Search Results

Search found 16144 results on 646 pages for 'custom identity'.

Page 210/646 | < Previous Page | 206 207 208 209 210 211 212 213 214 215 216 217  | Next Page >

  • How can I get the comment of the current authorized_keys ssh key ?

    - by krosenvold
    Edit: What I really need to know WHICH ssh key from authorized_keys has been used to identify the currently logged on user. According to "man sshd": Protocol 2 public key consist of options, keytype, base64-encoded key, comment. I see that when I use ssh-keygen, the comment is usually the local identity of the user. Is there any way to access this value when I'm on the remote computer ? (Kind of like the SSH_CLIENT shell variable) (Assuming I enforce the comment to be a remote identity of some sort, I would like to log this from a shell-script! This is on ubuntu)

    Read the article

  • Second portable monitor for a laptop

    - by user2630
    I'm away from my home office fairly regularly but I find it difficult to really settle to productive coding without my custom 4-screen custom built PC. My laptop (a slightly ageing HP Pavilion with a 1440 x 900 display) would really benefit from a portable monitor to plug into the vga port. Is there any suitable products out there which offer an easily luggable lightweight monitor which would fit in my laptop, offer reasonable resolution and response, and significantly enhance my screen real-estate?

    Read the article

  • What UDP port number(s) is/are most likely to be unblocked at a client? [closed]

    - by mike
    For a custom UDP server servicing a wide variety of client machines sending custom UDP packets, what's the best port to choose as the standard listening port for the server (in that the port is not likely to be disabled at the client by a firewall or router)? My first inclination is to use port 80, since almost everyone is using HTTP, but that's TCP, and maybe blocking of UDP on port 80 has become common. What's the best port to choose?

    Read the article

  • Stumped by "The remote server returned an error: (403) Forbidden" with WCF Service in https

    - by RJ
    I have a WCF Service that I have boiled down to next to nothing because of this error. It is driving me up the wall. Here's what I have now. A very simple WCF service with one method that returns a string with the value, "test". A very simple Web app that uses the service and puts the value of the string into a label. A web server running IIS 6 on Win 2003 with a SSL certificate. Other WCF services on the same server that work. I publish the WCF service to it's https location I run the web app in debug mode in VS and it works perfectly. I publish the web app to it's https location on the same server the WCF service resides under the same SSL certificate I get, "The remote server returned an error: (403) Forbidden" I have changed almost every setting in IIS as well as the WCF and Web apps to no avail. I have compared setting in the WCF services that work and everything is the same. Below are the setting in the web.config for the WCF Service and the WEB app: It appears the problem has to do with the Web app but I am out of ideas. Any ideas: WCF Service: <system.serviceModel> <bindings> <client /> <services> <service behaviorConfiguration="Ucf.Smtp.Wcf.SmtpServiceBehavior" name="Ucf.Smtp.Wcf.SmtpService"> <host> <baseAddresses> <add baseAddress="https://test.net.ucf.edu/webservices/Smtp/" /> </baseAddresses> </host> <endpoint address="" binding="wsHttpBinding" contract="Ucf.Smtp.Wcf.ISmtpService" bindingConfiguration="SSLBinding"> <identity> <dns value="localhost"/> </identity> </endpoint> <endpoint address="mex" binding="mexHttpsBinding" contract="IMetadataExchange"/> </service> </services> <behaviors> <serviceBehaviors> <behavior name="Ucf.Smtp.Wcf.SmtpServiceBehavior"> <serviceMetadata httpsGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="true" httpsHelpPageEnabled="True"/> </behavior> </serviceBehaviors> </behaviors> Web App: <system.serviceModel> <bindings><wsHttpBinding> <binding name="WSHttpBinding_ISmtpService" closeTimeout="00:01:00" openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00" bypassProxyOnLocal="false" transactionFlow="false" hostNameComparisonMode="StrongWildcard" maxBufferPoolSize="524288" maxReceivedMessageSize="65536" messageEncoding="Text" textEncoding="utf-8" useDefaultWebProxy="true" allowCookies="false"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" /> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false" /> <security mode="Transport"> <transport clientCredentialType="None" proxyCredentialType="None" realm="" /> <message clientCredentialType="Windows" negotiateServiceCredential="true" establishSecurityContext="true" /> </security> </binding> <client> <endpoint address="https://net228.net.ucf.edu/webservices/smtp/SmtpService.svc" binding="wsHttpBinding" bindingConfiguration="WSHttpBinding_ISmtpService" contract="SmtpService.ISmtpService" name="WSHttpBinding_ISmtpService"> <identity> <dns value="localhost" /> </identity> </client> </system.serviceModel>

    Read the article

  • mexTcpBinding in WCF - IMetadataExchange errors

    - by David
    I'm wanting to get a WCF-over-TCP service working. I was having some problems with modifying my own project, so I thought I'd start with the "base" WCF template included in VS2008. Here is the initial WCF App.config and when I run the service the WCF Test Client can work with it fine: <?xml version="1.0" encoding="utf-8" ?> <configuration> <system.web> <compilation debug="true" /> </system.web> <system.serviceModel> <services> <service name="WcfTcpTest.Service1" behaviorConfiguration="WcfTcpTest.Service1Behavior"> <host> <baseAddresses> <add baseAddress="http://localhost:8731/Design_Time_Addresses/WcfTcpTest/Service1/" /> </baseAddresses> </host> <endpoint address="" binding="wsHttpBinding" contract="WcfTcpTest.IService1"> <identity> <dns value="localhost"/> </identity> </endpoint> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange"/> </service> </services> <behaviors> <serviceBehaviors> <behavior name="WcfTcpTest.Service1Behavior"> <serviceMetadata httpGetEnabled="True"/> <serviceDebug includeExceptionDetailInFaults="True" /> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> </configuration> This works perfectly, no issues at all. I figured changing it from HTTP to TCP would be trivial: change the bindings to their TCP equivalents and remove the httpGetEnabled serviceMetadata element: <?xml version="1.0" encoding="utf-8" ?> <configuration> <system.web> <compilation debug="true" /> </system.web> <system.serviceModel> <services> <service name="WcfTcpTest.Service1" behaviorConfiguration="WcfTcpTest.Service1Behavior"> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1337/Service1/" /> </baseAddresses> </host> <endpoint address="" binding="netTcpBinding" contract="WcfTcpTest.IService1"> <identity> <dns value="localhost"/> </identity> </endpoint> <endpoint address="mex" binding="mexTcpBinding" contract="IMetadataExchange"/> </service> </services> <behaviors> <serviceBehaviors> <behavior name="WcfTcpTest.Service1Behavior"> <serviceDebug includeExceptionDetailInFaults="True" /> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> </configuration> But when I run this I get this error in the WCF Service Host: System.InvalidOperationException: The contract name 'IMetadataExchange' could not be found in the list of contracts implemented by the service Service1. Add a ServiceMetadataBehavior to the configuration file or to the ServiceHost directly to enable support for this contract. I get the feeling that you can't send metadata using TCP, but that's the case why is there a mexTcpBinding option?

    Read the article

  • Connecting WCF from Webpart

    - by Bhaskar
    I am consuming a WCF Service from a webpart in Sharepoint 2007. But its giving me the following error: There was no endpoint listening at http://locathost:2929/BusinessObjectService that could accept the message. This is often caused by an incorrect address or SOAP action. See InnerException, if present, for more details. --- System.Net.WebException: The remote server returned an error: (404) Not Found. My Binding Details in the WCF web.config is: <system.serviceModel> <diagnostics performanceCounters="All"> <messageLogging logEntireMessage="true" logMessagesAtServiceLevel="false" maxMessagesToLog="4000" /> </diagnostics> <services> <service behaviorConfiguration="MyService.IBusinessObjectServiceContractBehavior" name="MyService.BusinessObjectService"> <endpoint address="http://localhost:2929/BusinessObjectService.svc" binding="wsHttpBinding" contract="MyService.IBusinessObjectServiceContract"> <identity> <dns value="localhost" /> </identity> </endpoint> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services> <behaviors> <serviceBehaviors> <behavior name="MyService.IBusinessObjectServiceContractBehavior"> <serviceMetadata httpGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="false" /> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> My binding details in the Sharepoint site web.config is: <system.serviceModel> <bindings> <wsHttpBinding> <binding name="WSHttpBinding_IBusinessObjectServiceContract" closeTimeout="00:01:00" openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00" bypassProxyOnLocal="false" transactionFlow="false" hostNameComparisonMode="StrongWildcard" maxBufferPoolSize="524288" maxReceivedMessageSize="65536" messageEncoding="Mtom" textEncoding="utf-8" useDefaultWebProxy="true" allowCookies="false"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" /> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false" /> <security mode="Message"> <transport clientCredentialType="Windows" proxyCredentialType="None" realm="" /> <message clientCredentialType="Windows" negotiateServiceCredential="true" algorithmSuite="Default" /> </security> </binding> </wsHttpBinding> </bindings> <client> <endpoint address="http://localhost:2929/BusinessObjectService.svc" binding="wsHttpBinding" bindingConfiguration="WSHttpBinding_IBusinessObjectServiceContract" contract="BusinessObjectService.IBusinessObjectServiceContract" name="WSHttpBinding_IBusinessObjectServiceContract"> <identity> <dns value="localhost" /> </identity> </endpoint> </client> </system.serviceModel> I am able to view the WCF (and its wsdl) in browser, using the URL given in the end point. So, I guess the URL is definately correct. Please help !!!

    Read the article

  • WCF and Firewall

    - by Jim Biddison
    I have written a very simple WCF service (hosted in IIS) and web application that talks to it. If they are both in the same domain, it works fine. But when I put them in different domains (on different sides of a firewall), then the web applications says: The request for security token could not be satisfied because authentication failed. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.ServiceModel.FaultException: The request for security token could not be satisfied because authentication failed. Source Error: An unhandled exception was generated during the execution of the current web request. Information regarding the origin and location of the exception can be identified using the exception stack trace below. The revelant part of the service web.config is: <system.serviceModel> <services> <service behaviorConfiguration="MigrationHelperBehavior" name="MigrationHelper"> <endpoint address="" binding="wsHttpBinding" contract="IMigrationHelper"> <identity> <dns value="localhost" /> </identity> </endpoint> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> <endpoint binding="httpBinding" contract="IMigrationHelper" /> </service> </services> <behaviors> <serviceBehaviors> <behavior name="MigrationHelperBehavior"> <!-- To avoid disclosing metadata information, set the value below to false and remove the metadata endpoint above before deployment --> <serviceMetadata httpGetEnabled="true"/> <!-- To receive exception details in faults for debugging purposes, set the value below to true. Set to false before deployment to avoid disclosing exception information --> <serviceDebug includeExceptionDetailInFaults="false"/> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> The web appliation (client) web.config says: <system.serviceModel> <bindings> <wsHttpBinding> <binding name="WSHttpBinding_IMigrationHelper" closeTimeout="00:01:00" openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00" bypassProxyOnLocal="false" transactionFlow="false" hostNameComparisonMode="StrongWildcard" maxBufferPoolSize="524288" maxReceivedMessageSize="65536" messageEncoding="Text" textEncoding="utf-8" useDefaultWebProxy="true" allowCookies="false"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384"/> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false"/> <security mode="Message"> <transport clientCredentialType="Windows" proxyCredentialType="None" realm=""/> <message clientCredentialType="Windows" negotiateServiceCredential="true" algorithmSuite="Default" establishSecurityContext="true"/> </security> </binding> </wsHttpBinding> </bindings> <client> <endpoint address="http://mydomain.com/MigrationHelper.svc" binding="wsHttpBinding" bindingConfiguration="WSHttpBinding_IMigrationHelper" contract="MyNewServiceReference.IMigrationHelper" name="WSHttpBinding_IMigrationHelper"> <identity> <dns value="localhost"/> </identity> </endpoint> </client> </system.serviceModel> I believe both these are just the default that VS 2008 created for me. So my question is, how does one go about configurating the service and client, when they are not in the same domain? Thanks .Jim Biddison

    Read the article

  • WCF over http settings needed

    - by Crishna
    Hello, We currently have a WCF Service that works over https. But we want to change it to make it work over just http. Could any one tell me what all do I need to change to make the the wcf service work over http. Below is my config file values. Is there anything I else I need to cahnge other than the web.config?? ANy help greatly appreciated <bindings> <basicHttpBinding> <binding name="basicHttpBinding_Windows" maxReceivedMessageSize="500000000" maxBufferPoolSize="500000000" messageEncoding="Mtom"> <security mode="TransportWithMessageCredential"> <transport clientCredentialType="Windows" /> </security> <readerQuotas maxDepth="500000000" maxArrayLength="500000000" maxBytesPerRead="500000000" maxNameTableCharCount="500000000" maxStringContentLength="500000000"/> </binding> </basicHttpBinding> </bindings> <behaviors> <endpointBehaviors> <behavior name="myproject_Behavior"> <dataContractSerializer /> <synchronousReceive /> </behavior> </endpointBehaviors> <serviceBehaviors> <behavior name="WebService.WSBehavior"> <serviceMetadata httpsGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="true" /> </behavior> <behavior name="WebService.Forms_WSBehavior"> <serviceMetadata httpGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="false" /> </behavior> </serviceBehaviors> </behaviors> <services> <service behaviorConfiguration="WebService.WSBehavior" name="IMMSWebService.mywebservice_WS"> <endpoint address="myproject_WS" binding="basicHttpBinding" bindingConfiguration="basicHttpBinding_Windows" bindingName="basicHttpBinding" contract="WebService.ICommand"> <identity> <dns value="localhost" /> </identity> </endpoint> <endpoint address="mex" binding="mexHttpsBinding" contract="IMetadataExchange" /> <host> <timeouts closeTimeout="00:10:00" openTimeout="00:10:00" /> </host> </service> <service behaviorConfiguration="WebService.Forms_WSBehavior" name="WebService.Forms_WS"> <endpoint address="" binding="wsHttpBinding" contract="WebService.IForms_WS"> <identity> <dns value="localhost" /> </identity> </endpoint> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>

    Read the article

  • XNA: Camera's Rotation and Translation matrices seem to interfere with each other

    - by Danjen
    I've been following the guide here for how to create a custom 2D camera in XNA. It works great, I've implemented it before, but for some reason, the matrix math is throwing me off. public sealed class Camera2D { public Vector2 Origin { get; set; } public Vector2 Position { get; set; } public float Scale { get; set; } public float Rotation { get; set; } } It might be easier to just show you a picture of my problem: http://i.imgur.com/H1l6LEx.png What I want to do is allow the camera to pivot around any given point. Right now, I have the rotations mapped to my shoulder buttons on a gamepad, and if I press them, it should rotate around the point the camera is currently looking at. Then, I use the left stick to move the camera around. The problem is that after it's been rotated, pressing "up" results in it being used relative to the rotation, creating the image above. I understand that matrices have to be applied in a certain order, and that I have to offset the thing to be rotated around the world origin and move it back, but it just won't work! public Matrix GetTransformationMatrix() { Matrix mRotate = Matrix.Identity * Matrix.CreateTranslation(-Origin.X, -Origin.Y, 0.00f) * // Move origin to world center Matrix.CreateRotationZ(MathHelper.ToRadians(Rotation)) * // Apply rotation Matrix.CreateTranslation(+Origin.X, +Origin.Y, 0.00f); // Undo the move operation Matrix mTranslate = Matrix.Identity * Matrix.CreateTranslation(-Position.X, Position.Y, 0.00f); // Apply the actual translation return mRotate * mTranslate; } So to recap, it seems I can have it rotate around an arbitrary point and lose the ability to have "up" move the camera straight up, or I can rotate it around the world origin and have the camera move properly, but not both.

    Read the article

  • Insufficient Permissions Problems with MSDeploy and TFS Build 2010

    - by jdanforth
    I ran into these problems on a TFS 2010 RC setup where I wanted to deploy a web site as part of the nightly build: C:\Program Files (x86)\MSBuild\Microsoft\VisualStudio\v10.0\Web\Microsoft.Web.Publishing.targets (3481): Web deployment task failed.(An error occurred when reading the IIS Configuration File 'MACHINE/REDIRECTION'. The identity performing the operation was 'NT AUTHORITY\NETWORK SERVICE'.)  An error occurred when reading the IIS Configuration File 'MACHINE/REDIRECTION'. The identity performing the operation was 'NT AUTHORITY\NETWORK SERVICE'. Filename: \\?\C:\Windows\system32\inetsrv\config\redirection.config Error: Cannot read configuration file due to insufficient permissions  As you can see I’m running the build service as NETWORK SERVICE which is quite usual. The first thing I did then was to give NETWORK SERVICE read access to the whole directory where redirection.config is sitting; C:\Windows\system32\inetsrv\config. That gave me a new error: C:\Program Files (x86)\MSBuild\Microsoft\VisualStudio\v10.0\Web\Microsoft.Web.Publishing.targets (3481): Web deployment task failed. (Attempted to perform an unauthorized operation.) The reason for this problem was that NETWORK SERVICE didn’t have write permission to the place where I’ve told MSDeploy to put the web site physically on the disk. Once I’d given the NETWORK SERVICE the right permissions, MSDeploy completed as expected! NOTE! I’ve not had this problem with TFS 2010 RTM, so it might be just a RC issue!

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • polkit: disable all users except those in group wheel?

    - by John Nash
    Is it possible to do the following using 1 polkit .pkla file? Disable all users except those in the wheel group from using polkit. The users in the wheel group will need to provide the root password when using polkit. /etc/polkit-1/localauthority/50-local.d/wheel-only.pkla [disable all users except the wheel group] Identity=unix-group:wheel Action=* ResultAny=??? ResultInactive=??? ResultActive=??? The following file works but you need to provide all the users in /etc/group: [disable all users except those in the wheel group: root and myuser] Identity=unix-user:daemon;unix-user:bin;unix-user:sys;unix-user:adm;unix-user:tty;unix-user:disk;unix-user:lp;unix-user:mail;unix-user:news;unix-user:uucp;unix-user:man;unix-user:proxy;unix-user:kmem;unix-user:dialout;unix-user:fax;unix-user:voice;unix-user:cdrom;unix-user:floppy;unix-user:tape;unix-user:sudo;unix-user:audio;unix-user:dip;unix-user:www-data;unix-user:backup;unix-user:operator;unix-user:list;unix-user:irc;unix-user:src;unix-user:gnats;unix-user:shadow;unix-user:utmp;unix-user:video;unix-user:sasl;unix-user:plugdev;unix-user:staff;unix-user:games;unix-user:users;unix-user:nogroup;unix-user:libuuid;unix-user:crontab;unix-user:messagebus;unix-user:Debian-exim;unix-user:mlocate;unix-user:avahi;unix-user:netdev;unix-user:bluetooth;unix-user:lpadmin;unix-user:ssl-cert;unix-user:fuse;unix-user:utempter;unix-user:Debian-gdm;unix-user:scanner;unix-user:saned;unix-user:i2c;unix-user:haldaemon;unix-user:powerdev Action=* ResultAny=no ResultInactive=no ResultActive=no

    Read the article

  • SQL SERVER – Create Primary Key with Specific Name when Creating Table

    - by pinaldave
    It is interesting how sometimes the documentation of simple concepts is not available online. I had received email from one of the reader where he has asked how to create Primary key with a specific name when creating the table itself. He said, he knows the method where he can create the table and then apply the primary key with specific name. The attached code was as follows: CREATE TABLE [dbo].[TestTable]( [ID] [int] IDENTITY(1,1) NOT NULL, [FirstName] [varchar](100) NULL) GO ALTER TABLE [dbo].[TestTable] ADD  CONSTRAINT [PK_TestTable] PRIMARY KEY CLUSTERED ([ID] ASC) GO He wanted to know if we can create Primary Key as part of the table name as well, and also give it a name at the same time. Though it would look very normal to all experienced developers, it can be still confusing to many. Here is the quick code that functions as the above code in one single statement. CREATE TABLE [dbo].[TestTable]( [ID] [int] IDENTITY(1,1) NOT NULL, [FirstName] [varchar](100) NULL CONSTRAINT [PK_TestTable] PRIMARY KEY CLUSTERED ([ID] ASC) ) GO Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, Readers Question, SQL, SQL Authority, SQL Constraint and Keys, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Standards Corner: OAuth WG Client Registration Problem

    - by Tanu Sood
    Phil Hunt is an active member of multiple industry standards groups and committees (see brief bio at the end of the post) and has spearheaded discussions, creation and ratifications of  Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-ascii- mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi- mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} industry standards including the Kantara Identity Governance Framework, among others. Being an active voice in the industry standards development world, we have invited him to share his discussions, thoughts, news & updates, and discuss use cases, implementation success stories (and even failures) around industry standards on this monthly column. Author: Phil Hunt This afternoon, the OAuth Working Group will meet at IETF88 in Vancouver to discuss some important topics important to the maturation of OAuth. One of them is the OAuth client registration problem.OAuth (RFC6749) was initially developed with a simple deployment model where there is only monopoly or singleton cloud instance of a web API (e.g. there is one Facebook, one Google, on LinkedIn, and so on). When the API publisher and API deployer are the same monolithic entity, it easy for developers to contact the provider and register their app to obtain a client_id and credential.But what happens when the API is for an open source project where there may be 1000s of deployed copies of the API (e.g. such as wordpress). In these cases, the authors of the API are not the people running the API. In these scenarios, how does the developer obtain a client_id? An example of an "open deployed" API is OpenID Connect. Connect defines an OAuth protected resource API that can provide personal information about an authenticated user -- in effect creating a potentially common API for potential identity providers like Facebook, Google, Microsoft, Salesforce, or Oracle. In Oracle's case, Fusion applications will soon have RESTful APIs that are deployed in many different ways in many different environments. How will developers write apps that can work against an openly deployed API with whom the developer can have no prior relationship?At present, the OAuth Working Group has two proposals two consider: Dynamic RegistrationDynamic Registration was originally developed for OpenID Connect and UMA. It defines a RESTful API in which a prospective client application with no client_id creates a new client registration record with a service provider and is issued a client_id and credential along with a registration token that can be used to update registration over time.As proof of success, the OIDC community has done substantial implementation of this spec and feels committed to its use. Why not approve?Well, the answer is that some of us had some concerns, namely: Recognizing instances of software - dynamic registration treats all clients as unique. It has no defined way to recognize that multiple copies of the same client are being registered other then assuming if the registration parameters are similar it might be the same client. Versioning and Policy Approval of open APIs and clients - many service providers have to worry about change management. They expect to have approval cycles that approve versions of server and client software for use in their environment. In some cases approval might be wide open, but in many cases, approval might be down to the specific class of software and version. Registration updates - when does a client actually need to update its registration? Shouldn't it be never? Is there some characteristic of deployed code that would cause it to change? Options lead to complexity - because each client is treated as unique, it becomes unclear how the clients and servers will agree on what credentials forms are acceptable and what OAuth features are allowed and disallowed. Yet the reality is, developers will write their application to work in a limited number of ways. They can't implement all the permutations and combinations that potential service providers might choose. Stateful registration - if the primary motivation for registration is to obtain a client_id and credential, why can't this be done in a stateless fashion using assertions? Denial of service - With so much stateful registration and the need for multiple tokens to be issued, will this not lead to a denial of service attack / risk of resource depletion? At the very least, because of the information gathered, it would difficult for service providers to clean up "failed" registrations and determine active from inactive or false clients. There has yet to be much wide-scale "production" use of dynamic registration other than in small closed communities. Client Association A second proposal, Client Association, has been put forward by Tony Nadalin of Microsoft and myself. We took at look at existing use patterns to come up with a new proposal. At the Berlin meeting, we considered how WS-STS systems work. More recently, I took a review of how mobile messaging clients work. I looked at how Apple, Google, and Microsoft each handle registration with APNS, GCM, and WNS, and a similar pattern emerges. This pattern is to use an existing credential (mutual TLS auth), or client bearer assertion and swap for a device specific bearer assertion.In the client association proposal, the developer's registration with the API publisher is handled by having the developer register with an API publisher (as opposed to the party deploying the API) and obtaining a software "statement". Or, if there is no "publisher" that can sign a statement, the developer may include their own self-asserted software statement.A software statement is a special type of assertion that serves to lock application registration profile information in a signed assertion. The statement is included with the client application and can then be used by the client to swap for an instance specific client assertion as defined by section 4.2 of the OAuth Assertion draft and profiled in the Client Association draft. The software statement provides a way for service provider to recognize and configure policy to approve classes of software clients, and simplifies the actual registration to a simple assertion swap. Because the registration is an assertion swap, registration is no longer "stateful" - meaning the service provider does not need to store any information to support the client (unless it wants to). Has this been implemented yet? Not directly. We've only delivered draft 00 as an alternate way of solving the problem using well-known patterns whose security characteristics and scale characteristics are well understood. Dynamic Take II At roughly the same time that Client Association and Software Statement were published, the authors of Dynamic Registration published a "split" version of the Dynamic Registration (draft-richer-oauth-dyn-reg-core and draft-richer-oauth-dyn-reg-management). While some of the concerns above are addressed, some differences remain. Registration is now a simple POST request. However it defines a new method for issuing client tokens where as Client Association uses RFC6749's existing extension point. The concern here is whether future client access token formats would be addressed properly. Finally, Dyn-reg-core does not yet support software statements. Conclusion The WG has some interesting discussion to bring this back to a single set of specifications. Dynamic Registration has significant implementation, but Client Association could be a much improved way to simplify implementation of the overall OpenID Connect specification and improve adoption. In fairness, the existing editors have already come a long way. Yet there are those with significant investment in the current draft. There are many that have expressed they don't care. They just want a standard. There is lots of pressure on the working group to reach consensus quickly.And that folks is how the sausage is made.Note: John Bradley and Justin Richer recently published draft-bradley-stateless-oauth-client-00 which on first look are getting closer. Some of the details seem less well defined, but the same could be said of client-assoc and software-statement. I hope we can merge these specs this week. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-ascii- mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi- mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} About the Writer: Phil Hunt joined Oracle as part of the November 2005 acquisition of OctetString Inc. where he headed software development for what is now Oracle Virtual Directory. Since joining Oracle, Phil works as CMTS in the Identity Standards group at Oracle where he developed the Kantara Identity Governance Framework and provided significant input to JSR 351. Phil participates in several standards development organizations such as IETF and OASIS working on federation, authorization (OAuth), and provisioning (SCIM) standards.  Phil blogs at www.independentid.com and a Twitter handle of @independentid.

    Read the article

  • Metro: Creating an IndexedDbDataSource for WinJS

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can create custom data sources which you can use with the controls in the WinJS library. In particular, I explain how you can create an IndexedDbDataSource which you can use to store and retrieve data from an IndexedDB database. If you want to skip ahead, and ignore all of the fascinating content in-between, I’ve included the complete code for the IndexedDbDataSource at the very bottom of this blog entry. What is IndexedDB? IndexedDB is a database in the browser. You can use the IndexedDB API with all modern browsers including Firefox, Chrome, and Internet Explorer 10. And, of course, you can use IndexedDB with Metro style apps written with JavaScript. If you need to persist data in a Metro style app written with JavaScript then IndexedDB is a good option. Each Metro app can only interact with its own IndexedDB databases. And, IndexedDB provides you with transactions, indices, and cursors – the elements of any modern database. An IndexedDB database might be different than the type of database that you normally use. An IndexedDB database is an object-oriented database and not a relational database. Instead of storing data in tables, you store data in object stores. You store JavaScript objects in an IndexedDB object store. You create new IndexedDB object stores by handling the upgradeneeded event when you attempt to open a connection to an IndexedDB database. For example, here’s how you would both open a connection to an existing database named TasksDB and create the TasksDB database when it does not already exist: var reqOpen = window.indexedDB.open(“TasksDB”, 2); reqOpen.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); }; reqOpen.onsuccess = function () { var db = reqOpen.result; // Do something with db }; When you call window.indexedDB.open(), and the database does not already exist, then the upgradeneeded event is raised. In the code above, the upgradeneeded handler creates a new object store named tasks. The new object store has an auto-increment column named id which acts as the primary key column. If the database already exists with the right version, and you call window.indexedDB.open(), then the success event is raised. At that point, you have an open connection to the existing database and you can start doing something with the database. You use asynchronous methods to interact with an IndexedDB database. For example, the following code illustrates how you would add a new object to the tasks object store: var transaction = db.transaction(“tasks”, “readwrite”); var reqAdd = transaction.objectStore(“tasks”).add({ name: “Feed the dog” }); reqAdd.onsuccess = function() { // Tasks added successfully }; The code above creates a new database transaction, adds a new task to the tasks object store, and handles the success event. If the new task gets added successfully then the success event is raised. Creating a WinJS IndexedDbDataSource The most powerful control in the WinJS library is the ListView control. This is the control that you use to display a collection of items. If you want to display data with a ListView control, you need to bind the control to a data source. The WinJS library includes two objects which you can use as a data source: the List object and the StorageDataSource object. The List object enables you to represent a JavaScript array as a data source and the StorageDataSource enables you to represent the file system as a data source. If you want to bind an IndexedDB database to a ListView then you have a choice. You can either dump the items from the IndexedDB database into a List object or you can create a custom data source. I explored the first approach in a previous blog entry. In this blog entry, I explain how you can create a custom IndexedDB data source. Implementing the IListDataSource Interface You create a custom data source by implementing the IListDataSource interface. This interface contains the contract for the methods which the ListView needs to interact with a data source. The easiest way to implement the IListDataSource interface is to derive a new object from the base VirtualizedDataSource object. The VirtualizedDataSource object requires a data adapter which implements the IListDataAdapter interface. Yes, because of the number of objects involved, this is a little confusing. Your code ends up looking something like this: var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); The code above is used to create a new class named IndexedDbDataSource which derives from the base VirtualizedDataSource class. In the constructor for the new class, the base class _baseDataSourceConstructor() method is called. A data adapter is passed to the _baseDataSourceConstructor() method. The code above creates a new method exposed by the IndexedDbDataSource named nuke(). The nuke() method deletes all of the objects from an object store. The code above also overrides a method named remove(). Our derived remove() method accepts any type of key and removes the matching item from the object store. Almost all of the work of creating a custom data source goes into building the data adapter class. The data adapter class implements the IListDataAdapter interface which contains the following methods: · change() · getCount() · insertAfter() · insertAtEnd() · insertAtStart() · insertBefore() · itemsFromDescription() · itemsFromEnd() · itemsFromIndex() · itemsFromKey() · itemsFromStart() · itemSignature() · moveAfter() · moveBefore() · moveToEnd() · moveToStart() · remove() · setNotificationHandler() · compareByIdentity Fortunately, you are not required to implement all of these methods. You only need to implement the methods that you actually need. In the case of the IndexedDbDataSource, I implemented the getCount(), itemsFromIndex(), insertAtEnd(), and remove() methods. If you are creating a read-only data source then you really only need to implement the getCount() and itemsFromIndex() methods. Implementing the getCount() Method The getCount() method returns the total number of items from the data source. So, if you are storing 10,000 items in an object store then this method would return the value 10,000. Here’s how I implemented the getCount() method: getCount: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore().then(function (store) { var reqCount = store.count(); reqCount.onerror = that._error; reqCount.onsuccess = function (evt) { complete(evt.target.result); }; }); }); } The first thing that you should notice is that the getCount() method returns a WinJS promise. This is a requirement. The getCount() method is asynchronous which is a good thing because all of the IndexedDB methods (at least the methods implemented in current browsers) are also asynchronous. The code above retrieves an object store and then uses the IndexedDB count() method to get a count of the items in the object store. The value is returned from the promise by calling complete(). Implementing the itemsFromIndex method When a ListView displays its items, it calls the itemsFromIndex() method. By default, it calls this method multiple times to get different ranges of items. Three parameters are passed to the itemsFromIndex() method: the requestIndex, countBefore, and countAfter parameters. The requestIndex indicates the index of the item from the database to show. The countBefore and countAfter parameters represent hints. These are integer values which represent the number of items before and after the requestIndex to retrieve. Again, these are only hints and you can return as many items before and after the request index as you please. Here’s how I implemented the itemsFromIndex method: itemsFromIndex: function (requestIndex, countBefore, countAfter) { var that = this; return new WinJS.Promise(function (complete, error) { that.getCount().then(function (count) { if (requestIndex >= count) { return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.FetchError.doesNotExist)); } var startIndex = Math.max(0, requestIndex - countBefore); var endIndex = Math.min(count, requestIndex + countAfter + 1); that._getObjectStore().then(function (store) { var index = 0; var items = []; var req = store.openCursor(); req.onerror = that._error; req.onsuccess = function (evt) { var cursor = evt.target.result; if (index < startIndex) { index = startIndex; cursor.advance(startIndex); return; } if (cursor && index < endIndex) { index++; items.push({ key: cursor.value[store.keyPath].toString(), data: cursor.value }); cursor.continue(); return; } results = { items: items, offset: requestIndex - startIndex, totalCount: count }; complete(results); }; }); }); }); } In the code above, a cursor is used to iterate through the objects in an object store. You fetch the next item in the cursor by calling either the cursor.continue() or cursor.advance() method. The continue() method moves forward by one object and the advance() method moves forward a specified number of objects. Each time you call continue() or advance(), the success event is raised again. If the cursor is null then you know that you have reached the end of the cursor and you can return the results. Some things to be careful about here. First, the return value from the itemsFromIndex() method must implement the IFetchResult interface. In particular, you must return an object which has an items, offset, and totalCount property. Second, each item in the items array must implement the IListItem interface. Each item should have a key and a data property. Implementing the insertAtEnd() Method When creating the IndexedDbDataSource, I wanted to go beyond creating a simple read-only data source and support inserting and deleting objects. If you want to support adding new items with your data source then you need to implement the insertAtEnd() method. Here’s how I implemented the insertAtEnd() method for the IndexedDbDataSource: insertAtEnd:function(unused, data) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function(store) { var reqAdd = store.add(data); reqAdd.onerror = that._error; reqAdd.onsuccess = function (evt) { var reqGet = store.get(evt.target.result); reqGet.onerror = that._error; reqGet.onsuccess = function (evt) { var newItem = { key:evt.target.result[store.keyPath].toString(), data:evt.target.result } complete(newItem); }; }; }); }); } When implementing the insertAtEnd() method, you need to be careful to return an object which implements the IItem interface. In particular, you should return an object that has a key and a data property. The key must be a string and it uniquely represents the new item added to the data source. The value of the data property represents the new item itself. Implementing the remove() Method Finally, you use the remove() method to remove an item from the data source. You call the remove() method with the key of the item which you want to remove. Implementing the remove() method in the case of the IndexedDbDataSource was a little tricky. The problem is that an IndexedDB object store uses an integer key and the VirtualizedDataSource requires a string key. For that reason, I needed to override the remove() method in the derived IndexedDbDataSource class like this: var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); When you call remove(), you end up calling a method of the IndexedDbDataAdapter named removeInternal() . Here’s what the removeInternal() method looks like: setNotificationHandler: function (notificationHandler) { this._notificationHandler = notificationHandler; }, removeInternal: function(key) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqDelete = store.delete (key); reqDelete.onerror = that._error; reqDelete.onsuccess = function (evt) { that._notificationHandler.removed(key.toString()); complete(); }; }); }); } The removeInternal() method calls the IndexedDB delete() method to delete an item from the object store. If the item is deleted successfully then the _notificationHandler.remove() method is called. Because we are not implementing the standard IListDataAdapter remove() method, we need to notify the data source (and the ListView control bound to the data source) that an item has been removed. The way that you notify the data source is by calling the _notificationHandler.remove() method. Notice that we get the _notificationHandler in the code above by implementing another method in the IListDataAdapter interface: the setNotificationHandler() method. You can raise the following types of notifications using the _notificationHandler: · beginNotifications() · changed() · endNotifications() · inserted() · invalidateAll() · moved() · removed() · reload() These methods are all part of the IListDataNotificationHandler interface in the WinJS library. Implementing the nuke() Method I wanted to implement a method which would remove all of the items from an object store. Therefore, I created a method named nuke() which calls the IndexedDB clear() method: nuke: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqClear = store.clear(); reqClear.onerror = that._error; reqClear.onsuccess = function (evt) { that._notificationHandler.reload(); complete(); }; }); }); } Notice that the nuke() method calls the _notificationHandler.reload() method to notify the ListView to reload all of the items from its data source. Because we are implementing a custom method here, we need to use the _notificationHandler to send an update. Using the IndexedDbDataSource To illustrate how you can use the IndexedDbDataSource, I created a simple task list app. You can add new tasks, delete existing tasks, and nuke all of the tasks. You delete an item by selecting an item (swipe or right-click) and clicking the Delete button. Here’s the HTML page which contains the ListView, the form for adding new tasks, and the buttons for deleting and nuking tasks: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title>DataSources</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.1.0.RC/css/ui-dark.css" rel="stylesheet" /> <script src="//Microsoft.WinJS.1.0.RC/js/base.js"></script> <script src="//Microsoft.WinJS.1.0.RC/js/ui.js"></script> <!-- DataSources references --> <link href="indexedDb.css" rel="stylesheet" /> <script type="text/javascript" src="indexedDbDataSource.js"></script> <script src="indexedDb.js"></script> </head> <body> <div id="tmplTask" data-win-control="WinJS.Binding.Template"> <div class="taskItem"> Id: <span data-win-bind="innerText:id"></span> <br /><br /> Name: <span data-win-bind="innerText:name"></span> </div> </div> <div id="lvTasks" data-win-control="WinJS.UI.ListView" data-win-options="{ itemTemplate: select('#tmplTask'), selectionMode: 'single' }"></div> <form id="frmAdd"> <fieldset> <legend>Add Task</legend> <label>New Task</label> <input id="inputTaskName" required /> <button>Add</button> </fieldset> </form> <button id="btnNuke">Nuke</button> <button id="btnDelete">Delete</button> </body> </html> And here is the JavaScript code for the TaskList app: /// <reference path="//Microsoft.WinJS.1.0.RC/js/base.js" /> /// <reference path="//Microsoft.WinJS.1.0.RC/js/ui.js" /> function init() { WinJS.UI.processAll().done(function () { var lvTasks = document.getElementById("lvTasks").winControl; // Bind the ListView to its data source var tasksDataSource = new DataSources.IndexedDbDataSource("TasksDB", 1, "tasks", upgrade); lvTasks.itemDataSource = tasksDataSource; // Wire-up Add, Delete, Nuke buttons document.getElementById("frmAdd").addEventListener("submit", function (evt) { evt.preventDefault(); tasksDataSource.beginEdits(); tasksDataSource.insertAtEnd(null, { name: document.getElementById("inputTaskName").value }).done(function (newItem) { tasksDataSource.endEdits(); document.getElementById("frmAdd").reset(); lvTasks.ensureVisible(newItem.index); }); }); document.getElementById("btnDelete").addEventListener("click", function () { if (lvTasks.selection.count() == 1) { lvTasks.selection.getItems().done(function (items) { tasksDataSource.remove(items[0].data.id); }); } }); document.getElementById("btnNuke").addEventListener("click", function () { tasksDataSource.nuke(); }); // This method is called to initialize the IndexedDb database function upgrade(evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); } }); } document.addEventListener("DOMContentLoaded", init); The IndexedDbDataSource is created and bound to the ListView control with the following two lines of code: var tasksDataSource = new DataSources.IndexedDbDataSource("TasksDB", 1, "tasks", upgrade); lvTasks.itemDataSource = tasksDataSource; The IndexedDbDataSource is created with four parameters: the name of the database to create, the version of the database to create, the name of the object store to create, and a function which contains code to initialize the new database. The upgrade function creates a new object store named tasks with an auto-increment property named id: function upgrade(evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); } The Complete Code for the IndexedDbDataSource Here’s the complete code for the IndexedDbDataSource: (function () { /************************************************ * The IndexedDBDataAdapter enables you to work * with a HTML5 IndexedDB database. *************************************************/ var IndexedDbDataAdapter = WinJS.Class.define( function (dbName, dbVersion, objectStoreName, upgrade, error) { this._dbName = dbName; // database name this._dbVersion = dbVersion; // database version this._objectStoreName = objectStoreName; // object store name this._upgrade = upgrade; // database upgrade script this._error = error || function (evt) { console.log(evt.message); }; }, { /******************************************* * IListDataAdapter Interface Methods ********************************************/ getCount: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore().then(function (store) { var reqCount = store.count(); reqCount.onerror = that._error; reqCount.onsuccess = function (evt) { complete(evt.target.result); }; }); }); }, itemsFromIndex: function (requestIndex, countBefore, countAfter) { var that = this; return new WinJS.Promise(function (complete, error) { that.getCount().then(function (count) { if (requestIndex >= count) { return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.FetchError.doesNotExist)); } var startIndex = Math.max(0, requestIndex - countBefore); var endIndex = Math.min(count, requestIndex + countAfter + 1); that._getObjectStore().then(function (store) { var index = 0; var items = []; var req = store.openCursor(); req.onerror = that._error; req.onsuccess = function (evt) { var cursor = evt.target.result; if (index < startIndex) { index = startIndex; cursor.advance(startIndex); return; } if (cursor && index < endIndex) { index++; items.push({ key: cursor.value[store.keyPath].toString(), data: cursor.value }); cursor.continue(); return; } results = { items: items, offset: requestIndex - startIndex, totalCount: count }; complete(results); }; }); }); }); }, insertAtEnd:function(unused, data) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function(store) { var reqAdd = store.add(data); reqAdd.onerror = that._error; reqAdd.onsuccess = function (evt) { var reqGet = store.get(evt.target.result); reqGet.onerror = that._error; reqGet.onsuccess = function (evt) { var newItem = { key:evt.target.result[store.keyPath].toString(), data:evt.target.result } complete(newItem); }; }; }); }); }, setNotificationHandler: function (notificationHandler) { this._notificationHandler = notificationHandler; }, /***************************************** * IndexedDbDataSource Method ******************************************/ removeInternal: function(key) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqDelete = store.delete (key); reqDelete.onerror = that._error; reqDelete.onsuccess = function (evt) { that._notificationHandler.removed(key.toString()); complete(); }; }); }); }, nuke: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqClear = store.clear(); reqClear.onerror = that._error; reqClear.onsuccess = function (evt) { that._notificationHandler.reload(); complete(); }; }); }); }, /******************************************* * Private Methods ********************************************/ _ensureDbOpen: function () { var that = this; // Try to get cached Db if (that._cachedDb) { return WinJS.Promise.wrap(that._cachedDb); } // Otherwise, open the database return new WinJS.Promise(function (complete, error, progress) { var reqOpen = window.indexedDB.open(that._dbName, that._dbVersion); reqOpen.onerror = function (evt) { error(); }; reqOpen.onupgradeneeded = function (evt) { that._upgrade(evt); that._notificationHandler.invalidateAll(); }; reqOpen.onsuccess = function () { that._cachedDb = reqOpen.result; complete(that._cachedDb); }; }); }, _getObjectStore: function (type) { type = type || "readonly"; var that = this; return new WinJS.Promise(function (complete, error) { that._ensureDbOpen().then(function (db) { var transaction = db.transaction(that._objectStoreName, type); complete(transaction.objectStore(that._objectStoreName)); }); }); }, _get: function (key) { return new WinJS.Promise(function (complete, error) { that._getObjectStore().done(function (store) { var reqGet = store.get(key); reqGet.onerror = that._error; reqGet.onsuccess = function (item) { complete(item); }; }); }); } } ); var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); WinJS.Namespace.define("DataSources", { IndexedDbDataSource: IndexedDbDataSource }); })(); Summary In this blog post, I provided an overview of how you can create a new data source which you can use with the WinJS library. I described how you can create an IndexedDbDataSource which you can use to bind a ListView control to an IndexedDB database. While describing how you can create a custom data source, I explained how you can implement the IListDataAdapter interface. You also learned how to raise notifications — such as a removed or invalidateAll notification — by taking advantage of the methods of the IListDataNotificationHandler interface.

    Read the article

  • Stage3D Camera problem

    - by Thomas Versteeg
    I am trying to create a 2D Stage3D game where you can move the camera around the level in an RTS style. I thought about using Orthographic Matrix3D functions for this but when I try to scroll the whole "stage" also scrolls. This is the Camera code: public function Camera2D(width:int, height:int, zoom:Number = 1) { resize(width, height); _zoom = zoom; } public function resize(width:Number, height:Number):void { _width = width; _height = height; _projectionMatrix = makeMatrix(0, width, 0, height); _recalculate = true; } protected function makeMatrix(left:Number, right:Number, top:Number, bottom:Number, zNear:Number = 0, zFar:Number = 1):Matrix3D { return new Matrix3D(Vector.<Number>([ 2 / (right - left), 0, 0, 0, 0, 2 / (top - bottom), 0, 0, 0, 0, 1 / (zFar - zNear), 0, 0, 0, zNear / (zNear - zFar), 1 ])); } public function get viewMatrix():Matrix3D { if (_recalculate) { _recalculate = false; _viewMatrix.identity(); _viewMatrix.appendTranslation( -_width / 2 - _x, -_height / 2 - y, 0); _viewMatrix.appendScale(_zoom, _zoom, 1); _renderMatrix.identity(); _renderMatrix.append(_viewMatrix); _renderMatrix.append(_projectionMatrix); } return _renderMatrix; } Here are two screenshots to show what I mean: How do I only let the inside of the stage3D scroll and not the whole stage?

    Read the article

  • Inverted textures

    - by brainydexter
    I'm trying to draw textures aligned with this physics body whose coordinate system's origin is at the center of the screen. (XNA)Spritebatch has its default origin set to top-left corner. I got the textures to be positioned correctly, but I noticed my textures are vertically inverted. That is, an arrow texture pointing Up , when rendered points down. I'm not sure where I am going wrong with the math. My approach is to convert everything in physic's meter units and draw accordingly. Matrix proj = Matrix.CreateOrthographic(scale * graphics.GraphicsDevice.Viewport.AspectRatio, scale, 0, 1); Matrix view = Matrix.Identity; effect.World = Matrix.Identity; effect.View = view; effect.Projection = proj; effect.TextureEnabled = true; effect.VertexColorEnabled = true; effect.Techniques[0].Passes[0].Apply(); SpriteBatch.Begin(SpriteSortMode.BackToFront, BlendState.AlphaBlend, null, DepthStencilState.Default, RasterizerState.CullNone, effect); m_Paddles[1].Draw(gameTime); SpriteBatch.End(); where Paddle::Draw looks like: SpriteBatch.Draw(paddleTexture, mBody.Position, null, Color.White, 0f, new Vector2(16f, 16f), // origin of the texture 0.1875f, SpriteEffects.None, // width of box is 3*2 = 6 meters. texture is 32 pixels wide. to make it 6 meters wide in world space: 6/32 = 0.1875f 0); The orthographic projection matrix seem fine to me, but I am obviously doing something wrong somewhere! Can someone please help me figure out what am i doing wrong here ? Thanks

    Read the article

  • Is there any functional difference between immutable value types and immutable reference types?

    - by Kendall Frey
    Value types are types which do not have an identity. When one variable is modified, other instances are not. Using Javascript syntax as an example, here is how a value type works. var foo = { a: 42 }; var bar = foo; bar.a = 0; // foo.a is still 42 Reference types are types which do have an identity. When one variable is modified, other instances are as well. Here is how a reference type works. var foo = { a: 42 }; var bar = foo; bar.a = 0; // foo.a is now 0 Note how the example uses mutatable objects to show the difference. If the objects were immutable, you couldn't do that, so that kind of testing for value/reference types doesn't work. Is there any functional difference between immutable value types and immutable reference types? Is there any algorithm that can tell the difference between a reference type and a value type if they are immutable? Reflection is cheating. I'm wondering this mostly out of curiosity.

    Read the article

  • links for 2010-05-06

    - by Bob Rhubart
    Podcast: Collaborate 10 Wrap-Up - Conclusion #c10 More Collaborate 2010 Las Vegas highlights and hijinks from this ten-member panel, including OAUG and ODTUG board members, members of the Oracle ACE program, and OAUG President Dave Ferguson. (tags: otn oracle collaborate2010) Peter Scott: Realtime Data Warehouse Loading Rittman-Mead's Peter Scott looks at putting data in to a data warehouse in real time. (tags: oracle datawarehousing businessintelligence) Live Webcast: Social BPM - Integrating Enterprise 2.0 with Business Applications - May 12, 2010 at 11:00 a.m. PT Business Process Management with integrated Enterprise 2.0 collaboration can improve business responsiveness and enhance overall enterprise productivity. Learn how to take your business to the next level with a unified solution that fosters process-based collaboration between employees, partners, and customers. (tags: oracle otn bpm enterprise2.0 webcast) Management Pack for Identity Management Viewlet A screencast produced by the Grid Control team showing the features of the Identity Management Pack for Grid Control 11g. Grid Control 11g now works with Oracle Virtual Directory 11g. (tags: oracle otn security identitymanagement) @pevansgreenwood: Having too much SOA is a bad thing (and what we might do about it) "The problem is usually too much flexibility, as flexibility creates complexity, and complexity exponentially increases the effort required to manage and deliver the software." -- Peter Evans-Greenwood (tags: soa complexity flexibility) @vampbenepe: Integration patterns for social data: the Open Social Data Bus "The main point is about defining the right integration pattern for social data: is it a 'message bus' pattern or a 'shared database' pattern?" -- William Vampbenepe (tags: oracle otn enterprise2.0 enterprisearchitecture)

    Read the article

  • Defense Manpower Data Center Wins Award for Excellence in the Workforce

    - by Peggy Chen
    The Defense Manpower Data Center milConnect website recently won the 2012 Excellence.gov Award for Excellence in the Workforce. Defense Manpower Data Center milConnect is a centralized, online resource that provides military service members (active and retired) and their families (over 42 million in total) quick access to their profile, health care enrollments, benefits, and other military-related topics. An easy to use, safe and secure website, milConnect also provides service members with convenient access their personnel and service-related information. The self-service website allow users to quickly and easily find and, where applicable, update their information in the Defense Eligibility Reporting System (DEERS) and milConnect transmits information to and from one reliable source safely and securely.  The Defense Manpower Data Center (DMDC) maintains the largest, most comprehensive central repository of personnel, manpower, casualty, pay, entitlement, personnel security, person identity and attributes, survey, testing, training, and financial data in the Department of Defense (DoD).  This is one of the largest systems of record in the world. milConnect had the challenge of modernizing the user experience for over 42 million users. With records in over 22 applications and 25 interfaces in hundreds of existing systems, milConnect needed to reduce the complexity of multiple authentication sources as well as consolidating access to existing systems with sensitive information. It accomplished this using a service-orientated architecture, enterprise security and access and identity management for self-service access on a massive scale. By providing 24x7x365 secure access and handling over 5 million transactions daily, not only has milConnect, built on Oracle WebCenter, streamlined and improved the customer experience for military personnel and families. it has also done so while cutting costs, allowing self-service access, and promoting electronic government. Congrats to Defense Manpower Data Center and milConnect! 

    Read the article

  • New Big Data Appliance Security Features

    - by mgubar
    The Oracle Big Data Appliance (BDA) is an engineered system for big data processing.  It greatly simplifies the deployment of an optimized Hadoop Cluster – whether that cluster is used for batch or real-time processing.  The vast majority of BDA customers are integrating the appliance with their Oracle Databases and they have certain expectations – especially around security.  Oracle Database customers have benefited from a rich set of security features:  encryption, redaction, data masking, database firewall, label based access control – and much, much more.  They want similar capabilities with their Hadoop cluster.    Unfortunately, Hadoop wasn’t developed with security in mind.  By default, a Hadoop cluster is insecure – the antithesis of an Oracle Database.  Some critical security features have been implemented – but even those capabilities are arduous to setup and configure.  Oracle believes that a key element of an optimized appliance is that its data should be secure.  Therefore, by default the BDA delivers the “AAA of security”: authentication, authorization and auditing. Security Starts at Authentication A successful security strategy is predicated on strong authentication – for both users and software services.  Consider the default configuration for a newly installed Oracle Database; it’s been a long time since you had a legitimate chance at accessing the database using the credentials “system/manager” or “scott/tiger”.  The default Oracle Database policy is to lock accounts thereby restricting access; administrators must consciously grant access to users. Default Authentication in Hadoop By default, a Hadoop cluster fails the authentication test. For example, it is easy for a malicious user to masquerade as any other user on the system.  Consider the following scenario that illustrates how a user can access any data on a Hadoop cluster by masquerading as a more privileged user.  In our scenario, the Hadoop cluster contains sensitive salary information in the file /user/hrdata/salaries.txt.  When logged in as the hr user, you can see the following files.  Notice, we’re using the Hadoop command line utilities for accessing the data: $ hadoop fs -ls /user/hrdataFound 1 items-rw-r--r--   1 oracle supergroup         70 2013-10-31 10:38 /user/hrdata/salaries.txt$ hadoop fs -cat /user/hrdata/salaries.txtTom Brady,11000000Tom Hanks,5000000Bob Smith,250000Oprah,300000000 User DrEvil has access to the cluster – and can see that there is an interesting folder called “hrdata”.  $ hadoop fs -ls /user Found 1 items drwx------   - hr supergroup          0 2013-10-31 10:38 /user/hrdata However, DrEvil cannot view the contents of the folder due to lack of access privileges: $ hadoop fs -ls /user/hrdata ls: Permission denied: user=drevil, access=READ_EXECUTE, inode="/user/hrdata":oracle:supergroup:drwx------ Accessing this data will not be a problem for DrEvil. He knows that the hr user owns the data by looking at the folder’s ACLs. To overcome this challenge, he will simply masquerade as the hr user. On his local machine, he adds the hr user, assigns that user a password, and then accesses the data on the Hadoop cluster: $ sudo useradd hr $ sudo passwd $ su hr $ hadoop fs -cat /user/hrdata/salaries.txt Tom Brady,11000000 Tom Hanks,5000000 Bob Smith,250000 Oprah,300000000 Hadoop has not authenticated the user; it trusts that the identity that has been presented is indeed the hr user. Therefore, sensitive data has been easily compromised. Clearly, the default security policy is inappropriate and dangerous to many organizations storing critical data in HDFS. Big Data Appliance Provides Secure Authentication The BDA provides secure authentication to the Hadoop cluster by default – preventing the type of masquerading described above. It accomplishes this thru Kerberos integration. Figure 1: Kerberos Integration The Key Distribution Center (KDC) is a server that has two components: an authentication server and a ticket granting service. The authentication server validates the identity of the user and service. Once authenticated, a client must request a ticket from the ticket granting service – allowing it to access the BDA’s NameNode, JobTracker, etc. At installation, you simply point the BDA to an external KDC or automatically install a highly available KDC on the BDA itself. Kerberos will then provide strong authentication for not just the end user – but also for important Hadoop services running on the appliance. You can now guarantee that users are who they claim to be – and rogue services (like fake data nodes) are not added to the system. It is common for organizations to want to leverage existing LDAP servers for common user and group management. Kerberos integrates with LDAP servers – allowing the principals and encryption keys to be stored in the common repository. This simplifies the deployment and administration of the secure environment. Authorize Access to Sensitive Data Kerberos-based authentication ensures secure access to the system and the establishment of a trusted identity – a prerequisite for any authorization scheme. Once this identity is established, you need to authorize access to the data. HDFS will authorize access to files using ACLs with the authorization specification applied using classic Linux-style commands like chmod and chown (e.g. hadoop fs -chown oracle:oracle /user/hrdata changes the ownership of the /user/hrdata folder to oracle). Authorization is applied at the user or group level – utilizing group membership found in the Linux environment (i.e. /etc/group) or in the LDAP server. For SQL-based data stores – like Hive and Impala – finer grained access control is required. Access to databases, tables, columns, etc. must be controlled. And, you want to leverage roles to facilitate administration. Apache Sentry is a new project that delivers fine grained access control; both Cloudera and Oracle are the project’s founding members. Sentry satisfies the following three authorization requirements: Secure Authorization:  the ability to control access to data and/or privileges on data for authenticated users. Fine-Grained Authorization:  the ability to give users access to a subset of the data (e.g. column) in a database Role-Based Authorization:  the ability to create/apply template-based privileges based on functional roles. With Sentry, “all”, “select” or “insert” privileges are granted to an object. The descendants of that object automatically inherit that privilege. A collection of privileges across many objects may be aggregated into a role – and users/groups are then assigned that role. This leads to simplified administration of security across the system. Figure 2: Object Hierarchy – granting a privilege on the database object will be inherited by its tables and views. Sentry is currently used by both Hive and Impala – but it is a framework that other data sources can leverage when offering fine-grained authorization. For example, one can expect Sentry to deliver authorization capabilities to Cloudera Search in the near future. Audit Hadoop Cluster Activity Auditing is a critical component to a secure system and is oftentimes required for SOX, PCI and other regulations. The BDA integrates with Oracle Audit Vault and Database Firewall – tracking different types of activity taking place on the cluster: Figure 3: Monitored Hadoop services. At the lowest level, every operation that accesses data in HDFS is captured. The HDFS audit log identifies the user who accessed the file, the time that file was accessed, the type of access (read, write, delete, list, etc.) and whether or not that file access was successful. The other auditing features include: MapReduce:  correlate the MapReduce job that accessed the file Oozie:  describes who ran what as part of a workflow Hive:  captures changes were made to the Hive metadata The audit data is captured in the Audit Vault Server – which integrates audit activity from a variety of sources, adding databases (Oracle, DB2, SQL Server) and operating systems to activity from the BDA. Figure 4: Consolidated audit data across the enterprise.  Once the data is in the Audit Vault server, you can leverage a rich set of prebuilt and custom reports to monitor all the activity in the enterprise. In addition, alerts may be defined to trigger violations of audit policies. Conclusion Security cannot be considered an afterthought in big data deployments. Across most organizations, Hadoop is managing sensitive data that must be protected; it is not simply crunching publicly available information used for search applications. The BDA provides a strong security foundation – ensuring users are only allowed to view authorized data and that data access is audited in a consolidated framework.

    Read the article

  • Oracle Access Manager 11.1.2 Certified with E-Business Suite 12

    - by Elke Phelps (Oracle Development)
    I am happy to announce that Oracle Access Manager 11gR2 (11.1.2) is now certified with E-Business Suite Releases 12.0.6 and 12.1. If you are implementing single sign-on for the first time, or are an existing Oracle Access Manager user, you may integrate with Oracle Access Manager 11gR2 using Oracle Access Manager WebGate and Oracle E-Business Suite AccessGate. Supported Architecture and Release Versions Oracle Access Manager 11.1.2 Oracle E-Business Suite Release 12.0.6, 12.1.1+ Oracle Identity Management 11.1.1.5, 11.1.1.6 Oracle Internet Directory 11.1.1.6 Oracle WebLogic Server 10.3.0.5+ What's New In This Oracle Access Manager 11gR2 Integration? Simplified integration: We've simplified the instructions and cut the number of pages, while adding clarity to the steps. Automation of configuration steps:  We've automated some of the required configuration steps. This is the first phase of automation and diagnostics that are part of our roadmap for this integration. Use of default OAM Login page: We are reducing the required troubleshooting by delivering the default OAM Login page for the integration. A custom login page can still be created by using Oracle Access Manager. Use of the Detached Credential collector in a Demilitarized Zone: We have certified the Detached Credential collector as part of a DMZ configuration. This will enhance the security of the underlying Oracle Access Manager and E-Business Suite components, which will now be required only within a company's intranet.   Choosing the Right Architecture Our previously published blog article and support note with single sign-on recommended and certified integration paths has been updated to include Oracle Access Manager 11gR2: Overview of Single Sign-On Integration Options for Oracle E-Business Suite (Note 1388152.1) Other References Integrate with Oracle Access Manager 11gR2 (11.1.2) using Oracle E-Business Suite AccessGate (Note 1484024.1) Overview of Single Sign-On Integration Options for Oracle E-Business Suite (Note 1388152.1) Related Articles Understanding Options for Integrating Oracle Access Manager with E-Business Suite Why Does E-Business Suite Integration with OAM Require Oracle Internet Directory? In-Depth: Using Third-Party Identity Managers with E-Business Suite Release 12

    Read the article

  • The king is dead, long live the king&ndash;Cloud Evening 15th Feb in London

    - by Eric Nelson
    Advert alert :-) The UK's only Cloud user group The Cloud is the hot topic. You can’t escape hearing about it everywhere you go. Cloud Evening is the UK’s only cloud-focussed user group. Cloud Evening replaces UKAzureNet, with a new objective to cover all aspects of Cloud Computing, across all platforms, technologies and providers. We want to create a community for developers and architects to come together, learn, share stories and share experiences. Each event we’ll bring you two speakers talking about what’s hot in the world of Cloud. Our first event was a great success and we're now having the second exciting instalment. We're covering running third party applications on Azure and federated identity management. We will, of course, keep you fed and watered with beer and pizza. Spaces are limited so please sign-up now! Agenda 6.00pm – Registration 6.30pm – Windows Azure and running third-party software - using Elevated Privileges, Full IIS or VM Roles  (by @MarkRendle): We all know how simple it is to run your own applications on Azure, but how about existing software? Using the RavenDB document database software as an example, Mark will look at three ways to get 3rd-party software running on Azure, including the use of Start-up Tasks, Full IIS support and VM Roles, with a discussion of the pros and cons of each approach. 7.30pm – Beer and Pizza. 8.00pm – Federated identity – integrating Active Directory with Azure-based apps and Office 365  (by Steve Plank): Steve will cover off how to write great applications which leverage your existing on-premises Active Directory, along with providing seamless access to Office 365. We hope you can join us for what looks set to be a great evening. Register now

    Read the article

  • ADIOS Weblogs

    - by kashyapa
    I have been blogging on Weblogs.asp.net for a while now. I don't remember when actually i got a berth on to Weblogs. I think it was MS Joe – Joe Stagner way back somewhere in 2005 or sometime around that time frame (i don't remember the exact dates) that he had opened up weblogs.asp.net blog space. I remember sending an email to him and i had got a space for myself. So far weblogs has been a great starting platform for me. After close to a decade in the industry (this is my 9 year in the industry) i finally realized that i too can write and i have been lately passionate about writing. So far i just have 15 posts under my belt and close to 5 community speaking sessions. I have been lately enjoying writing and community things that i decided to have my own identity on the web. Yes i have purchased my own domain and i have taken up a hosting for my own blog. My new web identity would be 2 domains under my name – www.kashyapas.com and www.lohithgn.com. I will be discontinuing writing on weblogs.asp.net and will be fulltime at www.kashyapas.com. My RSS feed at weblogs.asp.net has been redirected to point to my new site. So whoever had subscribed to my RSS will still be getting the updated content from my new site. So do drop into my new home and let me know your feedback. As i say always – Happy coding and Code with passion !

    Read the article

< Previous Page | 206 207 208 209 210 211 212 213 214 215 216 217  | Next Page >