Search Results

Search found 14838 results on 594 pages for 'oracle soa governance'.

Page 191/594 | < Previous Page | 187 188 189 190 191 192 193 194 195 196 197 198  | Next Page >

  • Wisdom of merging 100s of Oracle instances into one instance

    - by hoytster
    Our application runs on the web, is mostly an inquiry tool, does some transactions. We host the Oracle database. The app has always had a different instance of Oracle for each customer. A customer is a company which pays us to provide our service to the company's employees, typically 10,000-25,000 employees per customer. We do a major release every few years, and migrating to that new release is challenging: we might have a team at the customer site for a couple weeks, explaining new functionality and setting up the driving data to suit that customer. We're considering going multi-client, putting all our customers into a single shared Oracle 11g instance on a big honkin' Windows Server 2008 server -- in order to reduce costs. I'm wondering if that's advisable. There are some advantages to having separate instances for each customer. Tell me if these are bogus, please. In my rough guess about decreasing importance: Our customers MyCorp and YourCo can be migrated separately when breaking changes are made to the schema. (With multi-client, we'd be migrating 300+ customers overnight!?!) MyCorp's data can be easily backed up and (!!!) restored, without affecting other customers. MyCorp's data is securely separated from their competitor YourCo's data, without depending on developers to get the code right and/or DBAs getting the configuration right. Performance is better because the database is smaller (5,000 vs 2,000,000 rows in ~50 tables). If MyCorp's offices are (mostly) in just one region, then the MyCorp's instance can be geographically co-located there, so network lag doesn't hurt performance. We can provide better service to global clients, for the same reason. In MyCorp wants to take their database in-house, then we can easily export their instance, to get MyCorp their data. Load-balancing is easier because instances can be placed on different servers (this is with a web farm). When a DEV or QA instance is needed, it's easier to clone the real instance and anonymize the data, because there's much less data. Because they're small enough, developers can have their own instance running locally, so they can work on code while waiting at the airport and while in-flight, without fighting VPN hassles. Q1: What are other advantages of separate instances? We are contemplating changing the database schema and merging all of our customers into one Oracle instance, running on one hefty server. Here are advantages of the multi-client instance approach, most important first (my WAG). Please snipe if these are bogus: Less work for the DBAs, since they only need to maintain one instance instead of hundreds. Less DBA work translates to cheaper, our main motive for this change. With just one instance, the DBAs can do a better job of optimizing performance. They'll have time to add appropriate indexes and review our SQL. It will be easier for developers to debug & enhance the application, because there is only one schema and one app (there might be dozens of schema versions if there are hundreds of instances, with a different version of the app for each version of the schema). This reduces costs too. The alternative is having to start every debug session with (1) What version is this customer running and (2) Let's struggle to recreate the corresponding development environment, code and database. (We need a Virtual Machine that includes the code AND database instance for each patch and release!) Licensing Oracle is cheaper because it's priced per server irrespective of heft (or something -- I don't know anything about the subject). The database becomes a viable persistent store for web session data, because there is just one instance. Some database operations are easier with one multi-client instance, like finding a participant when they're hazy about which customer they (or their spouse, maybe) works for: all the names are in one table. Reporting across customers is straightforward. Q2: What are other advantages of having multiple clients in one instance? Q3: Which approach do you think is better (why)? Instance per customer, or all customers in one instance? I'm concerned that having one multi-client instance makes migration near-impossible, and that's a deal killer... ... unless there is a compromise solution like having two multi-client instances, the old and the new. In that case case, we would design cross-instance solutions for finding participants, reporting, etc. so customers could go from one multi-client instance to the next without anything breaking. THANKS SO MUCH for your collective advice! This issue is beyond me -- but not beyond the collective you. :) Hoytster

    Read the article

  • starting oracle 10g on ubuntu, Listener failed to start.

    - by tsegay
    I have installed oracle 10g on a ubuntu 10.x, This is my first time installation. After installing I tried to start it with the command below. tsegay@server-name:/u01/app/oracle/product/10.2.0/db_1/bin$ lsnrctl LSNRCTL for Linux: Version 10.2.0.1.0 - Production on 29-DEC-2010 22:46:51 Copyright (c) 1991, 2005, Oracle. All rights reserved. Welcome to LSNRCTL, type "help" for information. LSNRCTL> start Starting /u01/app/oracle/product/10.2.0/db_1/bin/tnslsnr: please wait... TNSLSNR for Linux: Version 10.2.0.1.0 - Production System parameter file is /u01/app/oracle/product/10.2.0/db_1/network/admin/listener.ora Log messages written to /u01/app/oracle/product/10.2.0/db_1/network/log/listener.log Error listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC1))) TNS-12555: TNS:permission denied TNS-12560: TNS:protocol adapter error TNS-00525: Insufficient privilege for operation Linux Error: 1: Operation not permitted Listener failed to start. See the error message(s) above... my listener.ora file looks like this: # listener.ora Network Configuration File: /u01/app/oracle/product/10.2.0/db_1/network/admin/listener.ora # Generated by Oracle configuration tools. SID_LIST_LISTENER = (SID_LIST = (SID_DESC = (SID_NAME = PLSExtProc) (ORACLE_HOME = /u01/app/oracle/product/10.2.0/db_1) (PROGRAM = extproc) ) ) LISTENER = (DESCRIPTION_LIST = (DESCRIPTION = (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1)) (ADDRESS = (PROTOCOL = TCP)(HOST = acct-vmserver)(PORT = 1521)) ) ) I can guess the problem is with permission issue, But i dont know where I have to do the change on permission. Any help is appreciated ...

    Read the article

  • Managing User & Role Security with Oracle SQL Developer

    - by thatjeffsmith
    With the advent of SQL Developer v3.0, users have had access to some powerful database administration features. Version 3.1 introduced more powerful features such as an interface to Data Pump and RMAN. Today I want to talk about some very simple but frequently ran tasks that SQL Developer can assist with, like: identifying privs granted to users managing role privs assigning new roles and privs to users & roles Before getting started, you’ll need a connection to the database with the proper privileges. The common ROLE used to accomplish this is the ‘DBA‘ role. Curious as to what the DBA role is actually comprised of? Let’s find out! Open the DBA Console First make sure you’re connected to the database you want to manage security on with a privileged administrator account. Then open the View menu and select ‘DBA.’ Accessing the DBA panel ‘Create’ a Connection Click on the green ‘+’ button in the DBA panel. It will ask you to choose a previously defined SQL Developer connection. Defining a DBA connection in Oracle SQL Developer Once connected you will see a tree list of DBA features you can start interacting with. Expand the ‘Security’ Tree Node As you click on an object in the DBA panel, the ‘viewer’ will open on the right-hand-side, just like you are accustomed to seeing when clicking on a table or stored procedure. Accessing the DBA role If I’m a newly hired Oracle DBA, the first thing I might want to do is become very familiar with the DBA role. People will be asking you to grant them this role or a subset of its privileges. Once you see what the role can do, you will become VERY protective of it. My favorite 3-letter 4-letter word is ‘ANY’ and the DBA role is littered with privileges like this: ANY TABLE privs granted to DBA role So if this doesn’t freak you out, then maybe you should re-consider your career path. Or in other words, don’t be granting this role to ANYONE you don’t completely trust to take care of your database. If I’m just assigned a new database to manage, the first thing I might want to look at is just WHO has been assigned the DBA role. SQL Developer makes this easy to ascertain, just click on the ‘User Grantees’ panel. Who has the keys to your car? Making Changes to Roles and Users If you mouse-right-click on a user in the Tree, you can do individual tasks like grant a sys priv or expire an account. But, you can also use the ‘Edit User’ dialog to do a lot of work in one pass. As you click through options in these dialogs, it will build the ‘ALTER USER’ script in the SQL panel, which can then be executed or copied to the worksheet or to your .SQL file to be ran at your discretion. A Few Clicks vs a Lot of Typing These dialogs won’t make you a DBA, but if you’re pressed for time and you’re already in SQL Developer, they can sure help you make up for lost time in just a few clicks!

    Read the article

  • Solaris 10 branded zone VM Templates for Solaris 11 on OTN

    - by jsavit
    Early this year I wrote the article Ours Goes To 11 which describes the ability to import Solaris 10 systems into a "Solaris 10 branded zone" under Oracle Solaris 11. I did this using Solaris 11 Express, and the capability remains in Solaris 11 with only slight changes. This important tool lets you painlessly inhaling a Solaris Container from Solaris 10 or entire Solaris 10 systems ("the global zone") into virtualized environments on a Solaris 11 OS. Just recently, Oracle provided Oracle VM Templates for Oracle Solaris 10 Zones to let you create Solaris 10 branded zones for Solaris 11 even if you don't currently have access to install media or a running Solaris 10 system. To use this, just download the Oracle VM Template for Oracle Solaris Zone 10 from OTN at http://www.oracle.com/technetwork/server-storage/solaris11/downloads/virtual-machines-1355605.html. This page contains images of Oracle Solaris 10 8/11 (the recent update to Solaris 10) in SPARC and x86 formats suitable for creating branded zones. The same page also has a VirtualBox image you can download for a complete Solaris 10 install in a guest virtual machine you can run on any host OS that supports VirtualBox. Both sets of downloads provide a quick - and extremely easy - way to set up a virtual Solaris 10 environment. In the case of the Oracle VM Templates, they illustrate several advanced features of Solaris 11. To start, just go to the above link, download the template for the hardware platform (SPARC or x86) you want, and download the README file also linked from that page. Install prerequisites The README file tells you to install the prerequisite Solaris 11 package that implements the Solaris 10 brand. Then you can install instances of zones with that brand. # pkg install pkg:/system/zones/brand/brand-solaris10 Packages to install: 1 Create boot environment: No Create backup boot environment: Yes DOWNLOAD PKGS FILES XFER (MB) Completed 1/1 44/44 0.4/0.4 PHASE ACTIONS Install Phase 74/74 PHASE ITEMS Package State Update Phase 1/1 Image State Update Phase 2/2 That took only a few minutes, and didn't require a reboot. Install the Solaris 10 zone Now it's time to run the downloaded template file. First make it executable via the chmod command, of course. I found that (unlike stated in the README) there was no need to rename the downloaded file to remove the .bin. When you run it you provide several parameters to describe the zone configuration: -a IP address - the IP address and optional netmask for the zone. This is the only mandatory parameter. -z zonename - the name of the zone you would like to create. -i interface - the package will create an exclusive-IP zone using a virtual NIC (vnic) based on this physical interface. In my case, I have a NIC called rge0. -p PATH - specifies the path in which you want the zoneroot to be placed. In my case, I have a ZFS dataset mounted at /zones, and this will create a zoneroot at /zones/s10u10. Kicking it off, you will see a copyright message, and then messages showing progress building the zone, which only takes a few minutes. # ./solaris-10u10-x86.bin -p /zones -a 192.168.1.100 -i rge0 -z s10u10 ... ... Checking disk-space for extraction Ok Extracting in /export/home/CDimages/s10zone/bootimage.ihaqvh ... 100% [===============================] Checking data integrity Ok Checking platform compatibility The host and the image do not have the same Solaris release: host Solaris release: 5.11 image Solaris release: 5.10 Will create a Solaris 10 branded zone. Warning: could not find a defaultrouter Zone won't have any defaultrouter configured IMAGE: ./solaris-10u10-x86.bin ZONE: s10u10 ZONEPATH: /zones/s10u10 INTERFACE: rge0 VNIC: vnicZBI13379 MAC ADDR: 2:8:20:5c:1a:cc IP ADDR: 192.168.1.100 NETMASK: 255.255.255.0 DEFROUTER: NONE TIMEZONE: US/Arizona Checking disk-space for installation Ok Installing in /zones/s10u10 ... 100% [===============================] Using a static exclusive-IP Attaching s10u10 Booting s10u10 Waiting for boot to complete booting... booting... booting... Zone s10u10 booted The zone's root password has been set using the root password of the local host. You can change the zone's root password to further harden the security of the zone: being root, log into the zone from the local host with the command 'zlogin s10u10'. Once logged in, change the root password with the command 'passwd'. The nifty part in my opinion (besides being so easy), is that the zone was created as an exclusive-IP zone on a virtual NIC. This network configuration lets you enforce traffic isolation from other zones, enforce network Quality of Service, and even let the zone set its own characteristics like IP address and packet size. Independence of the zone's network characteristics from the global zone is one of the enhancements in Solaris 10 that make it easier to consolidate zones while preserving their autonomy, yet provide control in a consolidated environment. Let's see what the virtual network environment looks like by issuing commands from the Solaris 11 global zone. First I'll use Old School ifconfig, and then I'll use the new ipadm and dladm commands. # ifconfig -a4 lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 rge0: flags=1004943<UP,BROADCAST,RUNNING,PROMISC,MULTICAST,DHCP,IPv4> mtu 1500 index 2 inet 192.168.1.3 netmask ffffff00 broadcast 192.168.1.255 ether 0:14:d1:18:ac:bc vboxnet0: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 3 inet 192.168.56.1 netmask ffffff00 broadcast 192.168.56.255 ether 8:0:27:f8:62:1c # dladm show-phys LINK MEDIA STATE SPEED DUPLEX DEVICE yge0 Ethernet unknown 0 unknown yge0 yge1 Ethernet unknown 0 unknown yge1 rge0 Ethernet up 1000 full rge0 vboxnet0 Ethernet up 1000 full vboxnet0 # dladm show-link LINK CLASS MTU STATE OVER yge0 phys 1500 unknown -- yge1 phys 1500 unknown -- rge0 phys 1500 up -- vboxnet0 phys 1500 up -- vnicZBI13379 vnic 1500 up rge0 s10u10/vnicZBI13379 vnic 1500 up rge0 s10u10/net0 vnic 1500 up rge0 # dladm show-vnic LINK OVER SPEED MACADDRESS MACADDRTYPE VID vnicZBI13379 rge0 1000 2:8:20:5c:1a:cc random 0 s10u10/vnicZBI13379 rge0 1000 2:8:20:5c:1a:cc random 0 s10u10/net0 rge0 1000 2:8:20:9d:d0:79 random 0 # ipadm show-addr ADDROBJ TYPE STATE ADDR lo0/v4 static ok 127.0.0.1/8 rge0/_a dhcp ok 192.168.1.3/24 vboxnet0/_a static ok 192.168.56.1/24 lo0/v6 static ok ::1/128 Log into the zone The install step already booted the zone, so lets log into it. Notice how you have to be appropriately privileged to log into a zone. This is my home system so I'm being a bit cavalier, but in a production environment you can give granular control of who can login to which zones. Voila! a Solaris 10 environment under a Solaris 11 kernel. Notice the output from the uname -a and ifconfig commands, and output from a ping to a nearby host. $ zlogin s10u10 zlogin: You lack sufficient privilege to run this command (all privs required) savit@home:~$ sudo zlogin s10u10 Password: [Connected to zone 's10u10' pts/5] Oracle Corporation SunOS 5.10 Generic Patch January 2005 # uname -a SunOS s10u10 5.10 Generic_Virtual i86pc i386 i86pc # ifconfig -a4 lo0: flags=2001000849 mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 vnicZBI13379: flags=1000843 mtu 1500 index 2 inet 192.168.1.100 netmask ffffff00 broadcast 192.168.1.255 ether 2:8:20:5c:1a:cc # bash bash-3.2# ifconfig -a lo0: flags=2001000849 mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 vnicZBI13379: flags=1000843 mtu 1500 index 2 inet 192.168.1.100 netmask ffffff00 broadcast 192.168.1.255 ether 2:8:20:5c:1a:cc bash-3.2# ping 192.168.1.2 192.168.1.2 is alive For fun, I configured Apache (setting its configuration file in /etc/apache2) and brought it up. Easy - took just a few minutes. bash-3.2# svcs apache2 STATE STIME FMRI disabled 12:38:46 svc:/network/http:apache2 bash-3.2# svcadm enable apache2 Summary In just a few minutes, I built a functioning virtual Solaris 10 environment under by Solaris 11 system. It was... easy! While I can still do it the manual way (creating and using a system archive), this is a low-effort way to create a Solaris 10 zone on Solaris 11.

    Read the article

  • Clouds Everywhere But not a Drop of Rain – Part 3

    - by sxkumar
    I was sharing with you how a broad-based transformation such as cloud will increase agility and efficiency of an organization if process re-engineering is part of the plan.  I have also stressed on the key enterprise requirements such as “broad and deep solutions, “running your mission critical applications” and “automated and integrated set of capabilities”. Let me walk you through some key cloud attributes such as “elasticity” and “self-service” and what they mean for an enterprise class cloud. I will also talk about how we at Oracle have taken a very enterprise centric view to developing cloud solutions and how our products have been specifically engineered to address enterprise cloud needs. Cloud Elasticity and Enterprise Applications Requirements Easy and quick scalability for a short-period of time is the signature of cloud based solutions. It is this elasticity that allows you to dynamically redistribute your resources according to business priorities, helps increase your overall resource utilization, and reduces operational costs by allowing you to get the most out of your existing investment. Most public clouds are offering a instant provisioning mechanism of compute power (CPU, RAM, Disk), customer pay for the instance-hours(and bandwidth) they use, adding computing resources at peak times and removing them when they are no longer needed. This type of “just-in-time” serving of compute resources is well known for mid-tiers “state less” servers such as web application servers and web servers that just need another machine to start and run on it but what does it really mean for an enterprise application and its underlying data? Most enterprise applications are not as quite as “state less” and justifiably so. As such, how do you take advantage of cloud elasticity and make it relevant for your enterprise apps? This is where Cloud meets Grid Computing. At Oracle, we have invested enormous amount of time, energy and resources in creating enterprise grid solutions. All our technology products offer built-in elasticity via clustering and dynamic scaling. With products like Real Application Clusters (RAC), Automatic Storage Management, WebLogic Clustering, and Coherence In-Memory Grid, we allow all your enterprise applications to benefit from Cloud elasticity –both vertically and horizontally - without requiring any application changes. A number of technology vendors take a rather simplistic route of starting up additional or removing unneeded VM as the "Cloud Scale-Out" solution. While this may work for stateless mid-tier servers where load balancers can handle the addition and remove of instances transparently but following a similar approach for the database tier - often called as "database sharding" - requires significant application modification and typically does not work with off the shelf packaged applications. Technologies like Oracle Database Real Application Clusters, Automatic Storage Management, etc. on the other hand bring the benefits of incremental scalability and on-demand elasticity to ANY application by providing a simplified abstraction layers where the application does not need deal with data spread over multiple database instances. Rather they just talk to a single database and the database software takes care of aggregating resources across multiple hardware components. It is the technologies like these that truly make a cloud solution relevant for enterprises.  For customers who are looking for a next generation hardware consolidation platform, our engineered systems (e.g. Exadata, Exalogic) not only provide incredible amount of performance and capacity, they also reduce the data center complexity and simplify operations. Assemble, Deploy and Manage Enterprise Applications for Cloud Products like Oracle Virtual assembly builder (OVAB) resolve the complex problem of bringing the cloud speed to complex multi-tier applications. With assemblies, you can not only provision all components of a multi-tier application and wire them together by push of a button, other aspects of application lifecycle, such as real-time application testing, scale-up/scale-down, performance and availability monitoring, etc., are also automated using Oracle Enterprise Manager.  An essential criteria for an enterprise cloud to succeed is the ability to ensure business service levels especially when business users have either full visibility on the usage cost with a “show back” or a “charge back”. With Oracle Enterprise Manager 12c, we have created the most comprehensive cloud management solution in the industry that is capable of managing business service levels “applications-to-disk” in a enterprise private cloud – all from a single console. It is the only cloud management platform in the industry that allows you to deliver infrastructure, platform and application cloud services out of the box. Moreover, it offers integrated and complete lifecycle management of the cloud - including planning and set up, service delivery, operations management, metering and chargeback, etc .  Sounds unbelievable? Well, just watch this space for more details on how Oracle Enterprise Manager 12c is the nerve center of Oracle Cloud! Our cloud solution portfolio is also the broadest and most deep in the industry  - covering public, private, hybrid, Infrastructure, platform and applications clouds. It is no coincidence therefore that the Oracle Cloud today offers the most comprehensive set of public cloud services in the industry.  And to a large part, this has been made possible thanks to our years on investment in creating cloud enabling technologies.  Summary  But the intent of this blog post isn't to dwell on how great our solutions are (these are just some examples to illustrate how we at Oracle have approached this problem space). Rather it is to help you ask the right questions before you embark on your cloud journey.  So to summarize, here are the key takeaways.       It is critical that you are clear on why you are building the cloud. Successful organizations keep business benefits as the first and foremost cloud objective. On the other hand, those who approach this purely as a technology project are more likely to fail. Think about where you want to be in 3-5 years before you get started. Your long terms objectives should determine what your first step ought to be. As obvious as it may seem, more people than not make the first move without knowing where they are headed.  Don’t make the mistake of equating cloud to virtualization and Infrastructure-as-a-Service (IaaS). Spinning a VM on-demand will give some short term relief to your IT staff but is unlikely to solve your larger business problems. As such, even if IaaS is your first step towards a more comprehensive cloud, plan the roadmap around those higher level services before you begin. And ask your vendors on how they are going to be your partners in this journey. Capabilities like self-service access and chargeback/showback are absolutely critical if you really expect your cloud to be transformational. Your business won't see the full benefits of the cloud until it empowers them with same kind of control and transparency that they are used to while using a public cloud service.  Evaluate the benefits of integration, as opposed to blindly following the best-of-breed strategy. Integration is a huge challenge and more so in a cloud environment. There are enormous costs associated with stitching a solution out of disparate components and even more in maintaining it. Hope you found these ideas helpful. Looking forward to hearing your thoughts and experiences.

    Read the article

  • Oracle & Active Directory : A love/hate relationship

    - by Frank
    Hi SO'ers, I'm currently trying to access Active Directory via the dbms_ldap API in Pl/Sql (Oracle). The trouble is that I'm not able to connect with my own username and password or anynoymously. However, in C# I can connect anonymously with this code : DirectoryEntry ldap = new DirectoryEntry("LDAP://Hostname"); DirectorySearcher searcher = new DirectorySearcher(ldap); searcher.Filter = "(SAMAccountName=username)"; SearchResult result = searcher.FindOne(); If I try to connect anonymously in Oracle, I only get the error(ORA-31202 : LDAP client/server error) when I try to search (and the result code for the bind is SUCCESS)... my_session := dbms_ldap.init('HOST','389'); retval := dbms_ldap.simple_bind_s(my_session, '', ''); retval := dbms_ldap.search_s(my_session, ldap_base, dbms_ldap.scope_subtree, 'objectclass=*', my_attrs, 0, my_message); Why is the anonymous connection is C# works but doesn't work in Pl/Sql? Do you have any other idea to connect to Active Directory via Oracle? Help me reunite them together. Thanks. Edit When I bind with anonymous credentials I get : ORA-31202: DBMS_LDAP: LDAP client/server error 00000000: LdapErr: DSID-0C090627, comment: In order to perform this operation a successful bind must be completed on the connection And if I try to connect with my credentials, which are supposed to be valid since I'm connected to the domain with it... I get : ORA-31202: DBMS_LDAP: LDAP client/server error Invalid credentials 80090308: LdapErr: DSID-0C090334, comment: AcceptSecurityContext error

    Read the article

  • How to find if an Oracle APEX session is expired

    - by Mathieu Longtin
    I have created a single-sign-on system for our Oracle APEX applications, roughly based on this tutorial: http://www.oracle.com/technology/oramag/oracle/09-may/o39security.html The only difference is that my master SSO login is in Perl, rather than another APEX app. It sets an SSO cookie, and the app can check if it's valid with a database procedure. I have noticed that when I arrive in the morning, the whole system doesn't work. I reload a page from the APEX app, it then sends me to the SSO page because the session was expired, I logon, and get redirected back to my original APEX app page. This usually works except first thing in the morning. It seems the APEX session is expired. In that case it seems to find the session, but then refuse to use it, and sends me back to the login page. I've tried my best to trace the problem. The "wwv_flow_custom_auth_std.is_session_valid" function returns true, so I'm assuming the session is valid. But nothing works until I remove the APEX session cookie. Then I can log back in easily. Anybody knows if there is another call that would tell me if the session is expired or not? Thanks

    Read the article

  • Getting Oracle's MD5 to match PHP's MD5

    - by Zenshai
    Hi all, I'm trying to compare an MD5 checksum generated by PHP to one generated by Oracle 10g. However it seems I'm comparing apples to oranges. Here's what I did to test the comparison: //md5 tests //php md5 print md5('testingthemd5function'); print '<br/><br/>'; //oracle md5 $md5query = "select md5hash('testingthemd5function') from dual"; $stid = oci_parse($conn, $md5query); if (!$stid) { $e = oci_error($conn); print htmlentities($e['message']); exit; } $r = oci_execute($stid, OCI_DEFAULT); if (!$r) { $e = oci_error($stid); echo htmlentities($e['message']); exit; } $row = oci_fetch_row($stid); print $row[0]; The md5 function (seen in the query above) in Oracle uses the 'dbms_obfuscation_toolkit.md5' package(?) and is defined like this: CREATE OR REPLACE FUNCTION PORTAL.md5hash (v_input_string in varchar2) return varchar2 is v_checksum varchar2(20); begin v_checksum := dbms_obfuscation_toolkit.md5 (input_string => v_input_string); return v_checksum; end; What comes out on my PHP page is: 29dbb90ea99a397b946518c84f45e016 )Û¹©š9{”eÈOEà Can anyone help me in getting the two to match?

    Read the article

  • Dropping all user tables/sequences in Oracle

    - by Ambience
    As part of our build process and evolving database, I'm trying to create a script which will remove all of the tables and sequences for a user. I don't want to do recreate the user as this will require more permissions than allowed. My script creates a procedure to drop the tables/sequences, executes the procedure, and then drops the procedure. I'm executing the file from sqlplus: drop.sql: create or replace procedure drop_all_cdi_tables is cur integer; begin cur:= dbms_sql.OPEN_CURSOR(); for t in (select table_name from user_tables) loop execute immediate 'drop table ' ||t.table_name|| ' cascade constraints'; end loop; dbms_sql.close_cursor(cur); cur:= dbms_sql.OPEN_CURSOR(); for t in (select sequence_name from user_sequences) loop execute immediate 'drop sequence ' ||t.sequence_name; end loop; dbms_sql.close_cursor(cur); end; / execute drop_all_cdi_tables; / drop procedure drop_all_cdi_tables; / Unfortunately, dropping the procedure causes a problem. There seems to cause a race condition and the procedure is dropped before it executes. E.g.: SQL*Plus: Release 11.1.0.7.0 - Production on Tue Mar 30 18:45:42 2010 Copyright (c) 1982, 2008, Oracle. All rights reserved. Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.7.0 - 64bit Production With the Partitioning, OLAP, Data Mining and Real Application Testing options Procedure created. PL/SQL procedure successfully completed. Procedure created. Procedure dropped. drop procedure drop_all_user_tables * ERROR at line 1: ORA-04043: object DROP_ALL_USER_TABLES does not exist SQL Disconnected from Oracle Database 11g Enterprise Edition Release 11.1.0.7.0 - 64 With the Partitioning, OLAP, Data Mining and Real Application Testing options Any ideas on how to get this working?

    Read the article

  • Connecting Error to Remote Oracle XE database using ASP.NET

    - by imsatasia
    Hello, I have installed Oracle XE on my Development machine and it is working fine. Then I installed Oracle XE client on my Test machine which is also working fine and I can access Development PC database from Browser. Now, I want to create an ASP.Net application which can access that Oracle XE database. I tried it too, but it always shows me an error on my TEST machine to connect database to the Development Machine using ASP.Net. Here is my code for ASP.Net application: protected void Page_Load(object sender, EventArgs e) { string connectionString = GetConnectionString(); OracleConnection connection = new OracleConnection(connectionString); connection.Open(); Label1.Text = "State: " + connection.State; Label1.Text = "ConnectionString: " + connection.ConnectionString; OracleCommand command = connection.CreateCommand(); string sql = "SELECT * FROM Users"; command.CommandText = sql; OracleDataReader reader = command.ExecuteReader(); while (reader.Read()) { string myField = (string)reader["nID"]; Console.WriteLine(myField); } } static private string GetConnectionString() { // To avoid storing the connection string in your code, // you can retrieve it from a configuration file. return "User Id=System;Password=admin;Data Source=(DESCRIPTION=" + "(ADDRESS=(PROTOCOL=TCP)(HOST=myServerAddress)(PORT=1521))" + "(CONNECT_DATA=(SERVICE_NAME=)));"; }

    Read the article

  • Return an Oracle Associative Array from a function

    - by Paul Johnson
    Does anybody know if it is possible to return an associative array as the result of an Oracle function, if so do you have any examples? I have an Oracle package which contains an associative array declaration as defined below: TYPE EVENTPARAM IS TABLE OF NUMBER INDEX BY BINARY_INTEGER; This is then used in a stored procedure outside the package as follows: v_CompParams areva_interface.eventparam; The intention is to store an associative array of strings in the variable v_CompParams, returned from a Parse function in another package. The definition for which is as follows: PACKAGE STRING_MANIP IS TYPE a_array IS TABLE OF NUMBER INDEX BY BINARY_INTEGER; FUNCTION Parse (v_string VARCHAR2, v_delim VARCHAR2) RETURN a_array; FUNCTION RowCount(colln IN a_array) RETURN NUMBER; END; The code which implements this is: v_CompParams := STRING_MANIP.PARSE(v_CompID,v_Delim); Unfortunately it doesn't work, I get the error 'PLS-00382: expression is of wrong type'. I foolishly assumed, that since a_array derives from the same source Oracle type as the variable v_CompParams, that there would be no problem casting between them. Any help much appreciated. Kind Regards Paul J.

    Read the article

  • ways to avoid global temp tables in oracle

    - by Omnipresent
    We just converted our sql server stored procedures to oracle procedures. Sql Server SP's were highly dependent on session tables (INSERT INTO #table1...) these tables got converted as global temporary tables in oracle. We ended up with aroun 500 GTT's for our 400 SP's Now we are finding out that working with GTT's in oracle is considered a last option because of performance and other issues. what other alternatives are there? Collections? Cursors? Our typical use of GTT's is like so: Insert into GTT INSERT INTO some_gtt_1 (column_a, column_b, column_c) (SELECT someA, someB, someC FROM TABLE_A WHERE condition_1 = 'YN756' AND type_cd = 'P' AND TO_NUMBER(TO_CHAR(m_date, 'MM')) = '12' AND (lname LIKE (v_LnameUpper || '%') OR lname LIKE (v_searchLnameLower || '%')) AND (e_flag = 'Y' OR it_flag = 'Y' OR fit_flag = 'Y')); Update the GTT UPDATE some_gtt_1 a SET column_a = (SELECT b.data_a FROM some_table_b b WHERE a.column_b = b.data_b AND a.column_c = 'C') WHERE column_a IS NULL OR column_a = ' '; and later on get the data out of the GTT. These are just sample queries, in actuality the queries are really complext with lot of joins and subqueries. I have a three part question: Can someone show how to transform the above sample queries to collections and/or cursors? Since with GTT's you can work natively with SQL...why go away from the GTTs? are they really that bad. What should be the guidelines on When to use and When to avoid GTT's

    Read the article

  • Oracle ODBC x64 - getting 0 when selecting a number(9) column

    - by MatsL
    I'm having a really weird problem with a third party web service that uses an ODBC connection to Oracle 10.2.0.3.0. I've written a .NET client that generates the same SQL as the web service so I can find out what's going on. The web service is hosted by IIS 6 that's in x64 mode so we use Oracle x64 client. The oracle client version is 10.2.0.1.0. I have a table that looks like this (I've removed some columns and names): SQL> describe tablename; Name Null? Type ----------------------------------------- -------- ---------------------------- KOD VARCHAR2(30) ORDNING NUMBER(5) AVGIFT NUMBER(9) I then in SQL*Plus issue the following statement: SELECT KOD as kod, AVGIFT as riskPoang FROM tablename Where upper(KODTYP) = 'OBJLIVSV_RISKVERKSAMTYP' ORDER BY ORDNING And I get the following result: KOD RISKPOANG ------------------------------ ---------- Hög risk 55 Mellan risk 35 Låg risk 15 Mycket låg risk 5 But when I execute the exact same SQL using the same DSN on the same machine I get this: Values Kod: Hög risk RiskPoäng: 0 Kod: Mellan risk RiskPoäng: 0 Kod: Låg risk RiskPoäng: 0 Kod: Mycket låg risk RiskPoäng: 0 If I first cast the number to varchar and then back again to number, like this: SELECT KOD as kod, to_number(to_char(AVGIFT, '99'), '9999999999') as riskPoang FROM tablename Where upper(KODTYP) = 'OBJLIVSV_RISKVERKSAMTYP' ORDER BY ORDNING I get the correct result: Values Kod: Hög risk RiskPoäng: 55 Kod: Mellan risk RiskPoäng: 35 Kod: Låg risk RiskPoäng: 15 Kod: Mycket låg risk RiskPoäng: 5 Has anyone else experiences this? It's incredibly annoying and I'm completely stuck and not sure what to do next. We have a third party web service that use these tables so I must get the original SQL-statement to work since I can't modify its code. And pointers are greatly appreciated! :-) Best regards, Mats

    Read the article

  • PreparedStatement question in Java against Oracle.

    - by fardon57
    Hi everyone, I'm working on the modification of some code to use preparedStatement instead of normal Statement, for security and performance reason. Our application is currently storing information into an embedded derby database, but we are going to move soon to Oracle. I've found two things that I need your help guys about Oracle and Prepared Statement : 1- I've found this document saying that Oracle doesn't handle bind parameters into IN clauses, so we cannot supply a query like : Select pokemon from pokemonTable where capacity in (?,?,?,?) Is that true ? Is there any workaround ? ... Why ? 2- We have some fields which are of type TIMESTAMP. So with our actual Statement, the query looks like this : Select raichu from pokemonTable where evolution = TO_TIMESTAMP('2500-12-31 00:00:00.000', 'YYYY-MM-DD HH24:MI:SS.FF') What should be done for a prepared Statement ? Should I put into the array of parameters : 2500-12-31 or TO_TIMESTAMP('2500-12-31 00:00:00.000', 'YYYY-MM-DD HH24:MI:SS.FF') ? Thanks for your help, I hope my questions are clear ! Regards,

    Read the article

  • Oracle 10.1 and 11.2 produce different XML using the same statement

    - by MindFyer
    I am migrating a database from Oracle 10.1 to 11.2 and I have the following problem. The statement SELECT '<?xml version="1.0" encoding="utf-8" ?>' || (Xml).getClobVal() AS XmlClob FROM ( SELECT XmlElement( "Element1", ( SELECT XmlAgg(tpx.Xml) FROM ( SELECT XmlElement("Element3",XmlForest('content' as Element4)) AS Xml FROM dual ) tpx ) AS "Element2" ) AS Xml FROM dual ) On the original 10.1 database produces XML like this... <?xml version="1.0" encoding="utf-8"?> <Element1> <Element2> <Element3> <ELEMENT4>content</ELEMENT4> </Element3> </Element2> </Element1> On the new 11.2 system it looks like this... <?xml version="1.0" encoding="utf-8"?> <Element1> <Element3> <ELEMENT4>content</ELEMENT4> </Element3> </Element1> Is there some environmental variable I am missing that tells Oracle how to format its XML. There are hundreds of thousands of lines of PL/SQL in the database; it would be a mammoth task to rewrite if it turned out they had changed they way Oracle formats XML between versions. Hopefully someone has come accross this before. Thanks

    Read the article

  • Simple Oracle File repository with folder hierarchy

    - by Ope
    I have an application that stores large amount of files (XML and binary) in folder hierarchies. Currently the main method is storing them in file system or using a legacy CMS, which we want to get rid of. The CMS supports Oracle and a customer wants to keep the files in Oracle because of enterprise policies (backup etc.) The question is: Is there a simple implementation of file repository with folder hierarchy for Oracle? What I am looking for is a small .Net component or example code (PL/SQL and/or .Net) that would have the following methods: Create, Delete, Exists Folder CRUD file Move and potentially Copy file or directory Access to files and folders with paths like "/root/folder1/folder2/file.xml" Ability to get all the files and folders in a folder and potentially also the entire directory tree Tree traversal, getting the parent, all children etc. needs to be fast. I need the implementation in .Net, but if it was just the stored procedures, I could create the .Net calling code. I have pointers to generic articles for creating hierarchies in DB, so if I need to do it from scratch, I know where to start. What I am asking here, is there already an implementation that I could take without doing this from scratch? It seems like such a generic requirement... If the answer is a CMS, Document management system or such it should be Open Source or at least quite cheap (some hundreds / server) and it should be possible to deploy it XCopy - hopefully only couple of DLL:s. I do not need - or want - a full featured big CMS with dozens of dlls and especially not an msi-installation. I have tried to google this, but the words "repository", "CMS", "file hierarchy" etc. give so many answers, the searches are pretty much useless. Thanks, OPe

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Podcast Show Notes: Evolving Enterprise Architecture

    - by Bob Rhubart
    Back in March Oracle ACE Directors Mike van Alst (IT-Eye) and Jordan Braunstein (Visual Integrator Consulting) and Oracle product manager Jeff Davies participated in an ArchBeat virtual meet-up. The resulting conversation quickly turned to the changing nature of enterprise architecture and the various forces driving that change. All four parts of that wide-ranging conversation are now available. Listen to Part 1 Listen to Part 2 Listen to Part 3 Listen to Part 4 As you’ll hear, Mike, Jordan, and Jeff bring unique perspectives and opinions to this very lively conversation. These are three very sharp, very experienced guys, as and you might expect, they don’t always walk in lock-step when it comes to EA. You can learn more about Mike, Jordan, and Jeff – and share your opinions with them -- through the links below: Mike van Alst Blog | Twitter | LinkedIn | Business |Oracle Mix | Oracle ACE Profile Jordan Braunstein Blog | Twitter | LinkedIn | Business | Oracle Mix | Oracle ACE Profile Jeff Davies Homepage | Blog | LinkedIn | Oracle Mix (Also check out Jeff’s book: The Definitive Guide to SOA: Oracle Service Bus) Up Next Next week’s program features highlights from the panel discussion at the Oracle Technology Architect Day event held in Anaheim, CA on May 19. You’ll hear from Oracle ACE Directors Basheer Khan and Floyd Teter, Oracle virtualization expert and former Sun Microsystems principal engineer Jeff Savit, Oracle security analyst Geri Born, and event MC Ralf Dossman, Director of SOA and Middleware in Oracle’s Enterprise Solutions Group. Stay tuned: RSS

    Read the article

  • Commit in SQL

    - by PRajkumar
    SQL Transaction Control Language Commands (TCL)                                           (COMMIT) Commit Transaction As a SQL language we use transaction control language very frequently. Committing a transaction means making permanent the changes performed by the SQL statements within the transaction. A transaction is a sequence of SQL statements that Oracle Database treats as a single unit. This statement also erases all save points in the transaction and releases transaction locks. Oracle Database issues an implicit COMMIT before and after any data definition language (DDL) statement. Oracle recommends that you explicitly end every transaction in your application programs with a COMMIT or ROLLBACK statement, including the last transaction, before disconnecting from Oracle Database. If you do not explicitly commit the transaction and the program terminates abnormally, then the last uncommitted transaction is automatically rolled back.   Until you commit a transaction: ·         You can see any changes you have made during the transaction by querying the modified tables, but other users cannot see the changes. After you commit the transaction, the changes are visible to other users' statements that execute after the commit ·         You can roll back (undo) any changes made during the transaction with the ROLLBACK statement   Note: Most of the people think that when we type commit data or changes of what you have made has been written to data files, but this is wrong when you type commit it means that you are saying that your job has been completed and respective verification will be done by oracle engine that means it checks whether your transaction achieved consistency when it finds ok it sends a commit message to the user from log buffer but not from data buffer, so after writing data in log buffer it insists data buffer to write data in to data files, this is how it works.   Before a transaction that modifies data is committed, the following has occurred: ·         Oracle has generated undo information. The undo information contains the old data values changed by the SQL statements of the transaction ·         Oracle has generated redo log entries in the redo log buffer of the System Global Area (SGA). The redo log record contains the change to the data block and the change to the rollback block. These changes may go to disk before a transaction is committed ·         The changes have been made to the database buffers of the SGA. These changes may go to disk before a transaction is committed   Note:   The data changes for a committed transaction, stored in the database buffers of the SGA, are not necessarily written immediately to the data files by the database writer (DBWn) background process. This writing takes place when it is most efficient for the database to do so. It can happen before the transaction commits or, alternatively, it can happen some times after the transaction commits.   When a transaction is committed, the following occurs: 1.      The internal transaction table for the associated undo table space records that the transaction has committed, and the corresponding unique system change number (SCN) of the transaction is assigned and recorded in the table 2.      The log writer process (LGWR) writes redo log entries in the SGA's redo log buffers to the redo log file. It also writes the transaction's SCN to the redo log file. This atomic event constitutes the commit of the transaction 3.      Oracle releases locks held on rows and tables 4.      Oracle marks the transaction complete   Note:   The default behavior is for LGWR to write redo to the online redo log files synchronously and for transactions to wait for the redo to go to disk before returning a commit to the user. However, for lower transaction commit latency application developers can specify that redo be written asynchronously and that transaction do not need to wait for the redo to be on disk.   The syntax of Commit Statement is   COMMIT [WORK] [COMMENT ‘your comment’]; ·         WORK is optional. The WORK keyword is supported for compliance with standard SQL. The statements COMMIT and COMMIT WORK are equivalent. Examples Committing an Insert INSERT INTO table_name VALUES (val1, val2); COMMIT WORK; ·         COMMENT Comment is also optional. This clause is supported for backward compatibility. Oracle recommends that you used named transactions instead of commit comments. Specify a comment to be associated with the current transaction. The 'text' is a quoted literal of up to 255 bytes that Oracle Database stores in the data dictionary view DBA_2PC_PENDING along with the transaction ID if a distributed transaction becomes in doubt. This comment can help you diagnose the failure of a distributed transaction. Examples The following statement commits the current transaction and associates a comment with it: COMMIT     COMMENT 'In-doubt transaction Code 36, Call (415) 555-2637'; ·         WRITE Clause Use this clause to specify the priority with which the redo information generated by the commit operation is written to the redo log. This clause can improve performance by reducing latency, thus eliminating the wait for an I/O to the redo log. Use this clause to improve response time in environments with stringent response time requirements where the following conditions apply: The volume of update transactions is large, requiring that the redo log be written to disk frequently. The application can tolerate the loss of an asynchronously committed transaction. The latency contributed by waiting for the redo log write to occur contributes significantly to overall response time. You can specify the WAIT | NOWAIT and IMMEDIATE | BATCH clauses in any order. Examples To commit the same insert operation and instruct the database to buffer the change to the redo log, without initiating disk I/O, use the following COMMIT statement: COMMIT WRITE BATCH; Note: If you omit this clause, then the behavior of the commit operation is controlled by the COMMIT_WRITE initialization parameter, if it has been set. The default value of the parameter is the same as the default for this clause. Therefore, if the parameter has not been set and you omit this clause, then commit records are written to disk before control is returned to the user. WAIT | NOWAIT Use these clauses to specify when control returns to the user. The WAIT parameter ensures that the commit will return only after the corresponding redo is persistent in the online redo log. Whether in BATCH or IMMEDIATE mode, when the client receives a successful return from this COMMIT statement, the transaction has been committed to durable media. A crash occurring after a successful write to the log can prevent the success message from returning to the client. In this case the client cannot tell whether or not the transaction committed. The NOWAIT parameter causes the commit to return to the client whether or not the write to the redo log has completed. This behavior can increase transaction throughput. With the WAIT parameter, if the commit message is received, then you can be sure that no data has been lost. Caution: With NOWAIT, a crash occurring after the commit message is received, but before the redo log record(s) are written, can falsely indicate to a transaction that its changes are persistent. If you omit this clause, then the transaction commits with the WAIT behavior. IMMEDIATE | BATCH Use these clauses to specify when the redo is written to the log. The IMMEDIATE parameter causes the log writer process (LGWR) to write the transaction's redo information to the log. This operation option forces a disk I/O, so it can reduce transaction throughput. The BATCH parameter causes the redo to be buffered to the redo log, along with other concurrently executing transactions. When sufficient redo information is collected, a disk write of the redo log is initiated. This behavior is called "group commit", as redo for multiple transactions is written to the log in a single I/O operation. If you omit this clause, then the transaction commits with the IMMEDIATE behavior. ·         FORCE Clause Use this clause to manually commit an in-doubt distributed transaction or a corrupt transaction. ·         In a distributed database system, the FORCE string [, integer] clause lets you manually commit an in-doubt distributed transaction. The transaction is identified by the 'string' containing its local or global transaction ID. To find the IDs of such transactions, query the data dictionary view DBA_2PC_PENDING. You can use integer to specifically assign the transaction a system change number (SCN). If you omit integer, then the transaction is committed using the current SCN. ·         The FORCE CORRUPT_XID 'string' clause lets you manually commit a single corrupt transaction, where string is the ID of the corrupt transaction. Query the V$CORRUPT_XID_LIST data dictionary view to find the transaction IDs of corrupt transactions. You must have DBA privileges to view the V$CORRUPT_XID_LIST and to specify this clause. ·         Specify FORCE CORRUPT_XID_ALL to manually commit all corrupt transactions. You must have DBA privileges to specify this clause. Examples Forcing an in doubt transaction. Example The following statement manually commits a hypothetical in-doubt distributed transaction. Query the V$CORRUPT_XID_LIST data dictionary view to find the transaction IDs of corrupt transactions. You must have DBA privileges to view the V$CORRUPT_XID_LIST and to issue this statement. COMMIT FORCE '22.57.53';

    Read the article

  • links for 2010-04-13

    - by Bob Rhubart
    Frederic Michiar: Manage a flexible and elastic Data Center with Oracle VM Manager Frederic Michiar shares a list of Oracle VM resources. (tags: otn oracle virtualization) Mona Rakibe: BAM Data Control in multiple ADF Faces Components "When two or more ADF Faces components must display the same data, and are bound to the same Oracle BAM data control definition, we have to make sure that we wrap each ADF Faces component in an ADF task flow, and set the Data Control Scope to isolated. " Mona Rakibe shows you how. (tags: oracle otn soa bam adf) Martin Widlake: Performance Tipping Points Martin Widlake offers "a nice example of a performance tipping point. This is where Everything is OK until you reach a point where it all quickly cascades to Not OK." (tags: oracle otn database architecture performance) Steve Chan: EBS Techstack Sessions at OAUG/Collaborate 2010 Steve Chan shares a list of Collaborate 2010 sessions featuring Oracle E-Business Suite Applications Technology Group staffers. (tags: oracle otn collaborate2010 ebs) @ORACLENERD: Developing in APEX Oracle ACE Chet Justice counts the ways... (tags: otn oracle oracleace apex) @bex: Almost Time For IOUG Collaborate 2010 Oracle ACE Director Bex Huff shares details on his Collaborate 2010 presentation, "The Top 10 Things Oracle UCM Customers Need To Know About WebLogic:" (tags: oracle otn oracleace collaborate2010 weblogic ucm enterprise2.0)

    Read the article

  • links for 2010-06-09

    - by Bob Rhubart
    Enterprise Architecture: From Incite comes Insight...: Why aren't we seeing more adoption of open source in large enterprises? (tags: ping.fm entarch opensource linux) Forms Modernization, Part 1: Motivation for change iAdvise blog (tags: ping.fm oracleace apex middleware oracle) OmniGraffle for iPad Now Supports VGA Output (Enterprise Architecture at Oracle) (tags: ping.fm entarch ipad oracle) SysAdmin access in Oracle VDI - Jaap's VDI Blog Space (tags: ping.fm virtualization sunray vdi) Securing Enterprise Data in AWS Oracle PeopleSoft Enterprise Consulting, Support and Training (tags: ping.fm cloud peoplesoft entarch) Enterprise Software Development with Java: ODTUG Kaleidoscope 2010 - preparations and sessions (tags: ping.fm oracle java oracleace) @toddbiske: Enterprise Architecture Must Assist Delivery "In most IT organizations, things get delivered through projects, and enterprise architects don’t typically play the role of project architect. At best, there is an indirect association with delivery." -- Todd Biske (tags: entarch enterprisearchitecture) @pevansgreenwood: The Rules of Enterprise IT "The rules of this game need to change if enterprise IT — as we know it — is to remain relevant in the future." -- Peter Evans Greenwood (tags: entarch enterprisearchitecture) @bex: Oracle UCM 11g Now Released! "Good news!" says Oracle ACE Director Bex Huff. "The 11g version of Oracle UCM is finally available! This version is a bit of a re-write to run on top of the WebLogic application server. Oracle has been talking about this release for some time, so I'm glad to see it finally available." (tags: oracle enteprise2.0 e20 oracleace) Marc Kelderman: SOA 11g Cloning Cloning an Oracle SOA Suite 11g environment is rather simple. Marc Kelderman shows you how. (tags: soa oracle)

    Read the article

  • links for 2010-05-03

    - by Bob Rhubart
    @ORACLENERD: Exadata + The Hartford Oracle ACE Chet "ORACLENERD" Justice went digging for information on Oracle Exadata, and shares the results. (tags: oracle otn oracleace hardware database exadata) @myfear: About the Java EE 6 Web Profile and the Future "If you look at the new web profile in more detail, you see that it is a specified minimal configuration targeted for small footprint servers that should support something called 'typical' web applications. It is thought of as a minimal specification, so a vendor is free to add additional services in their concrete implementation." -- Oracle ACE Director Markus Eisele (tags: oracle otn oracleace java) Edwin Biemond: WSM in FMW 11g Patch Set 2 and OSB 11g Oracle ACE Edwin Biemond of Whitehorses takes a look at the security aspects of Oracle Fusion Middleware and Oracle Service Bus 11g. (tags: oracle otn oracleace fusionmiddleware servicebus osb) James Taylor: Installing SOA Suite 11.1.1.3 James Taylor documents his attempt to implement a complete SOA Environment with SOA Suite, BPM and OSB on the WLS infrastructure. (tags: oracle otn soa soasuite fusionmiddleware) Eric Elzinga: Oracle Service Bus 11g Installation Eric Elzinga illustrates the Oracle Service Bus 11g installation process. (tags: otn oracle soa esb)

    Read the article

  • Right-Time Retail Part 3

    - by David Dorf
    This is part three of the three-part series.  Read Part 1 and Part 2 first. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Right-Time Marketing Real-time isn’t just about executing faster; it extends to interactions with customers as well. As an industry, we’ve spent many years analyzing all the data that’s been collected. Yes, that data has been invaluable in helping us make better decisions like where to open new stores, how to assort those stores, and how to price our products. But the recent advances in technology are now making it possible to analyze and deliver that data very quickly… fast enough to impact a potential sale in near real-time. Let me give you two examples. Salesmen in car dealerships get pretty good at sizing people up. When a potential customer walks in the door, it doesn’t take long for the salesman to figure out the revenue at stake. Is this person a real buyer, or just looking for a fun test drive? Will this person buy today or three months from now? Will this person opt for the expensive packages, or go bare bones? While the salesman certainly asks some leading questions, much of information is discerned through body language. But body language doesn’t translate very well over the web. Eloqua, which was acquired by Oracle earlier this year, reads internet body language. By tracking the behavior of the people visiting your web site, Eloqua categorizes visitors based on their propensity to buy. While Eloqua’s roots have been in B2B, we’ve been looking at leveraging the technology with ATG to target B2C. Knowing what sites were previously visited, how often the customer has been to your site recently, and how long they’ve spent searching can help understand where the customer is in their purchase journey. And knowing that bit of information may be enough to help close the deal with a real-time offer, follow-up email, or online customer service pop-up. This isn’t so different from the days gone by when the clerk behind the counter of the corner store noticed you were lingering in a particular aisle, so he walked over to help you compare two products and close the sale. You appreciated the personalized service, and he knew the value of the long-term relationship. Move that same concept into the digital world and you have Oracle’s CX Suite, a cloud-based offering of end-to-end customer experience tools, assembled primarily from acquisitions. Those tools are Oracle Marketing (Eloqua), Oracle Commerce (ATG, Endeca), Oracle Sales (Oracle CRM On Demand), Oracle Service (RightNow), Oracle Social (Collective Intellect, Vitrue, Involver), and Oracle Content (Fatwire). We are providing the glue that binds the CIO and CMO together to unleash synergies that drive the top-line higher, and by virtue of the cloud-approach, keep costs at bay. My second example of real-time marketing takes place in the store but leverages the concepts of Web marketing. In 1962 the decline of personalized service in retail began. Anyone know the significance of that year? That’s when Target, K-Mart, and Walmart each opened their first stores, and over the succeeding years the industry chose scale over personal service. No longer were you known as “Jane with the snotty kid so make sure we check her out fast,” but you suddenly became “time-starved female age 20-30 with kids.” I’m not saying that was a bad thing – it was the right thing for our industry at the time, and it enabled a huge amount of growth, cheaper prices, and more variety of products. But scale alone is no longer good enough. Today’s sophisticated consumer demands scale, experience, and personal attention. To some extent we’ve delivered that on websites via the magic of cookies, your willingness to log in, and sophisticated data analytics. What store manager wouldn’t love a report detailing all the visitors to his store, where they came from, and which products that examined? People trackers are getting more sophisticated, incorporating infrared, video analytics, and even face recognition. (Next time you walk in front on a mannequin, don’t be surprised if it’s looking back.) But the ultimate marketing conduit is the mobile phone. Since each mobile phone emits a unique number on WiFi networks, it becomes the cookie of the physical world. Assuming congress keeps privacy safeguards reasonable, we’ll have a win-win situation for both retailers and consumers. Retailers get to know more about the consumer’s purchase journey, and consumers get higher levels of service with the retailer. When I call my bank, a couple things happen before the call is connected. A reverse look-up on my phone number identifies me so my accounts can be retrieved from Siebel CRM. Then the system anticipates why I’m calling based on recent transactions. In this example, it sees that I was just charged a foreign currency fee, so it assumes that’s the reason I’m calling. It puts all the relevant information on the customer service rep’s screen as it connects the call. When I complain about the fee, the rep immediately sees I’m a great customer and I travel lots, so she suggests switching me to their traveler’s card that doesn’t have foreign transaction fees. That technology is powered by a product called Oracle Real-Time Decisions, a rules engine built to execute very quickly, basically in the time it takes the phone to ring once. So let’s combine the power of that product with our new-found mobile cookie and provide contextual customer interactions in real-time. Our first opportunity comes when a customer crosses a pre-defined geo-fence, typically a boundary around the store. Context is the key to our interaction: that’s the customer (known or anonymous), the time of day and day of week, and location. Thomas near the downtown store on a Wednesday at noon means he’s heading to lunch. If he were near the mall location on a Saturday morning, that’s a completely different context. But on his way to lunch, we’ll let Thomas know that we’ve got a new shipment of ASICS running shoes on display with a simple text message. We used the context to look-up Thomas’ past purchases and understood he was an avid runner. We used the fact that this was lunchtime to select the type of message, in this case an informational message instead of an offer. Thomas enters the store, phone in hand, and walks to the shoe department. He scans one of the new ASICS shoes using the convenient QR Codes we provided on the shelf-tags, but then he starts scanning low-end Nikes. Each scan is another opportunity to both learn from Thomas and potentially interact via another message. Since he historically buys low-end Nikes and keeps scanning them, he’s likely falling back into his old ways. Our marketing rules are currently set to move loyal customer to higher margin products. We could have set the dials to increase visit frequency, move overstocked items, increase basket size, or many other settings, but today we are trying to move Thomas to higher-margin products. We send Thomas another text message, this time it’s a personalized offer for 10% off ASICS good for 24 hours. Offering him a discount on Nikes would be throwing margin away since he buys those anyway. We are using our marketing dollars to change behavior that increases the long-term value of Thomas. He decides to buy the ASICS and scans the discount code on his phone at checkout. Checkout is yet another opportunity to interact with Thomas, so the transaction is sent back to Oracle RTD for evaluation. Since Thomas didn’t buy anything with the shoes, we’ll print a bounce-back coupon on the receipt offering 30% off ASICS socks if he returns within seven days. We have successfully started moving Thomas from low-margin to high-margin products. In both of these marketing scenarios, we are able to leverage data in near real-time to decide how best to interact with the customer and lead to an increase in the lifetime value of the customer. The key here is acting at the moment the customer shows interest using the context of the situation. We aren’t pushing random products at haphazard times. We are tailoring the marketing to be very specific to this customer, and it’s the technology that allows this to happen in near real-time. Conclusion As we enable more right-time integrations and interactions, retailers will begin to offer increased service to their customers. Localized and personalized service at scale will drive loyalty and lead to meaningful revenue growth for the retailers that execute well. Our industry needs to support Commerce Anywhere…and commerce anytime as well.

    Read the article

  • Similar But Not The Same

    - by rickramsey
    A few weeks ago we published an article that explained how to use Oracle Solaris Cluster 3.3 5/11 to provide a virtual, multitiered architecture for Oracle Real Application Cluster (Oracle RAC) 11.2.0.2. We called it ... How to Deploy Oracle RAC on Zone Clusters Welllllll ... we just published another article just like it. Except that it's different. The earlier article was for Oracle RAC 11.2.0.2. This one is for Oracle RAC 11.2.0.3. This one describes how to do the same thing as the earlier one --create an Oracle Solaris Zone cluster, install and configure Oracle Grid Infrastructure and Oracle RAC in the zone cluster, and create an Oracle Solaris Cluster resource for Oracle RAC-- but for version 11.2.0.3 of Oracle RAC. Even though the objective is the same, and the version is only a dot-dot-dot release away, the process is quite different. So we decided to call it: How to Deploy Oracle RAC 11.2.0.3 on Zone Clusters Hope you can keep the different versions clear in your head. If not, let me know, and I'll try to make them easier to distinguish. - Rick Website Newsletter Facebook Twitter

    Read the article

  • links for 2011-01-10

    - by Bob Rhubart
    Clusterware 11gR2: Setting up an Active/Passive failover configuration (Oracle Luxembourg XPS on Database) Some think that expensive third-party cluster systems are necessary when it comes to protecting a system with an Active/Passive architecture with failover capabilities. Not true, according to Gilles Haro. (tags: oracle otn database) Atul Kumar: Part IX : Install OAM Agent - 11g WebGate with OAM 11g Part 9 of Atul's step by step guide to the installation of Oracle Identity Management. (tags: oracle oam identitymanagement security otn) Michel Schildmeijer: Oracle Service Bus: enable / disable proxy service with WLST Amis Technology's Michel Schildmeijer shares a process he found for enabling / disabling a proxy service within Oracle Service Bus 11g with WLST (WebLogic Scripting tool). (tags: oracle soa servicebus weblogic) @andrejusb: SOA & E2.0 Partner Community Forum XIII - in Utrecht, The Netherlands Oracle ACE Director Andrejus Baranovskis shares a nice plug for the SOA & E2.0 Partner Community Forum XIII coming up in March in the Netherlands. (tags: oracle oracleace otn soa enterprise2.0) Oracle Magazine Architect Column: Enterprise Architecture in Interesting Times Oracle ACE Directors Lonneke Dikmans, Ronald van Luttikhuizen, Mike van Alst, and Floyd Teter and Oracle enterprise architect Mans Bhuller share their thoughts on the forces that are shaping enterprise architecture. (tags: oracle otn architect entarch oraclemag) InfoQ: Deriving Agility from SOA and BPM - Ten Things that Separate the Winners from the Losers In this presentation from SOA Symposium 2010, Manas Deb and Clemens Utschig-Utschig discuss how to derive business agility from SOA and BPM, motivations for agility, developing and nurturing agility, influencers and dependencies, how SOA and BPM enable agility, pitfalls and recommendations for organizational culture, and pitfalls and recommendations for business and technical architectures. (tags: ping.fm)

    Read the article

< Previous Page | 187 188 189 190 191 192 193 194 195 196 197 198  | Next Page >