Search Results

Search found 13333 results on 534 pages for 'upper memory'.

Page 238/534 | < Previous Page | 234 235 236 237 238 239 240 241 242 243 244 245  | Next Page >

  • Week in Geek: Internet Service Providers to Implement New Anti-Piracy Monitoring in July

    - by Asian Angel
    Our latest edition of WIG is filled with news link goodness such as Google’s plans for a Metro version of Chrome, Microsoft’s seeking of a patent for TV-viewing tolls, Encyclopaedia Britannica’s switch to a digital only format, and more. Screenshot by Asian Angel. Make Your Own Windows 8 Start Button with Zero Memory Usage Reader Request: How To Repair Blurry Photos HTG Explains: What Can You Find in an Email Header?

    Read the article

  • The kernel column by Jon Masters #87

    <b>Linux User and Developer:</b> "The past month saw steady progress toward the final 2.6.34 kernel release, including the announcement of initial Release Candidate kernels 2.6.34-rc1 through 2.6.34-rc4. The latter had an interesting virtual memory bug that added a week of delay..."

    Read the article

  • Scaling-out Your Services by Message Bus based WCF Transport Extension &ndash; Part 1 &ndash; Background

    - by Shaun
    Cloud computing gives us more flexibility on the computing resource, we can provision and deploy an application or service with multiple instances over multiple machines. With the increment of the service instances, how to balance the incoming message and workload would become a new challenge. Currently there are two approaches we can use to pass the incoming messages to the service instances, I would like call them dispatcher mode and pulling mode.   Dispatcher Mode The dispatcher mode introduces a role which takes the responsible to find the best service instance to process the request. The image below describes the sharp of this mode. There are four clients communicate with the service through the underlying transportation. For example, if we are using HTTP the clients might be connecting to the same service URL. On the server side there’s a dispatcher listening on this URL and try to retrieve all messages. When a message came in, the dispatcher will find a proper service instance to process it. There are three mechanism to find the instance: Round-robin: Dispatcher will always send the message to the next instance. For example, if the dispatcher sent the message to instance 2, then the next message will be sent to instance 3, regardless if instance 3 is busy or not at that moment. Random: Dispatcher will find a service instance randomly, and same as the round-robin mode it regardless if the instance is busy or not. Sticky: Dispatcher will send all related messages to the same service instance. This approach always being used if the service methods are state-ful or session-ful. But as you can see, all of these approaches are not really load balanced. The clients will send messages at any time, and each message might take different process duration on the server side. This means in some cases, some of the service instances are very busy while others are almost idle. For example, if we were using round-robin mode, it could be happened that most of the simple task messages were passed to instance 1 while the complex ones were sent to instance 3, even though instance 1 should be idle. This brings some problem in our architecture. The first one is that, the response to the clients might be longer than it should be. As it’s shown in the figure above, message 6 and 9 can be processed by instance 1 or instance 2, but in reality they were dispatched to the busy instance 3 since the dispatcher and round-robin mode. Secondly, if there are many requests came from the clients in a very short period, service instances might be filled by tons of pending tasks and some instances might be crashed. Third, if we are using some cloud platform to host our service instances, for example the Windows Azure, the computing resource is billed by service deployment period instead of the actual CPU usage. This means if any service instance is idle it is wasting our money! Last one, the dispatcher would be the bottleneck of our system since all incoming messages must be routed by the dispatcher. If we are using HTTP or TCP as the transport, the dispatcher would be a network load balance. If we wants more capacity, we have to scale-up, or buy a hardware load balance which is very expensive, as well as scaling-out the service instances. Pulling Mode Pulling mode doesn’t need a dispatcher to route the messages. All service instances are listening to the same transport and try to retrieve the next proper message to process if they are idle. Since there is no dispatcher in pulling mode, it requires some features on the transportation. The transportation must support multiple client connection and server listening. HTTP and TCP doesn’t allow multiple clients are listening on the same address and port, so it cannot be used in pulling mode directly. All messages in the transportation must be FIFO, which means the old message must be received before the new one. Message selection would be a plus on the transportation. This means both service and client can specify some selection criteria and just receive some specified kinds of messages. This feature is not mandatory but would be very useful when implementing the request reply and duplex WCF channel modes. Otherwise we must have a memory dictionary to store the reply messages. I will explain more about this in the following articles. Message bus, or the message queue would be best candidate as the transportation when using the pulling mode. First, it allows multiple application to listen on the same queue, and it’s FIFO. Some of the message bus also support the message selection, such as TIBCO EMS, RabbitMQ. Some others provide in memory dictionary which can store the reply messages, for example the Redis. The principle of pulling mode is to let the service instances self-managed. This means each instance will try to retrieve the next pending incoming message if they finished the current task. This gives us more benefit and can solve the problems we met with in the dispatcher mode. The incoming message will be received to the best instance to process, which means this will be very balanced. And it will not happen that some instances are busy while other are idle, since the idle one will retrieve more tasks to make them busy. Since all instances are try their best to be busy we can use less instances than dispatcher mode, which more cost effective. Since there’s no dispatcher in the system, there is no bottleneck. When we introduced more service instances, in dispatcher mode we have to change something to let the dispatcher know the new instances. But in pulling mode since all service instance are self-managed, there no extra change at all. If there are many incoming messages, since the message bus can queue them in the transportation, service instances would not be crashed. All above are the benefits using the pulling mode, but it will introduce some problem as well. The process tracking and debugging become more difficult. Since the service instances are self-managed, we cannot know which instance will process the message. So we need more information to support debug and track. Real-time response may not be supported. All service instances will process the next message after the current one has done, if we have some real-time request this may not be a good solution. Compare with the Pros and Cons above, the pulling mode would a better solution for the distributed system architecture. Because what we need more is the scalability, cost-effect and the self-management.   WCF and WCF Transport Extensibility Windows Communication Foundation (WCF) is a framework for building service-oriented applications. In the .NET world WCF is the best way to implement the service. In this series I’m going to demonstrate how to implement the pulling mode on top of a message bus by extending the WCF. I don’t want to deep into every related field in WCF but will highlight its transport extensibility. When we implemented an RPC foundation there are many aspects we need to deal with, for example the message encoding, encryption, authentication and message sending and receiving. In WCF, each aspect is represented by a channel. A message will be passed through all necessary channels and finally send to the underlying transportation. And on the other side the message will be received from the transport and though the same channels until the business logic. This mode is called “Channel Stack” in WCF, and the last channel in the channel stack must always be a transport channel, which takes the responsible for sending and receiving the messages. As we are going to implement the WCF over message bus and implement the pulling mode scaling-out solution, we need to create our own transport channel so that the client and service can exchange messages over our bus. Before we deep into the transport channel, let’s have a look on the message exchange patterns that WCF defines. Message exchange pattern (MEP) defines how client and service exchange the messages over the transportation. WCF defines 3 basic MEPs which are datagram, Request-Reply and Duplex. Datagram: Also known as one-way, or fire-forgot mode. The message sent from the client to the service, and no need any reply from the service. The client doesn’t care about the message result at all. Request-Reply: Very common used pattern. The client send the request message to the service and wait until the reply message comes from the service. Duplex: The client sent message to the service, when the service processing the message it can callback to the client. When callback the service would be like a client while the client would be like a service. In WCF, each MEP represent some channels associated. MEP Channels Datagram IInputChannel, IOutputChannel Request-Reply IRequestChannel, IReplyChannel Duplex IDuplexChannel And the channels are created by ChannelListener on the server side, and ChannelFactory on the client side. The ChannelListener and ChannelFactory are created by the TransportBindingElement. The TransportBindingElement is created by the Binding, which can be defined as a new binding or from a custom binding. For more information about the transport channel mode, please refer to the MSDN document. The figure below shows the transport channel objects when using the request-reply MEP. And this is the datagram MEP. And this is the duplex MEP. After investigated the WCF transport architecture, channel mode and MEP, we finally identified what we should do to extend our message bus based transport layer. They are: Binding: (Optional) Defines the channel elements in the channel stack and added our transport binding element at the bottom of the stack. But we can use the build-in CustomBinding as well. TransportBindingElement: Defines which MEP is supported in our transport and create the related ChannelListener and ChannelFactory. This also defines the scheme of the endpoint if using this transport. ChannelListener: Create the server side channel based on the MEP it’s. We can have one ChannelListener to create channels for all supported MEPs, or we can have ChannelListener for each MEP. In this series I will use the second approach. ChannelFactory: Create the client side channel based on the MEP it’s. We can have one ChannelFactory to create channels for all supported MEPs, or we can have ChannelFactory for each MEP. In this series I will use the second approach. Channels: Based on the MEPs we want to support, we need to implement the channels accordingly. For example, if we want our transport support Request-Reply mode we should implement IRequestChannel and IReplyChannel. In this series I will implement all 3 MEPs listed above one by one. Scaffold: In order to make our transport extension works we also need to implement some scaffold stuff. For example we need some classes to send and receive message though out message bus. We also need some codes to read and write the WCF message, etc.. These are not necessary but would be very useful in our example.   Message Bus There is only one thing remained before we can begin to implement our scaling-out support WCF transport, which is the message bus. As I mentioned above, the message bus must have some features to fulfill all the WCF MEPs. In my company we will be using TIBCO EMS, which is an enterprise message bus product. And I have said before we can use any message bus production if it’s satisfied with our requests. Here I would like to introduce an interface to separate the message bus from the WCF. This allows us to implement the bus operations by any kinds bus we are going to use. The interface would be like this. 1: public interface IBus : IDisposable 2: { 3: string SendRequest(string message, bool fromClient, string from, string to = null); 4:  5: void SendReply(string message, bool fromClient, string replyTo); 6:  7: BusMessage Receive(bool fromClient, string replyTo); 8: } There are only three methods for the bus interface. Let me explain one by one. The SendRequest method takes the responsible for sending the request message into the bus. The parameters description are: message: The WCF message content. fromClient: Indicates if this message was came from the client. from: The channel ID that this message was sent from. The channel ID will be generated when any kinds of channel was created, which will be explained in the following articles. to: The channel ID that this message should be received. In Request-Reply and Duplex MEP this is necessary since the reply message must be received by the channel which sent the related request message. The SendReply method takes the responsible for sending the reply message. It’s very similar as the previous one but no “from” parameter. This is because it’s no need to reply a reply message again in any MEPs. The Receive method takes the responsible for waiting for a incoming message, includes the request message and specified reply message. It returned a BusMessage object, which contains some information about the channel information. The code of the BusMessage class is 1: public class BusMessage 2: { 3: public string MessageID { get; private set; } 4: public string From { get; private set; } 5: public string ReplyTo { get; private set; } 6: public string Content { get; private set; } 7:  8: public BusMessage(string messageId, string fromChannelId, string replyToChannelId, string content) 9: { 10: MessageID = messageId; 11: From = fromChannelId; 12: ReplyTo = replyToChannelId; 13: Content = content; 14: } 15: } Now let’s implement a message bus based on the IBus interface. Since I don’t want you to buy and install the TIBCO EMS or any other message bus products, I will implement an in process memory bus. This bus is only for test and sample purpose. It can only be used if the service and client are in the same process. Very straightforward. 1: public class InProcMessageBus : IBus 2: { 3: private readonly ConcurrentDictionary<Guid, InProcMessageEntity> _queue; 4: private readonly object _lock; 5:  6: public InProcMessageBus() 7: { 8: _queue = new ConcurrentDictionary<Guid, InProcMessageEntity>(); 9: _lock = new object(); 10: } 11:  12: public string SendRequest(string message, bool fromClient, string from, string to = null) 13: { 14: var entity = new InProcMessageEntity(message, fromClient, from, to); 15: _queue.TryAdd(entity.ID, entity); 16: return entity.ID.ToString(); 17: } 18:  19: public void SendReply(string message, bool fromClient, string replyTo) 20: { 21: var entity = new InProcMessageEntity(message, fromClient, null, replyTo); 22: _queue.TryAdd(entity.ID, entity); 23: } 24:  25: public BusMessage Receive(bool fromClient, string replyTo) 26: { 27: InProcMessageEntity e = null; 28: while (true) 29: { 30: lock (_lock) 31: { 32: var entity = _queue 33: .Where(kvp => kvp.Value.FromClient == fromClient && (kvp.Value.To == replyTo || string.IsNullOrWhiteSpace(kvp.Value.To))) 34: .FirstOrDefault(); 35: if (entity.Key != Guid.Empty && entity.Value != null) 36: { 37: _queue.TryRemove(entity.Key, out e); 38: } 39: } 40: if (e == null) 41: { 42: Thread.Sleep(100); 43: } 44: else 45: { 46: return new BusMessage(e.ID.ToString(), e.From, e.To, e.Content); 47: } 48: } 49: } 50:  51: public void Dispose() 52: { 53: } 54: } The InProcMessageBus stores the messages in the objects of InProcMessageEntity, which can take some extra information beside the WCF message itself. 1: public class InProcMessageEntity 2: { 3: public Guid ID { get; set; } 4: public string Content { get; set; } 5: public bool FromClient { get; set; } 6: public string From { get; set; } 7: public string To { get; set; } 8:  9: public InProcMessageEntity() 10: : this(string.Empty, false, string.Empty, string.Empty) 11: { 12: } 13:  14: public InProcMessageEntity(string content, bool fromClient, string from, string to) 15: { 16: ID = Guid.NewGuid(); 17: Content = content; 18: FromClient = fromClient; 19: From = from; 20: To = to; 21: } 22: }   Summary OK, now I have all necessary stuff ready. The next step would be implementing our WCF message bus transport extension. In this post I described two scaling-out approaches on the service side especially if we are using the cloud platform: dispatcher mode and pulling mode. And I compared the Pros and Cons of them. Then I introduced the WCF channel stack, channel mode and the transport extension part, and identified what we should do to create our own WCF transport extension, to let our WCF services using pulling mode based on a message bus. And finally I provided some classes that need to be used in the future posts that working against an in process memory message bus, for the demonstration purpose only. In the next post I will begin to implement the transport extension step by step.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Storage Configuration

    - by jchang
    Storage performance is not inherently complicated subject. The concepts are relatively simple. In fact, scaling storage performance is far easier compared with the difficulties encounters in scaling processor performance in NUMA systems. Storage performance is achieved by properly distributing IO over: 1) multiple independent PCI-E ports (system memory and IO bandwith is key) 2) multiple RAID controllers or host bus adapters (HBAs) 3) multiple storage IO channels (SAS or FC, complete path) most importantly,...(read more)

    Read the article

  • Different types of Session state management options available with ASP.NET

    - by Aamir Hasan
    ASP.NET provides In-Process and Out-of-Process state management.In-Process stores the session in memory on the web server.This requires the a "sticky-server" (or no load-balancing) so that the user is always reconnected to the same web server.Out-of-Process Session state management stores data in an external data source.The external data source may be either a SQL Server or a State Server service.Out-of-Process state management requires that all objects stored in session are serializable.Linkhttp://msdn.microsoft.com/en-us/library/ms178586%28VS.80%29.aspx

    Read the article

  • Apple IIGS emulator?

    - by xiaohouzi79
    What is the best quality Apple IIGS emulator for Ubuntu that is relatively easy to install? I have tried KEGS, but get the following (working without probs on my Windows partition): Preparing X Windows graphics system Visual 0 id: 00000021, screen: 0, depth: 24, class: 4 red: 00ff0000, green: 0000ff00, blue: 000000ff cmap size: 256, bits_per_rgb: 8 Chose visual: 0, max_colors: -1 Will use shared memory for X pipes: pipe_fd = 4, 5 pipe2_fd: 6,7 open /dev/dsp failed, ret: -1, errno:2 parent dying, could not get sample rate from child ret: 0, fd: 6 errno:11

    Read the article

  • Recording for the JVM Diagnostics & Configuration Management sessions

    - by user491905
    Thank you very much for watching my first 2 Oracle Fusion Middleware iDemos. I've recorded the first 2 sessions. Please download the recording from the following links. Troubleshoot Java Memory Leaks with Oracle JVM Diagnostics9 June 2011, 2:04 pm Sydney Time, 53 mins Manage WebLogic Servers by Oracle Enterprise Manager & Configuration Manager16 June 2011, 1:59 pm Sydney Time, 49 minutes I'll publish the presentation slide deck shortly.

    Read the article

  • Ralink rt3090 driver installed and wireless doesn't work on Ubuntu 10.04

    - by Marcus Rene
    I have a LG A-410 lap-top (64 bits) with rt 3090 wireless card. Searching the problem I discover that I already have a rt 3090-dkms installed, but my wireless doesn't work. *-network UNCLAIMED description: Network controller product: RT3090 Wireless 802.11n 1T/1R PCIe vendor: RaLink physical id: 0 bus info: pci@0000:02:00.0 version: 00 width: 32 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: latency=0 resources: memory:e5400000-e540ffff

    Read the article

  • Using Lightbox with _Screen

    Although, I have to admit that I discovered Bernard Bout's ideas and concepts about implementing a lightbox in Visual FoxPro quite a while ago, there was no "spare" time in active projects that allowed me to have a closer look into his solution(s). Luckily, these days I received a demand to focus a little bit more on this. This article describes the steps about how to integrate and make use of Bernard's lightbox class in combination with _Screen in Visual FoxPro. The requirement in this project was to be able to visually lock the whole application (_Screen area) and guide the user to an information that should not be ignored easily. Depending on the importance any current user activity should be interrupted and focus put onto the notification. Getting the "meat", eh, source code Please check out Bernard's blog on Foxite directly in order to get the latest and greatest version. As time of writing this article I use version 6.0 as described in this blog entry: The Fastest Lightbox Ever The Lightbox class is sub-classed from the imgCanvas class from the GdiPlusX project on VFPx and therefore you need to have the source code of GdiPlusX as well, and integrate it into your development environment. The version I use is available here: Release GDIPlusX 1.20 As soon as you open the bbGdiLightbox class the first it, VFP might ask you to update the reference to the gdiplusx.vcx. As we have the sources, no problem and you have access to Bernard's code. The class itself is pretty easy to understand, some properties that you do not need to change and three methods: Setup(), ShowLightbox() and BeforeDraw() The challenge - _Screen or not? Reading Bernard's article about the fastest lightbox ever, he states the following: "The class will only work on a form. It will not support any other containers" Really? And what about _Screen? Isn't that a form class, too? Yes, of course it is but nonetheless trying to use _Screen directly will fail. Well, let's have look at the code to see why: WITH This .Left = 0 .Top = 0 .Height = ThisForm.Height .Width = ThisForm.Width .ZOrder(0) .Visible = .F.ENDWITH During the setup of the lightbox as well as while capturing the image as replacement for your forms and controls, the object reference Thisform is used. Which is a little bit restrictive to my opinion but let's continue. The second issue lies in the method ShowLightbox() and introduced by the call of .Bitmap.FromScreen(): Lparameters tlVisiblilty* tlVisiblilty - show or hide (T/F)* grab a screen dump with controlsIF tlVisiblilty Local loCaptureBmp As xfcBitmap Local lnTitleHeight, lnLeftBorder, lnTopBorder, lcImage, loImage lnTitleHeight = IIF(ThisForm.TitleBar = 1,Sysmetric(9),0) lnLeftBorder = IIF(ThisForm.BorderStyle < 2,0,Sysmetric(3)) lnTopBorder = IIF(ThisForm.BorderStyle < 2,0,Sysmetric(4)) With _Screen.System.Drawing loCaptureBmp = .Bitmap.FromScreen(ThisForm.HWnd,; lnLeftBorder,; lnTopBorder+lnTitleHeight,; ThisForm.Width ,; ThisForm.Height) ENDWITH * save it to a property This.capturebmp = loCaptureBmp ThisForm.SetAll("Visible",.F.) This.DraW() This.Visible = .T.ELSE ThisForm.SetAll("Visible",.T.) This.Visible = .F.ENDIF My first trials in using the class ended in an exception - GdiPlusError:OutOfMemory - thrown by the Bitmap object. Frankly speaking, this happened mainly because of my lack of knowledge about GdiPlusX. After reading some documentation, especially about the FromScreen() method I experimented a little bit. Capturing the visible area of _Screen actually was not the real problem but the dimensions I specified for the bitmap. The modifications - step by step First of all, it is to get rid of restrictive object references on Thisform and to change them into either This.Parent or more generic into This.oForm (even better: This.oControl). The Lightbox.Setup() method now sets the necessary object reference like so: *====================================================================* Initial setup* Default value: This.oControl = "This.Parent"* Alternative: This.oControl = "_Screen"*====================================================================With This .oControl = Evaluate(.oControl) If Vartype(.oControl) == T_OBJECT .Anchor = 0 .Left = 0 .Top = 0 .Width = .oControl.Width .Height = .oControl.Height .Anchor = 15 .ZOrder(0) .Visible = .F. EndIfEndwith Also, based on other developers' comments in Bernard articles on his lightbox concept and evolution I found the source code to handle the differences between a form and _Screen and goes into Lightbox.ShowLightbox() like this: *====================================================================* tlVisibility - show or hide (T/F)* grab a screen dump with controls*====================================================================Lparameters tlVisibility Local loControl m.loControl = This.oControl If m.tlVisibility Local loCaptureBmp As xfcBitmap Local lnTitleHeight, lnLeftBorder, lnTopBorder, lcImage, loImage lnTitleHeight = Iif(m.loControl.TitleBar = 1,Sysmetric(9),0) lnLeftBorder = Iif(m.loControl.BorderStyle < 2,0,Sysmetric(3)) lnTopBorder = Iif(m.loControl.BorderStyle < 2,0,Sysmetric(4)) With _Screen.System.Drawing If Upper(m.loControl.Name) == Upper("Screen") loCaptureBmp = .Bitmap.FromScreen(m.loControl.HWnd) Else loCaptureBmp = .Bitmap.FromScreen(m.loControl.HWnd,; lnLeftBorder,; lnTopBorder+lnTitleHeight,; m.loControl.Width ,; m.loControl.Height) EndIf Endwith * save it to a property This.CaptureBmp = loCaptureBmp m.loControl.SetAll("Visible",.F.) This.Draw() This.Visible = .T. Else This.CaptureBmp = .Null. m.loControl.SetAll("Visible",.T.) This.Visible = .F. Endif {loadposition content_adsense} Are we done? Almost... Although, Bernard says it clearly in his article: "Just drop the class on a form and call it as shown." It did not come clear to my mind in the first place with _Screen, but, yeah, he is right. Dropping the class on a form provides a permanent link between those two classes, it creates a valid This.Parent object reference. Bearing in mind that the lightbox class can not be "dropped" on the _Screen, we have to create the same type of binding during runtime execution like so: *====================================================================* Create global lightbox component*==================================================================== Local llOk, loException As Exception m.llOk = .F. m.loException = .Null. If Not Vartype(_Screen.Lightbox) == "O" Try _Screen.AddObject("Lightbox", "bbGdiLightbox") Catch To m.loException Assert .F. Message m.loException.Message EndTry EndIf m.llOk = (Vartype(_Screen.Lightbox) == "O")Return m.llOk Through runtime instantiation we create a valid binding to This.Parent in the lightbox object and the code works as expected with _Screen. Ease your life: Use properties instead of constants Having a closer look at the BeforeDraw() method might wet your appetite to simplify the code a little bit. Looking at the sample screenshots in Bernard's article you see several forms in different colors. This got me to modify the code like so: *====================================================================* Apply the actual lightbox effect on the captured bitmap.*====================================================================If Vartype(This.CaptureBmp) == T_OBJECT Local loGfx As xfcGraphics loGfx = This.oGfx With _Screen.System.Drawing loGfx.DrawImage(This.CaptureBmp,This.Rectangle,This.Rectangle,.GraphicsUnit.Pixel) * change the colours as needed here * possible colours are (220,128,0,0),(220,0,0,128) etc. loBrush = .SolidBrush.New(.Color.FromArgb( ; This.Opacity, .Color.FromRGB(This.BorderColor))) loGfx.FillRectangle(loBrush,This.Rectangle) EndwithEndif Create an additional property Opacity to specify the grade of translucency you would like to have without the need to change the code in each instance of the class. This way you only need to change the values of Opacity and BorderColor to tweak the appearance of your lightbox. This could be quite helpful to signalize different levels of importance (ie. green, yellow, orange, red, etc...) of notifications to the users of the application. Final thoughts Using the lightbox concept in combination with _Screen instead of forms is possible. Already Jim Wiggins comments in Bernard's article to loop through the _Screen.Forms collection in order to cascade the lightbox visibility to all active forms. Good idea. But honestly, I believe that instead of looping all forms one could use _Screen.SetAll("ShowLightbox", .T./.F., "Form") with Form.ShowLightbox_Access method to gain more speed. The modifications described above might provide even more features to your applications while consuming less resources and performance. Additionally, the restrictions to capture only forms does not exist anymore. Using _Screen you are able to capture and cover anything. The captured area of _Screen does not include any toolbars, docked windows, or menus. Therefore, it is advised to take this concept on a higher level and to combine it with additional classes that handle the state of toolbars, docked windows and menus. Which I did for the customer's project.

    Read the article

  • CMUS Error: opening audio device: No such device

    - by clamp
    I cant seem to play any audio with CMUS because it always gives the above error the output of lspci -v | grep -A7 -i "audio" gives 00:1b.0 Audio device: Intel Corporation NM10/ICH7 Family High Definition Audio Controller (rev 02) Subsystem: ASRock Incorporation Device c892 Flags: bus master, fast devsel, latency 0, IRQ 49 Memory at dff00000 (64-bit, non-prefetchable) [size=16K] Capabilities: Kernel driver in use: snd_hda_intel 00:1c.0 PCI bridge: Intel Corporation NM10/ICH7 Family PCI Express Port 1 (rev 02) (prog-if 00 [Normal decode]) what could be the problem?

    Read the article

  • Slow Chat with Industry Experts: Developing Multithreaded Applications

    Sponsored by Intel Join the experts who created The Intel Guide for Developing Multithreaded Applications for a slow chat about multithreaded application development. Bring your questions about application threading, memory management, synchronization, programming tools and more and get answers from the parallel programming experts. Post your questions here

    Read the article

  • Slow Chat with Industry Experts: Developing Multithreaded Applications

    Sponsored by Intel Join the experts who created The Intel Guide for Developing Multithreaded Applications for a slow chat about multithreaded application development. Bring your questions about application threading, memory management, synchronization, programming tools and more and get answers from the parallel programming experts. Post your questions here

    Read the article

  • New Themes New Benefits (WinForms)

    We believe that working hard on something can be great fun at the end when everything is done and the seeds have resulted in the sweetest fruits. This is the case with the new Theming Mechanism and the new Visual Style Builder which we introduced as of Q1 2010.   I am not going to dive into any details on the new concepts behind all this stuff, but will simply focus on the numbers: both in terms of loading speed and memory usage. As you may already know, the new approach we use to style our controls uses the so called Style Repository which stores style settings that can be reused throughout the whole theme. As a result, we have estimated that the size of our themes has been significantly reduced. For instance, the size of all XML files of the Desert theme sums up to 1.83 MB. The case with the new version of the Desert theme is drastically different. Despite the fact that the new theme consists of more XML files compared to the old, its size is only 707 KB!   Furthermore, we have performed a simple performance test since the common sense tells us that such a great improvement in terms of memory footprint should be followed by a great improvement in terms of speed. We have estimated that loading and applying the new Desert theme to a form containing all RadControls for WinForms takes roughly 30% less time compared to the same operation with the old version of the Desert theme. The following screenshots briefly demonstrate the scenario which we used to estimate the loading time difference between the old and the new Desert theme:     Here, the old Desert theme is applied to all controls on the Form which takes almost 1,3 seconds.     Applying the new Desert theme (based on the new Theming Mechanism) takes about 0,78 seconds.   On top of all these great improvements, we can add the fact that the new Visual Style Builder significantly reduces the time needed to style a control by entirely changing the approach compared to the old version of this tool. You can be sure that we have already prepared some great new stuff for Q1 2010 SP1 that will simplify things further so that designing themes with the new VSB will become more fun than ever!Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • New Themes New Benefits (WinForms)

    We believe that working hard on something can be great fun at the end when everything is done and the seeds have resulted in the sweetest fruits. This is the case with the new Theming Mechanism and the new Visual Style Builder which we introduced as of Q1 2010.   I am not going to dive into any details on the new concepts behind all this stuff, but will simply focus on the numbers: both in terms of loading speed and memory usage. As you may already know, the new approach we use to style our controls uses the so called Style Repository which stores style settings that can be reused throughout the whole theme. As a result, we have estimated that the size of our themes has been significantly reduced. For instance, the size of all XML files of the Desert theme sums up to 1.83 MB. The case with the new version of the Desert theme is drastically different. Despite the fact that the new theme consists of more XML files compared to the old, its size is only 707 KB!   Furthermore, we have performed a simple performance test since the common sense tells us that such a great improvement in terms of memory footprint should be followed by a great improvement in terms of speed. We have estimated that loading and applying the new Desert theme to a form containing all RadControls for WinForms takes roughly 30% less time compared to the same operation with the old version of the Desert theme. The following screenshots briefly demonstrate the scenario which we used to estimate the loading time difference between the old and the new Desert theme:     Here, the old Desert theme is applied to all controls on the Form which takes almost 1,3 seconds.     Applying the new Desert theme (based on the new Theming Mechanism) takes about 0,78 seconds.   On top of all these great improvements, we can add the fact that the new Visual Style Builder significantly reduces the time needed to style a control by entirely changing the approach compared to the old version of this tool. You can be sure that we have already prepared some great new stuff for Q1 2010 SP1 that will simplify things further so that designing themes with the new VSB will become more fun than ever!Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Storage Configuration

    - by jchang
    Storage performance is not inherently complicated subject. The concepts are relatively simple. In fact, scaling storage performance is far easier compared with the difficulties encounters in scaling processor performance in NUMA systems. Storage performance is achieved by properly distributing IO over: 1) multiple independent PCI-E ports (system memory and IO bandwith is key) 2) multiple RAID controllers or host bus adapters (HBAs) 3) multiple storage IO channels (SAS or FC, complete path) most importantly,...(read more)

    Read the article

  • SSAS Native v .net Provider

    - by ACALVETT
    Recently I was investigating why a new server which is in its parallel running phase was taking significantly longer to process the daily data than the server its due to replace. The server has SQL & SSAS installed so the problem was not likely to be in the network transfer as its using shared memory. As i dug around the SQL dmv’s i noticed in sys.dm_exec_connections that the SSAS connection had a packet size of 8000 bytes instead of the usual 4096 bytes and from there i found that the datasource...(read more)

    Read the article

  • Using GPU's RAM as RAMDISK

    - by user3476043
    I want to use my GPU's ram as a ramdisk, following these instructions : http://en.gentoo-wiki.com/wiki/Using_Graphics_Card_Memory_as_Swap But when I input the " modprobe phram phram=VRAM,0xd8400000,124Mi " command, I get the following error : modprobe: ERROR: could not insert 'phram': Input/output error I use Ubuntu Studio 14.04. Also, is there anyway I could use more than the 128M of prefetchable memory, my GPU has 1GB of ram, I would prefer to use "most" of it.

    Read the article

  • Problem in installation in My Hp g4 1226se

    - by vivek Verma
    1vivek.100 Dual booting error in Hp pavilion g4 1226se Dear sir or Madam, My name is vivek verma.... I am the user of my Hp laptop which series and model name is HP PAVILION G4 1226SE........ i have purchase in the year of 2012 and month is February.....the windows 7 home basic 64 Bit is already installed in in my laptop.... Now i want to install Ubuntu 12.04 Lts or 13.10 lts..... i have try many time to install in my laptop via live CD or USB installer....and i have try many live CD and many pen drive to install Ubuntu ... but it is not done......now i am in very big problem...... when i put my CD or USB drive to boot and install the Ubuntu......my laptop screen is goes the some black (brightness of my laptop screen is very low and there is very low visibility ) and not showing any thing on my laptop screen..... and when i move the my laptop screen.....then there is graphics option in this screen to installation of the Ubuntu option......and when i press the dual boot with setting button and press to continue them my laptop is goes for shutdown after 2 or 5 minutes..... ...... and Hp service center person is saying to me our laptop hardware has no problem.....please contact to Ubuntu tech support............. show please help me if possible..... My laptop configuration is here...... Hardware Product Name g4-1226se Product Number QJ551EA Microprocessor 2.4 GHz Intel Core i5-2430M Microprocessor Cache 3 MB L3 cache Memory 4 GB DDR3 Memory Max Upgradeable to 4 GB DDR3 Video Graphics Intel HD 3000 (up to 1.65 GB) Display 35,5 cm (14,0") High-Definition LED-backlit BrightView Display (1366 x 768) Hard Drive 500 GB SATA (5400 rpm) Multimedia Drive SuperMulti DVD±R/RW with Double Layer Support Network Card Integrated 10/100 BASE-T Ethernet LAN Wireless Connectivity 802.11 b/g/n Sound Altec Lansing speakers Keyboard Full size island-style keyboard with home roll keys Pointing Device TouchPad supporting Multi-Touch gestures with On/Off button PC Card Slots Multi-Format Digital Media Card Reader for Secure Digital cards, Multimedia cards External Ports 1 VGA 1 headphone-out 1 microphone-in 3 USB 2.0 1 RJ45 Dimensions 34.1 x 23.1 x 3.56 cm Weight Starting at 2.1 kg Power 65W AC Power Adapter 6-cell Lithium-Ion (Li-Ion) What's In The Box Webcam with Integrated Digital Microphone (VGA) Software Operating System: Windows 7 Home Basic 64bit....Genuine..... ......... Sir please help me if possible....... Name =vivek verma Contact no.+919911146737 Email [email protected]

    Read the article

  • Oracle’s Sun Server X4-8 with Built-in Elastic Computing

    - by kgee
    We are excited to announce the release of Oracle's new 8-socket server, Sun Server X4-8. It’s the most flexible 8-socket x86 server Oracle has ever designed, and also the most powerful. Not only does it use the fastest Intel® Xeon® E7 v2 processors, but also its memory, I/O and storage subsystems are all designed for maximum performance and throughput. Like its predecessor, the Sun Server X4-8 uses a “glueless” design that allows for maximum performance for Oracle Database, while also reducing power consumption and improving reliability. The specs are pretty impressive. Sun Server X4-8 supports 120 cores (or 240 threads), 6 TB memory, 9.6 TB HDD capacity or 3.2 TB SSD capacity, contains 16 PCIe Gen 3 I/O expansion slots, and allows for up to 6.4 TB Sun Flash Accelerator F80 PCIe Cards. The Sun Server X4-8 is also the most dense x86 server with its 5U chassis, allowing 60% higher rack-level core and DIMM slot density than the competition.  There has been a lot of innovation in Oracle’s x86 product line, but the latest and most significant is a capability called elastic computing. This new capability is built into each Sun Server X4-8.   Elastic computing starts with the Intel processor. While Intel provides a wide range of processors each with a fixed combination of core count, operational frequency, and power consumption, customers have been forced to make tradeoffs when they select a particular processor. They have had to make educated guesses on which particular processor (core count/frequency/cache size) will be best suited for the workload they intend to execute on the server.Oracle and Intel worked jointly to define a new processor, the Intel Xeon E7-8895 v2 for the Sun Server X4-8, that has unique characteristics and effectively combines the capabilities of three different Xeon processors into a single processor. Oracle system design engineers worked closely with Oracle’s operating system development teams to achieve the ability to vary the core count and operating frequency of the Xeon E7-8895 v2 processor with time without the need for a system level reboot.  Along with the new processor, enhancements have been made to the system BIOS, Oracle Solaris, and Oracle Linux, which allow the processors in the system to dynamically clock up to faster speeds as cores are disabled and to reach higher maximum turbo frequencies for the remaining active cores. One customer, a stock market trading company, will take advantage of the elastic computing capability of Sun Server X4-8 by repurposing servers between daytime stock trading activity and nighttime stock portfolio processing, daily, to achieve maximum performance of each workload.To learn more about Sun Server X4-8, you can find more details including the data sheet and white papers here.Josh Rosen is a Principal Product Manager for Oracle’s x86 servers, focusing on Oracle’s operating systems and software. He previously spent more than a decade as a developer and architect of system management software. Josh has worked on system management for many of Oracle's hardware products ranging from the earliest blade systems to the latest Oracle x86 servers.

    Read the article

  • Optimizing AES modes on Solaris for Intel Westmere

    - by danx
    Optimizing AES modes on Solaris for Intel Westmere Review AES is a strong method of symmetric (secret-key) encryption. It is a U.S. FIPS-approved cryptographic algorithm (FIPS 197) that operates on 16-byte blocks. AES has been available since 2001 and is widely used. However, AES by itself has a weakness. AES encryption isn't usually used by itself because identical blocks of plaintext are always encrypted into identical blocks of ciphertext. This encryption can be easily attacked with "dictionaries" of common blocks of text and allows one to more-easily discern the content of the unknown cryptotext. This mode of encryption is called "Electronic Code Book" (ECB), because one in theory can keep a "code book" of all known cryptotext and plaintext results to cipher and decipher AES. In practice, a complete "code book" is not practical, even in electronic form, but large dictionaries of common plaintext blocks is still possible. Here's a diagram of encrypting input data using AES ECB mode: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 What's the solution to the same cleartext input producing the same ciphertext output? The solution is to further process the encrypted or decrypted text in such a way that the same text produces different output. This usually involves an Initialization Vector (IV) and XORing the decrypted or encrypted text. As an example, I'll illustrate CBC mode encryption: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ IV >----->(XOR) +------------->(XOR) +---> . . . . | | | | | | | | \/ | \/ | AESKey-->(AES Encryption) | AESKey-->(AES Encryption) | | | | | | | | | \/ | \/ | CipherTextOutput ------+ CipherTextOutput -------+ Block 1 Block 2 The steps for CBC encryption are: Start with a 16-byte Initialization Vector (IV), choosen randomly. XOR the IV with the first block of input plaintext Encrypt the result with AES using a user-provided key. The result is the first 16-bytes of output cryptotext. Use the cryptotext (instead of the IV) of the previous block to XOR with the next input block of plaintext Another mode besides CBC is Counter Mode (CTR). As with CBC mode, it also starts with a 16-byte IV. However, for subsequent blocks, the IV is just incremented by one. Also, the IV ix XORed with the AES encryption result (not the plain text input). Here's an illustration: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ IV >----->(XOR) IV + 1 >---->(XOR) IV + 2 ---> . . . . | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 Optimization Which of these modes can be parallelized? ECB encryption/decryption can be parallelized because it does more than plain AES encryption and decryption, as mentioned above. CBC encryption can't be parallelized because it depends on the output of the previous block. However, CBC decryption can be parallelized because all the encrypted blocks are known at the beginning. CTR encryption and decryption can be parallelized because the input to each block is known--it's just the IV incremented by one for each subsequent block. So, in summary, for ECB, CBC, and CTR modes, encryption and decryption can be parallelized with the exception of CBC encryption. How do we parallelize encryption? By interleaving. Usually when reading and writing data there are pipeline "stalls" (idle processor cycles) that result from waiting for memory to be loaded or stored to or from CPU registers. Since the software is written to encrypt/decrypt the next data block where pipeline stalls usually occurs, we can avoid stalls and crypt with fewer cycles. This software processes 4 blocks at a time, which ensures virtually no waiting ("stalling") for reading or writing data in memory. Other Optimizations Besides interleaving, other optimizations performed are Loading the entire key schedule into the 128-bit %xmm registers. This is done once for per 4-block of data (since 4 blocks of data is processed, when present). The following is loaded: the entire "key schedule" (user input key preprocessed for encryption and decryption). This takes 11, 13, or 15 registers, for AES-128, AES-192, and AES-256, respectively The input data is loaded into another %xmm register The same register contains the output result after encrypting/decrypting Using SSSE 4 instructions (AESNI). Besides the aesenc, aesenclast, aesdec, aesdeclast, aeskeygenassist, and aesimc AESNI instructions, Intel has several other instructions that operate on the 128-bit %xmm registers. Some common instructions for encryption are: pxor exclusive or (very useful), movdqu load/store a %xmm register from/to memory, pshufb shuffle bytes for byte swapping, pclmulqdq carry-less multiply for GCM mode Combining AES encryption/decryption with CBC or CTR modes processing. Instead of loading input data twice (once for AES encryption/decryption, and again for modes (CTR or CBC, for example) processing, the input data is loaded once as both AES and modes operations occur at in the same function Performance Everyone likes pretty color charts, so here they are. I ran these on Solaris 11 running on a Piketon Platform system with a 4-core Intel Clarkdale processor @3.20GHz. Clarkdale which is part of the Westmere processor architecture family. The "before" case is Solaris 11, unmodified. Keep in mind that the "before" case already has been optimized with hand-coded Intel AESNI assembly. The "after" case has combined AES-NI and mode instructions, interleaved 4 blocks at-a-time. « For the first table, lower is better (milliseconds). The first table shows the performance improvement using the Solaris encrypt(1) and decrypt(1) CLI commands. I encrypted and decrypted a 1/2 GByte file on /tmp (swap tmpfs). Encryption improved by about 40% and decryption improved by about 80%. AES-128 is slighty faster than AES-256, as expected. The second table shows more detail timings for CBC, CTR, and ECB modes for the 3 AES key sizes and different data lengths. » The results shown are the percentage improvement as shown by an internal PKCS#11 microbenchmark. And keep in mind the previous baseline code already had optimized AESNI assembly! The keysize (AES-128, 192, or 256) makes little difference in relative percentage improvement (although, of course, AES-128 is faster than AES-256). Larger data sizes show better improvement than 128-byte data. Availability This software is in Solaris 11 FCS. It is available in the 64-bit libcrypto library and the "aes" Solaris kernel module. You must be running hardware that supports AESNI (for example, Intel Westmere and Sandy Bridge, microprocessor architectures). The easiest way to determine if AES-NI is available is with the isainfo(1) command. For example, $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this software. Solaris libraries and kernel automatically determine if it's running on AESNI-capable machines and execute the correctly-tuned software for the current microprocessor. Summary Maximum throughput of AES cipher modes can be achieved by combining AES encryption with modes processing, interleaving encryption of 4 blocks at a time, and using Intel's wide 128-bit %xmm registers and instructions. References "Block cipher modes of operation", Wikipedia Good overview of AES modes (ECB, CBC, CTR, etc.) "Advanced Encryption Standard", Wikipedia "Current Modes" describes NIST-approved block cipher modes (ECB,CBC, CFB, OFB, CCM, GCM)

    Read the article

  • How to Export Multiple Contacts in Outlook 2013 to Multiple vCards or a Single vCard

    - by Lori Kaufman
    We’ve shown you how to export a contact to and import a contact from a vCard (.vcf) file. However, what if you want to export multiple contacts at the same time to multiple vCard files or even a single vCard file? Outlook doesn’t allow you to directly export all your contacts as vCard files or as a single vCard file, but there is a way to accomplish both tasks. Export Multiple Contacts to Multiple vCard Files Outlook allows you to forward contact information as a vCard. You can also select multiple contacts and forward them all at once. This feature allows you to indirectly export multiple contacts at once to multiple vCard files. Click the People tab to access your contacts. Select all the contacts you want to export using the Shift and Ctrl keys as needed. Select Contacts the same way you would select files in Windows Explorer. Click Forward Contact in the Share section on the Home tab and select As a Business Card from the drop-down menu. The selected contacts attached to a new email message as .vcf files. To select all the attached .vcf files, right-click in the Attached box and select Select All from the popup menu. Make sure the folder to which you want to export the contacts is open in Windows Explorer. Drag the selected attached .vcf files from the new email message to the open folder in Windows Explorer. A .vcf file is created for each contact you selected and dragged to the folder. You can close the Message window by clicking on the X in the upper, right corner of the window. NOTE: You can also close the Message window by clicking the File tab. Then, click the Close option on the left. Because you already have your .vcf files, you don’t need to save or send the message, so click No when asked if you want to save your changes. If it turns out that a draft of your message was saved, the following message displays. Click No to delete the draft. Export Multiple Contacts to a Single vCard (.vcf) File If you would rather export your contacts to a single vCard (.vcf) File, there is a way to do this using Gmail. We’ll export the contacts from Outlook as a .csv file and then use Gmail to convert the .csv file to a .vcf file. Select the contacts you want to export on the People page and click the File tab. On the Account Information screen, click Open & Export in the list on the left. On the Open screen, click Import/Export. The Import and Export Wizard displays. Select Export to a file from the Choose an action to perform list and click Next. In the Create a file of type box, select Comma Separated Values. Click Next. Contacts should be already selected in the Select folder to export from box. If not, select it. Click Next. Click Browse to the right of the Save exported file as box. Navigate to the folder to which you want to export the .csv file. Enter a name for the file in the File name edit box, keeping the .csv extension. The path you selected is entered into the Save exported file as edit box. Click Next. The final screen of the Export to a File dialog box displays listing the action to be performed. Click Finish to begin the export process. Once the export process is finished, you will see the .csv file in the folder in Windows Explorer. Now, we will import the .csv file into Gmail. Go to Gmail and sign in to your account. Click Gmal in the upper, left corner of the main page and select Contacts from the drop-down menu. On the Contacts page, click More above your list of contacts and select Import from the drop-down menu. Click Browse on the Import contacts dialog box that displays. Navigate to the folder in which you saved the .csv file and select the file. Click Open. Click Import on the Import contacts dialog box. A screen displays listing the contacts you imported, but not yet merged into your main Gmail contacts list. Select the contacts you imported. NOTE: The contacts you imported may be the only contacts in this list. If that’s the case, they all should be automatically selected. Click More and select Export from the drop-down menu. On the Export contacts dialog box, select Selected contacts to indicate which contacts you want to export. NOTE: We could have selected The group Imported 10/10/13 because that contains the same two contacts as the Selected contacts. Select vCard format for the export format. Click Export. Gmail creates a contacts.vcf file containing the selected contacts and asks you whether you want to open the file with Outlook or save the file. To save the file, select the Save File option and click OK. Navigate to the folder in which you want to save the contacts.vcf file, change the name of the file in the File name edit box, if desired, and click Save. The .vcf file is saved to the selected directory and contains all the contacts you exported from Outlook. This could be used as a way to backup your contacts in one file. You could also backup the .csv file. However, if you have a lot of contacts you will probably find that the .vcf file is smaller. We only exported two contacts, and our .csv file was 2 KB, while the .vcf file was 1 KB. We will be showing you how to import multiple contacts from a single .vcf file into Outlook soon.     

    Read the article

  • Task Flow Design Paper Revised

    - by Duncan Mills
    Thanks to some discussion over at the ADF Methodology Group and contributions from Simon Lessard and Jan Vervecken I have been able to make some refinements to the Task Flow Design Fundamentals paper on OTN.As a bonus, whilst I was making some edits anyway I've included some of Frank Nimphius's memory scope diagrams which are a really useful tool for understanding how request, view, backingBean and pageFlow scopes all fit together.

    Read the article

  • Thread placement policies on NUMA systems - update

    - by Dave
    In a prior blog entry I noted that Solaris used a "maximum dispersal" placement policy to assign nascent threads to their initial processors. The general idea is that threads should be placed as far away from each other as possible in the resource topology in order to reduce resource contention between concurrently running threads. This policy assumes that resource contention -- pipelines, memory channel contention, destructive interference in the shared caches, etc -- will likely outweigh (a) any potential communication benefits we might achieve by packing our threads more densely onto a subset of the NUMA nodes, and (b) benefits of NUMA affinity between memory allocated by one thread and accessed by other threads. We want our threads spread widely over the system and not packed together. Conceptually, when placing a new thread, the kernel picks the least loaded node NUMA node (the node with lowest aggregate load average), and then the least loaded core on that node, etc. Furthermore, the kernel places threads onto resources -- sockets, cores, pipelines, etc -- without regard to the thread's process membership. That is, initial placement is process-agnostic. Keep reading, though. This description is incorrect. On Solaris 10 on a SPARC T5440 with 4 x T2+ NUMA nodes, if the system is otherwise unloaded and we launch a process that creates 20 compute-bound concurrent threads, then typically we'll see a perfect balance with 5 threads on each node. We see similar behavior on an 8-node x86 x4800 system, where each node has 8 cores and each core is 2-way hyperthreaded. So far so good; this behavior seems in agreement with the policy I described in the 1st paragraph. I recently tried the same experiment on a 4-node T4-4 running Solaris 11. Both the T5440 and T4-4 are 4-node systems that expose 256 logical thread contexts. To my surprise, all 20 threads were placed onto just one NUMA node while the other 3 nodes remained completely idle. I checked the usual suspects such as processor sets inadvertently left around by colleagues, processors left offline, and power management policies, but the system was configured normally. I then launched multiple concurrent instances of the process, and, interestingly, all the threads from the 1st process landed on one node, all the threads from the 2nd process landed on another node, and so on. This happened even if I interleaved thread creating between the processes, so I was relatively sure the effect didn't related to thread creation time, but rather that placement was a function of process membership. I this point I consulted the Solaris sources and talked with folks in the Solaris group. The new Solaris 11 behavior is intentional. The kernel is no longer using a simple maximum dispersal policy, and thread placement is process membership-aware. Now, even if other nodes are completely unloaded, the kernel will still try to pack new threads onto the home lgroup (socket) of the primordial thread until the load average of that node reaches 50%, after which it will pick the next least loaded node as the process's new favorite node for placement. On the T4-4 we have 64 logical thread contexts (strands) per socket (lgroup), so if we launch 48 concurrent threads we will find 32 placed on one node and 16 on some other node. If we launch 64 threads we'll find 32 and 32. That means we can end up with our threads clustered on a small subset of the nodes in a way that's quite different that what we've seen on Solaris 10. So we have a policy that allows process-aware packing but reverts to spreading threads onto other nodes if a node becomes too saturated. It turns out this policy was enabled in Solaris 10, but certain bugs suppressed the mixed packing/spreading behavior. There are configuration variables in /etc/system that allow us to dial the affinity between nascent threads and their primordial thread up and down: see lgrp_expand_proc_thresh, specifically. In the OpenSolaris source code the key routine is mpo_update_tunables(). This method reads the /etc/system variables and sets up some global variables that will subsequently be used by the dispatcher, which calls lgrp_choose() in lgrp.c to place nascent threads. Lgrp_expand_proc_thresh controls how loaded an lgroup must be before we'll consider homing a process's threads to another lgroup. Tune this value lower to have it spread your process's threads out more. To recap, the 'new' policy is as follows. Threads from the same process are packed onto a subset of the strands of a socket (50% for T-series). Once that socket reaches the 50% threshold the kernel then picks another preferred socket for that process. Threads from unrelated processes are spread across sockets. More precisely, different processes may have different preferred sockets (lgroups). Beware that I've simplified and elided details for the purposes of explication. The truth is in the code. Remarks: It's worth noting that initial thread placement is just that. If there's a gross imbalance between the load on different nodes then the kernel will migrate threads to achieve a better and more even distribution over the set of available nodes. Once a thread runs and gains some affinity for a node, however, it becomes "stickier" under the assumption that the thread has residual cache residency on that node, and that memory allocated by that thread resides on that node given the default "first-touch" page-level NUMA allocation policy. Exactly how the various policies interact and which have precedence under what circumstances could the topic of a future blog entry. The scheduler is work-conserving. The x4800 mentioned above is an interesting system. Each of the 8 sockets houses an Intel 7500-series processor. Each processor has 3 coherent QPI links and the system is arranged as a glueless 8-socket twisted ladder "mobius" topology. Nodes are either 1 or 2 hops distant over the QPI links. As an aside the mapping of logical CPUIDs to physical resources is rather interesting on Solaris/x4800. On SPARC/Solaris the CPUID layout is strictly geographic, with the highest order bits identifying the socket, the next lower bits identifying the core within that socket, following by the pipeline (if present) and finally the logical thread context ("strand") on the core. But on Solaris on the x4800 the CPUID layout is as follows. [6:6] identifies the hyperthread on a core; bits [5:3] identify the socket, or package in Intel terminology; bits [2:0] identify the core within a socket. Such low-level details should be of interest only if you're binding threads -- a bad idea, the kernel typically handles placement best -- or if you're writing NUMA-aware code that's aware of the ambient placement and makes decisions accordingly. Solaris introduced the so-called critical-threads mechanism, which is expressed by putting a thread into the FX scheduling class at priority 60. The critical-threads mechanism applies to placement on cores, not on sockets, however. That is, it's an intra-socket policy, not an inter-socket policy. Solaris 11 introduces the Power Aware Dispatcher (PAD) which packs threads instead of spreading them out in an attempt to be able to keep sockets or cores at lower power levels. Maximum dispersal may be good for performance but is anathema to power management. PAD is off by default, but power management polices constitute yet another confounding factor with respect to scheduling and dispatching. If your threads communicate heavily -- one thread reads cache lines last written by some other thread -- then the new dense packing policy may improve performance by reducing traffic on the coherent interconnect. On the other hand if your threads in your process communicate rarely, then it's possible the new packing policy might result on contention on shared computing resources. Unfortunately there's no simple litmus test that says whether packing or spreading is optimal in a given situation. The answer varies by system load, application, number of threads, and platform hardware characteristics. Currently we don't have the necessary tools and sensoria to decide at runtime, so we're reduced to an empirical approach where we run trials and try to decide on a placement policy. The situation is quite frustrating. Relatedly, it's often hard to determine just the right level of concurrency to optimize throughput. (Understanding constructive vs destructive interference in the shared caches would be a good start. We could augment the lines with a small tag field indicating which strand last installed or accessed a line. Given that, we could augment the CPU with performance counters for misses where a thread evicts a line it installed vs misses where a thread displaces a line installed by some other thread.)

    Read the article

  • I can't start mysql in ubuntu 11.04

    - by shomid
    I downloaded following files of Oracle.com: MySQL-server-5.5.28-1.linux2.6.i386.rpm<br/> MySQL-client-5.5.28-1.linux2.6.i386.rpm<br/> MySQL-shared-5.5.28-1.linux2.6.i386.rpm<br/> then with "alien -i" command installing rpm packages and when starting mysql get following error: Starting MySQL<br/> .... * The server quit without updating PID file (/var/lib/mysql/omid-desktop.pid). error log: 121117 13:21:30 mysqld_safe Starting mysqld daemon with databases from /var/lib/mysql 121117 13:21:30 [Note] Plugin 'FEDERATED' is disabled. /usr/sbin/mysqld: Table 'mysql.plugin' doesn't exist 121117 13:21:30 [ERROR] Can't open the mysql.plugin table. Please run mysql_upgrade to create it. 121117 13:21:30 InnoDB: The InnoDB memory heap is disabled 121117 13:21:30 InnoDB: Mutexes and rw_locks use InnoDB's own implementation 121117 13:21:30 InnoDB: Compressed tables use zlib 1.2.3 121117 13:21:30 InnoDB: Using Linux native AIO 121117 13:21:30 InnoDB: Initializing buffer pool, size = 128.0M 121117 13:21:30 InnoDB: Completed initialization of buffer pool 121117 13:21:30 InnoDB: highest supported file format is Barracuda. 121117 13:21:30 InnoDB: Waiting for the background threads to start 121117 13:21:31 InnoDB: 1.1.8 started; log sequence number 1595675 121117 13:21:31 [Note] Recovering after a crash using mysql-bin 121117 13:21:31 [Note] Starting crash recovery... 121117 13:21:31 [Note] Crash recovery finished. 121117 13:21:31 [Note] Server hostname (bind-address): '0.0.0.0'; port: 3306 121117 13:21:31 [Note] - '0.0.0.0' resolves to '0.0.0.0'; 121117 13:21:31 [Note] Server socket created on IP: '0.0.0.0'. 121117 13:21:31 [ERROR] Fatal error: Can't open and lock privilege tables: Table 'mysql.host' doesn't exist 121117 13:21:31 mysqld_safe mysqld from pid file /var/lib/mysql/omid-desktop.pid ended 121117 13:25:38 mysqld_safe Starting mysqld daemon with databases from /var/lib/mysql 121117 13:25:38 [Note] Plugin 'FEDERATED' is disabled. /usr/sbin/mysqld: Table 'mysql.plugin' doesn't exist 121117 13:25:38 [ERROR] Can't open the mysql.plugin table. Please run mysql_upgrade to create it. 121117 13:25:38 InnoDB: The InnoDB memory heap is disabled 121117 13:25:38 InnoDB: Mutexes and rw_locks use InnoDB's own implementation 121117 13:25:38 InnoDB: Compressed tables use zlib 1.2.3 121117 13:25:38 InnoDB: Using Linux native AIO 121117 13:25:38 InnoDB: Initializing buffer pool, size = 128.0M 121117 13:25:38 InnoDB: Completed initialization of buffer pool 121117 13:25:38 InnoDB: highest supported file format is Barracuda. 121117 13:25:38 InnoDB: Waiting for the background threads to start 121117 13:25:39 InnoDB: 1.1.8 started; log sequence number 1595675 /usr/sbin/mysqld: Too many arguments (first extra is 'start'). Use --verbose --help to get a list of available options 121117 13:25:39 [ERROR] Aborting 121117 13:25:39 InnoDB: Starting shutdown... 121117 13:25:40 InnoDB: Shutdown completed; log sequence number 1595675 121117 13:25:40 [Note] /usr/sbin/mysqld: Shutdown complete

    Read the article

  • ath9k driver does not weak up

    - by shantanu
    I know this is common question but i found no suitable answer, so i am asking this again. I installed ubuntu 11.10. I found the bug for ath9k, so set first network boot from BIOS menu. That's worked. I have upgraded to 12.04 yesterday. Now ath9k is creating problem again. First network boot is still enable. ath9k works at start. But failed(connect again and again) after couple of minutes. dmesg show error that it can not weak up in 500us. So i tried #compat-wireless-3.5.1-1. But result is same. I have also added #nohwcrypt=1 option in /etc/modeprob.d/ath9k.conf. Still no luck. I tried #rmmod and then modprobe sudo modprobe ath9k nohwcrypt=1 dmesg shows me error: [ 400.690086] ath9k: Driver unloaded [ 406.214329] ath9k 0000:06:00.0: enabling device (0000 -> 0002) [ 406.214348] ath9k 0000:06:00.0: PCI INT A -> GSI 17 (level, low) -> IRQ 17 [ 406.214368] ath9k 0000:06:00.0: setting latency timer to 64 [ 406.428517] ath9k 0000:06:00.0: Failed to initialize device [ 406.428852] ath9k 0000:06:00.0: PCI INT A disabled [ 406.428887] ath9k: probe of 0000:06:00.0 failed with error -5 dmesg error when driver fail: 355.023521] ath: Chip reset failed [ 355.023524] ath: Unable to reset channel, reset status -22 [ 355.023556] ath: Unable to set channel [ 355.088569] ath: Failed to stop TX DMA, queues=0x10f! [ 355.122708] ath: DMA failed to stop in 10 ms AR_CR=0xffffffff AR_DIAG_SW=0xffffffff DMADBG_7=0xffffffff [ 355.122714] ath: Could not stop RX, we could be confusing the DMA engine when we start RX up [ 355.263962] ath: Chip reset failed [ 355.263966] ath: Unable to reset channel (2437 MHz), reset status -22 [ 358.996063] ath: Failed to wakeup in 500us [ 364.004182] ath: Failed to wakeup in 500us I can not install fresh ubuntu because i have lots of application installed. System : Acer Aspire 4250 AMD dual core 1.6GHZ Atheros Communications Inc. AR9485 Wireless Network Adapter (rev 01) EDITED Now i am in serious problem. No wifi device is not showing in ifconfig or lshw commands. Only ether-net interface shows. I tried (FN + WIFI) several times to enable the device but nothing helps. Now I have installed fresh ubuntu 12.04. Please help lshw -c network: *-network description: Ethernet interface product: 82566DC Gigabit Network Connection vendor: Intel Corporation physical id: 19 bus info: pci@0000:00:19.0 logical name: eth0 version: 02 serial: 00:19:d1:7a:8e:f9 size: 100Mbit/s capacity: 1Gbit/s width: 32 bits clock: 33MHz capabilities: pm msi bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=e1000e driverversion=2.0.0-k duplex=full firmware=1.1-0 ip=192.168.1.114 latency=0 link=yes multicast=yes port=twisted pair speed=100Mbit/s resources: irq:45 memory:90300000-9031ffff memory:90324000-90324fff ioport:20c0(size=32) rfkill command does not show anything but no error.

    Read the article

< Previous Page | 234 235 236 237 238 239 240 241 242 243 244 245  | Next Page >