Search Results

Search found 37004 results on 1481 pages for 'public static'.

Page 214/1481 | < Previous Page | 210 211 212 213 214 215 216 217 218 219 220 221  | Next Page >

  • Hierarchy flattening of interfaces in WCF

    - by nmarun
    Alright, so say I have my service contract interface as below: 1: [ServiceContract] 2: public interface ILearnWcfService 3: { 4: [OperationContract(Name = "AddInt")] 5: int Add(int arg1, int arg2); 6: } Say I decided to add another interface with a similar add “feature”. 1: [ServiceContract] 2: public interface ILearnWcfServiceExtend : ILearnWcfService 3: { 4: [OperationContract(Name = "AddDouble")] 5: double Add(double arg1, double arg2); 6: } My class implementing the ILearnWcfServiceExtend ends up as: 1: public class LearnWcfService : ILearnWcfServiceExtend 2: { 3: public int Add(int arg1, int arg2) 4: { 5: return arg1 + arg2; 6: } 7:  8: public double Add(double arg1, double arg2) 9: { 10: return arg1 + arg2; 11: } 12: } Now when I consume this service and look at the proxy that gets generated, here’s what I see: 1: public interface ILearnWcfServiceExtend 2: { 3: [System.ServiceModel.OperationContractAttribute(Action="http://tempuri.org/ILearnWcfService/AddInt", ReplyAction="http://tempuri.org/ILearnWcfService/AddIntResponse")] 4: int AddInt(int arg1, int arg2); 5: 6: [System.ServiceModel.OperationContractAttribute(Action="http://tempuri.org/ILearnWcfServiceExtend/AddDouble", ReplyAction="http://tempuri.org/ILearnWcfServiceExtend/AddDoubleResponse")] 7: double AddDouble(double arg1, double arg2); 8: } Only the ILearnWcfServiceExtend gets ‘listed’ in the proxy class and not the (base interface) ILearnWcfService interface. But then to uniquely identify the operations that the service exposes, the Action and ReplyAction properties are set. So in the above example, the AddInt operation has the Action property set to ‘http://tempuri.org/ILearnWcfService/AddInt’ and the AddDouble operation has the Action property of ‘http://tempuri.org/ILearnWcfServiceExtend/AddDouble’. Similarly the ReplyAction properties are set corresponding to the namespace that they’re declared in. The ‘http://tempuri.org’ is chosen as the default namespace, since the Namespace property on the ServiceContract is not defined. The other thing is the service contract itself – the Add() method. You’ll see that in both interfaces, the method names are the same. As you might know, this is not allowed in WSDL-based environments, even though the arguments are of different types. This is allowed only if the Name attribute of the ServiceContract is set (as done above). This causes a change in the name of the service contract itself in the proxy class. See that their names are changed to AddInt / AddDouble respectively. Lesson learned: The interface hierarchy gets ‘flattened’ when the WCF service proxy class gets generated.

    Read the article

  • Adding Attributes to Generated Classes

    ASP.NET MVC 2 adds support for data annotations, implemented via attributes on your model classes.  Depending on your design, you may be using an OR/M tool like Entity Framework or LINQ-to-SQL to generate your entity classes, and you may further be using these entities directly as your Model.  This is fairly common, and alleviates the need to do mapping between POCO domain objects and such entities (though there are certainly pros and cons to using such entities directly). As an example, the current version of the NerdDinner application (available on CodePlex at nerddinner.codeplex.com) uses Entity Framework for its model.  Thus, there is a NerdDinner.edmx file in the project, and a generated NerdDinner.Models.Dinner class.  Fortunately, these generated classes are marked as partial, so you can extend their behavior via your own partial class in a separate file.  However, if for instance the generated Dinner class has a property Title of type string, you cant then add your own Title of type string for the purpose of adding data annotations to it, like this: public partial class Dinner { [Required] public string Title { get;set; } } This will result in a compilation error, because the generated Dinner class already contains a definition of Title.  How then can we add attributes to this generated code?  Do we need to go into the T4 template and add a special case that says if were generated a Dinner class and it has a Title property, add this attribute?  Ick. MetadataType to the Rescue The MetadataType attribute can be used to define a type which contains attributes (metadata) for a given class.  It is applied to the class you want to add metadata to (Dinner), and it refers to a totally separate class to which youre free to add whatever methods and properties you like.  Using this attribute, our partial Dinner class might look like this: [MetadataType(typeof(Dinner_Validation))] public partial class Dinner {}   public class Dinner_Validation { [Required] public string Title { get; set; } } In this case the Dinner_Validation class is public, but if you were concerned about muddying your API with such classes, it could instead have been created as a private class within Dinner.  Having the validation attributes specified in their own class (with no other responsibilities) complies with the Single Responsibility Principle and makes it easy for you to test that the validation rules you expect are in place via these annotations/attributes. Thanks to Julie Lerman for her help with this.  Right after she showed me how to do this, I realized it was also already being done in the project I was working on. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • What's up with stat on Macos/Darwin? Or filesystems without names...

    - by Charles Stewart
    In response to a question I asked on SO, Give the mount point of a path, one respondant suggested using stat to get the device name associated with the volume of a given path. This works nicely on Linux, but gives crazy results on Macos 10.4. For my system, df and mount give: cas cas$ df Filesystem 512-blocks Used Avail Capacity Mounted on /dev/disk0s3 58342896 49924456 7906440 86% / devfs 194 194 0 100% /dev fdesc 2 2 0 100% /dev 1024 1024 0 100% /.vol automount -nsl [166] 0 0 0 100% /Network automount -fstab [170] 0 0 0 100% /automount/Servers automount -static [170] 0 0 0 100% /automount/static /dev/disk2s1 163577856 23225520 140352336 14% /Volumes/Snapshot /dev/disk2s2 409404102 5745938 383187960 1% /Volumes/Sparse cas cas$ mount /dev/disk0s3 on / (local, journaled) devfs on /dev (local) fdesc on /dev (union) on /.vol automount -nsl [166] on /Network (automounted) automount -fstab [170] on /automount/Servers (automounted) automount -static [170] on /automount/static (automounted) /dev/disk2s1 on /Volumes/Snapshot (local, nodev, nosuid, journaled) /dev/disk2s2 on /Volumes/Sparse (asynchronous, local, nodev, nosuid) Trying to get the devices from the mount points, though: cas cas$ df | grep -e/ | awk '{print $NF}' | while read line; do echo $line $(stat -f"%Sdr" $line); done / disk0s3r /dev ???r /dev ???r /.vol ???r /Network ???r /automount/Servers ???r /automount/static ???r /Volumes/Snapshot disk2s1r /Volumes/Sparse disk2s2r Here, I'm feeding each of the mount points scraped from df to stat, outputing the results of the "%Sdr" format string, which is supposed to be the device name: Cf. stat(1) man page: The special output specifier S may be used to indicate that the output, if applicable, should be in string format. May be used in combination with: ... dr Display actual device name. What's going on? Is it a bug in stat, or some Darwin VFS weirdness? Postscript Per Andrew McGregor, try passing "%Sd" to stat for more weirdness. It lists some apparently arbitrary subset of files from CWD...

    Read the article

  • How to create contracts in python

    - by recluze
    I am just moving to python from Java and have a question about the way the two do things. My question relates to contracts. An example: an application defines an interface that all plugins must implement and then the main application can call it. In Java: public interface IPlugin { public Image modify(Image img); } public class MainApp { public main_app_logic() { String pluginName = "com.example.myplugin"; IPlugin x = (IPlugin) Class.forName(pluginName); x.modify(someimg); } } The plugin implements the interface and we use reflection in main app to call it. That way, there's a contract between the main app and the plugin that both can refer to. How does one go about doing something similar in Python? And also, which approach is better? p.s. I'm not posting this on SO because I'm much more concerned with the philosophy behind the two approaches.

    Read the article

  • const vs. readonly for a singleton

    - by GlenH7
    First off, I understand there are folk who oppose the use of singletons. I think it's an appropriate use in this case as it's constant state information, but I'm open to differing opinions / solutions. (See The singleton pattern and When should the singleton pattern not be used?) Second, for a broader audience: C++/CLI has a similar keyword to readonly with initonly, so this isn't strictly a C# type question. (Literal field versus constant variable in C++/CLI) Sidenote: A discussion of some of the nuances on using const or readonly. My Question: I have a singleton that anchors together some different data structures. Part of what I expose through that singleton are some lists and other objects, which represent the necessary keys or columns in order to connect the linked data structures. I doubt that anyone would try to change these objects through a different module, but I want to explicitly protect them from that risk. So I'm currently using a "readonly" modifier on those objects*. I'm using readonly instead of const with the lists as I read that using const will embed those items in the referencing assemblies and will therefore trigger a rebuild of those referencing assemblies if / when the list(s) is/are modified. This seems like a tighter coupling than I would want between the modules, but I wonder if I'm obsessing over a moot point. (This is question #2 below) The alternative I see to using "readonly" is to make the variables private and then wrap them with a public get. I'm struggling to see the advantage of this approach as it seems like wrapper code that doesn't provide much additional benefit. (This is question #1 below) It's highly unlikely that we'll change the contents or format of the lists - they're a compilation of things to avoid using magic strings all over the place. Unfortunately, not all the code has converted over to using this singleton's presentation of those strings. Likewise, I don't know that we'd change the containers / classes for the lists. So while I normally argue for the encapsulations advantages a get wrapper provides, I'm just not feeling it in this case. A representative sample of my singleton public sealed class mySingl { private static volatile mySingl sngl; private static object lockObject = new Object(); public readonly Dictionary<string, string> myDict = new Dictionary<string, string>() { {"I", "index"}, {"D", "display"}, }; public enum parms { ABC = 10, DEF = 20, FGH = 30 }; public readonly List<parms> specParms = new List<parms>() { parms.ABC, parms.FGH }; public static mySingl Instance { get { if(sngl == null) { lock(lockObject) { if(sngl == null) sngl = new mySingl(); } } return sngl; } } private mySingl() { doSomething(); } } Questions: Am I taking the most reasonable approach in this case? Should I be worrying about const vs. readonly? is there a better way of providing this information?

    Read the article

  • (Libgdx) Move Vector2 along angle?

    - by gemurdock
    I have seen several answers on here about moving along angle, but I can't seem to get this to work properly for me and I am new to LibGDX... just trying to learn. These are my Vector2's that I am using for this function. public Vector2 position = new Vector2(); public Vector2 velocity = new Vector2(); public Vector2 movement = new Vector2(); public Vector2 direction = new Vector2(); Here is the function that I use to move the position vector along an angle. setLocation() just sets the new location of the image. public void move(float delta, float degrees) { position.set(image.getX() + image.getWidth() / 2, image.getY() + image.getHeight() / 2); direction.set((float) Math.cos(degrees), (float) Math.sin(degrees)).nor(); velocity.set(direction).scl(speed); movement.set(velocity).scl(delta); position.add(movement); setLocation(position.x, position.y); // Sets location of image } I get a lot of different angles with this, just not the correct angles. How should I change this function to move a Vector2 along an angle using the Vector2 class from com.badlogic.gdx.math.Vector2 within the LibGDX library? I found this answer, but not sure how to implement it. Update: I figured out part of the issue. Should convert degrees to radians. However, the angle of 0 degrees is towards the right. Is there any way to fix this? As I shouldn't have to add 90 to degrees in order to have correct heading. New code is below public void move(float delta, float degrees) { degrees += 90; // Set degrees to correct heading, shouldn't have to do this position.set(image.getX() + image.getWidth() / 2, image.getY() + image.getHeight() / 2); direction.set(MathUtils.cos(degrees * MathUtils.degreesToRadians), MathUtils.sin(degrees * MathUtils.degreesToRadians)).nor(); velocity.set(direction).scl(speed); movement.set(velocity).scl(delta); position.add(movement); setLocation(position.x, position.y); }

    Read the article

  • Code Reuse is (Damn) Hard

    - by James Michael Hare
    Being a development team lead, the task of interviewing new candidates was part of my job.  Like any typical interview, we started with some easy questions to get them warmed up and help calm their nerves before hitting the hard stuff. One of those easier questions was almost always: “Name some benefits of object-oriented development.”  Nearly every time, the candidate would chime in with a plethora of canned answers which typically included: “it helps ease code reuse.”  Of course, this is a gross oversimplification.  Tools only ease reuse, its developers that ultimately can cause code to be reusable or not, regardless of the language or methodology. But it did get me thinking…  we always used to say that as part of our mantra as to why Object-Oriented Programming was so great.  With polymorphism, inheritance, encapsulation, etc. we in essence set up the concepts to help facilitate reuse as much as possible.  And yes, as a developer now of many years, I unquestionably held that belief for ages before it really struck me how my views on reuse have jaded over the years.  In fact, in many ways Agile rightly eschews reuse as taking a backseat to developing what's needed for the here and now.  It used to be I was in complete opposition to that view, but more and more I've come to see the logic in it.  Too many times I've seen developers (myself included) get lost in design paralysis trying to come up with the perfect abstraction that would stand all time.  Nearly without fail, all of these pieces of code become obsolete in a matter of months or years. It’s not that I don’t like reuse – it’s just that reuse is hard.  In fact, reuse is DAMN hard.  Many times it is just a distraction that eats up architect and developer time, and worse yet can be counter-productive and force wrong decisions.  Now don’t get me wrong, I love the idea of reusable code when it makes sense.  These are in the few cases where you are designing something that is inherently reusable.  The problem is, most business-class code is inherently unfit for reuse! Furthermore, the code that is reusable will often fail to be reused if you don’t have the proper framework in place for effective reuse that includes standardized versioning, building, releasing, and documenting the components.  That should always be standard across the board when promoting reusable code.  All of this is hard, and it should only be done when you have code that is truly reusable or you will be exerting a large amount of development effort for very little bang for your buck. But my goal here is not to get into how to reuse (that is a topic unto itself) but what should be reused.  First, let’s look at an extension method.  There’s many times where I want to kick off a thread to handle a task, then when I want to reign that thread in of course I want to do a Join on it.  But what if I only want to wait a limited amount of time and then Abort?  Well, I could of course write that logic out by hand each time, but it seemed like a great extension method: 1: public static class ThreadExtensions 2: { 3: public static bool JoinOrAbort(this Thread thread, TimeSpan timeToWait) 4: { 5: bool isJoined = false; 6:  7: if (thread != null) 8: { 9: isJoined = thread.Join(timeToWait); 10:  11: if (!isJoined) 12: { 13: thread.Abort(); 14: } 15: } 16: return isJoined; 17: } 18: } 19:  When I look at this code, I can immediately see things that jump out at me as reasons why this code is very reusable.  Some of them are standard OO principles, and some are kind-of home grown litmus tests: Single Responsibility Principle (SRP) – The only reason this extension method need change is if the Thread class itself changes (one responsibility). Stable Dependencies Principle (SDP) – This method only depends on classes that are more stable than it is (System.Threading.Thread), and in itself is very stable, hence other classes may safely depend on it. It is also not dependent on any business domain, and thus isn't subject to changes as the business itself changes. Open-Closed Principle (OCP) – This class is inherently closed to change. Small and Stable Problem Domain – This method only cares about System.Threading.Thread. All-or-None Usage – A user of a reusable class should want the functionality of that class, not parts of that functionality.  That’s not to say they most use every method, but they shouldn’t be using a method just to get half of its result. Cost of Reuse vs. Cost to Recreate – since this class is highly stable and minimally complex, we can offer it up for reuse very cheaply by promoting it as “ready-to-go” and already unit tested (important!) and available through a standard release cycle (very important!). Okay, all seems good there, now lets look at an entity and DAO.  I don’t know about you all, but there have been times I’ve been in organizations that get the grand idea that all DAOs and entities should be standardized and shared.  While this may work for small or static organizations, it’s near ludicrous for anything large or volatile. 1: namespace Shared.Entities 2: { 3: public class Account 4: { 5: public int Id { get; set; } 6:  7: public string Name { get; set; } 8:  9: public Address HomeAddress { get; set; } 10:  11: public int Age { get; set;} 12:  13: public DateTime LastUsed { get; set; } 14:  15: // etc, etc, etc... 16: } 17: } 18:  19: ... 20:  21: namespace Shared.DataAccess 22: { 23: public class AccountDao 24: { 25: public Account FindAccount(int id) 26: { 27: // dao logic to query and return account 28: } 29:  30: ... 31:  32: } 33: } Now to be fair, I’m not saying there doesn’t exist an organization where some entites may be extremely static and unchanging.  But at best such entities and DAOs will be problematic cases of reuse.  Let’s examine those same tests: Single Responsibility Principle (SRP) – The reasons to change for these classes will be strongly dependent on what the definition of the account is which can change over time and may have multiple influences depending on the number of systems an account can cover. Stable Dependencies Principle (SDP) – This method depends on the data model beneath itself which also is largely dependent on the business definition of an account which can be very inherently unstable. Open-Closed Principle (OCP) – This class is not really closed for modification.  Every time the account definition may change, you’d need to modify this class. Small and Stable Problem Domain – The definition of an account is inherently unstable and in fact may be very large.  What if you are designing a system that aggregates account information from several sources? All-or-None Usage – What if your view of the account encompasses data from 3 different sources but you only care about one of those sources or one piece of data?  Should you have to take the hit of looking up all the other data?  On the other hand, should you have ten different methods returning portions of data in chunks people tend to ask for?  Neither is really a great solution. Cost of Reuse vs. Cost to Recreate – DAOs are really trivial to rewrite, and unless your definition of an account is EXTREMELY stable, the cost to promote, support, and release a reusable account entity and DAO are usually far higher than the cost to recreate as needed. It’s no accident that my case for reuse was a utility class and my case for non-reuse was an entity/DAO.  In general, the smaller and more stable an abstraction is, the higher its level of reuse.  When I became the lead of the Shared Components Committee at my workplace, one of the original goals we looked at satisfying was to find (or create), version, release, and promote a shared library of common utility classes, frameworks, and data access objects.  Now, of course, many of you will point to nHibernate and Entity for the latter, but we were looking at larger, macro collections of data that span multiple data sources of varying types (databases, web services, etc). As we got deeper and deeper in the details of how to manage and release these items, it quickly became apparent that while the case for reuse was typically a slam dunk for utilities and frameworks, the data access objects just didn’t “smell” right.  We ended up having session after session of design meetings to try and find the right way to share these data access components. When someone asked me why it was taking so long to iron out the shared entities, my response was quite simple, “Reuse is hard...”  And that’s when I realized, that while reuse is an awesome goal and we should strive to make code maintainable, often times you end up creating far more work for yourself than necessary by trying to force code to be reusable that inherently isn’t. Think about classes the times you’ve worked in a company where in the design session people fight over the best way to implement a class to make it maximally reusable, extensible, and any other buzzwordable.  Then think about how quickly that design became obsolete.  Many times I set out to do a project and think, “yes, this is the best design, I can extend it easily!” only to find out the business requirements change COMPLETELY in such a way that the design is rendered invalid.  Code, in general, tends to rust and age over time.  As such, writing reusable code can often be difficult and many times ends up being a futile exercise and worse yet, sometimes makes the code harder to maintain because it obfuscates the design in the name of extensibility or reusability. So what do I think are reusable components? Generic Utility classes – these tend to be small classes that assist in a task and have no business context whatsoever. Implementation Abstraction Frameworks – home-grown frameworks that try to isolate changes to third party products you may be depending on (like writing a messaging abstraction layer for publishing/subscribing that is independent of whether you use JMS, MSMQ, etc). Simplification and Uniformity Frameworks – To some extent this is similar to an abstraction framework, but there may be one chosen provider but a development shop mandate to perform certain complex items in a certain way.  Or, perhaps to simplify and dumb-down a complex task for the average developer (such as implementing a particular development-shop’s method of encryption). And what are less reusable? Application and Business Layers – tend to fluctuate a lot as requirements change and new features are added, so tend to be an unstable dependency.  May be reused across applications but also very volatile. Entities and Data Access Layers – these tend to be tuned to the scope of the application, so reusing them can be hard unless the abstract is very stable. So what’s the big lesson?  Reuse is hard.  In fact it’s damn hard.  And much of the time I’m not convinced we should focus too hard on it. If you’re designing a utility or framework, then by all means design it for reuse.  But you most also really set down a good versioning, release, and documentation process to maximize your chances.  For anything else, design it to be maintainable and extendable, but don’t waste the effort on reusability for something that most likely will be obsolete in a year or two anyway.

    Read the article

  • How to build a Singleton-like dependency injector replacement (Php)

    - by Erparom
    I know out there are a lot of excelent containers, even frameworks almost entirely DI based with good strong IoC classes. However, this doesn't help me to "define" a new pattern. (This is Php code but understandable to anyone) Supose we have: //Declares the singleton class bookSingleton { private $author; private static $bookInstance; private static $isLoaned = FALSE; //The private constructor private function __constructor() { $this->author = "Onecrappy Writer Ofcheap Novels"; } //Sets the global isLoaned state and also gets self instance public static function loanBook() { if (self::$isLoaned === FALSE) { //Book already taken, so return false return FALSE; } else { //Ok, not loaned, lets instantiate (if needed and loan) if (!isset(self::$bookInstance)) { self::$bookInstance = new BookSingleton(); } self::$isLoaned = TRUE; } } //Return loaned state to false, so another book reader can take the book public function returnBook() { $self::$isLoaned = FALSE; } public function getAuthor() { return $this->author; } } Then we get the singelton consumtion class: //Consumes the Singleton class BookBorrower() { private $borrowedBook; private $haveBookState; public function __construct() { this->haveBookState = FALSE; } //Use the singelton-pattern behavior public function borrowBook() { $this->borrowedBook = BookSingleton::loanBook(); //Check if was successfully borrowed if (!this->borrowedBook) { $this->haveBookState = FALSE; } else { $this->haveBookState = TRUE; } } public function returnBook() { $this->borrowedBook->returnBook(); $this->haveBookState = FALSE; } public function getBook() { if ($this->haveBookState) { return "The book is loaned, the author is" . $this->borrowedbook->getAuthor(); } else { return "I don't have the book, perhaps someone else took it"; } } } At last, we got a client, to test the behavior function __autoload($class) { require_once $class . '.php'; } function write ($whatever,$breaks) { for($break = 0;$break<$breaks;$break++) { $whatever .= "\n"; } echo nl2br($whatever); } write("Begin Singleton test", 2); $borrowerJuan = new BookBorrower(); $borrowerPedro = new BookBorrower(); write("Juan asks for the book", 1); $borrowerJuan->borrowBook(); write("Book Borrowed? ", 1); write($borrowerJuan->getAuthorAndTitle(),2); write("Pedro asks for the book", 1); $borrowerPedro->borrowBook(); write("Book Borrowed? ", 1); write($borrowerPedro->getAuthorAndTitle(),2); write("Juan returns the book", 1); $borrowerJuan->returnBook(); write("Returned Book Juan? ", 1); write($borrowerJuan->getAuthorAndTitle(),2); write("Pedro asks again for the book", 1); $borrowerPedro->borrowBook(); write("Book Borrowed? ", 1); write($borrowerPedro->getAuthorAndTitle(),2); This will end up in the expected behavior: Begin Singleton test Juan asks for the book Book Borrowed? The book is loaned, the author is = Onecrappy Writer Ofcheap Novels Pedro asks for the book Book Borrowed? I don't have the book, perhaps someone else took it Juan returns the book Returned Book Juan? I don't have the book, perhaps someone else took it Pedro asks again for the book Book Borrowed? The book is loaned, the author is = Onecrappy Writer Ofcheap Novels So I want to make a pattern based on the DI technique able to do exactly the same, but without singleton pattern. As far as I'm aware, I KNOW I must inject the book inside "borrowBook" function instead of taking a static instance: public function borrowBook(BookNonSingleton $book) { if (isset($this->borrowedBook) || $book->isLoaned()) { $this->haveBook = FALSE; return FALSE; } else { $this->borrowedBook = $book; $this->haveBook = TRUE; return TRUE; } } And at the client, just handle the book: $borrowerJuan = new BookBorrower(); $borrowerJuan-borrowBook(new NonSingletonBook()); Etc... and so far so good, BUT... Im taking the responsability of "single instance" to the borrower, instead of keeping that responsability inside the NonSingletonBook, that since it has not anymore a private constructor, can be instantiated as many times... making instances on each call. So, What does my NonSingletonBook class MUST be in order to never allow borrowers to have this same book twice? (aka) keep the single instance. Because the dependency injector part of the code (borrower) does not solve me this AT ALL. Is it needed the container with an "asShared" method builder with static behavior? No way to encapsulate this functionallity into the Book itself? "Hey Im a book and I shouldn't be instantiated more than once, I'm unique"

    Read the article

  • RUEI 12.1.0.3.0 dependency requirement for php-soap-5.1.6

    - by sthieme
    Dear Readers,please be aware of the new php-soap-5.1.6 dependency in RUEI 12.1.0.3.For a swift upgrade to RUEI 12.1.0.3 you should be aware of this pre-requisite as it can be a time-eater to obtain individual rpm-packages inside of a datacenter for an old OS revision once you have started the upgrade process. You may use the following procedure to retrieve the required package via http://public-yum.oracle.com:Customers will have to check the /etc/issue, /etc/issue.net (or /etc/redhat-release for RHEL based OS) for their current release in order to obtain the fitting package version.Customers of OEL can download the packages from our public-yum.oracle.com Server: http://public-yum.oracle.com/repo/,  e.g. http://public-yum.oracle.com/repo/OracleLinux/OL5/8/base/x86_64/php-soap-5.1.6-32.el5.x86_64.rpmEarlier releases (up to 5.5) are located under the EnterpriseLinux instead of OracleLinux path, e.g.http://public-yum.oracle.com/repo/EnterpriseLinux/EL5/5/base/x86_64/php-soap-5.1.6-27.el5.x86_64.rpmNote: you will have to obtain the relevant RedHat rpm-packages via the login protected RHN URLs. Oracle can only provide support for Oracle Enterprise Linux and RHEL packages are not available publicly via rpm-seek.com to my knowledge. Kind regards,Stefan

    Read the article

  • android game performance regarding timers

    - by iQue
    Im new to the game-dev world and I have a tendancy to over-simplify my code, and sometimes this costs me alot fo memory. Im using a custom TimerTask that looks like this: public class Task extends TimerTask { private MainGamePanel panel; public Task(MainGamePanel panel) { this.panel=panel; } /** * When the timer executes, this code is run. */ public void run() { panel.createEnemies(); } } this task calls this method from my view: public void createEnemies() { Bitmap bmp = BitmapFactory.decodeResource(getResources(), R.drawable.female); if(enemyCounter < 24){ enemies.add(new Enemy(bmp, this)); } enemyCounter++; } Since I call this in the onCreate-method instead of in my views contructor (because My enemies need to get width and height of view). Im wondering if this will work when I have multiple levels in game (start a new intent). And if this kind of timer really is the best way to add a delay between the spawning-time of my enemies performance-wise. adding code for my timer if any1 came here cus they dont understand timers: private Timer timer1 = new Timer(); private long delay1 = 5*1000; // 5 sec delay public void surfaceCreated(SurfaceHolder holder) { timer1.schedule(new Task(this), 0, delay1); //I call my timer and add the delay thread.setRunning(true); thread.start(); }

    Read the article

  • vSphere ESX 5.5 hosts cannot connect to NFS Server

    - by Gerald
    Summary: My problem is I cannot use the QNAP NFS Server as an NFS datastore from my ESX hosts despite the hosts being able to ping it. I'm utilising a vDS with LACP uplinks for all my network traffic (including NFS) and a subnet for each vmkernel adapter. Setup: I'm evaluating vSphere and I've got two vSphere ESX 5.5 hosts (node1 and node2) and each one has 4x NICs. I've teamed them all up using LACP/802.3ad with my switch and then created a distributed switch between the two hosts with each host's LAG as the uplink. All my networking is going through the distributed switch, ideally, I want to take advantage of DRS and the redundancy. I have a domain controller VM ("Central") and vCenter VM ("vCenter") running on node1 (using node1's local datastore) with both hosts attached to the vCenter instance. Both hosts are in a vCenter datacenter and a cluster with HA and DRS currently disabled. I have a QNAP TS-669 Pro (Version 4.0.3) (TS-x69 series is on VMware Storage HCL) which I want to use as the NFS server for my NFS datastore, it has 2x NICs teamed together using 802.3ad with my switch. vmkernel.log: The error from the host's vmkernel.log is not very useful: NFS: 157: Command: (mount) Server: (10.1.2.100) IP: (10.1.2.100) Path: (/VM) Label (datastoreNAS) Options: (None) cpu9:67402)StorageApdHandler: 698: APD Handle 509bc29f-13556457 Created with lock[StorageApd0x411121] cpu10:67402)StorageApdHandler: 745: Freeing APD Handle [509bc29f-13556457] cpu10:67402)StorageApdHandler: 808: APD Handle freed! cpu10:67402)NFS: 168: NFS mount 10.1.2.100:/VM failed: Unable to connect to NFS server. Network Setup: Here is my distributed switch setup (JPG). Here are my networks. 10.1.1.0/24 VM Management (VLAN 11) 10.1.2.0/24 Storage Network (NFS, VLAN 12) 10.1.3.0/24 VM vMotion (VLAN 13) 10.1.4.0/24 VM Fault Tolerance (VLAN 14) 10.2.0.0/24 VM's Network (VLAN 20) vSphere addresses 10.1.1.1 node1 Management 10.1.1.2 node2 Management 10.1.2.1 node1 vmkernel (For NFS) 10.1.2.2 node2 vmkernel (For NFS) etc. Other addresses 10.1.2.100 QNAP TS-669 (NFS Server) 10.2.0.1 Domain Controller (VM on node1) 10.2.0.2 vCenter (VM on node1) I'm using a Cisco SRW2024P Layer-2 switch (Jumboframes enabled) with the following setup: LACP LAG1 for node1 (Ports 1 through 4) setup as VLAN trunk for VLANs 11-14,20 LACP LAG2 for my router (Ports 5 through 8) setup as VLAN trunk for VLANs 11-14,20 LACP LAG3 for node2 (Ports 9 through 12) setup as VLAN trunk for VLANs 11-14,20 LACP LAG4 for the QNAP (Ports 23 and 24) setup to accept untagged traffic into VLAN 12 Each subnet is routable to another, although, connections to the NFS server from vmk1 shouldn't need it. All other traffic (vSphere Web Client, RDP etc.) goes through this setup fine. I tested the QNAP NFS server beforehand using ESX host VMs atop of a VMware Workstation setup with a dedicated physical NIC and it had no problems. The ACL on the NFS Server share is permissive and allows all subnet ranges full access to the share. I can ping the QNAP from node1 vmk1, the adapter that should be used to NFS: ~ # vmkping -I vmk1 10.1.2.100 PING 10.1.2.100 (10.1.2.100): 56 data bytes 64 bytes from 10.1.2.100: icmp_seq=0 ttl=64 time=0.371 ms 64 bytes from 10.1.2.100: icmp_seq=1 ttl=64 time=0.161 ms 64 bytes from 10.1.2.100: icmp_seq=2 ttl=64 time=0.241 ms Netcat does not throw an error: ~ # nc -z 10.1.2.100 2049 Connection to 10.1.2.100 2049 port [tcp/nfs] succeeded! The routing table of node1: ~ # esxcfg-route -l VMkernel Routes: Network Netmask Gateway Interface 10.1.1.0 255.255.255.0 Local Subnet vmk0 10.1.2.0 255.255.255.0 Local Subnet vmk1 10.1.3.0 255.255.255.0 Local Subnet vmk2 10.1.4.0 255.255.255.0 Local Subnet vmk3 default 0.0.0.0 10.1.1.254 vmk0 VM Kernel NIC info ~ # esxcfg-vmknic -l Interface Port Group/DVPort IP Family IP Address Netmask Broadcast MAC Address MTU TSO MSS Enabled Type vmk0 133 IPv4 10.1.1.1 255.255.255.0 10.1.1.255 00:50:56:66:8e:5f 1500 65535 true STATIC vmk0 133 IPv6 fe80::250:56ff:fe66:8e5f 64 00:50:56:66:8e:5f 1500 65535 true STATIC, PREFERRED vmk1 164 IPv4 10.1.2.1 255.255.255.0 10.1.2.255 00:50:56:68:f5:1f 1500 65535 true STATIC vmk1 164 IPv6 fe80::250:56ff:fe68:f51f 64 00:50:56:68:f5:1f 1500 65535 true STATIC, PREFERRED vmk2 196 IPv4 10.1.3.1 255.255.255.0 10.1.3.255 00:50:56:66:18:95 1500 65535 true STATIC vmk2 196 IPv6 fe80::250:56ff:fe66:1895 64 00:50:56:66:18:95 1500 65535 true STATIC, PREFERRED vmk3 228 IPv4 10.1.4.1 255.255.255.0 10.1.4.255 00:50:56:72:e6:ca 1500 65535 true STATIC vmk3 228 IPv6 fe80::250:56ff:fe72:e6ca 64 00:50:56:72:e6:ca 1500 65535 true STATIC, PREFERRED Things I've tried/checked: I'm not using DNS names to connect to the NFS server. Checked MTU. Set to 9000 for vmk1, dvSwitch and Cisco switch and QNAP. Moved QNAP onto VLAN 11 (VM Management, vmk0) and gave it an appropriate address, still had same issue. Changed back afterwards of course. Tried initiating the connection of NAS datastore from vSphere Client (Connected to vCenter or directly to host), vSphere Web Client and the host's ESX Shell. All resulted in the same problem. Tried a path name of "VM", "/VM" and "/share/VM" despite not even having a connection to server. I plugged in a linux system (10.1.2.123) into a switch port configured for VLAN 12 and tried mounting the NFS share 10.1.2.100:/VM, it worked successfully and I had read-write access to it I tried disabling the firewall on the ESX host esxcli network firewall set --enabled false I'm out of ideas on what to try next. The things I'm doing differently from my VMware Workstation setup is the use of LACP with a physical switch and a virtual distributed switch between the two hosts. I'm guessing the vDS is probably the source of my troubles but I don't know how to fix this problem without eliminating it.

    Read the article

  • Scripts won't affect clones - Unity3d

    - by user3666251
    I made a script which swaps two game objects on click.But the script won't work because the objects are actualy clones of the original prefab. This is the script (UnityScript): #pragma strict var object1 : GameObject; var object2 : GameObject; function OnMouseDown () { Instantiate(object2,object1.transform.position,object1.transform.rotation); Destroy(object1); } I use this script to create other game objects (clones)[c#] : using UnityEngine; using System.Collections; public class Spawner : MonoBehaviour { public GameObject[] obj; public float spawnMin = 1f; public float spawnMax = 2f; // Use this for initialization void Start () { Spawn (); } void Spawn() { Instantiate(obj[Random.Range(0, obj.GetLength(0))],transform.position, Quaternion.identity); Invoke ("Spawn", Random.Range (spawnMin, spawnMax)); } } The objects get renamed to NAME (Clone). What I wanna do is make the script affect clones too.So they will swap when I click on them.

    Read the article

  • Beware of const members

    - by nmarun
    I happened to learn a new thing about const today and how one needs to be careful with its usage. Let’s say I have a third-party assembly ‘ConstVsReadonlyLib’ with a class named ConstSideEffect.cs: 1: public class ConstSideEffect 2: { 3: public static readonly int StartValue = 10; 4: public const int EndValue = 20; 5: } In my project, I reference the above assembly as follows: 1: static void Main(string[] args) 2: { 3: for (int i = ConstSideEffect.StartValue; i < ConstSideEffect.EndValue; i++) 4: { 5: Console.WriteLine(i); 6: } 7: Console.ReadLine(); 8: } You’ll see values 10 through 19 as expected. Now, let’s say I receive a new version of the ConstVsReadonlyLib. 1: public class ConstSideEffect 2: { 3: public static readonly int StartValue = 5; 4: public const int EndValue = 30; 5: } If I just drop this new assembly in the bin folder and run the application, without rebuilding my console application, my thinking was that the output would be from 5 to 29. Of course I was wrong… if not you’d not be reading this blog. The actual output is from 5 through 19. The reason is due to the behavior of const and readonly members. To begin with, const is the compile-time constant and readonly is a runtime constant. Next, when you compile the code, a compile-time constant member is replaced with the value of the constant in the code. But, the IL generated when you reference a read-only constant, references the readonly variable, not its value. So, the IL version of the Main method, after compilation actually looks something like: 1: static void Main(string[] args) 2: { 3: for (int i = ConstSideEffect.StartValue; i < 20; i++) 4: { 5: Console.WriteLine(i); 6: } 7: Console.ReadLine(); 8: } I’m no expert with this IL thingi, but when I look at the disassembled code of the exe file (using IL Disassembler), I see the following: I see our readonly member still being referenced by the variable name (ConstVsReadonlyLib.ConstSideEffect::StartValue) in line 0001. Then there’s the Console.WriteLine in line 000b and finally, see the value of 20 in line 0017. This, I’m pretty sure is our const member being replaced by its value which marks the upper bound of the ‘for’ loop. Now you know why the output was from 5 through 19. This definitely is a side-effect of having const members and one needs to be aware of it. While we’re here, I’d like to add a few other points about const and readonly members: const is slightly faster, but is less flexible readonly cannot be declared within a method scope const can be used only on primitive types (numbers and strings) Just wanted to share this before going to bed!

    Read the article

  • Retreiving upcoming calendar events from a Google Calendar

    - by brian_ritchie
    Google has a great cloud-based calendar service that is part of their Gmail product.  Besides using it as a personal calendar, you can use it to store events for display on your web site.  The calendar is accessible through Google's GData API for which they provide a C# SDK. Here's some code to retrieve the upcoming entries from the calendar:  .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: public class CalendarEvent 2: { 3: public string Title { get; set; } 4: public DateTime StartTime { get; set; } 5: } 6:   7: public class CalendarHelper 8: { 9: public static CalendarEvent[] GetUpcomingCalendarEvents 10: (int numberofEvents) 11: { 12: CalendarService service = new CalendarService("youraccount"); 13: EventQuery query = new EventQuery(); 14: query.Uri = new Uri( 15: "http://www.google.com/calendar/feeds/userid/public/full"); 16: query.FutureEvents = true; 17: query.SingleEvents = true; 18: query.SortOrder = CalendarSortOrder.ascending; 19: query.NumberToRetrieve = numberofEvents; 20: query.ExtraParameters = "orderby=starttime"; 21: var events = service.Query(query); 22: return (from e in events.Entries select new CalendarEvent() 23: { StartTime=(e as EventEntry).Times[0].StartTime, 24: Title = e.Title.Text }).ToArray(); 25: } 26: } There are a few special "tricks" to make this work: "SingleEvents" flag will flatten out reoccurring events "FutureEvents", "SortOrder", and the "orderby" parameters will get the upcoming events. "NumberToRetrieve" will limit the amount coming back  I then using Linq to Objects to put the results into my own DTO for use by my model.  It is always a good idea to place data into your own DTO for use within your MVC model.  This protects the rest of your code from changes to the underlying calendar source or API.

    Read the article

  • Is it worthwhile to block malicious crawlers via iptables?

    - by EarthMind
    I periodically check my server logs and I notice a lot of crawlers search for the location of phpmyadmin, zencart, roundcube, administrator sections and other sensitive data. Then there are also crawlers under the name "Morfeus Fucking Scanner" or "Morfeus Strikes Again" searching for vulnerabilities in my PHP scripts and crawlers that perform strange (XSS?) GET requests such as: GET /static/)self.html(selector?jQuery( GET /static/]||!jQuery.support.htmlSerialize&&[1, GET /static/);display=elem.css( GET /static/.*. GET /static/);jQuery.removeData(elem, Until now I've always been storing these IPs manually to block them using iptables. But as these requests are only performed a maximum number of times from the same IP, I'm having my doubts if it does provide any advantage security related by blocking them. I'd like to know if it does anyone any good to block these crawlers in the firewall, and if so if there's a (not too complex) way of doing this automatically. And if it's wasted effort, maybe because these requests come from from new IPs after a while, if anyone can elaborate on this and maybe provide suggestion for more efficient ways of denying/restricting malicious crawler access. FYI: I'm also already blocking w00tw00t.at.ISC.SANS.DFind:) crawls using these instructions: http://spamcleaner.org/en/misc/w00tw00t.html

    Read the article

  • Why enumerator structs are a really bad idea

    - by Simon Cooper
    If you've ever poked around the .NET class libraries in Reflector, I'm sure you would have noticed that the generic collection classes all have implementations of their IEnumerator as a struct rather than a class. As you will see, this design decision has some rather unfortunate side effects... As is generally known in the .NET world, mutable structs are a Very Bad Idea; and there are several other blogs around explaining this (Eric Lippert's blog post explains the problem quite well). In the BCL, the generic collection enumerators are all mutable structs, as they need to keep track of where they are in the collection. This bit me quite hard when I was coding a wrapper around a LinkedList<int>.Enumerator. It boils down to this code: sealed class EnumeratorWrapper : IEnumerator<int> { private readonly LinkedList<int>.Enumerator m_Enumerator; public EnumeratorWrapper(LinkedList<int> linkedList) { m_Enumerator = linkedList.GetEnumerator(); } public int Current { get { return m_Enumerator.Current; } } object System.Collections.IEnumerator.Current { get { return Current; } } public bool MoveNext() { return m_Enumerator.MoveNext(); } public void Reset() { ((System.Collections.IEnumerator)m_Enumerator).Reset(); } public void Dispose() { m_Enumerator.Dispose(); } } The key line here is the MoveNext method. When I initially coded this, I thought that the call to m_Enumerator.MoveNext() would alter the enumerator state in the m_Enumerator class variable and so the enumeration would proceed in an orderly fashion through the collection. However, when I ran this code it went into an infinite loop - the m_Enumerator.MoveNext() call wasn't actually changing the state in the m_Enumerator variable at all, and my code was looping forever on the first collection element. It was only after disassembling that method that I found out what was going on The MoveNext method above results in the following IL: .method public hidebysig newslot virtual final instance bool MoveNext() cil managed { .maxstack 1 .locals init ( [0] bool CS$1$0000, [1] valuetype [System]System.Collections.Generic.LinkedList`1/Enumerator CS$0$0001) L_0000: nop L_0001: ldarg.0 L_0002: ldfld valuetype [System]System.Collections.Generic.LinkedList`1/Enumerator EnumeratorWrapper::m_Enumerator L_0007: stloc.1 L_0008: ldloca.s CS$0$0001 L_000a: call instance bool [System]System.Collections.Generic.LinkedList`1/Enumerator::MoveNext() L_000f: stloc.0 L_0010: br.s L_0012 L_0012: ldloc.0 L_0013: ret } Here, the important line is 0002 - m_Enumerator is accessed using the ldfld operator, which does the following: Finds the value of a field in the object whose reference is currently on the evaluation stack. So, what the MoveNext method is doing is the following: public bool MoveNext() { LinkedList<int>.Enumerator CS$0$0001 = this.m_Enumerator; bool CS$1$0000 = CS$0$0001.MoveNext(); return CS$1$0000; } The enumerator instance being modified by the call to MoveNext is the one stored in the CS$0$0001 variable on the stack, and not the one in the EnumeratorWrapper class instance. Hence why the state of m_Enumerator wasn't getting updated. Hmm, ok. Well, why is it doing this? If you have a read of Eric Lippert's blog post about this issue, you'll notice he quotes a few sections of the C# spec. In particular, 7.5.4: ...if the field is readonly and the reference occurs outside an instance constructor of the class in which the field is declared, then the result is a value, namely the value of the field I in the object referenced by E. And my m_Enumerator field is readonly! Indeed, if I remove the readonly from the class variable then the problem goes away, and the code works as expected. The IL confirms this: .method public hidebysig newslot virtual final instance bool MoveNext() cil managed { .maxstack 1 .locals init ( [0] bool CS$1$0000) L_0000: nop L_0001: ldarg.0 L_0002: ldflda valuetype [System]System.Collections.Generic.LinkedList`1/Enumerator EnumeratorWrapper::m_Enumerator L_0007: call instance bool [System]System.Collections.Generic.LinkedList`1/Enumerator::MoveNext() L_000c: stloc.0 L_000d: br.s L_000f L_000f: ldloc.0 L_0010: ret } Notice on line 0002, instead of the ldfld we had before, we've got a ldflda, which does this: Finds the address of a field in the object whose reference is currently on the evaluation stack. Instead of loading the value, we're loading the address of the m_Enumerator field. So now the call to MoveNext modifies the enumerator stored in the class rather than on the stack, and everything works as expected. Previously, I had thought enumerator structs were an odd but interesting feature of the BCL that I had used in the past to do linked list slices. However, effects like this only underline how dangerous mutable structs are, and I'm at a loss to explain why the enumerators were implemented as structs in the first place. (interestingly, the SortedList<TKey, TValue> enumerator is a struct but is private, which makes it even more odd - the only way it can be accessed is as a boxed IEnumerator!). I would love to hear people's theories as to why the enumerators are implemented in such a fashion. And bonus points if you can explain why LinkedList<int>.Enumerator.Reset is an explicit implementation but Dispose is implicit... Note to self: never ever ever code a mutable struct.

    Read the article

  • How to unicode Myanmar texts on Java? [closed]

    - by Spacez Ly Wang
    I'm just beginner of Java. I'm trying to unicode (display) correctly Myanmar texts on Java GUI ( Swing/Awt ). I have four TrueType fonts which support Myanmar unicode texts. There are Myanmar3, Padauk, Tharlon, Myanmar Text ( Window 8 built-in ). You may need the fonts before the code. Google the fonts, please. Each of the fonts display on Java GUI differently and incorrectly. Here is the code for GUI Label displaying myanmar texts: ++++++++++++++++++++++++ package javaapplication1; import javax.swing.JFrame; import javax.swing.JTextField; public class CusFrom { private static void createAndShowGUI() { JFrame frame = new JFrame("Hello World Swing"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); String s = "\u1015\u102F \u103C\u1015\u102F"; JLabel label = new JLabel(s); label.setFont(new java.awt.Font("Myanmar3", 0, 20));// font insert here, Myanmar Text, Padauk, Myanmar3, Tharlon frame.getContentPane().add(label); frame.pack(); frame.setVisible(true); } public static void main(String[] args) { javax.swing.SwingUtilities.invokeLater(new Runnable() { public void run() { createAndShowGUI(); } }); } } ++++++++++++++++++++++++ Outputs vary. See the pictures: Myanmar3 IMG Padauk IMG Tharlon IMG Myanmar Text IMG What is the correct form? (on notepad) Well, next is the code for GUI Textfield inputting Myanmar texts: ++++++++++++++++++++++++ package javaapplication1; import javax.swing.JFrame; import javax.swing.JTextField; public class XusForm { private static void createAndShowGUI() { JFrame frame = new JFrame("Frame Title"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); JTextField textfield = new JTextField(); textfield.setFont(new java.awt.Font("Myanmar3", 0, 20)); frame.getContentPane().add(textfield); frame.pack(); frame.setVisible(true); } public static void main(String[] args) { javax.swing.SwingUtilities.invokeLater(new Runnable() { public void run() { createAndShowGUI(); } }); } } ++++++++++++++++++++++++ Outputs vary when I input keys( unicode text ) on keyboards. Myanmar Text Output IMG Padauk Output IMG Myanmar3 Output IMG Tharlon Output IMG Those fonts work well on Linux when opening text files with Text Editor application. My Question is how to unicode Myanmar texts on Java GUI. Do I need additional codes left to display well? Or Does Java still have errors? The fonts display well on Web Application (HTML, CSS) but I'm not sure about displaying on Java Web Application.

    Read the article

  • Design pattern for an ASP.NET project using Entity Framework

    - by MPelletier
    I'm building a website in ASP.NET (Web Forms) on top of an engine with business rules (which basically resides in a separate DLL), connected to a database mapped with Entity Framework (in a 3rd, separate project). I designed the Engine first, which has an Entity Framework context, and then went on to work on the website, which presents various reports. I believe I made a terrible design mistake in that the website has its own context (which sounded normal at first). I present this mockup of the engine and a report page's code behind: Engine (in separate DLL): public Engine { DatabaseEntities _engineContext; public Engine() { // Connection string and procedure managed in DB layer _engineContext = DatabaseEntities.Connect(); } public ChangeSomeEntity(SomeEntity someEntity, int newValue) { //Suppose there's some validation too, non trivial stuff SomeEntity.Value = newValue; _engineContext.SaveChanges(); } } And report: public partial class MyReport : Page { Engine _engine; DatabaseEntities _webpageContext; public MyReport() { _engine = new Engine(); _databaseContext = DatabaseEntities.Connect(); } public void ChangeSomeEntityButton_Clicked(object sender, EventArgs e) { SomeEntity someEntity; //Wrong way: //Get the entity from the webpage context someEntity = _webpageContext.SomeEntities.Single(s => s.Id == SomeEntityId); //Send the entity from _webpageContext to the engine _engine.ChangeSomeEntity(someEntity, SomeEntityNewValue); // <- oops, conflict of context //Right(?) way: //Get the entity from the engine context someEntity = _engine.GetSomeEntity(SomeEntityId); //undefined above //Send the entity from the engine's context to the engine _engine.ChangeSomeEntity(someEntity, SomeEntityNewValue); // <- oops, conflict of context } } Because the webpage has its own context, giving the Engine an entity from a different context will cause an error. I happen to know not to do that, to only give the Engine entities from its own context. But this is a very error-prone design. I see the error of my ways now. I just don't know the right path. I'm considering: Creating the connection in the Engine and passing it off to the webpage. Always instantiate an Engine, make its context accessible from a property, sharing it. Possible problems: other conflicts? Slow? Concurrency issues if I want to expand to AJAX? Creating the connection from the webpage and passing it off to the Engine (I believe that's dependency injection?) Only talking through ID's. Creates redundancy, not always practical, sounds archaic. But at the same time, I already recuperate stuff from the page as ID's that I need to fetch anyways. What would be best compromise here for safety, ease-of-use and understanding, stability, and speed?

    Read the article

  • How should an object that uses composition set its composed components?

    - by Casey
    After struggling with various problems and reading up on component-based systems and reading Bob Nystrom's excellent book "Game Programming Patterns" and in particular the chapter on Components I determined that this is a horrible idea: //Class intended to be inherited by all objects. Engine uses Objects exclusively. class Object : public IUpdatable, public IDrawable { public: Object(); Object(const Object& other); Object& operator=(const Object& rhs); virtual ~Object() =0; virtual void SetBody(const RigidBodyDef& body); virtual const RigidBody* GetBody() const; virtual RigidBody* GetBody(); //Inherited from IUpdatable virtual void Update(double deltaTime); //Inherited from IDrawable virtual void Draw(BITMAP* dest); protected: private: }; I'm attempting to refactor it into a more manageable system. Mr. Nystrom uses the constructor to set the individual components; CHANGING these components at run-time is impossible. It's intended to be derived and be used in derivative classes or factory methods where their constructors do not change at run-time. i.e. his Bjorne object is just a call to a factory method with a specific call to the GameObject constructor. Is this a good idea? Should the object have a default constructor and setters to facilitate run-time changes or no default constructor without setters and instead use a factory method? Given: class Object { public: //...See below for constructor implementation concerns. Object(const Object& other); Object& operator=(const Object& rhs); virtual ~Object() =0; //See below for Setter concerns IUpdatable* GetUpdater(); IDrawable* GetRenderer(); protected: IUpdatable* _updater; IDrawable* _renderer; private: }; Should the components be read-only and passed in to the constructor via: class Object { public: //No default constructor. Object(IUpdatable* updater, IDrawable* renderer); //...remainder is same as above... }; or Should a default constructor be provided and then the components can be set at run-time? class Object { public: Object(); //... SetUpdater(IUpdater* updater); SetRenderer(IDrawable* renderer); //...remainder is same as above... }; or both? class Object { public: Object(); Object(IUpdater* updater, IDrawable* renderer); //... SetUpdater(IUpdater* updater); SetRenderer(IDrawable* renderer); //...remainder is same as above... };

    Read the article

  • How to TDD test that objects are being added to a collection if the collection is private?

    - by Joshua Harris
    Assume that I planned to write a class that worked something like this: public class GameCharacter { private Collection<CharacterEffect> _collection; public void Add(CharacterEffect e) { ... } public void Remove(CharacterEffect e) { ... } public void Contains(CharacterEffect e) { ... } } When added an effect does something to the character and is then added to the _collection. When it is removed the effect reverts the change to the character and is removed from the _collection. It's easy to test if the effect was applied to the character, but how do I test that the effect was added to _collection? What test could I write to start constructing this class. I could write a test where Contains would return true for a certain effect being in _collection, but I can't arrange a case where that function would return true because I haven't implemented the Add method that is needed to place things in _collection. Ok, so since Contains is dependent on having Add working, then why don't I try to create Add first. Well for my first test I need to try and figure out if the effect was added to the _collection. How would I do that? The only way to see if an effect is in _collection is with the Contains function. The only way that I could think to test this would be to use a FakeCollection that Mocks the Add, Remove, and Contains of a real collection, but I don't want _collection being affected by outside sources. I don't want to add a setEffects(Collection effects) function, because I do not want the class to have that functionality. The one thing that I am thinking could work is this: public class GameCharacter<C extends Collection> { private Collection<CharacterEffect> _collection; public GameCharacter() { _collection = new C<CharacterEffect>(); } } But, that is just silly making me declare what some private data structures type is on every declaration of the character. Is there a way for me to test this without breaking TDD principles while still allowing me to keep my collection private?

    Read the article

  • RPi and Java Embedded GPIO: Using Java to read input

    - by hinkmond
    Now that we've learned about using Java code to control the output of the Raspberry Pi GPIO ports (by lighting up LEDs from a Java app on the RPi for now and noting in the future the same Java code can be used to drive industrial automation or medical equipment, etc.), let's move on to learn about reading input from the RPi GPIO using Java code. As before, we need to start out with the necessary hardware. For this exercise we will connect a Static Electricity Detector to the RPi GPIO port and read the value of that sensor using Java code. The circuit we'll use is from William J. Beaty and is described at this Web link. See: Static Electricity Detector He calls it an "Electric Charge" detector, which is a bit misleading. A Field Effect Transistor is subject to nearby electro-magnetic fields, such as a static charge on a nearby object, not really an electric charge. So, this sensor will detect static electricity (or ghosts if you are into paranormal activity ). Take a look at the circuit and in the next blog posts we'll step through how to connect it to the GPIO port of your RPi and then how to write Java code to access this fun sensor. Hinkmond

    Read the article

  • Subterranean IL: Generics and array covariance

    - by Simon Cooper
    Arrays in .NET are curious beasts. They are the only built-in collection types in the CLR, and SZ-arrays (single dimension, zero-indexed) have their own commands and IL syntax. One of their stranger properties is they have a kind of built-in covariance long before generic variance was added in .NET 4. However, this causes a subtle but important problem with generics. First of all, we need to briefly recap on array covariance. SZ-array covariance To demonstrate, I'll tweak the classes I introduced in my previous posts: public class IncrementableClass { public int Value; public virtual void Increment(int incrementBy) { Value += incrementBy; } } public class IncrementableClassx2 : IncrementableClass { public override void Increment(int incrementBy) { base.Increment(incrementBy); base.Increment(incrementBy); } } In the CLR, SZ-arrays of reference types are implicitly convertible to arrays of the element's supertypes, all the way up to object (note that this does not apply to value types). That is, an instance of IncrementableClassx2[] can be used wherever a IncrementableClass[] or object[] is required. When an SZ-array could be used in this fashion, a run-time type check is performed when you try to insert an object into the array to make sure you're not trying to insert an instance of IncrementableClass into an IncrementableClassx2[]. This check means that the following code will compile fine but will fail at run-time: IncrementableClass[] array = new IncrementableClassx2[1]; array[0] = new IncrementableClass(); // throws ArrayTypeMismatchException These checks are enforced by the various stelem* and ldelem* il instructions in such a way as to ensure you can't insert a IncrementableClass into a IncrementableClassx2[]. For the rest of this post, however, I'm going to concentrate on the ldelema instruction. ldelema This instruction pops the array index (int32) and array reference (O) off the stack, and pushes a pointer (&) to the corresponding array element. However, unlike the ldelem instruction, the instruction's type argument must match the run-time array type exactly. This is because, once you've got a managed pointer, you can use that pointer to both load and store values in that array element using the ldind* and stind* (load/store indirect) instructions. As the same pointer can be used for both input and output to the array, the type argument to ldelema must be invariant. At the time, this was a perfectly reasonable restriction, and maintained array type-safety within managed code. However, along came generics, and with it the constrained callvirt instruction. So, what happens when we combine array covariance and constrained callvirt? .method public static void CallIncrementArrayValue() { // IncrementableClassx2[] arr = new IncrementableClassx2[1] ldc.i4.1 newarr IncrementableClassx2 // arr[0] = new IncrementableClassx2(); dup newobj instance void IncrementableClassx2::.ctor() ldc.i4.0 stelem.ref // IncrementArrayValue<IncrementableClass>(arr, 0) // here, we're treating an IncrementableClassx2[] as IncrementableClass[] dup ldc.i4.0 call void IncrementArrayValue<class IncrementableClass>(!!0[],int32) // ... ret } .method public static void IncrementArrayValue<(IncrementableClass) T>( !!T[] arr, int32 index) { // arr[index].Increment(1) ldarg.0 ldarg.1 ldelema !!T ldc.i4.1 constrained. !!T callvirt instance void IIncrementable::Increment(int32) ret } And the result: Unhandled Exception: System.ArrayTypeMismatchException: Attempted to access an element as a type incompatible with the array. at IncrementArrayValue[T](T[] arr, Int32 index) at CallIncrementArrayValue() Hmm. We're instantiating the generic method as IncrementArrayValue<IncrementableClass>, but passing in an IncrementableClassx2[], hence the ldelema instruction is failing as it's expecting an IncrementableClass[]. On features and feature conflicts What we've got here is a conflict between existing behaviour (ldelema ensuring type safety on covariant arrays) and new behaviour (managed pointers to object references used for every constrained callvirt on generic type instances). And, although this is an edge case, there is no general workaround. The generic method could be hidden behind several layers of assemblies, wrappers and interfaces that make it a requirement to use array covariance when calling the generic method. Furthermore, this will only fail at runtime, whereas compile-time safety is what generics were designed for! The solution is the readonly. prefix instruction. This modifies the ldelema instruction to ignore the exact type check for arrays of reference types, and so it lets us take the address of array elements using a covariant type to the actual run-time type of the array: .method public static void IncrementArrayValue<(IncrementableClass) T>( !!T[] arr, int32 index) { // arr[index].Increment(1) ldarg.0 ldarg.1 readonly. ldelema !!T ldc.i4.1 constrained. !!T callvirt instance void IIncrementable::Increment(int32) ret } But what about type safety? In return for ignoring the type check, the resulting controlled mutability pointer can only be used in the following situations: As the object parameter to ldfld, ldflda, stfld, call and constrained callvirt instructions As the pointer parameter to ldobj or ldind* As the source parameter to cpobj In other words, the only operations allowed are those that read from the pointer; stind* and similar that alter the pointer itself are banned. This ensures that the array element we're pointing to won't be changed to anything untoward, and so type safety within the array is maintained. This is a typical example of the maxim that whenever you add a feature to a program, you have to consider how that feature interacts with every single one of the existing features. Although an edge case, the readonly. prefix instruction ensures that generics and array covariance work together and that compile-time type safety is maintained. Tune in next time for a look at the .ctor generic type constraint, and what it means.

    Read the article

  • Spacewalk 2.0 provided to manage Oracle Linux systems

    - by wcoekaer
    Oracle Linux customers have a few options to manage and provision their servers. We provide a license to use Oracle Enterprise Manager's Linux OS management, monitoring and provisioning features without additional cost for every server that has an Oracle Linux support subscription. So there is no additional pack to license and no additional per server cost, it's all included in our Basic, Premier and Systems support subscriptions. The nice thing with Oracle Enterprise Manager is that you end up with a single management product that can manage all aspects of your software stack. You have complete insight into the applications running, you have roles and responsibilities, you have third party connectors for storage or other products and it makes it very easy and convenient to correlate data and events when something happens. If you use Oracle VM as well, you end up with a complete cloud portal with selfservice, chargeback, etc... Another, much simpler option, is just using yum. It is very easy to take a server and create directories and expose these through apache as repositories. You can have a simple yum config on each server pointing to a few specific repositories. It requires some manual effort in terms of creating directories, downloading packages and creating local repo files but it's easy to do and for many people a preferred solution. There are also a good number of customers that just connect their servers directly to ULN or to our free update server public-yum. Just to re-iterate, our public-yum servers have all the errata and updates available for free. Now we added another option. Many of our customers have switched from a competing Linux vendor and they had familiarity with their management tools. Switching to Oracle for support is very easy since we don't require changes to the installed servers but we also want to make sure there is a very easy and almost transparent switch for the management tools as well. While Oracle Enterprise Manager is our preferred way of managing systems, we now are offering Spacewalk 2.0 to our customers. The community project can be found here. We have made a few changes to ensure easy and complete support for Oracle Linux, tested it with public-yum, etc.. You can find the rpms in our public-yum repos at http://public-yum.oracle.com/repo/OracleLinux/OL6/. There are repositories for spacewalk server and then for each version (OL5,OL6) and architecture (x86 and x86-64) we have the client repositories as well. Spacewalk itself is only made available for OL6 x86-64. Documentation can be found here. I set it up myself and here are some quick steps on how you can get going in just a matter of minutes: Spacewalk Server Installation : 1) Installing an Oracle Database Use an existing Oracle Database or install a new Oracle Database (Standard or Enterprise Edition) [at this time use 11g, we will add support for 12c in the near future]. This database can be installed on the spacewalk server or on a separate remote server. While Oracle XE might work to create a small sample POC, we do not support the use of Oracle XE, spacewalk repositories can become large and create a significant database workload. Customers can use their existing database licenses, they can download the database with a trial licence from http://edelivery.oracle.com or Oracle Linux subscribers (customers) will be allowed to use the Oracle Database as a spacewalk repository as part of their Oracle Linux subscription at no additional cost. |NOTE : spacewalk requires the database to be configured with the UTF8 characterset. |Installation will fail if your database does not use UTF8. |To verify if your database is configured correctly, run the following command in sqlplus: | |select value from nls_database_parameters where parameter='NLS_CHARACTERSET'; |This should return 'AL32UTF8' 2) Configure the database schema for spacewalk Ideally, create a tablespace in the database to hold the spacewalk schema tables/data; create tablespace spacewalk datafile '/u01/app/oracle/oradata/orcl/spacewalk.dbf' size 10G autoextend on; Create the database user spacewalk (or use some other schema name) in sqlplus. example : create user spacewalk identified by spacewalk; grant connect, resource to spacewalk; grant create table, create trigger, create synonym, create view, alter session to spacewalk; grant unlimited tablespace to spacewalk; alter user spacewalk default tablespace spacewalk; 4) Spacewalk installation and configuration Spacewalk server requires an Oracle Linux 6 x86-64 system. Clients can be Oracle Linux 5 or 6, both 32- and 64bit. The server is only supported on OL6/64bit. The easiest way to get started is to do a 'Minimal' install of Oracle Linux on a server and configure the yum repository to include the spacewalk repo from public-yum. Once you have a system with a minimal install, modify your yum repo to include the spacewalk repo. Example : edit /etc/yum.repos.d/public-yum-ol.repo and add the following lines at the end of the file : [spacewalk] name=spacewalk baseurl=http://public-yum.oracle.com/repo/OracleLinux/OL6/spacewalk20/server/$basearch/ gpgkey=http://public-yum.oracle.com/RPM-GPG-KEY-oracle-ol6 gpgcheck=1 enabled=1 Install the following pre-requisite packages on your spacewalk server : oracle-instantclient11.2-basic-11.2.0.3.0-1.x86_64 oracle-instantclient11.2-sqlplus-11.2.0.3.0-1.x86_64 rpm -ivh oracle-instantclient11.2-basic-11.2.0.3.0-1.x86_64 rpm -ivh oracle-instantclient11.2-sqlplus-11.2.0.3.0-1.x86_64 The above RPMs can be found on the Oracle Technology Network website : http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html As the root user, configure the library path to include the Oracle Instant Client libraries : cd /etc/ld.so.conf.d echo /usr/lib/oracle/11.2/client64/lib oracle-instantclient11.2.conf ldconfig Install spacewalk : # yum install spacewalk-oracle The above yum command should download and install all required packages to run spacewalk on your local server. | NOTE : if you did a full, desktop or workstation installation, | you have to remove the JTA package | BEFORE installing spacewalk-oracle (rpm -e --nodeps jta) Once the installation completes, simply run the spacewalk configuration tool and you are all set. (make sure to run the command with the 2 arguments) spacewalk-setup --disconnected --external-db Answer the questions during the setup, ensure you provide the current database user (example : spacewalk) and password (example : spacewalk) and database server hostname (the standard hostname of the server on which you have deployed the Oracle database) At the end of the setup script, your spacewalk server should be fully configured and you can log into the web portal. Use your favorite browser to connect to the website : http://[spacewalkserverhostname] The very first action will be to create the main admin account.

    Read the article

  • Use a Fake Http Channel to Unit Test with HttpClient

    - by Steve Michelotti
    Applications get data from lots of different sources. The most common is to get data from a database or a web service. Typically, we encapsulate calls to a database in a Repository object and we create some sort of IRepository interface as an abstraction to decouple between layers and enable easier unit testing by leveraging faking and mocking. This works great for database interaction. However, when consuming a RESTful web service, this is is not always the best approach. The WCF Web APIs that are available on CodePlex (current drop is Preview 3) provide a variety of features to make building HTTP REST services more robust. When you download the latest bits, you’ll also find a new HttpClient which has been updated for .NET 4.0 as compared to the one that shipped for 3.5 in the original REST Starter Kit. The HttpClient currently provides the best API for consuming REST services on the .NET platform and the WCF Web APIs provide a number of extension methods which extend HttpClient and make it even easier to use. Let’s say you have a client application that is consuming an HTTP service – this could be Silverlight, WPF, or any UI technology but for my example I’ll use an MVC application: 1: using System; 2: using System.Net.Http; 3: using System.Web.Mvc; 4: using FakeChannelExample.Models; 5: using Microsoft.Runtime.Serialization; 6:   7: namespace FakeChannelExample.Controllers 8: { 9: public class HomeController : Controller 10: { 11: private readonly HttpClient httpClient; 12:   13: public HomeController(HttpClient httpClient) 14: { 15: this.httpClient = httpClient; 16: } 17:   18: public ActionResult Index() 19: { 20: var response = httpClient.Get("Person(1)"); 21: var person = response.Content.ReadAsDataContract<Person>(); 22:   23: this.ViewBag.Message = person.FirstName + " " + person.LastName; 24: 25: return View(); 26: } 27: } 28: } On line #20 of the code above you can see I’m performing an HTTP GET request to a Person resource exposed by an HTTP service. On line #21, I use the ReadAsDataContract() extension method provided by the WCF Web APIs to serialize to a Person object. In this example, the HttpClient is being passed into the constructor by MVC’s dependency resolver – in this case, I’m using StructureMap as an IoC and my StructureMap initialization code looks like this: 1: using StructureMap; 2: using System.Net.Http; 3:   4: namespace FakeChannelExample 5: { 6: public static class IoC 7: { 8: public static IContainer Initialize() 9: { 10: ObjectFactory.Initialize(x => 11: { 12: x.For<HttpClient>().Use(() => new HttpClient("http://localhost:31614/")); 13: }); 14: return ObjectFactory.Container; 15: } 16: } 17: } My controller code currently depends on a concrete instance of the HttpClient. Now I *could* create some sort of interface and wrap the HttpClient in this interface and use that object inside my controller instead – however, there are a few why reasons that is not desirable: For one thing, the API provided by the HttpClient provides nice features for dealing with HTTP services. I don’t really *want* these to look like C# RPC method calls – when HTTP services have REST features, I may want to inspect HTTP response headers and hypermedia contained within the message so that I can make intelligent decisions as to what to do next in my workflow (although I don’t happen to be doing these things in my example above) – this type of workflow is common in hypermedia REST scenarios. If I just encapsulate HttpClient behind some IRepository interface and make it look like a C# RPC method call, it will become difficult to take advantage of these types of things. Second, it could get pretty mind-numbing to have to create interfaces all over the place just to wrap the HttpClient. Then you’re probably going to have to hard-code HTTP knowledge into your code to formulate requests rather than just “following the links” that the hypermedia in a message might provide. Third, at first glance it might appear that we need to create an interface to facilitate unit testing, but actually it’s unnecessary. Even though the code above is dependent on a concrete type, it’s actually very easy to fake the data in a unit test. The HttpClient provides a Channel property (of type HttpMessageChannel) which allows you to create a fake message channel which can be leveraged in unit testing. In this case, what I want is to be able to write a unit test that just returns fake data. I also want this to be as re-usable as possible for my unit testing. I want to be able to write a unit test that looks like this: 1: [TestClass] 2: public class HomeControllerTest 3: { 4: [TestMethod] 5: public void Index() 6: { 7: // Arrange 8: var httpClient = new HttpClient("http://foo.com"); 9: httpClient.Channel = new FakeHttpChannel<Person>(new Person { FirstName = "Joe", LastName = "Blow" }); 10:   11: HomeController controller = new HomeController(httpClient); 12:   13: // Act 14: ViewResult result = controller.Index() as ViewResult; 15:   16: // Assert 17: Assert.AreEqual("Joe Blow", result.ViewBag.Message); 18: } 19: } Notice on line #9, I’m setting the Channel property of the HttpClient to be a fake channel. I’m also specifying the fake object that I want to be in the response on my “fake” Http request. I don’t need to rely on any mocking frameworks to do this. All I need is my FakeHttpChannel. The code to do this is not complex: 1: using System; 2: using System.IO; 3: using System.Net.Http; 4: using System.Runtime.Serialization; 5: using System.Threading; 6: using FakeChannelExample.Models; 7:   8: namespace FakeChannelExample.Tests 9: { 10: public class FakeHttpChannel<T> : HttpClientChannel 11: { 12: private T responseObject; 13:   14: public FakeHttpChannel(T responseObject) 15: { 16: this.responseObject = responseObject; 17: } 18:   19: protected override HttpResponseMessage Send(HttpRequestMessage request, CancellationToken cancellationToken) 20: { 21: return new HttpResponseMessage() 22: { 23: RequestMessage = request, 24: Content = new StreamContent(this.GetContentStream()) 25: }; 26: } 27:   28: private Stream GetContentStream() 29: { 30: var serializer = new DataContractSerializer(typeof(T)); 31: Stream stream = new MemoryStream(); 32: serializer.WriteObject(stream, this.responseObject); 33: stream.Position = 0; 34: return stream; 35: } 36: } 37: } The HttpClientChannel provides a Send() method which you can override to return any HttpResponseMessage that you want. You can see I’m using the DataContractSerializer to serialize the object and write it to a stream. That’s all you need to do. In the example above, the only thing I’ve chosen to do is to provide a way to return different response objects. But there are many more features you could add to your own re-usable FakeHttpChannel. For example, you might want to provide the ability to add HTTP headers to the message. You might want to use a different serializer other than the DataContractSerializer. You might want to provide custom hypermedia in the response as well as just an object or set HTTP response codes. This list goes on. This is the just one example of the really cool features being added to the next version of WCF to enable various HTTP scenarios. The code sample for this post can be downloaded here.

    Read the article

  • How to properly diagram lambda expressions or traversals through them in Architecture Explorer?

    - by MainMa
    I'm exploring a piece of code in Architecture Explorer in Visual Studio 2010 to study the relations between methods. I noticed a strange behavior. Take the following source code. It generates a hello message based on a template and a template engine, the template engine being a method (a sort of strategy pattern simplified at a maximum for demo purposes). public string GenerateHelloMessage(string personName) { return this.ApplyTemplate( this.DefaultTemplateEngine, this.GenerateLocalizedHelloTemplate(), personName); } private string GenerateLocalizedHelloTemplate() { return "Hello {0}!"; } public string ApplyTemplate( Func<string, string, string> templateEngine, string template, string personName) { return templateEngine(template, personName); } public string DefaultTemplateEngine(string template, string personName) { return string.Format(template, personName); } The graph generated from this code is this one: Change the first method from this: public string GenerateHelloMessage(string personName) { return this.ApplyTemplate( this.DefaultTemplateEngine, this.GenerateLocalizedHelloTemplate(), personName); } to this: public string GenerateHelloMessage(string personName) { return this.ApplyTemplate( (a, b) => this.DefaultTemplateEngine(a, b), this.GenerateLocalizedHelloTemplate(), personName); } and the graph becomes: While semantically identical, those two versions of code produce different dependency graphs, and Architecture Explorer shows no trace of the lambda expression (while Visual Studio's code coverage, for example, shows them, as well as Code analysis seems to be able to understand that the link exists). How would it be possible, without changing the source code, to: Either force Architecture Explorer to display everything, including lambda expressions, Or make it traverse lambda expressions while drawing a dependency through them (so in this case, drawing the dependency from GenerateHelloMessage to DefaultTemplateEngine in the second example)?

    Read the article

< Previous Page | 210 211 212 213 214 215 216 217 218 219 220 221  | Next Page >