper to be used for Fusion Application customization development. References Developing Custom Management Utilities With JMX for Oracle WebLogic Server Accessing WebLogic Server MBeans with JMX WebLogic Server MBean Reference WebLogic Scripting Tool WLST Command and Variable Reference Appendix A package oracle.apps.test; import java.io.IOException;import java.net.MalformedURLException;import java.util.Hashtable;import javax.management.MBeanServerConnection;import javax.management.MalformedObjectNameException;import javax.management.ObjectName;import javax.management.remote.JMXConnector;import javax.management.remote.JMXConnectorFactory;import javax.management.remote.JMXServiceURL;import javax.naming.Context;/** * This class contains simple examples on how to access WLS MBeans using JMX. */public class BlogExample {    /**     * Connection to the WLS MBeans     */    private MBeanServerConnection connection;    /**     * Constructor that takes in the connection information for the      * domain and obtains the resources from WLS MBeans using JMX.     * @param hostName host name to connect to for the WLS server     * @param port port to connect to for the WLS server     * @param userName user name to connect to for the WLS server     * @param password password to connect to for the WLS server     */    public BlogExample(String hostName, String port, String userName,                       String password) {        super();        try {            initConnection(hostName, port, userName, password);        } catch (Exception e) {            throw new RuntimeException("Unable to connect to the domain " +                                       hostName + ":" + port);        }    }    /**     * Default constructor.     * Tries to create connection with default values. Runtime exception will be     * thrown if the default values are not used in the local instance.     */    public BlogExample() {        this("127.0.0.1", "7101", "weblogic", "weblogic1");    }    /**     * Initializes the JMX connection to the WLS Beans     * @param hostName host name to connect to for the WLS server     * @param port port to connect to for the WLS server     * @param userName user name to connect to for the WLS server     * @param password password to connect to for the WLS server     * @throws IOException error connecting to the WLS MBeans     * @throws MalformedURLException error connecting to the WLS MBeans     * @throws MalformedObjectNameException error connecting to the WLS MBeans     */    private void initConnection(String hostName, String port, String userName,                                String password)                                 throws IOException, MalformedURLException,                                        MalformedObjectNameException {        String protocol = "t3";        String jndiroot = "/jndi/";        String mserver = "weblogic.management.mbeanservers.domainruntime";        JMXServiceURL serviceURL =            new JMXServiceURL(protocol, hostName, Integer.valueOf(port),                              jndiroot + mserver);        Hashtable<String, String> h = new Hashtable<String, String>();        h.put(Context.SECURITY_PRINCIPAL, userName);        h.put(Context.SECURITY_CREDENTIALS, password);        h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,              "weblogic.management.remote");        JMXConnector connector = JMXConnectorFactory.connect(serviceURL, h);        connection = connector.getMBeanServerConnection();    }    /**     * Main method used to invoke the logic for testing     * @param args arguments passed to the program     */    public static void main(String[] args) {        BlogExample blogExample = new BlogExample();        blogExample.testEntryPoint();        blogExample.testDirectAccess();        blogExample.testInvokeOperation();    }    /**     * Example of using an entry point to navigate the WLS MBean hierarchy.     */    public void testEntryPoint() {        try {            System.out.println("testEntryPoint");            ObjectName service =             new ObjectName("com.bea:Name=DomainRuntimeService,Type=" +"weblogic.management.mbeanservers.domainruntime.DomainRuntimeServiceMBean");            ObjectName domainConfig =                (ObjectName)connection.getAttribute(service,                                                    "DomainConfiguration");            ObjectName[] appDeployments =                (ObjectName[])connection.getAttribute(domainConfig,                                                      "AppDeployments");            for (ObjectName appDeployment : appDeployments) {                String resourceIdentifier =                    (String)connection.getAttribute(appDeployment,                                                    "SourcePath");                System.out.println(resourceIdentifier);            }        } catch (Exception e) {            throw new RuntimeException(e);        }    }    /**     * Example of accessing WLS MBean directly with a full reference.     * This does the same thing as testEntryPoint in slightly difference way.     */    public void testDirectAccess() {        try {            System.out.println("testDirectAccess");            ObjectName appDeployment =                new ObjectName("com.bea:Location=DefaultDomain,"+                               "Name=AppsLoggerService,Type=AppDeployment");            String resourceIdentifier =                (String)connection.getAttribute(appDeployment, "SourcePath");            System.out.println(resourceIdentifier);        } catch (Exception e) {            throw new RuntimeException(e);        }    }    /**     * Example of invoking operation on a WLS MBean.     */    public void testInvokeOperation() {        try {            System.out.println("testInvokeOperation");            ObjectName appRuntimeStateRuntime =                new ObjectName("com.bea:Name=AppRuntimeStateRuntime,"+                               "Type=AppRuntimeStateRuntime");            String identifier = "AppsLoggerService";            String serverName = "DefaultServer";            Object[] parameters = { identifier, serverName };            String[] signature = { "java.lang.String", "java.lang.String" };            String result =                (String)connection.invoke(appRuntimeStateRuntime, "getCurrentState",                                          parameters, signature);            System.out.println("State of " + identifier + " = " + result);        } catch (Exception e) {            throw new RuntimeException(e);        }    }}

    Read the article

  • OCR for Devanagari (Hindi / Marathi / Sanskrit)

    - by Egon
    Does anybody have any idea about any recent work being done on optical character recognition for Indian scripts using modern Machine Learning techniques ? I know of some research being done at ISI, calcutta, but nothing new has come up in the last 3-4 years to the best of my knowledge, and OCR for Devanagari is sadly lacking!

    Read the article

  • Image Recognition (Shape recognition)

    - by mqpasta
    I want to recognize the shapes in the picture by template matching.Is the "ExhaustiveTemplateMatching" is the right option given in Aforge.Net for this purpose.Had anyone tried this class and find it working correctly.How accurate and right choice this class is for achieving my purpose.Suggest any other methods or Alogrithms as well for recognizing shapes by matching template.For example Identifying ComboBox in a picture.

    Read the article

  • Dijkstra’s algorithms - a complete list

    - by baris_a
    Hi guys, I have recently asked a question about one of the Dijkstra’s algorithms. But, almost everyone thought it was shortest path. Therefore, I opened this post to gather all the algorithms that were invented by Dijkstra. Please add any if you know. Thanks in advance. 1 ) Shunting-yard algorithm

    Read the article

  • image focus calculation

    - by Oren Mazor
    Hi folks, I'm trying to develop an image focusing algorithm for some test automation work. I've chosen to use AForge.net, since it seems like a nice mature .net friendly system. Unfortunately, I can't seem to find information on building autofocus algorithms from scratch, so I've given it my best try: take image. apply sobel edge detection filter, which generates a greyscale edge outline. generate a histogram and save the standard dev. move camera one step closer to subject and take another picture. if the standard dev is smaller than previous one, we're getting more in focus. otherwise, we've past the optimal distance to be taking pictures. is there a better way? update: HUGE flaw in this, by the way. as I get past the optimal focus point, my "image in focus" value continues growing. you'd expect a parabolic-ish function looking at distance/focus-value, but in reality you get something that's more logarithmic

    Read the article

  • netlogo programming question - catalyst implementation part 2

    - by user286190
    hi the catalyst speeds up the reaction but remains unchanged after the reaction has taken place i tried the following code breed [catalysts catalyst] breed [chemical-x chemical-x] ;then the forward reaction is sped up by the existence of catalysts to react-forward let num-catalysts count catalysts ;speed up by num-catalysts ;... end and it works fine but I want to make it so that the catalyst can be switched on and off with the 'switch' button ..so one can see the effects with and without the catalyst..i tried putting a switch in but catalyst has already been defined Also i want to make the catalyst visible so one can see it in the actual implementation (in the world) like making it a turtle is there are another way to implement this apart from using breeds i tried making the catalyst a turtle but it doesnt work ; Make catalyst visible in implementation clear-all crt catalysts 100 ask catalysts [ set color white ] show [breed] of one-of catalysts ; prints catalysts any help will be greatly appreciated thank you

    Read the article

  • Papers on Software Methodology recommendation

    - by kunjaan
    Please recommend me software engineering/methodology/practices paper. So far I have enjoyed: 1968 Dijkstra : Go To Statement Considered Harmful Reason about correctness about program Nikalus Wirth : Program Development by Stepwise Refinement Not worried about program structure 1971 David Parnas : Information Distribution Aspects of Design Methodology 1972 Liskov : Design Methodology for Reliable Software Systems Extensible Language : Schuman and P Jourrand R. Balzer Structured Programming : Dahl - Hierarchical Program Structures 1971 Jim Morris Protection in Programming Languages 1973 Bill Wulf and Mary Shaw Global Variable Considered Harmful 1974 : Lisko and Zilles ADTs

    Read the article

  • Face recognition Library

    - by Janusz
    I'm looking for a free face recognition library for a university project. I'm not looking for face detection. I'm looking for actual recognition. That means finding images that contain specified faces or libraries that calculate distances between specific faces. I'm using OpenCV for detecting the faces and a rough Eigenfaces Algorithm for the recognition now. But I thought there should be something out there with a better performance then a self written Eigenfaces Algorithm. I don't talk about speed as performance I'm looking for a library with better results as an simple Eigenfaces approach I took a look at faint but it seems the library is not very reusable for my own applications. I'm happy with a library in Python, Java, C++, C or something like that. The best thing would be if it can be run on a Windowsmachine

    Read the article

  • Theory of Computation - Showing that a language is regular..

    - by Tony
    I'm reviewing some notes for my course on Theory of Computation and I'm a little bit stuck on showing the following statement and I was hoping somebody could help me out with an explanation :) Let A be a regular language. The language B = {ab | a exists in A and b does not exist in A*} Why is B a regular language? Some points are obvious to me. If b is simply a constant string, this is trivial. Since we know a is in A and b is a string, regular languages are closed under union, so unioning the language that accepts these two strings is obviously regular. I'm not sure that b is constant, however. Maybe it is, and if so, then this isn't really an issue. I'm having a hard time making sense of it. Thanks!

    Read the article

  • How do I work out IEEE 754 64-bit Floating Point Double Precision?

    - by yousef gassar
    enter code herehello i have done it in 32 but i could dont do it in 62bits please i need help I am stuck on this question and need help. I don't know how to work it out. This is the question. Below are two numbers represented in IEEE 754 64-bit Floating Point Double Precision, the bias of the signed exponent is -1023. Any particular real number ‘N’ represented in 64-bit form (i.e. with the following bit fields; 1-bit Sign, 11-bit Exponent, 52-bit Fraction) can be expressed in the form ±1.F2 × 2X by substituting the bit-field values using formula (IV.I): N = (-1) S × 1.F2 × 2(E – 1023) for 0 < E < 2047.........................….(IV.I) Where N= the number represented, S=Sign bit-value, E=Exponent=X +1023, F=Fraction or Mantissa are the values in the 1, 11 and 52-bit fields respectively in the IEEE 754 64-bit FP representation. Using formula (IV.I), express the 64-bit FP representation of each number as: (i) A binary number of the form:- ±1.F2 × 2X (ii) A decimal number of the form:- ±0.F10 × 10Y {limit F10 to 10 decimal places} Sign 0 1 Exponent 1000 0001 001 11 Fraction 1111 0111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 52 Sign 1 1 Exponent 1000 0000 000 11 Fraction 1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000 52 I know I have to use the formula for each of the these but how do I work it out? Is it like this? N = (-1) S × 1.F2 × 2(E – 1023) = 1 x 1.1111 0111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 x 1000 0001 00111 (-1023)?

    Read the article

  • What about Programmer "Invisible" registers?

    - by claws
    These are "Programmer Visible" x86-64 registers: What about the invisible registers? Just now I learned that MMU registers, Interrupt Descriptor Table (IDT) uses these invisible registers. I'm learning these things in the hard way. Is there any resource (book/documentation/etc) that gives me the complete picture at once? I am aware of the programmer visible registers and comfortable in programming with them. I just want to learn about invisible registers and their functionality. I want to get a complete picture. Where can I get this info?

    Read the article

  • Segment register, IP register and memory addressing issue!

    - by Zia ur Rahman
    In the following text I asked two questions and I also described that what I know about these question so that you can understand my thinking. Your precious comments about the below text are required. Below is the Detail of 1ST Question As we know that if we have one mega byte memory then we need 20 bits to address this memory. Another thing is each memory cell has a physical address which is of 20 bits in 1Mb memory. IP register in IAPX88 is of 16 bits. Now my point of view is, we can not access the memory at all by the IP register because the memory need 20 bit address to be addressed but the IP register is of 16 bits. If we have a memory of 64k then IP register can access this memory because this memory needs 16 bits to be addressed. But incase of 1mb memory IP can’t.tell me am i right or not if not why? Suppose physical address of memory is 11000000000000000101 Now how can we access this memory location by 16 bits. Below is the detail of Next Question: My next question is , suppose IP register is pointing to memory location, and the segment register is also pointing to a memory location (start of the segment), the memory is of 1MB, how we can access a memory location by these two 16 bit registers tell me the sequence of steps how the 20 bits addressable memory location is accessed . If your answer is, we take the segment value and we shift it left by 4 bits and then add the IP value into it to get the 20 bits address, then this raises another question that is the address bus (the address bus should be 20 bits wide), the registers both the segment register and the IP register are of 16 bits each , now if address bus is 20 bits wide then this means that the address bus is connected to both these registers. If its not the case then another thing that comes into my mind is that both these registers generate a 20 bit address and there would be a register which can store 20 bits and this register would be connected to both these register and the address bus as well.

    Read the article

  • Marker Recognition on Android (recognising Rubik's Cubes)

    - by greenie
    Hi everybody. I'm developing an augmented reality application for Android that uses the phone's camera to recognise the arrangement of the coloured squares on each face of a Rubik's Cube. One thing that I am unsure about is how exactly I would go about detecting and recognising the coloured squares on each face of the cube. If you look at a Rubik's Cube then you can see that each square is one of six possible colours with a thin black border. This lead me to think that it should be relativly simply to detect a square, possibly using an existing marker detection API. My question is really, has anybody here had any experience with image recognition and Android? Ideally I'd like to be able to implement and existing API, but it would be an interesting project to do from scratch if somebody could point me in the right direction to get started. Many thanks in advance.

    Read the article

< Previous Page | 169 170 171 172 173 174 175 176 177 178 179 180  | Next Page >