Search Results

Search found 7770 results on 311 pages for 'timothy high'.

Page 191/311 | < Previous Page | 187 188 189 190 191 192 193 194 195 196 197 198  | Next Page >

  • Oracle performance problem

    - by jreid42
    We are using an Oracle 11G machine that is very powerful; has redundant storage etc. It's a beast from what I have been told. We just got this DB for a tool that when I first came on as a coop had like 20 people using, now its upwards of 150 people. I am the only one working on it :( We currently have a system in place that distributes PERL scripts across our entire data center essentially giving us a sort of "grid" computing power. The Perl scripts run a sort of simulation and report back the results to the database. They do selects / inserts. The load is not very high for each script but it could be happening across 20-50 systems at the same time. We then have multiple data centers and users all hitting the same database with this same approach. Our main problem with this is that our database is getting overloaded with connections and having to drop some. We sometimes have upwards of 500 connections. These are old perl scripts and they do not handle this well. Essentially they fail and the results are lost. I would rather avoid having to rewrite a lot of these as they are poorly written, and are a headache to even look at. The database itself is not overloaded, just the connection overhead is too high. We open a connection, make a quick query and then drop the connection. Very short connections but many of them. The database team has basically said we need to lower the number of connections or they are going to ignore us. Because this is distributed across our farm we cant implement persistent connections. I do this with our webserver; but its on a fixed system. The other ones are perl scripts that get opened and closed by the distribution tool and thus arent always running. What would be my best approach to resolving this issue? The scripts themselves can wait for a connection to be open. They do not need to act immediately. Some sort of queing system? I've been suggested to set up a few instances of a tool called "SQL Relay". Maybe one in each data center. How reliable is this tool? How good is this approach? Would it work for what we need? We could have one for each data center and relay requests through it to our main database, keeping a pipeline of open persistent connections? Does this make sense? Is there any other suggestions you can make? Any ideas? Any help would be greatly appreciated. Sadly I am just a coop student working for a very big company and somehow all of this has landed all on my shoulders (there is literally nobody to ask for help; its a hardware company, everybody is hardware engineers, and the database team is useless and in India) and I am quite lost as what the best approach would be? I am extremely overworked and this problem is interfering with on going progress and basically needs to be resolved as quickly as possible; preferably without rewriting the whole system, purchasing hardware (not gonna happen), or shooting myself in the foot. HELP LOL!

    Read the article

  • Understanding the memory consumption on iPhone

    - by zoul
    Hello! I am working on a 2D iPhone game using OpenGL ES and I keep hitting the 24 MB memory limit – my application keeps crashing with the error code 101. I tried real hard to find where the memory goes, but the numbers in Instruments are still much bigger than what I would expect. I ran the application with the Memory Monitor, Object Alloc, Leaks and OpenGL ES instruments. When the application gets loaded, free physical memory drops from 37 MB to 23 MB, the Object Alloc settles around 7 MB, Leaks show two or three leaks a few bytes in size, the Gart Object Size is about 5 MB and Memory Monitor says the application takes up about 14 MB of real memory. I am perplexed as where did the memory go – when I dig into the Object Allocations, most of the memory is in the textures, exactly as I would expect. But both my own texture allocation counter and the Gart Object Size agree that the textures should take up somewhere around 5 MB. I am not aware of allocating anything else that would be worth mentioning, and the Object Alloc agrees. Where does the memory go? (I would be glad to supply more details if this is not enough.) Update: I really tried to find where I could allocate so much memory, but with no results. What drives me wild is the difference between the Object Allocations (~7 MB) and real memory usage as shown by Memory Monitor (~14 MB). Even if there were huge leaks or huge chunks of memory I forget about, the should still show up in the Object Allocations, shouldn’t they? I’ve already tried the usual suspects, ie. the UIImage with its caching, but that did not help. Is there a way to track memory usage “debugger-style”, line by line, watching each statement’s impact on memory usage? What I have found so far: I really am using that much memory. It is not easy to measure the real memory consumption, but after a lot of counting I think the memory consumption is really that high. My fault. I found no easy way to measure the memory used. The Memory Monitor numbers are accurate (these are the numbers that really matter), but the Memory Monitor can’t tell you where exactly the memory goes. The Object Alloc tool is almost useless for tracking the real memory usage. When I create a texture, the allocated memory counter goes up for a while (reading the texture into the memory), then drops (passing the texture data to OpenGL, freeing). This is OK, but does not always happen – sometimes the memory usage stays high even after the texture has been passed on to OpenGL and freed from “my” memory. This means that the total amount of memory allocated as shown by the Object Alloc tool is smaller than the real total memory consumption, but bigger than the real consumption minus textures (real – textures < object alloc < real). Go figure. I misread the Programming Guide. The memory limit of 24 MB applies to textures and surfaces, not the whole application. The actual red line lies a bit further, but I could not find any hard numbers. The consensus is that 25–30 MB is the ceiling. When the system gets short on memory, it starts sending the memory warning. I have almost nothing to free, but other applications do release some memory back to the system, especially Safari (which seems to be caching the websites). When the free memory as shown in the Memory Monitor goes zero, the system starts killing. I had to bite the bullet and rewrite some parts of the code to be more efficient on memory, but I am probably still pushing it. I

    Read the article

  • FusionCharts Sharepoint And dataUrl param.

    - by oivoodoo
    Hi, everyone. I have problem with fusioncharts evaluation in the ASP .NET(Sharepoint Portal). I am customizing survey list for providing new view. I added to scheme.xml the next code. <View BaseViewID="4" Type="HTML" WebPartZoneID="Main" DefaultView="TRUE" DisplayName="Charts" SetupPath="pages\viewpage.aspx" ImageUrl="/_layouts/images/survey.png" Url="overview.aspx" FreeForm="TRUE" ReadOnly="TRUE"> <!-- _locID@DisplayName="camlidV1" _locComment=" " --> <Toolbar Type="Standard" /> <ViewFields> </ViewFields> <ViewEmpty> <SetVar Name="HandlerUrl">/_layouts/IEFS/SurveyHandler.aspx</SetVar> <HTML> <![CDATA[ <!-- START Code Block for Chart 'ChartName' --> <object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000" codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=8,0,0,0" width="350" height="350" name="SurveyChart"> <param name="allowScriptAccess" value="always" /> <param name="movie" value="/_layouts/IEFS/FusionCharts/MSCombi3D.swf"/> <param name="FlashVars" value="&chartWidth=350&chartHeight=350&debugMode=1&dataURL=]]> </HTML> <GetVar Name="HandlerUrl" /> <HTML> <![CDATA["/>]]> </HTML> <HTML> <![CDATA[ <param name="quality" value="high" /> <embed src="/_layouts/IEFS/FusionCharts/MSCombi3D.swf" FlashVars="&chartWidth=350&chartHeight=350&debugMode=1&dataURL=]]> </HTML> <GetVar Name="HandlerUrl" /> <HTML> <![CDATA[" quality="high" width="350" height="350" name="ChartName" allowScriptAccess="always" type="application/x-shockwave-flash" pluginspage="http://www.macromedia.com/go/getflashplayer" /> </object> <!-- END Code Block for Chart 'ChartName' --> ]]> </HTML> </ViewEmpty> As you can see I've just create standard object tag of fusioncharts control(I got it from examples). But when page is rendered I can see the next following error: And I have error: INFO: XML Data provided using dataURL method. dataURL provided: ./_layouts/IEFS/SurveyHandler.aspx dataURL invoked: ./_layouts/IEFS/SurveyHandler.aspx?FCTime=223 ERROR: An error occurred while loading data. Please check your dataURL, by clicking on the "dataURL invoked" link above, to see if it's returing valid XML data. Common causes for error are: No URL Encoding provided for querystrings in dataURL. If your dataURL contains querystrings as parameters, you'll need to URL Encode the same. e.g., Data.asp?id=101&subId=242 should be Data%2Easp%3Fid%3D101%26subId%3D242 Different sub-domain of chart .swf and dataURL. Both need to be same owing to sandbox security. Network error My data-page(handler) is rendered valid xml data. I read this link http://www.fusioncharts.com/docs?/Debug/Basic.html, but it doesn't help me. Have ever you seen same error before? With The Best Regards, Alexander.

    Read the article

  • Real-time graphing in Java

    - by thodinc
    I have an application which updates a variable about between 5 to 50 times a second and I am looking for some way of drawing a continuous XY plot of this change in real-time. Though JFreeChart is not recommended for such a high update rate, many users still say that it works for them. I've tried using this demo and modified it to display a random variable, but it seems to use up 100% CPU usage all the time. Even if I ignore that, I do not want to be restricted to JFreeChart's ui class for constructing forms (though I'm not sure what its capabilities are exactly). Would it be possible to integrate it with Java's "forms" and drop-down menus? (as are available in VB) Otherwise, are there any alternatives I could look into? EDIT: I'm new to Swing, so I've put together a code just to test the functionality of JFreeChart with it (while avoiding the use of the ApplicationFrame class of JFree since I'm not sure how that will work with Swing's combo boxes and buttons). Right now, the graph is being updated immediately and CPU usage is high. Would it be possible to buffer the value with new Millisecond() and update it maybe twice a second? Also, can I add other components to the rest of the JFrame without disrupting JFreeChart? How would I do that? frame.getContentPane().add(new Button("Click")) seems to overwrite the graph. package graphtest; import java.util.Random; import javax.swing.JFrame; import org.jfree.chart.ChartFactory; import org.jfree.chart.ChartPanel; import org.jfree.chart.JFreeChart; import org.jfree.chart.axis.ValueAxis; import org.jfree.chart.plot.XYPlot; import org.jfree.data.time.Millisecond; import org.jfree.data.time.TimeSeries; import org.jfree.data.time.TimeSeriesCollection; public class Main { static TimeSeries ts = new TimeSeries("data", Millisecond.class); public static void main(String[] args) throws InterruptedException { gen myGen = new gen(); new Thread(myGen).start(); TimeSeriesCollection dataset = new TimeSeriesCollection(ts); JFreeChart chart = ChartFactory.createTimeSeriesChart( "GraphTest", "Time", "Value", dataset, true, true, false ); final XYPlot plot = chart.getXYPlot(); ValueAxis axis = plot.getDomainAxis(); axis.setAutoRange(true); axis.setFixedAutoRange(60000.0); JFrame frame = new JFrame("GraphTest"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); ChartPanel label = new ChartPanel(chart); frame.getContentPane().add(label); //Suppose I add combo boxes and buttons here later frame.pack(); frame.setVisible(true); } static class gen implements Runnable { private Random randGen = new Random(); public void run() { while(true) { int num = randGen.nextInt(1000); System.out.println(num); ts.addOrUpdate(new Millisecond(), num); try { Thread.sleep(20); } catch (InterruptedException ex) { System.out.println(ex); } } } } }

    Read the article

  • Strategy and AI for the game 'Proximity'

    - by smci
    'Proximity' is a strategy game of territorial domination similar to Othello, Go and Risk. Two players, uses a 10x12 hex grid. Game invented by Brian Cable in 2007. Seems to be a worthy game for discussing a) optimal strategy then b) how to build an AI Strategies are going to be probabilistic or heuristic-based, due to the randomness factor, and the high branching factor (starts out at 120). So it will be kind of hard to compare objectively. A compute time limit of 5s per turn seems reasonable. Game: Flash version here and many copies elsewhere on the web Rules: here Object: to have control of the most armies after all tiles have been placed. Each turn you received a randomly numbered tile (value between 1 and 20 armies) to place on any vacant board space. If this tile is adjacent to any ally tiles, it will strengthen each tile's defenses +1 (up to a max value of 20). If it is adjacent to any enemy tiles, it will take control over them if its number is higher than the number on the enemy tile. Thoughts on strategy: Here are some initial thoughts; setting the computer AI to Expert will probably teach a lot: minimizing your perimeter seems to be a good strategy, to prevent flips and minimize worst-case damage like in Go, leaving holes inside your formation is lethal, only more so with the hex grid because you can lose armies on up to 6 squares in one move low-numbered tiles are a liability, so place them away from your main territory, near the board edges and scattered. You can also use low-numbered tiles to plug holes in your formation, or make small gains along the perimeter which the opponent will not tend to bother attacking. a triangle formation of three pieces is strong since they mutually reinforce, and also reduce the perimeter Each tile can be flipped at most 6 times, i.e. when its neighbor tiles are occupied. Control of a formation can flow back and forth. Sometimes you lose part of a formation and plug any holes to render that part of the board 'dead' and lock in your territory/ prevent further losses. Low-numbered tiles are obvious-but-low-valued liabilities, but high-numbered tiles can be bigger liabilities if they get flipped (which is harder). One lucky play with a 20-army tile can cause a swing of 200 (from +100 to -100 armies). So tile placement will have both offensive and defensive considerations. Comment 1,2,4 seem to resemble a minimax strategy where we minimize the maximum expected possible loss (modified by some probabilistic consideration of the value ß the opponent can get from 1..20 i.e. a structure which can only be flipped by a ß=20 tile is 'nearly impregnable'.) I'm not clear what the implications of comments 3,5,6 are for optimal strategy. Interested in comments from Go, Chess or Othello players. (The sequel ProximityHD for XBox Live, allows 4-player -cooperative or -competitive local multiplayer increases the branching factor since you now have 5 tiles in your hand at any given time, of which you can only play one. Reinforcement of ally tiles is increased to +2 per ally.)

    Read the article

  • HTTP error code 405: tomcat Url mapping issue

    - by Andrew
    I am having trouble POSTing to my java HTTPServlet. I am getting "HTTP Status 405 - HTTP method GET is not supported by this URL" from my tomcat server". When I debug the servlet the login method is never called. I think it's a url mapping issue within tomcat... web.xml <servlet-mapping> <servlet-name>faxcom</servlet-name> <url-pattern>/faxcom/*</url-pattern> </servlet-mapping> FaxcomService.java @Path("/rest") public class FaxcomService extends HttpServlet{ private FAXCOM_x0020_ServiceLocator service; private FAXCOM_x0020_ServiceSoap port; @GET @Produces("application/json") public String testGet() { return "{ \"got here\":true }"; } @POST @Path("/login") @Consumes("application/json") // @Produces("application/json") public Response login(LoginBean login) { ArrayList<ResultMessageBean> rm = new ArrayList<ResultMessageBean>(10); try { service = new FAXCOM_x0020_ServiceLocator(); service.setFAXCOM_x0020_ServiceSoapEndpointAddress("http://cd-faxserver/faxcom_ws/faxcomservice.asmx"); service.setMaintainSession(true); // enable sessions support port = service.getFAXCOM_x0020_ServiceSoap(); rm.add(new ResultMessageBean(port.logOn( "\\\\CD-Faxserver\\FaxcomQ_API", /* path to the queue */ login.getUserName(), /* username */ login.getPassword(), /* password */ login.getUserType() /* 2 = user conf user */ ))); } catch (RemoteException e) { e.printStackTrace(); } catch (ServiceException e) { e.printStackTrace(); } // return rm; return Response.status(201).entity(rm).build(); } @POST @Path("/newFaxMessage") @Consumes(MediaType.APPLICATION_JSON) @Produces(MediaType.APPLICATION_JSON) public ArrayList<ResultMessageBean> newFaxMessage(FaxBean fax) { ArrayList<ResultMessageBean> rm = new ArrayList<ResultMessageBean>(); try { rm.add(new ResultMessageBean(port.newFaxMessage( fax.getPriority(), /* priority: 0 - low, 1 - normal, 2 - high, 3 - urgent */ fax.getSendTime(), /* send time */ /* "0.0" - immediate */ /* "1.0" - offpeak */ /* "9/14/2007 5:12:11 PM" - to set specific time */ fax.getResolution(), /* resolution: 0 - low res, 1 - high res */ fax.getSubject(), /* subject */ fax.getCoverpage(), /* cover page: "" – default, “(none)� – no cover page */ fax.getMemo(), /* memo */ fax.getSenderName(), /* sender's name */ fax.getSenderFaxNumber(), /* sender's fax */ fax.getRecipients().get(0).getName(), /* recipient's name */ fax.getRecipients().get(0).getCompany(), /* recipient's company */ fax.getRecipients().get(0).getFaxNumber(), /* destination fax number */ fax.getRecipients().get(0).getVoiceNumber(), /* recipient's phone number */ fax.getRecipients().get(0).getAccountNumber() /* recipient's account number */ ))); if (fax.getRecipients().size() > 1) { for (int i = 1; i < fax.getRecipients().size(); i++) rm.addAll(addRecipient(fax.getRecipients().get(i))); } } catch (RemoteException e) { // TODO Auto-generated catch block e.printStackTrace(); } return rm; } } Main.java private static void main(String[] args) { try { URL url = new URL("https://andrew-vm/faxcom/rest/login"); HttpURLConnection conn = (HttpURLConnection) url.openConnection(); conn.setRequestMethod("POST"); conn.setDoOutput(true); conn.setRequestProperty("Content-Type", "application/json"); FileInputStream jsonDemo = new FileInputStream("login.txt"); OutputStream os = (OutputStream) conn.getOutputStream(); os.write(IOUtils.toByteArray(jsonDemo)); os.flush(); if (conn.getResponseCode() != 200) { throw new RuntimeException("Failed : HTTP error code : " + conn.getResponseCode()); } BufferedReader br = new BufferedReader(new InputStreamReader( (conn.getInputStream()))); String output; System.out.println("Output from Server .... \n"); while ((output = br.readLine()) != null) { System.out.println(output); } // Don't want to disconnect - servletInstance will be destroyed // conn.disconnect(); } catch (MalformedURLException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } } I am working from this tutorial: http://www.mkyong.com/webservices/jax-rs/restfull-java-client-with-java-net-url/

    Read the article

  • How to implement an offline reader writer lock

    - by Peter Morris
    Some context for the question All objects in this question are persistent. All requests will be from a Silverlight client talking to an app server via a binary protocol (Hessian) and not WCF. Each user will have a session key (not an ASP.NET session) which will be a string, integer, or GUID (undecided so far). Some objects might take a long time to edit (30 or more minutes) so we have decided to use pessimistic offline locking. Pessimistic because having to reconcile conflicts would be far too annoying for users, offline because the client is not permanently connected to the server. Rather than storing session/object locking information in the object itself I have decided that any aggregate root that may have its instances locked should implement an interface ILockable public interface ILockable { Guid LockID { get; } } This LockID will be the identity of a "Lock" object which holds the information of which session is locking it. Now, if this were simple pessimistic locking I'd be able to achieve this very simply (using an incrementing version number on Lock to identify update conflicts), but what I actually need is ReaderWriter pessimistic offline locking. The reason is that some parts of the application will perform actions that read these complex structures. These include things like Reading a single structure to clone it. Reading multiple structures in order to create a binary file to "publish" the data to an external source. Read locks will be held for a very short period of time, typically less than a second, although in some circumstances they could be held for about 5 seconds at a guess. Write locks will mostly be held for a long time as they are mostly held by humans. There is a high probability of two users trying to edit the same aggregate at the same time, and a high probability of many users needing to temporarily read-lock at the same time too. I'm looking for suggestions as to how I might implement this. One additional point to make is that if I want to place a write lock and there are some read locks, I would like to "queue" the write lock so that no new read locks are placed. If the read locks are removed withing X seconds then the write lock is obtained, if not then the write lock backs off; no new read-locks would be placed while a write lock is queued. So far I have this idea The Lock object will have a version number (int) so I can detect multi-update conflicts, reload, try again. It will have a string[] for read locks A string to hold the session ID that has a write lock A string to hold the queued write lock Possibly a recursion counter to allow the same session to lock multiple times (for both read and write locks), but not sure about this yet. Rules: Can't place a read lock if there is a write lock or queued write lock. Can't place a write lock if there is a write lock or queued write lock. If there are no locks at all then a write lock may be placed. If there are read locks then a write lock will be queued instead of a full write lock placed. (If after X time the read locks are not gone the lock backs off, otherwise it is upgraded). Can't queue a write lock for a session that has a read lock. Can anyone see any problems? Suggest alternatives? Anything? I'd appreciate feedback before deciding on what approach to take.

    Read the article

  • c#: exporting swf object as image to Word

    - by Lynn
    Hello in my Asp.net web page (C# on backend) I use a Repeater, whose items consist of a title and a Flex chart (embedded .swf file). I am trying to export the contents of the Repeater to a Word document. My problem is to convert the SWF files into images and pass it on to the Word document. The swf object has a public function which returns a byteArray representation of itself (public function grabScreen():ByteArray), but I do not know how to call it directly from c#. I have access to the mxml files, so I can make modifications to the swf files, if needed. The code is shown below, and your help is appreciated :) .aspx <asp:Button ID="Button1" runat="server" text="export to Word" onclick="print2"/> <asp:Repeater ID="rptrQuestions" runat="server" OnItemDataBound="rptrQuestions_ItemDataBound" > ... <ItemTemplate> <tr> <td> <div align="center"> <asp:Label class="text" Text='<%#DataBinder.Eval(Container.DataItem, "Question_title")%>' runat="server" ID="lbl_title" NAME="lbl_title"/> <br> </div> </td> </tr> <tr><td> <object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" id="result_survey" width="100%" height="100%" codebase="http://fpdownload.macromedia.com/get/flashplayer/current/swflash.cab"> <param name="movie" value="result_survey.swf" /> <param name="quality" value="high" /> <param name="bgcolor" value="#ffffff" /> <param name="allowScriptAccess" value="sameDomain" /> <param name="flashvars" value='<%#DataBinder.Eval(Container.DataItem, "rank_order")%>' /> <embed src="result_survey.swf?rankOrder='<%#DataBinder.Eval(Container.DataItem, "rank_order")%>' quality="high" bgcolor="#ffffff" width="100%" height="100%" name="result_survey" align="middle" play="true" loop="false" allowscriptaccess="sameDomain" type="application/x-shockwave-flash" pluginspage="http://www.adobe.com/go/getflashplayer"> </embed> </object> </td></tr> </ItemTemplate> </asp:Repeater> c# protected void print2(object sender, EventArgs e) { HttpContext.Current.Response.Clear(); HttpContext.Current.Response.Charset = ""; HttpContext.Current.Response.ContentEncoding = System.Text.Encoding.UTF7; HttpContext.Current.Response.Cache.SetCacheability(HttpCacheability.NoCache); HttpContext.Current.Response.ContentType = "application/msword"; HttpContext.Current.Response.AddHeader("content-disposition", "attachment;filename=" + "Report.doc"); EnableViewState = false; System.IO.StringWriter sw = new System.IO.StringWriter(); HtmlTextWriter htw = new HtmlTextWriter(sw); // Here I render the Repeater foreach (RepeaterItem row in rptrQuestions.Items) { row.RenderControl(htw); } StringBuilder sb1 = new StringBuilder(); sb1 = sb1.Append("<table>" + sw.ToString() + "</table>"); HttpContext.Current.Response.Write(sb1.ToString()); HttpContext.Current.Response.Flush(); HttpContext.Current.Response.End(); } .mxml //################################################## // grabScreen (return image representation of the SWF movie (snapshot) //###################################################### public function grabScreen() : ByteArray { return ImageSnapshot.captureImage( boxMain, 0, new PNGEncoder() ).data(); }

    Read the article

  • Wordpress add_meta_box() weirdness

    - by Scott B
    The code below is working nearly flawlessly, however my value for page title on one of my pages keeps coming up empty after a few page refreshes... It sticks for awhile, then it appears to reset to empty. I'm thinking I must have a conflict in the code below, but I can't quite figure it. I'm allowing the user to set a custom page title for posts as well as pages via a custom "post/page title input field). Can anyone see an obvious issue here that might be resetting the page title to blank? // =================== // = POST OPTION BOX = // =================== add_action('admin_menu', 'my_post_options_box'); function my_post_options_box() { if ( function_exists('add_meta_box') ) { //add_meta_box( $id, $title, $callback, $page, $context, $priority ); add_meta_box('post_header', 'Custom Post Header Code (optional)', 'custom_post_images', 'post', 'normal', 'low'); add_meta_box('post_title', 'Custom Post Title', 'custom_post_title', 'post', 'normal', 'high'); add_meta_box('post_title_page', 'Custom Post Title', 'custom_post_title', 'page', 'normal', 'high'); add_meta_box('postexcerpt', __('Excerpt'), 'post_excerpt_meta_box', 'page', 'normal', 'core'); add_meta_box('categorydiv', __('Page Options'), 'post_categories_meta_box', 'page', 'side', 'core'); } } //Adds the custom images box function custom_post_images() { global $post; ?> <div class="inside"> <textarea style="height:70px; width:100%;margin-left:-5px;" name="customHeader" id="customHeader"><?php echo get_post_meta($post->ID, 'customHeader', true); ?></textarea> <p>Enter your custom html code here for the post page header/image area. Whatever you enter here will override the default post header or image listing <b>for this post only</b>. You can enter image references like so &lt;img src='wp-content/uploads/product1.jpg' /&gt;. To show default images, just leave this field empty</p> </div> <?php } //Adds the custom post title box function custom_post_title() { global $post; ?> <div class="inside"> <p><input style="height:25px;width:100%;margin-left:-10px;" type="text" name="customTitle" id="customTitle" value="<?php echo get_post_meta($post->ID, 'customTitle', true); ?>"></p> <p>Enter your custom post/page title here and it will be used for the html &lt;title&gt; for this post page and the Google link text used for this page.</p> </div> <?php } add_action('save_post', 'custom_add_save'); function custom_add_save($postID){ // called after a post or page is saved if($parent_id = wp_is_post_revision($postID)) { $postID = $parent_id; } if ($_POST['customHeader']) { update_custom_meta($postID, $_POST['customHeader'], 'customHeader'); } else { update_custom_meta($postID, '', 'customHeader'); } if ($_POST['customTitle']) { update_custom_meta($postID, $_POST['customTitle'], 'customTitle'); } else { update_custom_meta($postID, '', 'customTitle'); } } function update_custom_meta($postID, $newvalue, $field_name) { // To create new meta if(!get_post_meta($postID, $field_name)){ add_post_meta($postID, $field_name, $newvalue); }else{ // or to update existing meta update_post_meta($postID, $field_name, $newvalue); } } ?>

    Read the article

  • Adding UL to jQuery UI Tabs

    - by Dave Kiss
    It seems like whenever I try to add a UL inside of the containers when using jQuery UI - Tabs, it breaks the javascript. Is there a way I can use a UL inside of these containers that I am missing? Thanks <div id="tabs"> <div id="fragment-1"> <h4>Pre-Press Requirements</h4> ? SAMPLE of final artwork with noted sizes. ? NATIVE FILES & High Resolution PDF preferred. Files must be created or saved to the listed accepted file formats. ? FONTS used in files need to be supplied in a separate folder marked "fonts". Please ensure all families (screen & printer) fonts are supplied for the job. ? IMAGES must be saved as CMYK and no less than 300dpi. NO RGB FILES! We prefer images to be TIF or EPS formats. If you are submitting artwork for spot color printing vector artwork is preferred. Your images should be supplied in a separate folder marked "links". This will ensure proper reproduction of your artwork. ? COLORS need to be clearly specified. Pantone (PMS) colors preferred. Please specify if job is to be printed CMYK, spot color, etc. ? BLEEDS should be no less than .25" ? PDF's should be High Resolution. Please include any spot colors or CMYK format for full color printing. NO RGB FILES! All bleeds should be included with trim marks. All fonts must be embedded or outlined. No "layered" PDF files. </div> <div id="fragment-2"> <p>Our presses are all capable of sizes up to 11" x 17" using spot color or full color.</p> </div> <div id="fragment-3"> <p>USA Quickprint has complete in house bindery to finish each job to meet your needs.</p> <ul> <li>Folding</li> <li>Scoring</li> <li>Perforation</li> <li>Drilling</li> <li>Shrink Wrap</li> <li>Trimming</li> <li>Collating</li> <li>Spiral Binding</li> <li>GBC Binding</li> <li>Padding</li> <li>Stapling</li> <li>Numbering</li> <li>Lamination</li> </ul> </div>

    Read the article

  • SQL Server 2008: Using Multiple dts Ranges to Build a Set of Dates

    - by raoulcousins
    I'm trying to build a query for a medical database that counts the number of patients that were on at least one medication from a class of medications (the medications listed below in the FAST_MEDS CTE) and had either: 1) A diagnosis of myopathy (the list of diagnoses in the FAST_DX CTE) 2) A CPK lab value above 1000 (the lab value in the FAST_LABS CTE) and this diagnosis or lab happened AFTER a patient was on a statin. The query I've included below does that under the assumption that once a patient is on a statin, they're on a statin forever. The first CTE collects the ids of patients that were on a statin along with the first date of their diagnosis, the second those with a diagnosis, and the third those with a high lab value. After this I count those that match the above criteria. What I would like to do is drop the assumption that once a patient is on a statin, they're on it for life. The table edw_dm.patient_medications has a column called start_dts and end_dts. This table has one row for each prescription written, with start_dts and end_dts denoting the start and end date of the prescription. End_dts could be null, which I'll take to assume that the patient is currently on this medication (it could be a missing record, but I can't do anything about this). If a patient is on two different statins, the start and ends dates can overlap, and there may be multiple records of the same medication for a patient, as in a record showing 3-11-2000 to 4-5-2003 and another for the same patient showing 5-6-2007 to 7-8-2009. I would like to use these two columns to build a query where I'm only counting the patients that had a lab value or diagnosis done during a time when they were already on a statin, or in the first n (say 3) months after they stopped taking a statin. I'm really not sure how to go about rewriting the first CTE to get this information and how to do the comparison after the CTEs are built. I know this is a vague question, but I'm really stumped. Any ideas? As always, thank you in advance. Here's the current query: WITH FAST_MEDS AS ( select distinct statins.mrd_pt_id, min(year(statins.order_dts)) as statin_yr from edw_dm.patient_medications as statins inner join mrd.medications as mrd on statins.mrd_med_id = mrd.mrd_med_id WHERE mrd.generic_nm in ( 'Lovastatin (9664708500)', 'lovastatin-niacin', 'Lovastatin/Niacin', 'Lovastatin', 'Simvastatin (9678583966)', 'ezetimibe-simvastatin', 'niacin-simvastatin', 'ezetimibe/Simvastatin', 'Niacin/Simvastatin', 'Simvastatin', 'Aspirin Buffered-Pravastatin', 'aspirin-pravastatin', 'Aspirin/Pravastatin', 'Pravastatin', 'amlodipine-atorvastatin', 'Amlodipine/atorvastatin', 'atorvastatin', 'fluvastatin', 'rosuvastatin' ) and YEAR(statins.order_dts) IS NOT NULL and statins.mrd_pt_id IS NOT NULL group by statins.mrd_pt_id ) select * into #meds from FAST_MEDS ; --return patients who had a diagnosis in the list and the year that --diagnosis was given with FAST_DX AS ( SELECT pd.mrd_pt_id, YEAR(pd.init_noted_dts) as init_yr FROM edw_dm.patient_diagnoses as pd inner join mrd.diagnoses as mrd on pd.mrd_dx_id = mrd.mrd_dx_id and mrd.icd9_cd in ('728.89','729.1','710.4','728.3','729.0','728.81','781.0','791.3') ) select * into #dx from FAST_DX; --return patients who had a high cpk value along with the year the cpk --value was taken with FAST_LABS AS ( SELECT pl.mrd_pt_id, YEAR(pl.order_dts) as lab_yr FROM edw_dm.patient_labs as pl inner join mrd.labs as mrd on pl.mrd_lab_id = mrd.mrd_lab_id and mrd.lab_nm = 'CK (CPK)' WHERE pl.lab_val between 1000 AND 999998 ) select * into #labs from FAST_LABS; -- count the number of patients who had a lab value or a medication -- value taken sometime AFTER their initial statin diagnosis select count(distinct p.mrd_pt_id) as ct from mrd.patient_demographics as p join #meds as m on p.mrd_pt_id = m.mrd_pt_id AND ( EXISTS ( SELECT 'A' FROM #labs l WHERE p.mrd_pt_id = l.mrd_pt_id and l.lab_yr >= m.statin_yr ) OR EXISTS( SELECT 'A' FROM #dx d WHERE p.mrd_pt_id = d.mrd_pt_id AND d.init_yr >= m.statin_yr ) )

    Read the article

  • subset in geom_point SOMETIMES returns full dataset, instead of none.

    - by Andreas
    I ask the following in the hope that someone might come up with a generic description about the problem.Basically I have no idea whats wrong with my code. When I run the code below, plot nr. 8 turns out wrong. Specifically the subset in geom_point does not work the way it should. (update: With plot nr. 8 the whole dataset is plottet, instead of only the subset). If somebody can tell me what the problem is, I'll update this post. SOdata <- structure(list(id = 10:55, one = c(7L, 8L, 7L, NA, 7L, 8L, 5L, 7L, 7L, 8L, NA, 10L, 8L, NA, NA, NA, NA, 6L, 5L, 6L, 8L, 4L, 7L, 6L, 9L, 7L, 5L, 6L, 7L, 6L, 5L, 8L, 8L, 7L, 7L, 6L, 6L, 8L, 6L, 8L, 8L, 7L, 7L, 5L, 5L, 8L), two = c(7L, NA, 8L, NA, 10L, 10L, 8L, 9L, 4L, 10L, NA, 10L, 9L, NA, NA, NA, NA, 7L, 8L, 9L, 10L, 9L, 8L, 8L, 8L, 8L, 8L, 9L, 10L, 8L, 8L, 8L, 10L, 9L, 10L, 8L, 9L, 10L, 8L, 8L, 7L, 10L, 8L, 9L, 7L, 9L), three = c(7L, 10L, 7L, NA, 10L, 10L, NA, 10L, NA, NA, NA, NA, 10L, NA, NA, 4L, NA, 7L, 7L, 4L, 10L, 10L, 7L, 4L, 7L, NA, 10L, 4L, 7L, 7L, 7L, 10L, 10L, 7L, 10L, 4L, 10L, 10L, 10L, 4L, 10L, 10L, 10L, 10L, 7L, 10L), four = c(7L, 10L, 4L, NA, 10L, 7L, NA, 7L, NA, NA, NA, NA, 10L, NA, NA, 4L, NA, 10L, 10L, 7L, 10L, 10L, 7L, 7L, 7L, NA, 10L, 7L, 4L, 10L, 4L, 7L, 10L, 2L, 10L, 4L, 12L, 4L, 7L, 10L, 10L, 12L, 12L, 4L, 7L, 10L), five = c(7L, NA, 6L, NA, 8L, 8L, 7L, NA, 9L, NA, NA, NA, 9L, NA, NA, NA, NA, 7L, 8L, NA, NA, 7L, 7L, 4L, NA, NA, NA, NA, 5L, 6L, 5L, 7L, 7L, 6L, 9L, NA, 10L, 7L, 8L, 5L, 7L, 10L, 7L, 4L, 5L, 10L), six = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("2010-05-25", "2010-05-27", "2010-06-07"), class = "factor"), seven = c(0.777777777777778, 0.833333333333333, 0.333333333333333, 0.888888888888889, 0.5, 0.888888888888889, 0.777777777777778, 0.722222222222222, 0.277777777777778, 0.611111111111111, 0.722222222222222, 1, 0.888888888888889, 0.722222222222222, 0.555555555555556, NA, 0, 0.666666666666667, 0.666666666666667, 0.833333333333333, 0.833333333333333, 0.833333333333333, 0.833333333333333, 0.722222222222222, 0.833333333333333, 0.888888888888889, 0.666666666666667, 1, 0.777777777777778, 0.722222222222222, 0.5, 0.833333333333333, 0.722222222222222, 0.388888888888889, 0.722222222222222, 1, 0.611111111111111, 0.777777777777778, 0.722222222222222, 0.944444444444444, 0.555555555555556, 0.666666666666667, 0.722222222222222, 0.444444444444444, 0.333333333333333, 0.777777777777778), eight = c(0.666666666666667, 0.333333333333333, 0.833333333333333, 0.666666666666667, 1, 1, 0.833333333333333, 0.166666666666667, 0.833333333333333, 0.833333333333333, 1, 1, 0.666666666666667, 0.666666666666667, 0.333333333333333, 0.5, 0, 0.666666666666667, 0.5, 1, 0.666666666666667, 0.5, 0.666666666666667, 0.666666666666667, 0.666666666666667, 0.333333333333333, 0.333333333333333, 1, 0.666666666666667, 0.833333333333333, 0.666666666666667, 0.666666666666667, 0.5, 0, 0.833333333333333, 1, 0.666666666666667, 0.5, 0.666666666666667, 0.666666666666667, 0.5, 1, 0.833333333333333, 0.666666666666667, 0.833333333333333, 0.666666666666667), nine = c(0.307692307692308, NA, 0.461538461538462, 0.538461538461538, 1, 0.769230769230769, 0.538461538461538, 0.692307692307692, 0, 0.153846153846154, 0.769230769230769, NA, 0.461538461538462, NA, NA, NA, NA, 0, 0.615384615384615, 0.615384615384615, 0.769230769230769, 0.384615384615385, 0.846153846153846, 0.923076923076923, 0.615384615384615, 0.692307692307692, 0.0769230769230769, 0.846153846153846, 0.384615384615385, 0.384615384615385, 0.461538461538462, 0.384615384615385, 0.461538461538462, NA, 0.923076923076923, 0.692307692307692, 0.615384615384615, 0.615384615384615, 0.769230769230769, 0.0769230769230769, 0.230769230769231, 0.692307692307692, 0.769230769230769, 0.230769230769231, 0.769230769230769, 0.615384615384615), ten = c(0.875, 0.625, 0.375, 0.75, 0.75, 0.75, 0.625, 0.875, 1, 0.125, 1, NA, 0.625, 0.75, 0.75, 0.375, NA, 0.625, 0.5, 0.75, 0.875, 0.625, 0.875, 0.75, 0.625, 0.875, 0.5, 0.75, 0, 0.5, 0.875, 1, 0.75, 0.125, 0.5, 0.5, 0.5, 0.625, 0.375, 0.625, 0.625, 0.75, 0.875, 0.375, 0, 0.875), elleven = c(1, 0.8, 0.7, 0.9, 0, 1, 0.9, 0.5, 0, 0.8, 0.8, NA, 0.8, NA, NA, 0.8, NA, 0.4, 0.8, 0.5, 1, 0.4, 0.5, 0.9, 0.8, 1, 0.8, 0.5, 0.3, 0.9, 0.2, 1, 0.8, 0.1, 1, 0.8, 0.5, 0.2, 0.7, 0.8, 1, 0.9, 0.6, 0.8, 0.2, 1), twelve = c(0.666666666666667, NA, 0.133333333333333, 1, 1, 0.8, 0.4, 0.733333333333333, NA, 0.933333333333333, NA, NA, 0.6, 0.533333333333333, NA, 0.533333333333333, NA, 0, 0.6, 0.533333333333333, 0.733333333333333, 0.6, 0.733333333333333, 0.666666666666667, 0.533333333333333, 0.733333333333333, 0.466666666666667, 0.733333333333333, 1, 0.733333333333333, 0.666666666666667, 0.533333333333333, NA, 0.533333333333333, 0.6, 0.866666666666667, 0.466666666666667, 0.533333333333333, 0.333333333333333, 0.6, 0.6, 0.866666666666667, 0.666666666666667, 0.6, 0.6, 0.533333333333333)), .Names = c("id", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "elleven", "twelve"), class = "data.frame", row.names = c(NA, -46L)) iqr <- function(x, ...) { qs <- quantile(as.numeric(x), c(0.25, 0.5, 0.75), na.rm = T) names(qs) <- c("ymin", "y", "ymax") qs } magic <- function(y, ...) { high <- median(SOdata[[y]], na.rm=T)+1.5*sd(SOdata[[y]],na.rm=T) low <- median(SOdata[[y]], na.rm=T)-1.5*sd(SOdata[[y]],na.rm=T) ggplot(SOdata, aes_string(x="six", y=y))+ stat_summary(fun.data="iqr", geom="crossbar", fill="grey", alpha=0.3)+ geom_point(data = SOdata[SOdata[[y]] > high,], position=position_jitter(w=0.1, h=0),col="green", alpha=0.5)+ geom_point(data = SOdata[SOdata[[y]] < low,], position=position_jitter(w=0.1, h=0),col="red", alpha=0.5)+ stat_summary(fun.y=median, geom="point",shape=18 ,size=4, col="orange") } for (i in names(SOdata)[-c(1,7)]) { p<- magic(i) ggsave(paste("magig_plot_",i,".png",sep=""), plot=p, height=3.5, width=5.5) }

    Read the article

  • What is wrong here (will update): subset in geom_point does not work as expected

    - by Andreas
    I ask the following in the hope that someone might come up with a generic description about the problem.Basically I have no idea whats wrong with my code. When I run the code below, plot nr. 8 turns out wrong. Specifically the subset in geom_point does not work the way it should. If somebody can tell me what the problem is, I'll update this post. SOdata <- structure(list(id = 10:55, one = c(7L, 8L, 7L, NA, 7L, 8L, 5L, 7L, 7L, 8L, NA, 10L, 8L, NA, NA, NA, NA, 6L, 5L, 6L, 8L, 4L, 7L, 6L, 9L, 7L, 5L, 6L, 7L, 6L, 5L, 8L, 8L, 7L, 7L, 6L, 6L, 8L, 6L, 8L, 8L, 7L, 7L, 5L, 5L, 8L), two = c(7L, NA, 8L, NA, 10L, 10L, 8L, 9L, 4L, 10L, NA, 10L, 9L, NA, NA, NA, NA, 7L, 8L, 9L, 10L, 9L, 8L, 8L, 8L, 8L, 8L, 9L, 10L, 8L, 8L, 8L, 10L, 9L, 10L, 8L, 9L, 10L, 8L, 8L, 7L, 10L, 8L, 9L, 7L, 9L), three = c(7L, 10L, 7L, NA, 10L, 10L, NA, 10L, NA, NA, NA, NA, 10L, NA, NA, 4L, NA, 7L, 7L, 4L, 10L, 10L, 7L, 4L, 7L, NA, 10L, 4L, 7L, 7L, 7L, 10L, 10L, 7L, 10L, 4L, 10L, 10L, 10L, 4L, 10L, 10L, 10L, 10L, 7L, 10L), four = c(7L, 10L, 4L, NA, 10L, 7L, NA, 7L, NA, NA, NA, NA, 10L, NA, NA, 4L, NA, 10L, 10L, 7L, 10L, 10L, 7L, 7L, 7L, NA, 10L, 7L, 4L, 10L, 4L, 7L, 10L, 2L, 10L, 4L, 12L, 4L, 7L, 10L, 10L, 12L, 12L, 4L, 7L, 10L), five = c(7L, NA, 6L, NA, 8L, 8L, 7L, NA, 9L, NA, NA, NA, 9L, NA, NA, NA, NA, 7L, 8L, NA, NA, 7L, 7L, 4L, NA, NA, NA, NA, 5L, 6L, 5L, 7L, 7L, 6L, 9L, NA, 10L, 7L, 8L, 5L, 7L, 10L, 7L, 4L, 5L, 10L), six = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("2010-05-25", "2010-05-27", "2010-06-07"), class = "factor"), seven = c(0.777777777777778, 0.833333333333333, 0.333333333333333, 0.888888888888889, 0.5, 0.888888888888889, 0.777777777777778, 0.722222222222222, 0.277777777777778, 0.611111111111111, 0.722222222222222, 1, 0.888888888888889, 0.722222222222222, 0.555555555555556, NA, 0, 0.666666666666667, 0.666666666666667, 0.833333333333333, 0.833333333333333, 0.833333333333333, 0.833333333333333, 0.722222222222222, 0.833333333333333, 0.888888888888889, 0.666666666666667, 1, 0.777777777777778, 0.722222222222222, 0.5, 0.833333333333333, 0.722222222222222, 0.388888888888889, 0.722222222222222, 1, 0.611111111111111, 0.777777777777778, 0.722222222222222, 0.944444444444444, 0.555555555555556, 0.666666666666667, 0.722222222222222, 0.444444444444444, 0.333333333333333, 0.777777777777778), eight = c(0.666666666666667, 0.333333333333333, 0.833333333333333, 0.666666666666667, 1, 1, 0.833333333333333, 0.166666666666667, 0.833333333333333, 0.833333333333333, 1, 1, 0.666666666666667, 0.666666666666667, 0.333333333333333, 0.5, 0, 0.666666666666667, 0.5, 1, 0.666666666666667, 0.5, 0.666666666666667, 0.666666666666667, 0.666666666666667, 0.333333333333333, 0.333333333333333, 1, 0.666666666666667, 0.833333333333333, 0.666666666666667, 0.666666666666667, 0.5, 0, 0.833333333333333, 1, 0.666666666666667, 0.5, 0.666666666666667, 0.666666666666667, 0.5, 1, 0.833333333333333, 0.666666666666667, 0.833333333333333, 0.666666666666667), nine = c(0.307692307692308, NA, 0.461538461538462, 0.538461538461538, 1, 0.769230769230769, 0.538461538461538, 0.692307692307692, 0, 0.153846153846154, 0.769230769230769, NA, 0.461538461538462, NA, NA, NA, NA, 0, 0.615384615384615, 0.615384615384615, 0.769230769230769, 0.384615384615385, 0.846153846153846, 0.923076923076923, 0.615384615384615, 0.692307692307692, 0.0769230769230769, 0.846153846153846, 0.384615384615385, 0.384615384615385, 0.461538461538462, 0.384615384615385, 0.461538461538462, NA, 0.923076923076923, 0.692307692307692, 0.615384615384615, 0.615384615384615, 0.769230769230769, 0.0769230769230769, 0.230769230769231, 0.692307692307692, 0.769230769230769, 0.230769230769231, 0.769230769230769, 0.615384615384615), ten = c(0.875, 0.625, 0.375, 0.75, 0.75, 0.75, 0.625, 0.875, 1, 0.125, 1, NA, 0.625, 0.75, 0.75, 0.375, NA, 0.625, 0.5, 0.75, 0.875, 0.625, 0.875, 0.75, 0.625, 0.875, 0.5, 0.75, 0, 0.5, 0.875, 1, 0.75, 0.125, 0.5, 0.5, 0.5, 0.625, 0.375, 0.625, 0.625, 0.75, 0.875, 0.375, 0, 0.875), elleven = c(1, 0.8, 0.7, 0.9, 0, 1, 0.9, 0.5, 0, 0.8, 0.8, NA, 0.8, NA, NA, 0.8, NA, 0.4, 0.8, 0.5, 1, 0.4, 0.5, 0.9, 0.8, 1, 0.8, 0.5, 0.3, 0.9, 0.2, 1, 0.8, 0.1, 1, 0.8, 0.5, 0.2, 0.7, 0.8, 1, 0.9, 0.6, 0.8, 0.2, 1), twelve = c(0.666666666666667, NA, 0.133333333333333, 1, 1, 0.8, 0.4, 0.733333333333333, NA, 0.933333333333333, NA, NA, 0.6, 0.533333333333333, NA, 0.533333333333333, NA, 0, 0.6, 0.533333333333333, 0.733333333333333, 0.6, 0.733333333333333, 0.666666666666667, 0.533333333333333, 0.733333333333333, 0.466666666666667, 0.733333333333333, 1, 0.733333333333333, 0.666666666666667, 0.533333333333333, NA, 0.533333333333333, 0.6, 0.866666666666667, 0.466666666666667, 0.533333333333333, 0.333333333333333, 0.6, 0.6, 0.866666666666667, 0.666666666666667, 0.6, 0.6, 0.533333333333333)), .Names = c("id", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "elleven", "twelve"), class = "data.frame", row.names = c(NA, -46L)) iqr <- function(x, ...) { qs <- quantile(as.numeric(x), c(0.25, 0.5, 0.75), na.rm = T) names(qs) <- c("ymin", "y", "ymax") qs } magic <- function(y, ...) { high <- median(SOdata[[y]], na.rm=T)+1.5*sd(SOdata[[y]],na.rm=T) low <- median(SOdata[[y]], na.rm=T)-1.5*sd(SOdata[[y]],na.rm=T) ggplot(SOdata, aes_string(x="six", y=y))+ stat_summary(fun.data="iqr", geom="crossbar", fill="grey", alpha=0.3)+ geom_point(data = SOdata[SOdata[[y]] > high,], position=position_jitter(w=0.1, h=0),col="green", alpha=0.5)+ geom_point(data = SOdata[SOdata[[y]] < low,], position=position_jitter(w=0.1, h=0),col="red", alpha=0.5)+ stat_summary(fun.y=median, geom="point",shape=18 ,size=4, col="orange") } for (i in names(SOdata)[-c(1,7)]) { p<- magic(i) ggsave(paste("magig_plot_",i,".png",sep=""), plot=p, height=3.5, width=5.5) }

    Read the article

  • Using dynamic enum as type in a parameter of a method

    - by samar
    Hi Experts, What i am trying to achieve here is a bit tricky. Let me brief on a little background first before going ahead. I am aware that we can use a enum as a type to a parameter of a method. For example I can do something like this (a very basic example) namespace Test { class DefineEnums { public enum MyEnum { value1 = 0, value2 = 1 } } class UseEnums { public void UseDefinedEnums(DefineEnums.MyEnum _enum) { //Any code here. } public void Test() { // "value1" comes here with the intellisense. UseDefinedEnums(DefineEnums.MyEnum.value1); } } } What i need to do is create a dynamic Enum and use that as type in place of DefineEnums.MyEnum mentioned above. I tried the following. 1. Used a method which i got from the net to create a dynamic enum from a list of strings. And created a static class which i can use. using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; namespace Test { public static class DynamicEnum { public static Enum finished; static List<string> _lst = new List<string>(); static DynamicEnum() { _lst.Add("value1"); _lst.Add("value2"); finished = CreateDynamicEnum(_lst); } public static Enum CreateDynamicEnum(List<string> _list) { // Get the current application domain for the current thread. AppDomain currentDomain = AppDomain.CurrentDomain; // Create a dynamic assembly in the current application domain, // and allow it to be executed and saved to disk. AssemblyName aName = new AssemblyName("TempAssembly"); AssemblyBuilder ab = currentDomain.DefineDynamicAssembly( aName, AssemblyBuilderAccess.RunAndSave); // Define a dynamic module in "TempAssembly" assembly. For a single- // module assembly, the module has the same name as the assembly. ModuleBuilder mb = ab.DefineDynamicModule(aName.Name, aName.Name + ".dll"); // Define a public enumeration with the name "Elevation" and an // underlying type of Integer. EnumBuilder eb = mb.DefineEnum("Elevation", TypeAttributes.Public, typeof(int)); // Define two members, "High" and "Low". //eb.DefineLiteral("Low", 0); //eb.DefineLiteral("High", 1); int i = 0; foreach (string item in _list) { eb.DefineLiteral(item, i); i++; } // Create the type and save the assembly. return (Enum)Activator.CreateInstance(eb.CreateType()); //ab.Save(aName.Name + ".dll"); } } } Tried using the class but i am unable to find the "finished" enum defined above. i.e. I am not able to do the following public static void TestDynEnum(Test.DynamicEnum.finished _finished) { // Do anything here with _finished. } I guess the post has become too long but i hope i have made it quite clear. Please help! Thanks in advance! Regards, Samar

    Read the article

  • How best to modernize the 2002-era J2EE app?

    - by user331465
    I have this friend.... I have this friend who works on a java ee application (j2ee) application started in the early 2000's. Currently they add a feature here and there, but have a large codebase. Over the years the team has shrunk by 70%. [Yes, the "i have this friend is". It's me, attempting to humorously inject teenage high-school counselor shame into the mix] Java, Vintage 2002 The application uses EJB 2.1, struts 1.x, DAO's etc with straight jdbc calls (mixture of stored procedures and prepared statements). No ORM. For caching they use a mixture of OpenSymphony OSCache and a home-grown cache layer. Over the last few years, they have spent effort to modernize the UI using ajax techniques and libraries. This largely involves javascript libaries (jquery, yui, etc). Client Side On the client side, the lack of upgrade path from struts1 to struts2 discouraged them from migrating to struts2. Other web frameworks became popular (wicket, spring , jsf). Struts2 was not the "clear winner". Migrating all the existing UI from Struts1 to Struts2/wicket/etc did not seem to present much marginal benefit at a very high cost. They did not want to have a patchwork of technologies-du-jour (subsystem X in Struts2, subsystem Y in Wicket, etc.) so developer write new features using Struts 1. Server Side On the server side, they looked into moving to ejb 3, but never had a big impetus. The developers are all comfortable with ejb-jar.xml, EJBHome, EJBRemote, that "ejb 2.1 as is" represented the path of least resistance. One big complaint about the ejb environment: programmers still pretend "ejb server runs in separate jvm than servlet engine". No app server (jboss/weblogic) has ever enforced this separation. The team has never deployed the ejb server on a separate box then the app server. The ear file contains multiple copies of the same jar file; one for the 'web layer' (foo.war/WEB-INF/lib) and one for the server side (foo.ear/). The app server only loads one jar. The duplications makes for ambiguity. Caching As for caching, they use several cache implementations: OpenSymphony cache and a homegrown cache. Jgroups provides clustering support Now What? The question: The team currently has spare cycles to to invest in modernizing the application? Where would the smart investor spend them? The main criteria: 1) productivity gains. Specifically reducing the time to develope new subsystems features and reduced maintenance. 2) performance/scalability. They do not care about fashion or techno-du-jour street cred. What do you all recommend? On the persistence side Switch everything (or new development only) to JPA/JPA2? Straight hibernate? Wait for Java EE 6? On the client/web-framework side: Migrate (some or all) to struts2? wicket? jsf/jsf2? As for caching: terracotta? ehcache? coherence? stick with what they have? how best to take advantage of the huge heap sizes that the 64-bit jvms offer? Thanks in advance.

    Read the article

  • Agile: User Stories for Machine Learning Project?

    - by benjismith
    I've just finished up with a prototype implementation of a supervised learning algorithm, automatically assigning categorical tags to all the items in our company database (roughly 5 million items). The results look good, and I've been given the go-ahead to plan the production implementation project. I've done this kind of work before, so I know how the functional components of the software. I need a collection of web crawlers to fetch data. I need to extract features from the crawled documents. Those documents need to be segregated into a "training set" and a "classification set", and feature-vectors need to be extracted from each document. Those feature vectors are self-organized into clusters, and the clusters are passed through a series of rebalancing operations. Etc etc etc etc. So I put together a plan, with about 30 unique development/deployment tasks, each with time estimates. The first stage of development -- ignoring some advanced features that we'd like to have in the long-term, but aren't high enough priority to make it into the development schedule yet -- is slated for about two months worth of work. (Keep in mind that I already have a working prototype, so the final implementation is significantly simpler than if the project was starting from scratch.) My manager said the plan looked good to him, but he asked if I could reorganize the tasks into user stories, for a few reasons: (1) our project management software is totally organized around user stories; (2) all of our scheduling is based on fitting entire user stories into sprints, rather than individually scheduling tasks; (3) other teams -- like the web developers -- have made great use of agile methodologies, and they've benefited from modelling all the software features as user stories. So I created a user story at the top level of the project: As a user of the system, I want to search for items by category, so that I can easily find the most relevant items within a huge, complex database. Or maybe a better top-level story for this feature would be: As a content editor, I want to automatically create categorical designations for the items in our database, so that customers can easily find high-value data within our huge, complex database. But that's not the real problem. The tricky part, for me, is figuring out how to create subordinate user stories for the rest of the machine learning architecture. Case in point... I know that the algorithm requires two major architectural subdivisions: (A) training, and (B) classification. And I know that the training portion of the architecture requires construction of a cluster-space. All the Agile Development literature I've read seems to indicate that a user story should be the "smallest possible implementation that provides any business value". And that makes a lot of sense when designing a piece of end-user software. Start small, and then incrementally add value when users demand additional functionality. But a cluster-space, in and of itself, provides zero business value. Nor does a crawler, or a feature-extractor. There's no business value (not for the end-user, or for any of the roles internal to the company) in a partial system. A trained cluster-space is only possible with the crawler and feature extractor, and only relevant if we also develop an accompanying classifier. I suppose it would be possible to create user stories where the subordinate components of the system act as the users in the stories: As a supervised-learning cluster-space construction routine, I want to consume data from a feature extractor, so that I can exist. But that seems really weird. What benefit does it provide me as the developer (or our users, or any other stakeholders, for that matter) to model my user stories like that? Although the main story can be easily divided along architectural-component boundaries (crawler, trainer, classifier, etc), I can't think of any useful decomposition from a user's perspective. What do you guys think? How do you plan Agile user stories for sophisticated, indivisible, non-user-facing components?

    Read the article

  • XML Outputting - PHP vs JS vs Anything Else?

    - by itsphil
    Hi everyone, I am working on developing a Travel website which uses XML API's to get the data. However i am relatively new to XML and outputting it. I have been experimenting with using PHP to output a test XML file, but currently the furthest iv got is to only output a few records. As it the questions states i need to know which technology will be best for this project. Below iv included some points to take into consideration. The website is going to be a large sized, heavy traffic site (expedia/lastminute size) My skillset is PHP (intermediate/high skilled) & Javascript (intermediate/high skilled) Below is an example of the XML that the API is outputting: <?xml version="1.0"?> <response method="###" success="Y"> <errors> </errors> <request> <auth password="test" username="test" /> <method action="###" sitename="###" /> </request> <results> <line id="6" logourl="###" name="Line 1" smalllogourl="###"> <ships> <ship id="16" name="Ship 1" /> <ship id="453" name="Ship 2" /> <ship id="468" name="Ship 3" /> <ship id="356" name="Ship 4" /> </ships> </line> <line id="63" logourl="###" name="Line 2" smalllogourl="###"> <ships> <ship id="492" name="Ship 1" /> <ship id="454" name="Ship 2" /> <ship id="455" name="Ship 3" /> <ship id="421" name="Ship 4" /> <ship id="401" name="Ship 5" /> <ship id="404" name="Ship 6" /> <ship id="405" name="Ship 7" /> <ship id="406" name="Ship 8" /> <ship id="407" name="Ship 9" /> <ship id="408" name="Ship 10" /> </ships> </line> <line id="41" logourl="###"> <ships> <ship id="229" name="Ship 1" /> <ship id="230" name="Ship 2" /> <ship id="231" name="Ship 3" /> <ship id="445" name="Ship 4" /> <ship id="570" name="Ship 5" /> <ship id="571" name="Ship 6" /> </ships> </line> </results> </response> If possible when suggesting which technlogy is best for this project, if you could provide some getting started guides or any information would be very much appreciated. Thank you for taking the time to read this.

    Read the article

  • how to mount partitions from USB drives in Windows using Delphi?

    - by user569556
    Hi. I'm a Delphi programmer. I want to mount all partitions from USB drives in Windows (XP). The OS is doing this automatically but there are situations when such a program is useful. I know how to find if a drive is on USB or not. My code so far is: type STORAGE_QUERY_TYPE = (PropertyStandardQuery = 0, PropertyExistsQuery, PropertyMaskQuery, PropertyQueryMaxDefined); TStorageQueryType = STORAGE_QUERY_TYPE; STORAGE_PROPERTY_ID = (StorageDeviceProperty = 0, StorageAdapterProperty); TStoragePropertyID = STORAGE_PROPERTY_ID; STORAGE_PROPERTY_QUERY = packed record PropertyId: STORAGE_PROPERTY_ID; QueryType: STORAGE_QUERY_TYPE; AdditionalParameters: array[0..9] of AnsiChar; end; TStoragePropertyQuery = STORAGE_PROPERTY_QUERY; STORAGE_BUS_TYPE = (BusTypeUnknown = 0, BusTypeScsi, BusTypeAtapi, BusTypeAta, BusType1394, BusTypeSsa, BusTypeFibre, BusTypeUsb, BusTypeRAID, BusTypeiScsi, BusTypeSas, BusTypeSata, BusTypeMaxReserved = $7F); TStorageBusType = STORAGE_BUS_TYPE; STORAGE_DEVICE_DESCRIPTOR = packed record Version: DWORD; Size: DWORD; DeviceType: Byte; DeviceTypeModifier: Byte; RemovableMedia: Boolean; CommandQueueing: Boolean; VendorIdOffset: DWORD; ProductIdOffset: DWORD; ProductRevisionOffset: DWORD; SerialNumberOffset: DWORD; BusType: STORAGE_BUS_TYPE; RawPropertiesLength: DWORD; RawDeviceProperties: array[0..0] of AnsiChar; end; TStorageDeviceDescriptor = STORAGE_DEVICE_DESCRIPTOR; const IOCTL_STORAGE_QUERY_PROPERTY = $002D1400; var i: Integer; H: THandle; USBDrives: array of Byte; Query: TStoragePropertyQuery; dwBytesReturned: DWORD; Buffer: array[0..1023] of Byte; sdd: TStorageDeviceDescriptor absolute Buffer; begin SetLength(UsbDrives, 0); SetErrorMode(SEM_FAILCRITICALERRORS); for i := 0 to 99 do begin H := CreateFile(PChar('\\.\PhysicalDrive' + IntToStr(i)), 0, FILE_SHARE_READ or FILE_SHARE_WRITE, nil, OPEN_EXISTING, 0, 0); if H <> INVALID_HANDLE_VALUE then begin try dwBytesReturned := 0; FillChar(Query, SizeOf(Query), 0); FillChar(Buffer, SizeOf(Buffer), 0); sdd.Size := SizeOf(Buffer); Query.PropertyId := StorageDeviceProperty; Query.QueryType := PropertyStandardQuery; if DeviceIoControl(H, IOCTL_STORAGE_QUERY_PROPERTY, @Query, SizeOf(Query), @Buffer, SizeOf(Buffer), dwBytesReturned, nil) then if sdd.BusType = BusTypeUsb then begin SetLength(USBDrives, Length(USBDrives) + 1); UsbDrives[High(USBDrives)] := Byte(i); end; finally CloseHandle(H); end; end; end; for i := 0 to High(USBDrives) do begin // end; end. But I don't know how to access partitions on each drive and mounts them. Can you please help me? I searched before I asked and I couldn't find a working code. But if I did not properly then I'm sorry and please show me that topic. Best regards, John

    Read the article

  • Adding picture in symfony 2 from symfony form?

    - by user2833510
    How do I add a picture in symfony2 from form to a database. I want to make a logo as a picture field and store project picture in database from form. How do I do this? Here is my form: <?php namespace Projects\ProjectsBundle\Form; use Symfony\Component\Form\AbstractType; use Symfony\Component\Form\FormBuilderInterface; use Symfony\Component\OptionsResolver\OptionsResolverInterface; class ProjectsType extends AbstractType { public function buildForm(FormBuilderInterface $builder, array $options) { $builder ->add('name') ->add('description') ->add('priority','choice', array( 'choices' => array('high' => 'high', 'low' => 'low', 'medium' => 'medium'))) ->add('logo') ->add('startedAt','datetime',array('label' => false,'data'=>new \DateTime(),'attr'=>array('style'=>'display:none;'))) ->add('completedOn','datetime',array('label' => false,'data'=>new \DateTime(),'attr'=>array('style'=>'display:none;'))) ->add('createdDatetime','datetime',array('label' => false,'data'=>new \DateTime(),'attr'=>array('style'=>'display:none;'))) ->add('updatedDatetime','datetime',array('label' => false,'data'=>new \DateTime(),'attr'=>array('style'=>'display:none;'))) ; } public function setDefaultOptions(OptionsResolverInterface $resolver) { $resolver->setDefaults(array( 'data_class' => 'Projects\ProjectsBundle\Entity\Projects' )); } public function getName() { return 'projects_projectsbundle_projectstype'; } } and here is my controller: public function createAction(Request $request) { $user = $this->get('security.context')->getToken()->getUser(); $userId = $user->getId(); $entity = new Projects(); $form = $this->createForm(new ProjectsType(), $entity); $form->bind($request); $entity->setCreatedBy($userId); $entity->setUpdatedBy($userId); $entity->setCompletedBy($userId); if ($form->isValid()) { $em = $this->getDoctrine()->getManager(); $em->persist($entity); $em->flush(); $_SESSION['projectid'] =$entity->getId(); if($request->isXmlHttpRequest()) { $response = new Response(); $output = array('success' => true, 'description' => $entity->getdescription(), 'id' => $entity->getId(), 'name' => $entity->getname(), 'priority' => $entity->getpriority(), 'logo' => $entity->getlogo(), 'startedat' => $entity->getstartedat(),'completedon' => $entity->getcompletedon(),'completedby' => $entity->getCompletedBy(), 'createdby' => $entity->getcreatedby(), 'updatedby' => $entity->getupdatedby(), 'createddatetime' => $entity->getcreateddatetime(), 'updateddatetime' => $entity->getupdateddatetime()); $response->headers->set('Content-Type', 'application/json'); $response->setContent(json_encode($output)); return $response; } return $this->redirect($this->generateUrl('projects_show', array('id' => $entity->getId()))); } return $this->render('ProjectsProjectsBundle:Projects:new.html.twig', array( 'entity' => $entity, 'form' => $form->createView(), )); }

    Read the article

  • Using JSON.NET for dynamic JSON parsing

    - by Rick Strahl
    With the release of ASP.NET Web API as part of .NET 4.5 and MVC 4.0, JSON.NET has effectively pushed out the .NET native serializers to become the default serializer for Web API. JSON.NET is vastly more flexible than the built in DataContractJsonSerializer or the older JavaScript serializer. The DataContractSerializer in particular has been very problematic in the past because it can't deal with untyped objects for serialization - like values of type object, or anonymous types which are quite common these days. The JavaScript Serializer that came before it actually does support non-typed objects for serialization but it can't do anything with untyped data coming in from JavaScript and it's overall model of extensibility was pretty limited (JavaScript Serializer is what MVC uses for JSON responses). JSON.NET provides a robust JSON serializer that has both high level and low level components, supports binary JSON, JSON contracts, Xml to JSON conversion, LINQ to JSON and many, many more features than either of the built in serializers. ASP.NET Web API now uses JSON.NET as its default serializer and is now pulled in as a NuGet dependency into Web API projects, which is great. Dynamic JSON Parsing One of the features that I think is getting ever more important is the ability to serialize and deserialize arbitrary JSON content dynamically - that is without mapping the JSON captured directly into a .NET type as DataContractSerializer or the JavaScript Serializers do. Sometimes it isn't possible to map types due to the differences in languages (think collections, dictionaries etc), and other times you simply don't have the structures in place or don't want to create them to actually import the data. If this topic sounds familiar - you're right! I wrote about dynamic JSON parsing a few months back before JSON.NET was added to Web API and when Web API and the System.Net HttpClient libraries included the System.Json classes like JsonObject and JsonArray. With the inclusion of JSON.NET in Web API these classes are now obsolete and didn't ship with Web API or the client libraries. I re-linked my original post to this one. In this post I'll discus JToken, JObject and JArray which are the dynamic JSON objects that make it very easy to create and retrieve JSON content on the fly without underlying types. Why Dynamic JSON? So, why Dynamic JSON parsing rather than strongly typed parsing? Since applications are interacting more and more with third party services it becomes ever more important to have easy access to those services with easy JSON parsing. Sometimes it just makes lot of sense to pull just a small amount of data out of large JSON document received from a service, because the third party service isn't directly related to your application's logic most of the time - and it makes little sense to map the entire service structure in your application. For example, recently I worked with the Google Maps Places API to return information about businesses close to me (or rather the app's) location. The Google API returns a ton of information that my application had no interest in - all I needed was few values out of the data. Dynamic JSON parsing makes it possible to map this data, without having to map the entire API to a C# data structure. Instead I could pull out the three or four values I needed from the API and directly store it on my business entities that needed to receive the data - no need to map the entire Maps API structure. Getting JSON.NET The easiest way to use JSON.NET is to grab it via NuGet and add it as a reference to your project. You can add it to your project with: PM> Install-Package Newtonsoft.Json From the Package Manager Console or by using Manage NuGet Packages in your project References. As mentioned if you're using ASP.NET Web API or MVC 4 JSON.NET will be automatically added to your project. Alternately you can also go to the CodePlex site and download the latest version including source code: http://json.codeplex.com/ Creating JSON on the fly with JObject and JArray Let's start with creating some JSON on the fly. It's super easy to create a dynamic object structure with any of the JToken derived JSON.NET objects. The most common JToken derived classes you are likely to use are JObject and JArray. JToken implements IDynamicMetaProvider and so uses the dynamic  keyword extensively to make it intuitive to create object structures and turn them into JSON via dynamic object syntax. Here's an example of creating a music album structure with child songs using JObject for the base object and songs and JArray for the actual collection of songs:[TestMethod] public void JObjectOutputTest() { // strong typed instance var jsonObject = new JObject(); // you can explicitly add values here using class interface jsonObject.Add("Entered", DateTime.Now); // or cast to dynamic to dynamically add/read properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; album.Artist = "AC/DC"; album.YearReleased = 1976; album.Songs = new JArray() as dynamic; dynamic song = new JObject(); song.SongName = "Dirty Deeds Done Dirt Cheap"; song.SongLength = "4:11"; album.Songs.Add(song); song = new JObject(); song.SongName = "Love at First Feel"; song.SongLength = "3:10"; album.Songs.Add(song); Console.WriteLine(album.ToString()); } This produces a complete JSON structure: { "Entered": "2012-08-18T13:26:37.7137482-10:00", "AlbumName": "Dirty Deeds Done Dirt Cheap", "Artist": "AC/DC", "YearReleased": 1976, "Songs": [ { "SongName": "Dirty Deeds Done Dirt Cheap", "SongLength": "4:11" }, { "SongName": "Love at First Feel", "SongLength": "3:10" } ] } Notice that JSON.NET does a nice job formatting the JSON, so it's easy to read and paste into blog posts :-). JSON.NET includes a bunch of configuration options that control how JSON is generated. Typically the defaults are just fine, but you can override with the JsonSettings object for most operations. The important thing about this code is that there's no explicit type used for holding the values to serialize to JSON. Rather the JSON.NET objects are the containers that receive the data as I build up my JSON structure dynamically, simply by adding properties. This means this code can be entirely driven at runtime without compile time restraints of structure for the JSON output. Here I use JObject to create a album 'object' and immediately cast it to dynamic. JObject() is kind of similar in behavior to ExpandoObject in that it allows you to add properties by simply assigning to them. Internally, JObject values are stored in pseudo collections of key value pairs that are exposed as properties through the IDynamicMetaObject interface exposed in JSON.NET's JToken base class. For objects the syntax is very clean - you add simple typed values as properties. For objects and arrays you have to explicitly create new JObject or JArray, cast them to dynamic and then add properties and items to them. Always remember though these values are dynamic - which means no Intellisense and no compiler type checking. It's up to you to ensure that the names and values you create are accessed consistently and without typos in your code. Note that you can also access the JObject instance directly (not as dynamic) and get access to the underlying JObject type. This means you can assign properties by string, which can be useful for fully data driven JSON generation from other structures. Below you can see both styles of access next to each other:// strong type instance var jsonObject = new JObject(); // you can explicitly add values here jsonObject.Add("Entered", DateTime.Now); // expando style instance you can just 'use' properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; JContainer (the base class for JObject and JArray) is a collection so you can also iterate over the properties at runtime easily:foreach (var item in jsonObject) { Console.WriteLine(item.Key + " " + item.Value.ToString()); } The functionality of the JSON objects are very similar to .NET's ExpandObject and if you used it before, you're already familiar with how the dynamic interfaces to the JSON objects works. Importing JSON with JObject.Parse() and JArray.Parse() The JValue structure supports importing JSON via the Parse() and Load() methods which can read JSON data from a string or various streams respectively. Essentially JValue includes the core JSON parsing to turn a JSON string into a collection of JsonValue objects that can be then referenced using familiar dynamic object syntax. Here's a simple example:public void JValueParsingTest() { var jsonString = @"{""Name"":""Rick"",""Company"":""West Wind"", ""Entered"":""2012-03-16T00:03:33.245-10:00""}"; dynamic json = JValue.Parse(jsonString); // values require casting string name = json.Name; string company = json.Company; DateTime entered = json.Entered; Assert.AreEqual(name, "Rick"); Assert.AreEqual(company, "West Wind"); } The JSON string represents an object with three properties which is parsed into a JObject class and cast to dynamic. Once cast to dynamic I can then go ahead and access the object using familiar object syntax. Note that the actual values - json.Name, json.Company, json.Entered - are actually of type JToken and I have to cast them to their appropriate types first before I can do type comparisons as in the Asserts at the end of the test method. This is required because of the way that dynamic types work which can't determine the type based on the method signature of the Assert.AreEqual(object,object) method. I have to either assign the dynamic value to a variable as I did above, or explicitly cast ( (string) json.Name) in the actual method call. The JSON structure can be much more complex than this simple example. Here's another example of an array of albums serialized to JSON and then parsed through with JsonValue():[TestMethod] public void JsonArrayParsingTest() { var jsonString = @"[ { ""Id"": ""b3ec4e5c"", ""AlbumName"": ""Dirty Deeds Done Dirt Cheap"", ""Artist"": ""AC/DC"", ""YearReleased"": 1976, ""Entered"": ""2012-03-16T00:13:12.2810521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/61kTaH-uZBL._AA115_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/gp/product/…ASIN=B00008BXJ4"", ""Songs"": [ { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Dirty Deeds Done Dirt Cheap"", ""SongLength"": ""4:11"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Love at First Feel"", ""SongLength"": ""3:10"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Big Balls"", ""SongLength"": ""2:38"" } ] }, { ""Id"": ""7b919432"", ""AlbumName"": ""End of the Silence"", ""Artist"": ""Henry Rollins Band"", ""YearReleased"": 1992, ""Entered"": ""2012-03-16T00:13:12.2800521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/51FO3rb1tuL._SL160_AA160_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/End-Silence-Rollins-Band/dp/B0000040OX/ref=sr_1_5?ie=UTF8&qid=1302232195&sr=8-5"", ""Songs"": [ { ""AlbumId"": ""7b919432"", ""SongName"": ""Low Self Opinion"", ""SongLength"": ""5:24"" }, { ""AlbumId"": ""7b919432"", ""SongName"": ""Grip"", ""SongLength"": ""4:51"" } ] } ]"; JArray jsonVal = JArray.Parse(jsonString) as JArray; dynamic albums = jsonVal; foreach (dynamic album in albums) { Console.WriteLine(album.AlbumName + " (" + album.YearReleased.ToString() + ")"); foreach (dynamic song in album.Songs) { Console.WriteLine("\t" + song.SongName); } } Console.WriteLine(albums[0].AlbumName); Console.WriteLine(albums[0].Songs[1].SongName); } JObject and JArray in ASP.NET Web API Of course these types also work in ASP.NET Web API controller methods. If you want you can accept parameters using these object or return them back to the server. The following contrived example receives dynamic JSON input, and then creates a new dynamic JSON object and returns it based on data from the first:[HttpPost] public JObject PostAlbumJObject(JObject jAlbum) { // dynamic input from inbound JSON dynamic album = jAlbum; // create a new JSON object to write out dynamic newAlbum = new JObject(); // Create properties on the new instance // with values from the first newAlbum.AlbumName = album.AlbumName + " New"; newAlbum.NewProperty = "something new"; newAlbum.Songs = new JArray(); foreach (dynamic song in album.Songs) { song.SongName = song.SongName + " New"; newAlbum.Songs.Add(song); } return newAlbum; } The raw POST request to the server looks something like this: POST http://localhost/aspnetwebapi/samples/PostAlbumJObject HTTP/1.1User-Agent: FiddlerContent-type: application/jsonHost: localhostContent-Length: 88 {AlbumName: "Dirty Deeds",Songs:[ { SongName: "Problem Child"},{ SongName: "Squealer"}]} and the output that comes back looks like this: {  "AlbumName": "Dirty Deeds New",  "NewProperty": "something new",  "Songs": [    {      "SongName": "Problem Child New"    },    {      "SongName": "Squealer New"    }  ]} The original values are echoed back with something extra appended to demonstrate that we're working with a new object. When you receive or return a JObject, JValue, JToken or JArray instance in a Web API method, Web API ignores normal content negotiation and assumes your content is going to be received and returned as JSON, so effectively the parameter and result type explicitly determines the input and output format which is nice. Dynamic to Strong Type Mapping You can also map JObject and JArray instances to a strongly typed object, so you can mix dynamic and static typing in the same piece of code. Using the 2 Album jsonString shown earlier, the code below takes an array of albums and picks out only a single album and casts that album to a static Album instance.[TestMethod] public void JsonParseToStrongTypeTest() { JArray albums = JArray.Parse(jsonString) as JArray; // pick out one album JObject jalbum = albums[0] as JObject; // Copy to a static Album instance Album album = jalbum.ToObject<Album>(); Assert.IsNotNull(album); Assert.AreEqual(album.AlbumName,jalbum.Value<string>("AlbumName")); Assert.IsTrue(album.Songs.Count > 0); } This is pretty damn useful for the scenario I mentioned earlier - you can read a large chunk of JSON and dynamically walk the property hierarchy down to the item you want to access, and then either access the specific item dynamically (as shown earlier) or map a part of the JSON to a strongly typed object. That's very powerful if you think about it - it leaves you in total control to decide what's dynamic and what's static. Strongly typed JSON Parsing With all this talk of dynamic let's not forget that JSON.NET of course also does strongly typed serialization which is drop dead easy. Here's a simple example on how to serialize and deserialize an object with JSON.NET:[TestMethod] public void StronglyTypedSerializationTest() { // Demonstrate deserialization from a raw string var album = new Album() { AlbumName = "Dirty Deeds Done Dirt Cheap", Artist = "AC/DC", Entered = DateTime.Now, YearReleased = 1976, Songs = new List<Song>() { new Song() { SongName = "Dirty Deeds Done Dirt Cheap", SongLength = "4:11" }, new Song() { SongName = "Love at First Feel", SongLength = "3:10" } } }; // serialize to string string json2 = JsonConvert.SerializeObject(album,Formatting.Indented); Console.WriteLine(json2); // make sure we can serialize back var album2 = JsonConvert.DeserializeObject<Album>(json2); Assert.IsNotNull(album2); Assert.IsTrue(album2.AlbumName == "Dirty Deeds Done Dirt Cheap"); Assert.IsTrue(album2.Songs.Count == 2); } JsonConvert is a high level static class that wraps lower level functionality, but you can also use the JsonSerializer class, which allows you to serialize/parse to and from streams. It's a little more work, but gives you a bit more control. The functionality available is easy to discover with Intellisense, and that's good because there's not a lot in the way of documentation that's actually useful. Summary JSON.NET is a pretty complete JSON implementation with lots of different choices for JSON parsing from dynamic parsing to static serialization, to complex querying of JSON objects using LINQ. It's good to see this open source library getting integrated into .NET, and pushing out the old and tired stock .NET parsers so that we finally have a bit more flexibility - and extensibility - in our JSON parsing. Good to go! Resources Sample Test Project http://json.codeplex.com/© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  Web Api  AJAX   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Where does ASP.NET Web API Fit?

    - by Rick Strahl
    With the pending release of ASP.NET MVC 4 and the new ASP.NET Web API, there has been a lot of discussion of where the new Web API technology fits in the ASP.NET Web stack. There are a lot of choices to build HTTP based applications available now on the stack - we've come a long way from when WebForms and Http Handlers/Modules where the only real options. Today we have WebForms, MVC, ASP.NET Web Pages, ASP.NET AJAX, WCF REST and now Web API as well as the core ASP.NET runtime to choose to build HTTP content with. Web API definitely squarely addresses the 'API' aspect - building consumable services - rather than HTML content, but even to that end there are a lot of choices you have today. So where does Web API fit, and when doesn't it? But before we get into that discussion, let's talk about what a Web API is and why we should care. What's a Web API? HTTP 'APIs' (Microsoft's new terminology for a service I guess)  are becoming increasingly more important with the rise of the many devices in use today. Most mobile devices like phones and tablets run Apps that are using data retrieved from the Web over HTTP. Desktop applications are also moving in this direction with more and more online content and synching moving into even traditional desktop applications. The pending Windows 8 release promises an app like platform for both the desktop and other devices, that also emphasizes consuming data from the Cloud. Likewise many Web browser hosted applications these days are relying on rich client functionality to create and manipulate the browser user interface, using AJAX rather than server generated HTML data to load up the user interface with data. These mobile or rich Web applications use their HTTP connection to return data rather than HTML markup in the form of JSON or XML typically. But an API can also serve other kinds of data, like images or other binary files, or even text data and HTML (although that's less common). A Web API is what feeds rich applications with data. ASP.NET Web API aims to service this particular segment of Web development by providing easy semantics to route and handle incoming requests and an easy to use platform to serve HTTP data in just about any content format you choose to create and serve from the server. But .NET already has various HTTP Platforms The .NET stack already includes a number of technologies that provide the ability to create HTTP service back ends, and it has done so since the very beginnings of the .NET platform. From raw HTTP Handlers and Modules in the core ASP.NET runtime, to high level platforms like ASP.NET MVC, Web Forms, ASP.NET AJAX and the WCF REST engine (which technically is not ASP.NET, but can integrate with it), you've always been able to handle just about any kind of HTTP request and response with ASP.NET. The beauty of the raw ASP.NET platform is that it provides you everything you need to build just about any type of HTTP application you can dream up from low level APIs/custom engines to high level HTML generation engine. ASP.NET as a core platform clearly has stood the test of time 10+ years later and all other frameworks like Web API are built on top of this ASP.NET core. However, although it's possible to create Web APIs / Services using any of the existing out of box .NET technologies, none of them have been a really nice fit for building arbitrary HTTP based APIs. Sure, you can use an HttpHandler to create just about anything, but you have to build a lot of plumbing to build something more complex like a comprehensive API that serves a variety of requests, handles multiple output formats and can easily pass data up to the server in a variety of ways. Likewise you can use ASP.NET MVC to handle routing and creating content in various formats fairly easily, but it doesn't provide a great way to automatically negotiate content types and serve various content formats directly (it's possible to do with some plumbing code of your own but not built in). Prior to Web API, Microsoft's main push for HTTP services has been WCF REST, which was always an awkward technology that had a severe personality conflict, not being clear on whether it wanted to be part of WCF or purely a separate technology. In the end it didn't do either WCF compatibility or WCF agnostic pure HTTP operation very well, which made for a very developer-unfriendly environment. Personally I didn't like any of the implementations at the time, so much so that I ended up building my own HTTP service engine (as part of the West Wind Web Toolkit), as have a few other third party tools that provided much better integration and ease of use. With the release of Web API for the first time I feel that I can finally use the tools in the box and not have to worry about creating and maintaining my own toolkit as Web API addresses just about all the features I implemented on my own and much more. ASP.NET Web API provides a better HTTP Experience ASP.NET Web API differentiates itself from the previous Microsoft in-box HTTP service solutions in that it was built from the ground up around the HTTP protocol and its messaging semantics. Unlike WCF REST or ASP.NET AJAX with ASMX, it’s a brand new platform rather than bolted on technology that is supposed to work in the context of an existing framework. The strength of the new ASP.NET Web API is that it combines the best features of the platforms that came before it, to provide a comprehensive and very usable HTTP platform. Because it's based on ASP.NET and borrows a lot of concepts from ASP.NET MVC, Web API should be immediately familiar and comfortable to most ASP.NET developers. Here are some of the features that Web API provides that I like: Strong Support for URL Routing to produce clean URLs using familiar MVC style routing semantics Content Negotiation based on Accept headers for request and response serialization Support for a host of supported output formats including JSON, XML, ATOM Strong default support for REST semantics but they are optional Easily extensible Formatter support to add new input/output types Deep support for more advanced HTTP features via HttpResponseMessage and HttpRequestMessage classes and strongly typed Enums to describe many HTTP operations Convention based design that drives you into doing the right thing for HTTP Services Very extensible, based on MVC like extensibility model of Formatters and Filters Self-hostable in non-Web applications  Testable using testing concepts similar to MVC Web API is meant to handle any kind of HTTP input and produce output and status codes using the full spectrum of HTTP functionality available in a straight forward and flexible manner. Looking at the list above you can see that a lot of functionality is very similar to ASP.NET MVC, so many ASP.NET developers should feel quite comfortable with the concepts of Web API. The Routing and core infrastructure of Web API are very similar to how MVC works providing many of the benefits of MVC, but with focus on HTTP access and manipulation in Controller methods rather than HTML generation in MVC. There’s much improved support for content negotiation based on HTTP Accept headers with the framework capable of detecting automatically what content the client is sending and requesting and serving the appropriate data format in return. This seems like such a little and obvious thing, but it's really important. Today's service backends often are used by multiple clients/applications and being able to choose the right data format for what fits best for the client is very important. While previous solutions were able to accomplish this using a variety of mixed features of WCF and ASP.NET, Web API combines all this functionality into a single robust server side HTTP framework that intrinsically understands the HTTP semantics and subtly drives you in the right direction for most operations. And when you need to customize or do something that is not built in, there are lots of hooks and overrides for most behaviors, and even many low level hook points that allow you to plug in custom functionality with relatively little effort. No Brainers for Web API There are a few scenarios that are a slam dunk for Web API. If your primary focus of an application or even a part of an application is some sort of API then Web API makes great sense. HTTP ServicesIf you're building a comprehensive HTTP API that is to be consumed over the Web, Web API is a perfect fit. You can isolate the logic in Web API and build your application as a service breaking out the logic into controllers as needed. Because the primary interface is the service there's no confusion of what should go where (MVC or API). Perfect fit. Primary AJAX BackendsIf you're building rich client Web applications that are relying heavily on AJAX callbacks to serve its data, Web API is also a slam dunk. Again because much if not most of the business logic will probably end up in your Web API service logic, there's no confusion over where logic should go and there's no duplication. In Single Page Applications (SPA), typically there's very little HTML based logic served other than bringing up a shell UI and then filling the data from the server with AJAX which means the business logic required for data retrieval and data acceptance and validation too lives in the Web API. Perfect fit. Generic HTTP EndpointsAnother good fit are generic HTTP endpoints that to serve data or handle 'utility' type functionality in typical Web applications. If you need to implement an image server, or an upload handler in the past I'd implement that as an HTTP handler. With Web API you now have a well defined place where you can implement these types of generic 'services' in a location that can easily add endpoints (via Controller methods) or separated out as more full featured APIs. Granted this could be done with MVC as well, but Web API seems a clearer and more well defined place to store generic application services. This is one thing I used to do a lot of in my own libraries and Web API addresses this nicely. Great fit. Mixed HTML and AJAX Applications: Not a clear Choice  For all the commonality that Web API and MVC share they are fundamentally different platforms that are independent of each other. A lot of people have asked when does it make sense to use MVC vs. Web API when you're dealing with typical Web application that creates HTML and also uses AJAX functionality for rich functionality. While it's easy to say that all 'service'/AJAX logic should go into a Web API and all HTML related generation into MVC, that can often result in a lot of code duplication. Also MVC supports JSON and XML result data fairly easily as well so there's some confusion where that 'trigger point' is of when you should switch to Web API vs. just implementing functionality as part of MVC controllers. Ultimately there's a tradeoff between isolation of functionality and duplication. A good rule of thumb I think works is that if a large chunk of the application's functionality serves data Web API is a good choice, but if you have a couple of small AJAX requests to serve data to a grid or autocomplete box it'd be overkill to separate out that logic into a separate Web API controller. Web API does add overhead to your application (it's yet another framework that sits on top of core ASP.NET) so it should be worth it .Keep in mind that MVC can generate HTML and JSON/XML and just about any other content easily and that functionality is not going away, so just because you Web API is there it doesn't mean you have to use it. Web API is not a full replacement for MVC obviously either since there's not the same level of support to feed HTML from Web API controllers (although you can host a RazorEngine easily enough if you really want to go that route) so if you're HTML is part of your API or application in general MVC is still a better choice either alone or in combination with Web API. I suspect (and hope) that in the future Web API's functionality will merge even closer with MVC so that you might even be able to mix functionality of both into single Controllers so that you don't have to make any trade offs, but at the moment that's not the case. Some Issues To think about Web API is similar to MVC but not the Same Although Web API looks a lot like MVC it's not the same and some common functionality of MVC behaves differently in Web API. For example, the way single POST variables are handled is different than MVC and doesn't lend itself particularly well to some AJAX scenarios with POST data. Code Duplication I already touched on this in the Mixed HTML and Web API section, but if you build an MVC application that also exposes a Web API it's quite likely that you end up duplicating a bunch of code and - potentially - infrastructure. You may have to create authentication logic both for an HTML application and for the Web API which might need something different altogether. More often than not though the same logic is used, and there's no easy way to share. If you implement an MVC ActionFilter and you want that same functionality in your Web API you'll end up creating the filter twice. AJAX Data or AJAX HTML On a recent post's comments, David made some really good points regarding the commonality of MVC and Web API's and its place. One comment that caught my eye was a little more generic, regarding data services vs. HTML services. David says: I see a lot of merit in the combination of Knockout.js, client side templates and view models, calling Web API for a responsive UI, but sometimes late at night that still leaves me wondering why I would no longer be using some of the nice tooling and features that have evolved in MVC ;-) You know what - I can totally relate to that. On the last Web based mobile app I worked on, we decided to serve HTML partials to the client via AJAX for many (but not all!) things, rather than sending down raw data to inject into the DOM on the client via templating or direct manipulation. While there are definitely more bytes on the wire, with this, the overhead ended up being actually fairly small if you keep the 'data' requests small and atomic. Performance was often made up by the lack of client side rendering of HTML. Server rendered HTML for AJAX templating gives so much better infrastructure support without having to screw around with 20 mismatched client libraries. Especially with MVC and partials it's pretty easy to break out your HTML logic into very small, atomic chunks, so it's actually easy to create small rendering islands that can be used via composition on the server, or via AJAX calls to small, tight partials that return HTML to the client. Although this is often frowned upon as to 'heavy', it worked really well in terms of developer effort as well as providing surprisingly good performance on devices. There's still plenty of jQuery and AJAX logic happening on the client but it's more manageable in small doses rather than trying to do the entire UI composition with JavaScript and/or 'not-quite-there-yet' template engines that are very difficult to debug. This is not an issue directly related to Web API of course, but something to think about especially for AJAX or SPA style applications. Summary Web API is a great new addition to the ASP.NET platform and it addresses a serious need for consolidation of a lot of half-baked HTTP service API technologies that came before it. Web API feels 'right', and hits the right combination of usability and flexibility at least for me and it's a good fit for true API scenarios. However, just because a new platform is available it doesn't meant that other tools or tech that came before it should be discarded or even upgraded to the new platform. There's nothing wrong with continuing to use MVC controller methods to handle API tasks if that's what your app is running now - there's very little to be gained by upgrading to Web API just because. But going forward Web API clearly is the way to go, when building HTTP data interfaces and it's good to see that Microsoft got this one right - it was sorely needed! Resources ASP.NET Web API AspConf Ask the Experts Session (first 5 minutes) © Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • error about ACPI _OSC request failed (AE_NOT_FOUND)

    - by Yavuz Maslak
    I have ubuntu server 11.10 64 bit I see an error in kernel.log. This error comes out when the server reboot. some port of grep APCI in kernel.log; Dec 5 09:08:51 www kernel: [ 0.588605] pci0000:00: Requesting ACPI _OSC control (0x1d) Dec 5 09:08:51 www kernel: [ 0.588667] pci0000:00: ACPI _OSC request failed (AE_NOT_FOUND), returned control mask: 0x1d Dec 5 09:08:51 www kernel: [ 0.588746] ACPI _OSC control for PCIe not granted, disabling ASPM Which hardware may be cause this error ? root@www:# grep -r ACPI /var/log/kern.log Dec 5 09:08:51 www kernel: [ 0.000000] BIOS-e820: 00000000bf780000 - 00000000bf798000 (ACPI data) Dec 5 09:08:51 www kernel: [ 0.000000] BIOS-e820: 00000000bf798000 - 00000000bf7dc000 (ACPI NVS) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: RSDP 00000000000fb1a0 00014 (v00 ACPIAM) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: RSDT 00000000bf780000 00040 (v01 022410 RSDT1405 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: FACP 00000000bf780200 00084 (v01 022410 FACP1405 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: DSDT 00000000bf7804b0 0C359 (v01 A1279 A1279001 00000001 INTL 20060113) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: FACS 00000000bf798000 00040 Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: APIC 00000000bf780390 000D8 (v01 022410 APIC1405 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: MCFG 00000000bf780470 0003C (v01 022410 OEMMCFG 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: OEMB 00000000bf798040 00072 (v01 022410 OEMB1405 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: HPET 00000000bf78f4b0 00038 (v01 022410 OEMHPET 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: OSFR 00000000bf78f4f0 000B0 (v01 022410 OEMOSFR 20100224 MSFT 00000097) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: SSDT 00000000bf798fe0 00363 (v01 DpgPmm CpuPm 00000012 INTL 20060113) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: Local APIC address 0xfee00000 Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: PM-Timer IO Port: 0x808 Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: Local APIC address 0xfee00000 Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x01] lapic_id[0x00] enabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x02] lapic_id[0x02] enabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x03] lapic_id[0x04] enabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x04] lapic_id[0x06] enabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x05] lapic_id[0x84] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x06] lapic_id[0x85] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x07] lapic_id[0x86] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x08] lapic_id[0x87] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x09] lapic_id[0x88] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0a] lapic_id[0x89] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0b] lapic_id[0x8a] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0c] lapic_id[0x8b] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0d] lapic_id[0x8c] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0e] lapic_id[0x8d] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0f] lapic_id[0x8e] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x10] lapic_id[0x8f] disabled) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: IOAPIC (id[0x01] address[0xfec00000] gsi_base[0]) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: IOAPIC (id[0x03] address[0xfec8a000] gsi_base[24]) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: INT_SRC_OVR (bus 0 bus_irq 0 global_irq 2 dfl dfl) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: INT_SRC_OVR (bus 0 bus_irq 9 global_irq 9 high level) Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: IRQ0 used by override. Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: IRQ2 used by override. Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: IRQ9 used by override. Dec 5 09:08:51 www kernel: [ 0.000000] Using ACPI (MADT) for SMP configuration information Dec 5 09:08:51 www kernel: [ 0.000000] ACPI: HPET id: 0x8086a301 base: 0xfed00000 Dec 5 09:08:51 www kernel: [ 0.009507] ACPI: Core revision 20110413 Dec 5 09:08:51 www kernel: [ 0.499129] PM: Registering ACPI NVS region at bf798000 (278528 bytes) Dec 5 09:08:51 www kernel: [ 0.500749] ACPI: bus type pci registered Dec 5 09:08:51 www kernel: [ 0.502747] ACPI: EC: Look up EC in DSDT Dec 5 09:08:51 www kernel: [ 0.503788] ACPI: Executed 1 blocks of module-level executable AML code Dec 5 09:08:51 www kernel: [ 0.520435] ACPI: SSDT 00000000bf7980c0 00F20 (v01 DpgPmm P001Ist 00000011 INTL 20060113) Dec 5 09:08:51 www kernel: [ 0.520863] ACPI: Dynamic OEM Table Load: Dec 5 09:08:51 www kernel: [ 0.520990] ACPI: SSDT (null) 00F20 (v01 DpgPmm P001Ist 00000011 INTL 20060113) Dec 5 09:08:51 www kernel: [ 0.521308] ACPI: Interpreter enabled Dec 5 09:08:51 www kernel: [ 0.521366] ACPI: (supports S0 S1 S3 S4 S5) Dec 5 09:08:51 www kernel: [ 0.521611] ACPI: Using IOAPIC for interrupt routing Dec 5 09:08:51 www kernel: [ 0.522622] PCI: MMCONFIG at [mem 0xe0000000-0xefffffff] reserved in ACPI motherboard resources Dec 5 09:08:51 www kernel: [ 0.554150] ACPI: No dock devices found. Dec 5 09:08:51 www kernel: [ 0.554267] PCI: Using host bridge windows from ACPI; if necessary, use "pci=nocrs" and report a bug Dec 5 09:08:51 www kernel: [ 0.555231] ACPI: PCI Root Bridge [PCI0] (domain 0000 [bus 00-ff]) Dec 5 09:08:51 www kernel: [ 0.588224] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0._PRT] Dec 5 09:08:51 www kernel: [ 0.588398] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P1._PRT] Dec 5 09:08:51 www kernel: [ 0.588451] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P4._PRT] Dec 5 09:08:51 www kernel: [ 0.588473] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P6._PRT] Dec 5 09:08:51 www kernel: [ 0.588492] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P7._PRT] Dec 5 09:08:51 www kernel: [ 0.588512] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P8._PRT] Dec 5 09:08:51 www kernel: [ 0.588540] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE1._PRT] Dec 5 09:08:51 www kernel: [ 0.588559] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE3._PRT] Dec 5 09:08:51 www kernel: [ 0.588579] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE7._PRT] Dec 5 09:08:51 www kernel: [ 0.588605] pci0000:00: Requesting ACPI _OSC control (0x1d) Dec 5 09:08:51 www kernel: [ 0.588667] pci0000:00: ACPI _OSC request failed (AE_NOT_FOUND), returned control mask: 0x1d Dec 5 09:08:51 www kernel: [ 0.588746] ACPI _OSC control for PCIe not granted, disabling ASPM Dec 5 09:08:51 www kernel: [ 0.597666] ACPI: PCI Interrupt Link [LNKA] (IRQs 3 4 6 7 10 11 12 14 *15) Dec 5 09:08:51 www kernel: [ 0.598142] ACPI: PCI Interrupt Link [LNKB] (IRQs *5) Dec 5 09:08:51 www kernel: [ 0.598336] ACPI: PCI Interrupt Link [LNKC] (IRQs 3 4 6 7 10 *11 12 14 15) Dec 5 09:08:51 www kernel: [ 0.598810] ACPI: PCI Interrupt Link [LNKD] (IRQs 3 4 6 7 *10 11 12 14 15) Dec 5 09:08:51 www kernel: [ 0.599284] ACPI: PCI Interrupt Link [LNKE] (IRQs 3 4 6 7 10 11 12 *14 15) Dec 5 09:08:51 www kernel: [ 0.599762] ACPI: PCI Interrupt Link [LNKF] (IRQs *3 4 6 7 10 11 12 14 15) Dec 5 09:08:51 www kernel: [ 0.600236] ACPI: PCI Interrupt Link [LNKG] (IRQs 3 4 6 *7 10 11 12 14 15) Dec 5 09:08:51 www kernel: [ 0.600709] ACPI: PCI Interrupt Link [LNKH] (IRQs 3 *4 6 7 10 11 12 14 15) Dec 5 09:08:51 www kernel: [ 0.601931] PCI: Using ACPI for IRQ routing Dec 5 09:08:51 www kernel: [ 0.628146] pnp: PnP ACPI init Dec 5 09:08:51 www kernel: [ 0.628211] ACPI: bus type pnp registered Dec 5 09:08:51 www kernel: [ 0.628417] pnp 00:00: Plug and Play ACPI device, IDs PNP0a08 PNP0a03 (active) Dec 5 09:08:51 www kernel: [ 0.628859] system 00:01: Plug and Play ACPI device, IDs PNP0c01 (active) Dec 5 09:08:51 www kernel: [ 0.628915] pnp 00:02: Plug and Play ACPI device, IDs PNP0200 (active) Dec 5 09:08:51 www kernel: [ 0.628951] pnp 00:03: Plug and Play ACPI device, IDs PNP0b00 (active) Dec 5 09:08:51 www kernel: [ 0.628975] pnp 00:04: Plug and Play ACPI device, IDs PNP0800 (active) Dec 5 09:08:51 www kernel: [ 0.629004] pnp 00:05: Plug and Play ACPI device, IDs PNP0c04 (active) Dec 5 09:08:51 www kernel: [ 0.629229] system 00:06: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 5 09:08:51 www kernel: [ 0.629779] system 00:07: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 5 09:08:51 www kernel: [ 0.629849] pnp 00:08: Plug and Play ACPI device, IDs PNP0103 (active) Dec 5 09:08:51 www kernel: [ 0.629901] pnp 00:09: Plug and Play ACPI device, IDs INT0800 (active) Dec 5 09:08:51 www kernel: [ 0.630030] system 00:0a: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 5 09:08:51 www kernel: [ 0.630254] system 00:0b: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 5 09:08:51 www kernel: [ 0.630304] pnp 00:0c: Plug and Play ACPI device, IDs PNP0303 PNP030b (active) Dec 5 09:08:51 www kernel: [ 0.630359] pnp 00:0d: Plug and Play ACPI device, IDs PNP0f03 PNP0f13 (active) Dec 5 09:08:51 www kernel: [ 0.630492] system 00:0e: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 5 09:08:51 www kernel: [ 0.630986] system 00:0f: Plug and Play ACPI device, IDs PNP0c01 (active) Dec 5 09:08:51 www kernel: [ 0.631078] pnp: PnP ACPI: found 16 devices Dec 5 09:08:51 www kernel: [ 0.631135] ACPI: ACPI bus type pnp unregistered Dec 5 09:08:51 www kernel: [ 0.726291] ACPI: Power Button [PWRB] Dec 5 09:08:51 www kernel: [ 0.726452] ACPI: Power Button [PWRF] Dec 5 09:08:51 www kernel: [ 0.726527] ACPI: acpi_idle yielding to intel_idle Dec 7 21:45:22 www kernel: [ 0.000000] BIOS-e820: 00000000bf780000 - 00000000bf798000 (ACPI data) Dec 7 21:45:22 www kernel: [ 0.000000] BIOS-e820: 00000000bf798000 - 00000000bf7dc000 (ACPI NVS) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: RSDP 00000000000fb1a0 00014 (v00 ACPIAM) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: RSDT 00000000bf780000 00040 (v01 022410 RSDT1405 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: FACP 00000000bf780200 00084 (v01 022410 FACP1405 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: DSDT 00000000bf7804b0 0C359 (v01 A1279 A1279001 00000001 INTL 20060113) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: FACS 00000000bf798000 00040 Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: APIC 00000000bf780390 000D8 (v01 022410 APIC1405 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: MCFG 00000000bf780470 0003C (v01 022410 OEMMCFG 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: OEMB 00000000bf798040 00072 (v01 022410 OEMB1405 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: HPET 00000000bf78f4b0 00038 (v01 022410 OEMHPET 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: OSFR 00000000bf78f4f0 000B0 (v01 022410 OEMOSFR 20100224 MSFT 00000097) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: SSDT 00000000bf798fe0 00363 (v01 DpgPmm CpuPm 00000012 INTL 20060113) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: Local APIC address 0xfee00000 Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: PM-Timer IO Port: 0x808 Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: Local APIC address 0xfee00000 Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x01] lapic_id[0x00] enabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x02] lapic_id[0x02] enabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x03] lapic_id[0x04] enabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x04] lapic_id[0x06] enabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x05] lapic_id[0x84] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x06] lapic_id[0x85] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x07] lapic_id[0x86] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x08] lapic_id[0x87] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x09] lapic_id[0x88] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0a] lapic_id[0x89] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0b] lapic_id[0x8a] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0c] lapic_id[0x8b] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0d] lapic_id[0x8c] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0e] lapic_id[0x8d] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x0f] lapic_id[0x8e] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: LAPIC (acpi_id[0x10] lapic_id[0x8f] disabled) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: IOAPIC (id[0x01] address[0xfec00000] gsi_base[0]) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: IOAPIC (id[0x03] address[0xfec8a000] gsi_base[24]) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: INT_SRC_OVR (bus 0 bus_irq 0 global_irq 2 dfl dfl) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: INT_SRC_OVR (bus 0 bus_irq 9 global_irq 9 high level) Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: IRQ0 used by override. Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: IRQ2 used by override. Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: IRQ9 used by override. Dec 7 21:45:22 www kernel: [ 0.000000] Using ACPI (MADT) for SMP configuration information Dec 7 21:45:22 www kernel: [ 0.000000] ACPI: HPET id: 0x8086a301 base: 0xfed00000 Dec 7 21:45:22 www kernel: [ 0.009505] ACPI: Core revision 20110413 Dec 7 21:45:22 www kernel: [ 0.499203] PM: Registering ACPI NVS region at bf798000 (278528 bytes) Dec 7 21:45:22 www kernel: [ 0.500819] ACPI: bus type pci registered Dec 7 21:45:22 www kernel: [ 0.503121] ACPI: EC: Look up EC in DSDT Dec 7 21:45:22 www kernel: [ 0.504162] ACPI: Executed 1 blocks of module-level executable AML code Dec 7 21:45:22 www kernel: [ 0.520821] ACPI: SSDT 00000000bf7980c0 00F20 (v01 DpgPmm P001Ist 00000011 INTL 20060113) Dec 7 21:45:22 www kernel: [ 0.521247] ACPI: Dynamic OEM Table Load: Dec 7 21:45:22 www kernel: [ 0.521374] ACPI: SSDT (null) 00F20 (v01 DpgPmm P001Ist 00000011 INTL 20060113) Dec 7 21:45:22 www kernel: [ 0.521691] ACPI: Interpreter enabled Dec 7 21:45:22 www kernel: [ 0.521748] ACPI: (supports S0 S1 S3 S4 S5) Dec 7 21:45:22 www kernel: [ 0.521993] ACPI: Using IOAPIC for interrupt routing Dec 7 21:45:22 www kernel: [ 0.523002] PCI: MMCONFIG at [mem 0xe0000000-0xefffffff] reserved in ACPI motherboard resources Dec 7 21:45:22 www kernel: [ 0.554533] ACPI: No dock devices found. Dec 7 21:45:22 www kernel: [ 0.554649] PCI: Using host bridge windows from ACPI; if necessary, use "pci=nocrs" and report a bug Dec 7 21:45:22 www kernel: [ 0.555620] ACPI: PCI Root Bridge [PCI0] (domain 0000 [bus 00-ff]) Dec 7 21:45:22 www kernel: [ 0.588224] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0._PRT] Dec 7 21:45:22 www kernel: [ 0.588398] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P1._PRT] Dec 7 21:45:22 www kernel: [ 0.588451] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P4._PRT] Dec 7 21:45:22 www kernel: [ 0.588473] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P6._PRT] Dec 7 21:45:22 www kernel: [ 0.588492] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P7._PRT] Dec 7 21:45:22 www kernel: [ 0.588512] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.P0P8._PRT] Dec 7 21:45:22 www kernel: [ 0.588540] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE1._PRT] Dec 7 21:45:22 www kernel: [ 0.588559] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE3._PRT] Dec 7 21:45:22 www kernel: [ 0.588579] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.NPE7._PRT] Dec 7 21:45:22 www kernel: [ 0.588606] pci0000:00: Requesting ACPI _OSC control (0x1d) Dec 7 21:45:22 www kernel: [ 0.588667] pci0000:00: ACPI _OSC request failed (AE_NOT_FOUND), returned control mask: 0x1d Dec 7 21:45:22 www kernel: [ 0.588746] ACPI _OSC control for PCIe not granted, disabling ASPM Dec 7 21:45:22 www kernel: [ 0.597661] ACPI: PCI Interrupt Link [LNKA] (IRQs 3 4 6 7 10 11 12 14 *15) Dec 7 21:45:22 www kernel: [ 0.598137] ACPI: PCI Interrupt Link [LNKB] (IRQs *5) Dec 7 21:45:22 www kernel: [ 0.598331] ACPI: PCI Interrupt Link [LNKC] (IRQs 3 4 6 7 10 *11 12 14 15) Dec 7 21:45:22 www kernel: [ 0.598804] ACPI: PCI Interrupt Link [LNKD] (IRQs 3 4 6 7 *10 11 12 14 15) Dec 7 21:45:22 www kernel: [ 0.599278] ACPI: PCI Interrupt Link [LNKE] (IRQs 3 4 6 7 10 11 12 *14 15) Dec 7 21:45:22 www kernel: [ 0.599756] ACPI: PCI Interrupt Link [LNKF] (IRQs *3 4 6 7 10 11 12 14 15) Dec 7 21:45:22 www kernel: [ 0.600230] ACPI: PCI Interrupt Link [LNKG] (IRQs 3 4 6 *7 10 11 12 14 15) Dec 7 21:45:22 www kernel: [ 0.600704] ACPI: PCI Interrupt Link [LNKH] (IRQs 3 *4 6 7 10 11 12 14 15) Dec 7 21:45:22 www kernel: [ 0.601926] PCI: Using ACPI for IRQ routing Dec 7 21:45:22 www kernel: [ 0.624115] pnp: PnP ACPI init Dec 7 21:45:22 www kernel: [ 0.624179] ACPI: bus type pnp registered Dec 7 21:45:22 www kernel: [ 0.624382] pnp 00:00: Plug and Play ACPI device, IDs PNP0a08 PNP0a03 (active) Dec 7 21:45:22 www kernel: [ 0.624821] system 00:01: Plug and Play ACPI device, IDs PNP0c01 (active) Dec 7 21:45:22 www kernel: [ 0.624875] pnp 00:02: Plug and Play ACPI device, IDs PNP0200 (active) Dec 7 21:45:22 www kernel: [ 0.624911] pnp 00:03: Plug and Play ACPI device, IDs PNP0b00 (active) Dec 7 21:45:22 www kernel: [ 0.624933] pnp 00:04: Plug and Play ACPI device, IDs PNP0800 (active) Dec 7 21:45:22 www kernel: [ 0.624962] pnp 00:05: Plug and Play ACPI device, IDs PNP0c04 (active) Dec 7 21:45:22 www kernel: [ 0.625186] system 00:06: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 7 21:45:22 www kernel: [ 0.625733] system 00:07: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 7 21:45:22 www kernel: [ 0.625803] pnp 00:08: Plug and Play ACPI device, IDs PNP0103 (active) Dec 7 21:45:22 www kernel: [ 0.625856] pnp 00:09: Plug and Play ACPI device, IDs INT0800 (active) Dec 7 21:45:22 www kernel: [ 0.625984] system 00:0a: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 7 21:45:22 www kernel: [ 0.626206] system 00:0b: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 7 21:45:22 www kernel: [ 0.626256] pnp 00:0c: Plug and Play ACPI device, IDs PNP0303 PNP030b (active) Dec 7 21:45:22 www kernel: [ 0.626312] pnp 00:0d: Plug and Play ACPI device, IDs PNP0f03 PNP0f13 (active) Dec 7 21:45:22 www kernel: [ 0.626445] system 00:0e: Plug and Play ACPI device, IDs PNP0c02 (active) Dec 7 21:45:22 www kernel: [ 0.626936] system 00:0f: Plug and Play ACPI device, IDs PNP0c01 (active) Dec 7 21:45:22 www kernel: [ 0.627027] pnp: PnP ACPI: found 16 devices Dec 7 21:45:22 www kernel: [ 0.627084] ACPI: ACPI bus type pnp unregistered Dec 7 21:45:22 www kernel: [ 0.722086] ACPI: Power Button [PWRB] Dec 7 21:45:22 www kernel: [ 0.722246] ACPI: Power Button [PWRF] Dec 7 21:45:22 www kernel: [ 0.722320] ACPI: acpi_idle yielding to intel_idle

    Read the article

  • C#/.NET Fundamentals: Choosing the Right Collection Class

    - by James Michael Hare
    The .NET Base Class Library (BCL) has a wide array of collection classes at your disposal which make it easy to manage collections of objects. While it's great to have so many classes available, it can be daunting to choose the right collection to use for any given situation. As hard as it may be, choosing the right collection can be absolutely key to the performance and maintainability of your application! This post will look at breaking down any confusion between each collection and the situations in which they excel. We will be spending most of our time looking at the System.Collections.Generic namespace, which is the recommended set of collections. The Generic Collections: System.Collections.Generic namespace The generic collections were introduced in .NET 2.0 in the System.Collections.Generic namespace. This is the main body of collections you should tend to focus on first, as they will tend to suit 99% of your needs right up front. It is important to note that the generic collections are unsynchronized. This decision was made for performance reasons because depending on how you are using the collections its completely possible that synchronization may not be required or may be needed on a higher level than simple method-level synchronization. Furthermore, concurrent read access (all writes done at beginning and never again) is always safe, but for concurrent mixed access you should either synchronize the collection or use one of the concurrent collections. So let's look at each of the collections in turn and its various pros and cons, at the end we'll summarize with a table to help make it easier to compare and contrast the different collections. The Associative Collection Classes Associative collections store a value in the collection by providing a key that is used to add/remove/lookup the item. Hence, the container associates the value with the key. These collections are most useful when you need to lookup/manipulate a collection using a key value. For example, if you wanted to look up an order in a collection of orders by an order id, you might have an associative collection where they key is the order id and the value is the order. The Dictionary<TKey,TVale> is probably the most used associative container class. The Dictionary<TKey,TValue> is the fastest class for associative lookups/inserts/deletes because it uses a hash table under the covers. Because the keys are hashed, the key type should correctly implement GetHashCode() and Equals() appropriately or you should provide an external IEqualityComparer to the dictionary on construction. The insert/delete/lookup time of items in the dictionary is amortized constant time - O(1) - which means no matter how big the dictionary gets, the time it takes to find something remains relatively constant. This is highly desirable for high-speed lookups. The only downside is that the dictionary, by nature of using a hash table, is unordered, so you cannot easily traverse the items in a Dictionary in order. The SortedDictionary<TKey,TValue> is similar to the Dictionary<TKey,TValue> in usage but very different in implementation. The SortedDictionary<TKey,TValye> uses a binary tree under the covers to maintain the items in order by the key. As a consequence of sorting, the type used for the key must correctly implement IComparable<TKey> so that the keys can be correctly sorted. The sorted dictionary trades a little bit of lookup time for the ability to maintain the items in order, thus insert/delete/lookup times in a sorted dictionary are logarithmic - O(log n). Generally speaking, with logarithmic time, you can double the size of the collection and it only has to perform one extra comparison to find the item. Use the SortedDictionary<TKey,TValue> when you want fast lookups but also want to be able to maintain the collection in order by the key. The SortedList<TKey,TValue> is the other ordered associative container class in the generic containers. Once again SortedList<TKey,TValue>, like SortedDictionary<TKey,TValue>, uses a key to sort key-value pairs. Unlike SortedDictionary, however, items in a SortedList are stored as an ordered array of items. This means that insertions and deletions are linear - O(n) - because deleting or adding an item may involve shifting all items up or down in the list. Lookup time, however is O(log n) because the SortedList can use a binary search to find any item in the list by its key. So why would you ever want to do this? Well, the answer is that if you are going to load the SortedList up-front, the insertions will be slower, but because array indexing is faster than following object links, lookups are marginally faster than a SortedDictionary. Once again I'd use this in situations where you want fast lookups and want to maintain the collection in order by the key, and where insertions and deletions are rare. The Non-Associative Containers The other container classes are non-associative. They don't use keys to manipulate the collection but rely on the object itself being stored or some other means (such as index) to manipulate the collection. The List<T> is a basic contiguous storage container. Some people may call this a vector or dynamic array. Essentially it is an array of items that grow once its current capacity is exceeded. Because the items are stored contiguously as an array, you can access items in the List<T> by index very quickly. However inserting and removing in the beginning or middle of the List<T> are very costly because you must shift all the items up or down as you delete or insert respectively. However, adding and removing at the end of a List<T> is an amortized constant operation - O(1). Typically List<T> is the standard go-to collection when you don't have any other constraints, and typically we favor a List<T> even over arrays unless we are sure the size will remain absolutely fixed. The LinkedList<T> is a basic implementation of a doubly-linked list. This means that you can add or remove items in the middle of a linked list very quickly (because there's no items to move up or down in contiguous memory), but you also lose the ability to index items by position quickly. Most of the time we tend to favor List<T> over LinkedList<T> unless you are doing a lot of adding and removing from the collection, in which case a LinkedList<T> may make more sense. The HashSet<T> is an unordered collection of unique items. This means that the collection cannot have duplicates and no order is maintained. Logically, this is very similar to having a Dictionary<TKey,TValue> where the TKey and TValue both refer to the same object. This collection is very useful for maintaining a collection of items you wish to check membership against. For example, if you receive an order for a given vendor code, you may want to check to make sure the vendor code belongs to the set of vendor codes you handle. In these cases a HashSet<T> is useful for super-quick lookups where order is not important. Once again, like in Dictionary, the type T should have a valid implementation of GetHashCode() and Equals(), or you should provide an appropriate IEqualityComparer<T> to the HashSet<T> on construction. The SortedSet<T> is to HashSet<T> what the SortedDictionary<TKey,TValue> is to Dictionary<TKey,TValue>. That is, the SortedSet<T> is a binary tree where the key and value are the same object. This once again means that adding/removing/lookups are logarithmic - O(log n) - but you gain the ability to iterate over the items in order. For this collection to be effective, type T must implement IComparable<T> or you need to supply an external IComparer<T>. Finally, the Stack<T> and Queue<T> are two very specific collections that allow you to handle a sequential collection of objects in very specific ways. The Stack<T> is a last-in-first-out (LIFO) container where items are added and removed from the top of the stack. Typically this is useful in situations where you want to stack actions and then be able to undo those actions in reverse order as needed. The Queue<T> on the other hand is a first-in-first-out container which adds items at the end of the queue and removes items from the front. This is useful for situations where you need to process items in the order in which they came, such as a print spooler or waiting lines. So that's the basic collections. Let's summarize what we've learned in a quick reference table.  Collection Ordered? Contiguous Storage? Direct Access? Lookup Efficiency Manipulate Efficiency Notes Dictionary No Yes Via Key Key: O(1) O(1) Best for high performance lookups. SortedDictionary Yes No Via Key Key: O(log n) O(log n) Compromise of Dictionary speed and ordering, uses binary search tree. SortedList Yes Yes Via Key Key: O(log n) O(n) Very similar to SortedDictionary, except tree is implemented in an array, so has faster lookup on preloaded data, but slower loads. List No Yes Via Index Index: O(1) Value: O(n) O(n) Best for smaller lists where direct access required and no ordering. LinkedList No No No Value: O(n) O(1) Best for lists where inserting/deleting in middle is common and no direct access required. HashSet No Yes Via Key Key: O(1) O(1) Unique unordered collection, like a Dictionary except key and value are same object. SortedSet Yes No Via Key Key: O(log n) O(log n) Unique ordered collection, like SortedDictionary except key and value are same object. Stack No Yes Only Top Top: O(1) O(1)* Essentially same as List<T> except only process as LIFO Queue No Yes Only Front Front: O(1) O(1) Essentially same as List<T> except only process as FIFO   The Original Collections: System.Collections namespace The original collection classes are largely considered deprecated by developers and by Microsoft itself. In fact they indicate that for the most part you should always favor the generic or concurrent collections, and only use the original collections when you are dealing with legacy .NET code. Because these collections are out of vogue, let's just briefly mention the original collection and their generic equivalents: ArrayList A dynamic, contiguous collection of objects. Favor the generic collection List<T> instead. Hashtable Associative, unordered collection of key-value pairs of objects. Favor the generic collection Dictionary<TKey,TValue> instead. Queue First-in-first-out (FIFO) collection of objects. Favor the generic collection Queue<T> instead. SortedList Associative, ordered collection of key-value pairs of objects. Favor the generic collection SortedList<T> instead. Stack Last-in-first-out (LIFO) collection of objects. Favor the generic collection Stack<T> instead. In general, the older collections are non-type-safe and in some cases less performant than their generic counterparts. Once again, the only reason you should fall back on these older collections is for backward compatibility with legacy code and libraries only. The Concurrent Collections: System.Collections.Concurrent namespace The concurrent collections are new as of .NET 4.0 and are included in the System.Collections.Concurrent namespace. These collections are optimized for use in situations where multi-threaded read and write access of a collection is desired. The concurrent queue, stack, and dictionary work much as you'd expect. The bag and blocking collection are more unique. Below is the summary of each with a link to a blog post I did on each of them. ConcurrentQueue Thread-safe version of a queue (FIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentStack Thread-safe version of a stack (LIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentBag Thread-safe unordered collection of objects. Optimized for situations where a thread may be bother reader and writer. For more information see: C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection ConcurrentDictionary Thread-safe version of a dictionary. Optimized for multiple readers (allows multiple readers under same lock). For more information see C#/.NET Little Wonders: The ConcurrentDictionary BlockingCollection Wrapper collection that implement producers & consumers paradigm. Readers can block until items are available to read. Writers can block until space is available to write (if bounded). For more information see C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection Summary The .NET BCL has lots of collections built in to help you store and manipulate collections of data. Understanding how these collections work and knowing in which situations each container is best is one of the key skills necessary to build more performant code. Choosing the wrong collection for the job can make your code much slower or even harder to maintain if you choose one that doesn’t perform as well or otherwise doesn’t exactly fit the situation. Remember to avoid the original collections and stick with the generic collections.  If you need concurrent access, you can use the generic collections if the data is read-only, or consider the concurrent collections for mixed-access if you are running on .NET 4.0 or higher.   Tweet Technorati Tags: C#,.NET,Collecitons,Generic,Concurrent,Dictionary,List,Stack,Queue,SortedList,SortedDictionary,HashSet,SortedSet

    Read the article

  • You should NOT be writing jQuery in SharePoint if&hellip;

    - by Mark Rackley
    Yes… another one of these posts. What can I say? I’m a pot stirrer.. a rabble rouser *rabble rabble* jQuery in SharePoint seems to be a fairly polarizing issue with one side thinking it is the most awesome thing since Princess Leia as the slave girl in Return of the Jedi and the other half thinking it is the worst idea since Mannequin 2: On the Move. The correct answer is OF COURSE “it depends”. But what are those deciding factors that make jQuery an awesome fit or leave a bad taste in your mouth? Let’s see if I can drive the discussion here with some polarizing comments of my own… I know some of you are getting ready to leave your comments even now before reading the rest of the blog, which is great! Iron sharpens iron… These discussions hopefully open us up to understanding the entire process better and think about things in a different way. You should not be writing jQuery in SharePoint if you are not a developer… Let’s start off with my most polarizing and rant filled portion of the blog post. If you don’t know what you are doing or you don’t have a background that helps you understand the implications of what you are writing then you should not be writing jQuery in SharePoint! I truly believe that one of the biggest reasons for the jQuery haters is because of all the bad jQuery out there. If you don’t know what you are doing you can do some NASTY things! One of the best stories I’ve heard about this is from my good friend John Ferringer (@ferringer). John tells this story during our Mythbusters session we do together. One of his clients was undergoing a Denial of Service attack and they couldn’t figure out what was going on! After much searching they found that some genius jQuery developer wrote some code for an image rotator, but did not take into account what happens when there are no images to load! The code just kept hitting the servers over and over and over again which prevented anything else from getting done! Now, I’m NOT saying that I have not done the same sort of thing in the past or am immune from such mistakes. My point is that if you don’t know what you are doing, there are very REAL consequences that can have a major impact on your organization AND they will be hard to track down.  Think how happy your boss will be after you copy and pasted some jQuery from a blog without understanding what it does, it brings down the farm, AND it takes them 3 days to track it back to you.  :/ Good times will not be had. Like it or not JavaScript/jQuery is a programming language. While you .NET people sit on your high horses because your code is compiled and “runs faster” (also debatable), the rest of us will be actually getting work done and delivering solutions while you are trying to figure out why your widget won’t deploy. I can pick at that scab because I write .NET code too and speak from experience. I can do both, and do both well. So, I am not speaking from ignorance here. In JavaScript/jQuery you have variables, loops, conditionals, functions, arrays, events, and built in methods. If you are not a developer you just aren’t going to take advantage of all of that and use it correctly. Ahhh.. but there is hope! There is a lot of jQuery resources out there to help you learn and learn well! There are many experts on the subject that will gladly tell you when you are smoking crack. I just this minute saw a tweet from @cquick with a link to: “jQuery Fundamentals”. I just glanced through it and this may be a great primer for you aspiring jQuery devs. Take advantage of all the resources and become a developer! Hey, it will look awesome on your resume right? You should not be writing jQuery in SharePoint if it depends too much on client resources for a good user experience I’ve said it once and I’ll say it over and over until you understand. jQuery is executed on the client’s computer. Got it? If you are looping through hundreds of rows of data, searching through an enormous DOM, or performing many calculations it is going to take some time! AND if your user happens to be sitting on some old PC somewhere that they picked up at a garage sale their experience will be that much worse! If you can’t give the user a good experience they will not use the site. So, if jQuery is causing the user to have a bad experience, don’t use it. I sometimes go as far to say that you should NOT go to jQuery as a first option for external facing web sites because you have ZERO control over what the end user’s computer will be. You just can’t guarantee an awesome user experience all of the time. Ahhh… but you have no choice? (where have I heard that before?). Well… if you really have no choice, here are some tips to help improve the experience: Avoid screen scraping This is not 1999 and SharePoint is not an old green screen from a mainframe… so why are you treating it like it is? Screen scraping is time consuming and client intensive. Take advantage of tools like SPServices to do your data retrieval when possible. Fine tune your DOM searches A lot of time can be eaten up just searching the DOM and ignoring table rows that you don’t need. Write better jQuery to only loop through tables rows that you need, or only access specific elements you need. Take advantage of Element ID’s to return the one element you are looking for instead of looping through all the DOM over and over again. Write better jQuery Remember this is development. Think about how you can write cleaner, faster jQuery. This directly relates to the previous point of improving your DOM searches, but also when using arrays, variables and loops. Do you REALLY need to loop through that array 3 times? How can you knock it down to 2 times or even 1? When you have lots of calculations and data that you are manipulating every operation adds up. Think about how you can streamline it. Back in the old days before RAM was abundant, Cores were plentiful and dinosaurs roamed the earth, us developers had to take performance into account in everything we did. It’s a lost art that really needs to be used here. You should not be writing jQuery in SharePoint if you are sending a lot of data over the wire… Developer:  “Awesome… you can easily call SharePoint’s web services to retrieve and write data using SPServices!” Administrator: “Crap! you can easily call SharePoint’s web services to retrieve and write data using SPServices!” SPServices may indeed be the best thing that happened to SharePoint since the invention of SharePoint Saturdays by Godfather Lotter… BUT you HAVE to use it wisely! (I REFUSE to make the Spiderman reference). If you do not know what you are doing your code will bring back EVERY field and EVERY row from a list and push that over the internet with all that lovely XML wrapped around it. That can be a HUGE amount of data and will GREATLY impact performance! Calling several web service methods at the same time can cause the same problem and can negatively impact your SharePoint servers. These problems, thankfully, are not difficult to rectify if you are careful: Limit list data retrieved Use CAML to reduce the number of rows returned and limit the fields returned using ViewFields.  You should definitely be doing this regardless. If you aren’t I hope your admin thumps you upside the head. Batch large list updates You may or may not have noticed that if you try to do large updates (hundreds of rows) that the performance is either completely abysmal or it fails over half the time. You can greatly improve performance and avoid timeouts by breaking up your updates into several smaller updates. I don’t know if there is a magic number for best performance, it really depends on how much data you are sending back more than the number of rows. However, I have found that 200 rows generally works well.  Play around and find the right number for your situation. Delay Web Service calls when possible One of the cool things about jQuery and SPServices is that you can delay queries to the server until they are actually needed instead of doing them all at once. This can lead to performance improvements over DataViewWebParts and even .NET code in the right situations. So, don’t load the data until it’s needed. In some instances you may not need to retrieve the data at all, so why retrieve it ALL the time? You should not be writing jQuery in SharePoint if there is a better solution… jQuery is NOT the silver bullet in SharePoint, it is not the answer to every question, it is just another tool in the developers toolkit. I urge all developers to know what options exist out there and choose the right one! Sometimes it will be jQuery, sometimes it will be .NET,  sometimes it will be XSL, and sometimes it will be some other choice… So, when is there a better solution to jQuery? When you can’t get away from performance problems Sometimes jQuery will just give you horrible performance regardless of what you do because of unavoidable obstacles. In these situations you are going to have to figure out an alternative. Can I do it with a DVWP or do I have to crack open Visual Studio? When you need to do something that jQuery can’t do There are lots of things you can’t do in jQuery like elevate privileges, event handlers, workflows, or interact with back end systems that have no web service interface. It just can’t do everything. When it can be done faster and more efficiently another way Why are you spending time to write jQuery to do a DataViewWebPart that would take 5 minutes? Or why are you trying to implement complicated logic that would be simple to do in .NET? If your answer is that you don’t have the option, okay. BUT if you do have the option don’t reinvent the wheel! Take advantage of the other tools. The answer is not always jQuery… sorry… the kool-aid tastes good, but sweet tea is pretty awesome too. You should not be using jQuery in SharePoint if you are a moron… Let’s finish up the blog on a high note… Yes.. it’s true, I sometimes type things just to get a reaction… guess this section title might be a good example, but it feels good sometimes just to type the words that a lot of us think… So.. don’t be that guy! Another good buddy of mine that works for Microsoft told me. “I loved jQuery in SharePoint…. until I had to support it.”. He went on to explain that some user was making several web service calls on a page using jQuery and then was calling Microsoft and COMPLAINING because the page took so long to load… DUH! What do you expect to happen when you are pushing that much data over the wire and are making that many web service calls at once!! It’s one thing to write that kind of code and accept it’s just going to take a while, it’s COMPLETELY another issue to do that and then complain when it’s not lightning fast!  Someone’s gene pool needs some chlorine. So, I think this is a nice summary of the blog… DON’T be that guy… don’t be a moron. How can you stop yourself from being a moron? Ah.. glad you asked, here are some tips: Think Is jQuery the right solution to my problem? Is there a better approach? What are the implications and pitfalls of using jQuery in this situation? Search What are others doing? Does someone have a better solution? Is there a third party library that does the same thing I need? Plan Write good jQuery. Limit calculations and data sent over the wire and don’t reinvent the wheel when possible. Test Okay, it works well on your machine. Try it on others ESPECIALLY if this is for an external site. Test with empty data. Test with hundreds of rows of data. Test as many scenarios as possible. Monitor those server resources to see the impact there as well. Ask the experts As smart as you are, there are people smarter than you. Even the experts talk to each other to make sure they aren't doing something stupid. And for the MOST part they are pretty nice guys. Marc Anderson and Christophe Humbert are two guys who regularly keep me in line. Make sure you aren’t doing something stupid. Repeat So, when you think you have the best solution possible, repeat the steps above just to be safe.  Conclusion jQuery is an awesome tool and has come in handy on many occasions. I’m even teaching a 1/2 day SharePoint & jQuery workshop at the upcoming SPTechCon in Boston if you want to berate me in person. However, it’s only as awesome as the developer behind the keyboard. It IS development and has its pitfalls. Knowledge and experience are invaluable to giving the user the best experience possible.  Let’s face it, in the end, no matter our opinions, prejudices, or ego providing our clients, customers, and users with the best solution possible is what counts. Period… end of sentence…

    Read the article

  • Microsoft Declares the Future of ASP.NET is Web API

    - by sbwalker
    Sitting on a plane on my way home from Tech Ed 2012 in Orlando, I thought it would be a good time to jot down some key takeaways from this year’s conference. Some of these items I have known since the Microsoft MVP Summit which occurred in Redmond in late February ( but due to NDA restrictions I could not share them with the developer community at large ) and some of them are a result of insightful conversations with a wide variety of industry insiders and Microsoft employees at the conference. First, let’s travel back in time 4 years to the Microsoft MVP Summit in 2008. Microsoft was facing some heat from market newcomer Ruby on Rails and responded with a new web development framework of its own, ASP.NET MVC. At the Summit they estimated that MVC would only be applicable for ~10% of all new web development projects. Based on that prediction I questioned why they were investing such considerable resources for such a relative edge case, but my guess is that they felt it was an important edge case at the time as some of the more vocal .NET evangelists as well as some very high profile start-ups ( ie. Twitter ) had publicly announced their intent to use Rails. Microsoft made a lot of noise about MVC. In fact, they focused so much of their messaging and marketing hype around MVC that it appeared that WebForms was essentially dead. Yes, it may have been true that Microsoft continued to invest in WebForms, but from an outside perspective it really appeared that MVC was the only framework getting any real attention. As a result, MVC started to gain market share. An inside source at Microsoft told me that MVC usage has grown at a rate of about 5% per year and now sits at ~30%. Essentially by focusing so much marketing effort on MVC, Microsoft actually created a larger market demand for it.  This is because in the Microsoft ecosystem there is somewhat of a bandwagon mentality amongst developers. If Microsoft spends a lot of time talking about a specific technology, developers get the perception that it must be really important. So rather than choosing the right tool for the job, they often choose the tool with the most marketing hype and then try to sell it to the customer. In 2010, I blogged about the fact that MVC did not make any business sense for the DotNetNuke platform. This was because our ecosystem relied on third party extensions which were dependent on the WebForms model. If we migrated the core to MVC it would mean that all of the third party extensions would no longer be compatible, which would be an irresponsible business decision for us to make at the expense of our users and customers. However, this did not stop the debate from continuing to occur in our ecosystem. Clearly some developers had drunk Microsoft’s Kool-Aid about MVC and were of the mindset, to paraphrase an old Scottish saying, “If its not MVC, it’s crap”. Now, this is a rather ignorant position to take as most of the benefits of MVC can be achieved in WebForms with solid architecture and responsible coding practices. Clean separation of concerns, unit testing, and direct control over page output are all possible in the WebForms model – it just requires diligence and discipline. So over the past few years some horror stories have begun to bubble to the surface of software development projects focused on ground-up rewrites of web applications for the sole purpose of migrating from WebForms to MVC. These large scale rewrites were typically initiated by engineering teams with only a single argument driving the business decision, that Microsoft was promoting MVC as “the future”. These ill-fated rewrites offered no benefit to end users or customers and in fact resulted in a less stable, less scalable and more complicated systems – basically taking one step forward and two full steps back. A case in point is the announcement earlier this week that a popular open source .NET CMS provider has decided to pull the plug on their new MVC product which has been under active development for more than 18 months and revert back to WebForms. The availability of multiple server-side development models has deeply fragmented the Microsoft developer community. Some folks like to compare it to the age-old VB vs. C# language debate. However, the VB vs. C# language debate was ultimately more of a religious war because at least the two dominant programming languages were compatible with one another and could be used interchangeably. The issue with WebForms vs. MVC is much more challenging. This is because the messaging from Microsoft has positioned the two solutions as being incompatible with one another and as a result web developers feel like they are forced to choose one path or another. Yes, it is true that it has always been technically possible to use WebForms and MVC in the same project, but the tooling support has always made this feel “dirty”. The fragmentation has also made it difficult to attract newcomers as the perceived barrier to entry for learning ASP.NET has become higher. As a result many new software developers entering the market are gravitating to environments where the development model seems more simple and intuitive ( ie. PHP or Ruby ). At the same time that the Web Platform team was busy promoting ASP.NET MVC, the Microsoft Office team has been promoting Sharepoint as a platform for building internal enterprise web applications. Sharepoint has great penetration in the enterprise and over time has been enhanced with improved extensibility capabilities for software developers. But, like many other mature enterprise ASP.NET web applications, it is built on the WebForms development model. Similar to DotNetNuke, Sharepoint leverages a rich third party ecosystem for both generic web controls and more specialized WebParts – both of which rely on WebForms. So basically this resulted in a situation where the Web Platform group had headed off in one direction and the Office team had gone in another direction, and the end customer was stuck in the middle trying to figure out what to do with their existing investments in Microsoft technology. It really emphasized the perception that the left hand was not speaking to the right hand, as strategically speaking there did not seem to be any high level plan from Microsoft to ensure consistency and continuity across the different product lines. With the introduction of ASP.NET MVC, it also made some of the third party control vendors scratch their heads, and wonder what the heck Microsoft was thinking. The original value proposition of ASP.NET over Classic ASP was the ability for web developers to emulate the highly productive desktop development model by using abstract components for creating rich, interactive web interfaces. Web control vendors like Telerik, Infragistics, DevExpress, and ComponentArt had all built sizable businesses offering powerful user interface components to WebForms developers. And even after MVC was introduced these vendors continued to improve their products, offering greater productivity and a superior user experience via AJAX to what was possible in MVC. And since many developers were comfortable and satisfied with these third party solutions, the demand remained strong and the third party web control market continued to prosper despite the availability of MVC. While all of this was going on in the Microsoft ecosystem, there has also been a fundamental shift in the general software development industry. Driven by the explosion of Internet-enabled devices, the focus has now centered on service-oriented architecture (SOA). Service-oriented architecture is all about defining a public API for your product that any client can consume; whether it’s a native application running on a smart phone or tablet, a web browser taking advantage of HTML5 and Javascript, or a rich desktop application running on a PC. REST-based services which utilize the less verbose characteristics of JSON as a transport mechanism, have become the preferred approach over older, more bloated SOAP-based techniques. SOA also has the benefit of producing a cross-platform API, as every major technology stack is able to interact with standard REST-based web services. And for web applications, more and more developers are turning to robust Javascript libraries like JQuery and Knockout for browser-based client-side development techniques for calling web services and rendering content to end users. In fact, traditional server-side page rendering has largely fallen out of favor, resulting in decreased demand for server-side frameworks like Ruby on Rails, WebForms, and (gasp) MVC. In response to these new industry trends, Microsoft did what it always does – it immediately poured some resources into developing a solution which will ensure they remain relevant and competitive in the web space. This work culminated in a new framework which was branded as Web API. It is convention-based and designed to embrace native HTTP standards without copious layers of abstraction. This framework is designed to be the ultimate replacement for both the REST aspects of WCF and ASP.NET MVC Web Services. And since it was developed out of band with a dependency only on ASP.NET 4.0, it means that it can be used immediately in a variety of production scenarios. So at Tech Ed 2012 it was made abundantly clear in numerous sessions that Microsoft views Web API as the “Future of ASP.NET”. In fact, one Microsoft PM even went as far as to say that if we look 3-4 years into the future, that all ASP.NET web applications will be developed using the Web API approach. This is a fairly bold prediction and clearly telegraphs where Microsoft plans to allocate its resources going forward. Currently Web API is being delivered as part of the MVC4 package, but this is only temporary for the sake of convenience. It also sounds like there are still internal discussions going on in terms of how to brand the various aspects of ASP.NET going forward – perhaps the moniker of “ASP.NET Web Stack” coined a couple years ago by Scott Hanselman and utilized as part of the open source release of ASP.NET bits on Codeplex a few months back will eventually stick. Web API is being positioned as the unification of ASP.NET – the glue that is able to pull this fragmented mess back together again. The  “One ASP.NET” strategy will promote the use of all frameworks - WebForms, MVC, and Web API, even within the same web project. Basically the message is utilize the appropriate aspects of each framework to solve your business problems. Instead of navigating developers to a fork in the road, the plan is to educate them that “hybrid” applications are a great strategy for delivering solutions to customers. In addition, the service-oriented approach coupled with client-side development promoted by Web API can effectively be used in both WebForms and MVC applications. So this means it is also relevant to application platforms like DotNetNuke and Sharepoint, which means that it starts to create a unified development strategy across all ASP.NET product lines once again. And so what about MVC? There have actually been rumors floated that MVC has reached a stage of maturity where, similar to WebForms, it will be treated more as a maintenance product line going forward ( MVC4 may in fact be the last significant iteration of this framework ). This may sound alarming to some folks who have recently adopted MVC but it really shouldn’t, as both WebForms and MVC will continue to play a vital role in delivering solutions to customers. They will just not be the primary area where Microsoft is spending the majority of its R&D resources. That distinction will obviously go to Web API. And when the question comes up of why not enhance MVC to make it work with Web API, you must take a step back and look at this from the higher level to see that it really makes no sense. MVC is a server-side page compositing framework; whereas, Web API promotes client-side page compositing with a heavy focus on web services. In order to make MVC work well with Web API, would require a complete rewrite of MVC and at the end of the day, there would be no upgrade path for existing MVC applications. So it really does not make much business sense. So what does this have to do with DotNetNuke? Well, around 8-12 months ago we recognized the software industry trends towards web services and client-side development. We decided to utilize a “hybrid” model which would provide compatibility for existing modules while at the same time provide a bridge for developers who wanted to utilize more modern web techniques. Customers who like the productivity and familiarity of WebForms can continue to build custom modules using the traditional approach. However, in DotNetNuke 6.2 we also introduced a new Service Framework which is actually built on top of MVC2 ( we chose to leverage MVC because it had the most intuitive, light-weight REST implementation in the .NET stack ). The Services Framework allowed us to build some rich interactive features in DotNetNuke 6.2, including the Messaging and Notification Center and Activity Feed. But based on where we know Microsoft is heading, it makes sense for the next major version of DotNetNuke ( which is expected to be released in Q4 2012 ) to migrate from MVC2 to Web API. This will likely result in some breaking changes in the Services Framework but we feel it is the best approach for ensuring the platform remains highly modern and relevant. The fact that our development strategy is perfectly aligned with the “One ASP.NET” strategy from Microsoft means that our customers and developer community can be confident in their current and future investments in the DotNetNuke platform.

    Read the article

< Previous Page | 187 188 189 190 191 192 193 194 195 196 197 198  | Next Page >