Search Results

Search found 2880 results on 116 pages for 'deep linking'.

Page 25/116 | < Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

  • How to filter traffic coming to particular page from other page?

    - by BishKopt
    I've got page A linking to page B. There are also other pages linking to B. How can I see traffic that is coming to page B be ONLY form page A? I can somehow do it via Behavior flow: Behavior Behavior flow [Right click on anything] Explore traffic through here [Click edit icon] Define a page group [Right click] Group details [Dropdown] Incoming traffic But how do I do it in normal reports? Is there any way to filter out only the traffic coming from particular page?

    Read the article

  • The Importance of Internal Links

    No website is ever complete without linking from within your own pages to your other pages, and not through your normal navigation, but from linking to your other pages from within paragraphs. Google and other major search engines like to see relevant links to your pages, and if you link from one of your pages to another of your pages, their algorithm is tuned to see this as highly relevant, especially if you use good anchor text to link to your other page.

    Read the article

  • jQuery Templates, Data Link

    - by Renso
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Query Templates, Data Link, and Globalization I am sure you must have read Scott Guthrie’s blog post about jQuery support and officially supporting jQuery's templating, data linking and globalization, if not here it is: jQuery Templating Since we are an open source shop and use jQuery and jQuery plugins extensively to say the least, decided to look into the templating a bit and see what data linking is all about. For those not familiar with those terms here is the summary, plenty of material out there on what it is, but here is what in my experience it means: jQuery Templating: A templating engine that allows you to specify a client-side template where you indicate which properties/tags you want dynamically updated. You in a sense specify which parts of the html is dynamic and since it is pluggable you are able to use tools data jQuery data linking and others to let it sync up your template with data. What makes it more powerful is that you can easily work with rows of data, adding and removing rows. Once the template has been generated, which you do dynamically on a client-side event, you then append/inject the resulting template somewhere in your DOM, like for example you would get a JSON object from the database, map it to your template, it populates the template with your data in the indicated places, and then let’s say for example append it to a row in a table. I have not found it that useful for lets say a single record of data since you could easily just get a partial view from the server via an html type ajax call. It really shines when you dynamically add/remove rows from a list in the DOM. I have not found an alternative that meets the functionality of the jQuery template and helps of course that Microsoft officially supports it. In future versions of the jQuery plug-in it may even ship as part of the standard jQuery library and with future versions of Visual Studio. jQuery Data Linking: In short I was fascinated by it initially by how with one line of code I can sync up my JSON object with my form elements. That's where my enthusiasm stopped. It was one-line to let is deal with syncing up your form with your JSON object, but it is not bidirectional as they state and I tried all the work arounds they suggested and none of them work. The problem is that when you update your JSON object it DOES NOT sync it up with your form. In an example, accounts are being edited client side by selecting the account from a list by clicking on the row, it then fetches the entire account JSON object via ajax json-type call and then refreshes the form with the account’s details from the new JSON object. What is the use of syncing up my JSON with the form if I still have to programmatically sync up my new JSON object with each DOM property?! So you may ask: “what is the alternative”? Good question and the same one I was pondering, maybe I can just use it for keeping my from n sync with my JSON object so I can post that JSON object back to the server and update my database. That’s when I discovered Knockout: Knockout It addresses the issues mentioned above and also supports event handling through the observer pattern. Not wanting to go into detail here, Steve Sanderson, the creator of Knockout, has already done a terrific job of that, thanks Steve for a great plug-in! Best of all it integrates perfectly with the jQuery Templating engine as well. I have not found an alternative to this plugin that supports the depth and width of functionality and would recommend it to anyone. The only drawback is the embedded html attributes (data-bind=””) tags that you have to add to the HTML, in my opinion tying your behavior to your HTML, where I like to separate behavior from HTML as well as CSS, so the HTML is purely to define content, not styling or behavior. But there are plusses to this as well and also a nifty work around to this that I will just shortly mention here with an example. Instead of data binding an html tag with knockout event handling like so:  <%=Html.TextBox("PrepayDiscount", String.Empty, new { @class = "number" })%>   Do: <%=Html.DataBoundTextBox("PrepayDiscount", String.Empty, new { @class = "number" })%>   The html extension above then takes care of the internals and you could then swap Knockout for something else if you want to inside the extension and keep the HTML plugin agnostic. Here is what the extension looks like, you can easily build a whole library to support all kinds of data binding options from this:      public static class HtmlExtensions       {         public static MvcHtmlString DataBoundTextBox(this HtmlHelper helper, string name, object value, object htmlAttributes)         {             var dic = new RouteValueDictionary(htmlAttributes);             dic.Add("data-bind", String.Format("value: {0}", name));             return helper.TextBox(name, value, dic);         }       }   Hope this helps in making a decision when and where to consider jQuery templating, data linking and Knockout.

    Read the article

  • Ubuntu wired network disconnected

    - by Deep
    I am not able to establish a wired network connection between two computers on which I just installed Ubuntu 10.04. I am new to this environment. Unlike in the Windows environment, where it happens by just connecting them with a cable, Ubuntu keeps flashing a notification saying "Wired network disconnected". Am I missing a driver or something? I am able to connect to the wi-fi router without issue. The wired connection is just not working.

    Read the article

  • Do I need to recompile PHP to make use of CURL API?

    - by amn
    I have both Apache and PHP set up manually, albeit the latter without CURL. There is this jungle of instructions and explanations on extensions for PHP. I have a very straightforward question - what do I need to do to enable CURL in a more dynamic way. I resent the idea of static linking, in fact I hate and avoid static linking like the plague. Is it possible to have my Apache and PHP understand that there is CURL in town? I can compile CURL if necessary. Package management may be out of the question, because I built PHP myself - I am on Ubuntu, and it does not provide PHP without Suhosin and a a whole lot of time, so I removed it and built PHP myself. The whole slew of related questions simply propse installing "php5-curl" package, which is exactly one thing I CANNOT do since it installs it in a completely unrelated directory, which my PHP does not even seem to bother linking to.

    Read the article

  • GPLv2 - Multiple AI chess engines to bypass GPL

    - by Dogbert
    I have gone through a number of GPL-related questions, the most recent being this one: http://stackoverflow.com/questions/3248823/legal-question-about-the-gpl-license-net-dlls/3249001#3249001 I'm trying to see how this would work, so bear with me. I have a simple GUI interface for a game of Chess. It essentially can send/receive commands to/from an external chess engine (ie: Tong, Fruit, etc). The application/GUI is similar in nature to XBoard ( http://www.gnu.org/software/xboard/ ), but was independently designed. After going through a number of threads on this topic, it seems that the FSF considers dynamically linking against a GPLv2 library as a derivative work, and that by doing so, the GPLv2 extends to my proprietary code, and I must release the source to my entire project. Other legal precedents indicate the opposite, and that dynamic linking doesn't cause the "viral" effect of the GPL to propagate to my proprietary code. Since there is no official consensus that can give a "hard-and-fast" answer to the dynamic linking question, would this be an acceptable alternative: I build my chess GUI so that it sends/receives the chess engine AI logic as text commands from an external interface library that I write The interface library I wrote itself is then released under the GPL The interface library is only used to communicate via a generic text pipe to external command-line chess engines The chess engine itself would be built as a command-line utility rather than as a library of any sort, and just sends strings in the Universal Chess Interface of Chess Engine Communication Protocol ( http://en.wikipedia.org/wiki/Chess_Engine_Communication_Protocol ) format. The one "gotcha" is that the interface library should not be specific to one single GPL'ed chess engine, otherwise the entire GUI would be "entirely dependent" on it. So, I just make my interface library so that it is able to connect to any command-line chess engine that uses a specific format, rather than just one unique engine. I could then include pre-built command-line-app versions of any of the chess engines I'm using. Would that sort of approach allow me to do the following: NOT release the source for my UI Release the source of the interface library I built (if necessary) Use one or more chess engines and bundle them as external command-line utilities that ship with a binary version of my UI Thank you.

    Read the article

  • The Stub Proto: Not Just For Stub Objects Anymore

    - by user9154181
    One of the great pleasures of programming is to invent something for a narrow purpose, and then to realize that it is a general solution to a broader problem. In hindsight, these things seem perfectly natural and obvious. The stub proto area used to build the core Solaris consolidation has turned out to be one of those things. As discussed in an earlier article, the stub proto area was invented as part of the effort to use stub objects to build the core ON consolidation. Its purpose was merely as a place to hold stub objects. However, we keep finding other uses for it. It turns out that the stub proto should be more properly thought of as an auxiliary place to put things that we would like to put into the proto to help us build the product, but which we do not wish to package or deliver to the end user. Stub objects are one example, but private lint libraries, header files, archives, and relocatable objects, are all examples of things that might profitably go into the stub proto. Without a stub proto, these items were handled in a variety of ad hoc ways: If one part of the workspace needed private header files, libraries, or other such items, it might modify its Makefile to reach up and over to the place in the workspace where those things live and use them from there. There are several problems with this: Each component invents its own approach, meaning that programmers maintaining the system have to invest extra effort to understand what things mean. In the past, this has created makefile ghettos in which only the person who wrote the makefiles feels confident to modify them, while everyone else ignores them. This causes many difficulties and benefits no one. These interdependencies are not obvious to the make, utility, and can lead to races. They are not obvious to the human reader, who may therefore not realize that they exist, and break them. Our policy in ON is not to deliver files into the proto unless those files are intended to be packaged and delivered to the end user. However, sometimes non-shipping files were copied into the proto anyway, causing a different set of problems: It requires a long list of exceptions to silence our normal unused proto item error checking. In the past, we have accidentally shipped files that we did not intend to deliver to the end user. Mixing cruft with valuable items makes it hard to discern which is which. The stub proto area offers a convenient and robust solution. Files needed to build the workspace that are not delivered to the end user can instead be installed into the stub proto. No special exceptions or custom make rules are needed, and the intent is always clear. We are already accessing some private lint libraries and compilation symlinks in this manner. Ultimately, I'd like to see all of the files in the proto that have a packaging exception delivered to the stub proto instead, and for the elimination of all existing special case makefile rules. This would include shared objects, header files, and lint libraries. I don't expect this to happen overnight — it will be a long term case by case project, but the overall trend is clear. The Stub Proto, -z assert_deflib, And The End Of Accidental System Object Linking We recently used the stub proto to solve an annoying build issue that goes back to the earliest days of Solaris: How to ensure that we're linking to the OS bits we're building instead of to those from the running system. The Solaris product is made up of objects and files from a number of different consolidations, each of which is built separately from the others from an independent code base called a gate. The core Solaris OS consolidation is ON, which stands for "Operating System and Networking". You will frequently also see ON called the OSnet. There are consolidations for X11 graphics, the desktop environment, open source utilities, compilers and development tools, and many others. The collection of consolidations that make up Solaris is known as the "Wad Of Stuff", usually referred to simply as the WOS. None of these consolidations is self contained. Even the core ON consolidation has some dependencies on libraries that come from other consolidations. The build server used to build the OSnet must be running a relatively recent version of Solaris, which means that its objects will be very similar to the new ones being built. However, it is necessarily true that the build system objects will always be a little behind, and that incompatible differences may exist. The objects built by the OSnet link to other objects. Some of these dependencies come from the OSnet, while others come from other consolidations. The objects from other consolidations are provided by the standard library directories on the build system (/lib, /usr/lib). The objects from the OSnet itself are supposed to come from the proto areas in the workspace, and not from the build server. In order to achieve this, we make use of the -L command line option to the link-editor. The link-editor finds dependencies by looking in the directories specified by the caller using the -L command line option. If the desired dependency is not found in one of these locations, ld will then fall back to looking at the default locations (/lib, /usr/lib). In order to use OSnet objects from the workspace instead of the system, while still accessing non-OSnet objects from the system, our Makefiles set -L link-editor options that point at the workspace proto areas. In general, this works well and dependencies are found in the right places. However, there have always been failures: Building objects in the wrong order might mean that an OSnet dependency hasn't been built before an object that needs it. If so, the dependency will not be seen in the proto, and the link-editor will silently fall back to the one on the build server. Errors in the makefiles can wipe out the -L options that our top level makefiles establish to cause ld to look at the workspace proto first. In this case, all objects will be found on the build server. These failures were rarely if ever caught. As I mentioned earlier, the objects on the build server are generally quite close to the objects built in the workspace. If they offer compatible linking interfaces, then the objects that link to them will behave properly, and no issue will ever be seen. However, if they do not offer compatible linking interfaces, the failure modes can be puzzling and hard to pin down. Either way, there won't be a compile-time warning or error. The advent of the stub proto eliminated the first type of failure. With stub objects, there is no dependency ordering, and the necessary stub object dependency will always be in place for any OSnet object that needs it. However, makefile errors do still occur, and so, the second form of error was still possible. While working on the stub object project, we realized that the stub proto was also the key to solving the second form of failure caused by makefile errors: Due to the way we set the -L options to point at our workspace proto areas, any valid object from the OSnet should be found via a path specified by -L, and not from the default locations (/lib, /usr/lib). Any OSnet object found via the default locations means that we've linked to the build server, which is an error we'd like to catch. Non-OSnet objects don't exist in the proto areas, and so are found via the default paths. However, if we were to create a symlink in the stub proto pointing at each non-OSnet dependency that we require, then the non-OSnet objects would also be found via the paths specified by -L, and not from the link-editor defaults. Given the above, we should not find any dependency objects from the link-editor defaults. Any dependency found via the link-editor defaults means that we have a Makefile error, and that we are linking to the build server inappropriately. All we need to make use of this fact is a linker option to produce a warning when it happens. Although warnings are nice, we in the OSnet have a zero tolerance policy for build noise. The -z fatal-warnings option that was recently introduced with -z guidance can be used to turn the warnings into fatal build errors, forcing the programmer to fix them. This was too easy to resist. I integrated 7021198 ld option to warn when link accesses a library via default path PSARC/2011/068 ld -z assert-deflib option into snv_161 (February 2011), shortly after the stub proto was introduced into ON. This putback introduced the -z assert-deflib option to the link-editor: -z assert-deflib=[libname] Enables warning messages for libraries specified with the -l command line option that are found by examining the default search paths provided by the link-editor. If a libname value is provided, the default library warning feature is enabled, and the specified library is added to a list of libraries for which no warnings will be issued. Multiple -z assert-deflib options can be specified in order to specify multiple libraries for which warnings should not be issued. The libname value should be the name of the library file, as found by the link-editor, without any path components. For example, the following enables default library warnings, and excludes the standard C library. ld ... -z assert-deflib=libc.so ... -z assert-deflib is a specialized option, primarily of interest in build environments where multiple objects with the same name exist and tight control over the library used is required. If is not intended for general use. Note that the definition of -z assert-deflib allows for exceptions to be specified as arguments to the option. In general, the idea of using a symlink from the stub proto is superior because it does not clutter up the link command with a long list of objects. When building the OSnet, we usually use the plain from of -z deflib, and make symlinks for the non-OSnet dependencies. The exception to this are dependencies supplied by the compiler itself, which are usually found at whatever arbitrary location the compiler happens to be installed at. To handle these special cases, the command line version works better. Following the integration of the link-editor change, I made use of -z assert-deflib in OSnet builds with 7021896 Prevent OSnet from accidentally linking to build system which integrated into snv_162 (March 2011). Turning on -z assert-deflib exposed between 10 and 20 existing errors in our Makefiles, which were all fixed in the same putback. The errors we found in our Makefiles underscore how difficult they can be prevent without an automatic system in place to catch them. Conclusions The stub proto is proving to be a generally useful construct for ON builds that goes beyond serving as a place to hold stub objects. Although invented to hold stub objects, it has already allowed us to simplify a number of previously difficult situations in our makefiles and builds. I expect that we'll find uses for it beyond those described here as we go forward.

    Read the article

  • Understanding Application binary interface (ABI)

    - by Tim
    I am trying to understand the concept of Application binary interface (ABI). From The Linux Kernel Primer: An ABI is a set of conventions that allows a linker to combine separately compiled modules into one unit without recompilation, such as calling conventions, machine interface, and operating-system interface. Among other things, an ABI defines the binary interface between these units. ... The benefits of conforming to an ABI are that it allows linking object files compiled by different compilers. From Wikipedia: an application binary interface (ABI) describes the low-level interface between an application (or any type of) program and the operating system or another application. ABIs cover details such as data type, size, and alignment; the calling convention, which controls how functions' arguments are passed and return values retrieved; the system call numbers and how an application should make system calls to the operating system; and in the case of a complete operating system ABI, the binary format of object files, program libraries and so on. I was wondering whether ABI depends on both the instruction set and the OS. Are the two all that ABI depends on? What kinds of role does ABI play in different stages of compilation: preprocessing, conversion of code from C to Assembly, conversion of code from Assembly to Machine code, and linking? From the first quote above, it seems to me that ABI is needed for only linking stage, not the other stages. Is it correct? When is ABI needed to be considered? Is ABI needed to be considered during programming in C, Assembly or other languages? If yes, how are ABI and API different? Or is it only for linker or compiler? Is ABI specified for/in machine code, Assembly language, and/or of C?

    Read the article

  • The Breakpoint Ep. 4 —The Tour De Timeline

    The Breakpoint Ep. 4 —The Tour De Timeline Ask and vote for questions at: goo.gl The DevTools' Timeline shows the heartbeat and health of your application's performance. In this episode we'll do a deep deep dive into how to uncover the cost of internal browser operations like parsing HTML, decoding images, invalidating layout geometry and painting to screen. Paul and Addy will show you how best to approach improving the performance of your CSS and JS. From: GoogleDevelopers Views: 0 0 ratings Time: 01:00:00 More in Science & Technology

    Read the article

  • Extending Chrome DevTools for fun and profit...

    Extending Chrome DevTools for fun and profit... Your browser is one of the most and best instrumented development platforms -- you may just not realize it yet. In this episode we'll cover the Audit and Panel extension API's, take a deep dive into the Chrome debugging protocol (and what you can do with it), peek inside the Chrome's network stack, and finally go deep into the guts of Chrome with chrome://tracing! From: GoogleDevelopers Views: 333 12 ratings Time: 23:35 More in Science & Technology

    Read the article

  • Linking Mapkit with Core Data, Search and user location. Converting annotations from a database in a tableview with search to display in a mapview?

    - by Jon
    Xcode is quite new to me so explanations are appreciated. I am looking to build an application that displays annotations in a mapview (zoomed in on current user location). I want the applications to come from some sort of database rather than manually inputting all the annotations (which is what I'm currently doing) What would be my application type? tab based? window based? i want a tab for a tableview with a list of my annotations and a mapview tab that will show my database of annotations but with the map zoomed in on current location. In a perfect world, it would be great if the user could add favourites from these annotations and keep them in a favourites tableview tab. I'm desperate to work this out and create a fully functional app for a final uni project. i have a working application already but it's nothing like what i am trying to achieve, any help would be much appreciated!!!! Jon (if looked through countless tutorials and as of yet found nothing i can understand to achieve a project like this. Some would call me too ambitious, I just want to make a decent app)

    Read the article

  • Beginning Haskell: "not in scope" Unprecedented error

    - by user1071838
    So I just started learning Haskell, and this (http://learnyouahaskell.com) nifty book is giving a lot of help. So yesterday I wrote in a text file doubleMe x = x + x and saved it as double.hs. So after saving that I open up my command prompt, CD to the right folder, type in "ghci" to get haskell started, and then type in >doubleMe 5 10 and everything seems to work. Now today, I do the same thing and this happens (actual copy paste from command line) . . . C:\Users\myName\haskell>ghci GHCi, version 7.0.3: http://www.haskell.org/ghc/ :? for help Loading package ghc-prim ... linking ... done. Loading package integer-gmp ... linking ... done. Loading package base ... linking ... done. Loading package ffi-1.0 ... linking ... done. Prelude> :l double.hs [1 of 1] Compiling Main ( double.hs, interpreted ) Ok, modules loaded: Main. *Main> doubleMe 5 <interactive>:1:1: Not in scope: `doubleMe' So basically, everything was working fine, but now haskell can't find the function I wrote in double.hs. Can anyone tell what is going on? I'm pretty lost and confused. This is just a guess but does it have to do with *Main at all? Thanks for the help.

    Read the article

  • Howcome some C++ functions with unspecified linkage build with C linkage?

    - by christoffer
    This is something that makes me fairly perplexed. I have a C++ file that implements a set of functions, and a header file that defines prototypes for them. When building with Visual Studio or MingW-gcc, I get linking errors on two of the functions, and adding an 'extern "C"' qualifier resolved the error. How is this possible? Header file, "some_header.h": // Definition of struct DEMO_GLOBAL_DATA omitted DWORD WINAPI ThreadFunction(LPVOID lpData); void WriteLogString(void *pUserData, const char *pString, unsigned long nStringLen); void CheckValid(DEMO_GLOBAL_DATA *pData); int HandleStart(DEMO_GLOBAL_DATA * pDAta, TCHAR * pLogFileName); void HandleEnd(DEMO_GLOBAL_DATA *pData); C++ file, "some_implementation.cpp" #include "some_header.h" DWORD WINAPI ThreadFunction(LPVOID lpData) { /* omitted */ } void WriteLogString(void *pUserData, const char *pString, unsigned long nStringLen) { /* omitted */ } void CheckValid(DEMO_GLOBAL_DATA *pData) { /* omitted */ } int HandleStart(DEMO_GLOBAL_DATA * pDAta, TCHAR * pLogFileName) { /* omitted */ } void HandleEnd(DEMO_GLOBAL_DATA *pData) { /* omitted */ } The implementations compile without warnings, but when linking with the UI code that calls these, I get a normal error LNK2001: unresolved external symbol "int __cdecl HandleStart(struct _DEMO_GLOBAL_DATA *, wchar_t *) error LNK2001: unresolved external symbol "void __cdecl CheckValid(struct _DEMO_MAIN_GLOBAL_DATA * What really confuses me, now, is that only these two functions (HandleStart and CheckValid) seems to be built with C linkage. Explicitly adding "extern 'C'" declarations for only these two resolved the linking error, and the application builds and runs. Adding "extern 'C'" on some other function, such as HandleEnd, introduces a new linking error, so that one is obviously compiled correctly. The implementation file is never modified in any of this, only the prototypes.

    Read the article

  • casing the object values

    - by deep
    Hai am using telerik wpf grid in grid selection change event am getting the selected row values. the problem is the values are as object. object myData = radGridView.SelectedItem; the object myData contains the row values. but i don know how to get values from the myData object

    Read the article

  • selected checkbox in WPF

    - by deep
    Hai am having a lot of check box in my wpf form, i want to get the selected checkbox value alone. in winforms we can use foreach(checkbox ck in controls) like that, but i cannot use like that in WPF Forms, how can i get the selected checkbox in WPF FORMS ??

    Read the article

  • how to bind multiple value in WPF ??

    - by deep
    hai am using the below binding to bind my value 'Name' to textblock1. <TextBlock Text="{Binding Name}" /> now the problem is i want to bind another value called 'ID' with that same textblock1 is it possible to bind value like using Name + ID like that??? :)

    Read the article

  • WPF Textblock Convert Issue

    - by deep
    am usina text block in usercontrol, but am sending value to textblock from other form, when i pass some value it viewed in textblock, but i need to convert the number to text. so i used converter in textblock. but its not working <TextBlock Height="21" Name="txtStatus" Width="65" Background="Bisque" TextAlignment="Center" Text="{Binding Path=hM1,Converter={StaticResource TextConvert},Mode=OneWay}"/> converter class class TextConvert : IValueConverter { public object Convert(object value, Type targetType, object parameter, CultureInfo culture) { if (value != null) { if (value.ToString() == "1") { return value = "Good"; } if (value.ToString() == "0") { return value = "NIL"; } } return value = ""; } public object ConvertBack(object value, Type targetType, object parameter, CultureInfo culture) { return (string)value; } } is it right? whats wrong in it??

    Read the article

  • Putting a C++ Vector as a Member in a Class that Uses a Memory Pool

    - by Deep-B
    Hey, I've been writing a multi-threaded DLL for database access using ADO/ODBC for use with a legacy application. I need to keep multiple database connections for each thread, so I've put the ADO objects for each connection in an object and thinking of keeping an array of them inside a custom threadInfo object. Obviously a vector would serve better here - I need to delete/rearrange objects on the go and a vector would simplify that. Problem is, I'm allocating a heap for each thread to avoid heap contention and stuff and allocating all my memory from there. So my question is: how do I make the vector allocate from the thread-specific heap? (Or would it know internally to allocate memory from the same heap as its wrapper class - sounds unlikely, but I'm not a C++ guy) I've googled a bit and it looks like I might need to write an allocator or something - which looks like so much of work I don't want. Is there any other way? I've heard vector uses placement-new for all its stuff inside, so can overloading operator new be worked into it? My scant knowledge of the insides of C++ doesn't help, seeing as I'm mainly a C programmer (even that - relatively). It's very possible I'm missing something elementary somewhere. If nothing easier comes up - I might just go and do the array thing, but hopefully it won't come to that. I'm using MS-VC++ 6.0 (hey, it's rude to laugh! :-P ). Any/all help will be much appreciated.

    Read the article

  • How to Call my global value in app.config file

    - by deep
    Hai, am using c# and wpf am having my value as a string, i need to call the string value in my app.config file for example in app.config file am having my connection string. the username may vary diff time. am having the user name as a globasl string. i need to call that string in my app.config connection string when application startup????

    Read the article

  • Mysql Query problem ?

    - by deep
    ID NAME AMT 1 Name1 1000 2 Name2 500 3 Name3 3000 4 Name1 5000 5 Name2 2000 6 Name1 3000 consider above table as sample. am having a problem in my sql query, Am using like this. Select name,amt from sample where amt between 1000 and 5000 it returns all the values in the table between 1000 and 5000, instead I want to get maximum amount record for each name i.e., 3 name3 3000 4 name1 5000 5 name2 2000

    Read the article

  • how to pass structure variables

    - by deep
    Am having a set of structure variable in one form, i want to use that structure variable as a global variables. i need to use those structure variable in through out my whole application, how to use structure as global variable??

    Read the article

  • WPF Application Deployment Problem

    - by deep
    i created a WPF application and i added a setup solution and i did everything to deploy the project and i got my setup.msi i installed it in my system, The problem is my application is running in task manager, but i cant see my application any where in desktop or start menu,but tast manager process show that my application is running. whats the problem??

    Read the article

< Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >