Search Results

Search found 7864 results on 315 pages for 'builder pattern'.

Page 262/315 | < Previous Page | 258 259 260 261 262 263 264 265 266 267 268 269  | Next Page >

  • JavaScript two-dimensional Array to PHP

    - by vi
    Hi I have to send a two-dimensional JavaScript Array to a PHP page. Indeed, I'm working on a form-builder, in which the user can add or remove fields. These fields are added (or removed) using JavaScript (jQuery). When the user is done and hit a 'publish' button, I have to get all the fields concerned and send them to a PHP page which would build a real form with it. I found a way to do it but I'm pretty sure it's not very clean : addedFields = new Array(); $("#add-info .field").each(function() { addedFields.push(new Array($(this).find('.name').val(), $(this).find('.type').val(), $(this).find('.size').val())); }); Basically, the ".field" class objects are <tr> and the ".name", ".type" and ".size" objects are inputs. So I get an array of [name, type, size], then I convert it into a string using addedFields = addedFields.join(";"); Finally, I go to the PHP form that way ; document.location.href = "create.php?addedfields=" + addedFields; Concerning the PHP code, I create a PHP array using the explode() function: $addedFields = explode(";", $_GET['addedfields']); and then I use it again for each element in the array: foreach ($addedFields as $field) { $field = explode(",", $field); echo "<li>Field with name : '$field[0]', of '$field[1]' type and with a size of $field[2]"; }

    Read the article

  • Can I use a UINavigationController as the detail view of a UISplitViewController?

    - by B Sweigard
    I'm running into a problem with an iPad app where I would like to have UINavigationControllers in both of the views within a UISplitView. I've looked through other similar questions here, but most link to a tutorial online that doesn't completely solve the problem. Here's a 2-minute walkthrough to re-create the problem I'm having: Create a New Project in XCode, starting from the Split View-based Application template. Add the following NSLog statement as the first line within the DetailViewController's willHideViewController method: NSLog(@"toolbar: %@", toolbar); If you run the application now, the log will show that the DetailViewController's toolbar is alive and well. Now... Open MainWindow.xib and expand the SplitViewController. Drag a Navigation Controller from the library on top of the DetailViewController. Expand the new Navigation Controller and change the class of the UIViewController within to a DetailViewController. Ctrl-drag from the SplitViewController to the DetailViewController and assign it as the delegate. Save MainWindow.xib and run the app again. At this point, the detail view has a navigation bar and an empty toolbar. If you view the logs, you should find that the toolbar is null. Why is this? Am I missing some sort of connection in Interface Builder? Is the navigation bar the problem for some reason? Unlike the tutorial at http://www.cimgf.com/2010/05/24/fixing-the-uisplitviewcontroller-template/, I would like to keep both the navigation bar and the toolbar (preferably with the toolbar at the top when in portrait and not visible when in landscape), so that I still have a functional "Back" button when the iPad is in portrait orientation. Does anyone have any suggestions for fixing this problem? An example project with this sort of set-up would be ideal.

    Read the article

  • displaying a dialog using an activity?

    - by ricardo123
    what am i doing wrong here or what do i need to add? package dialog.com; import android.app.Activity; import android.app.AlertDialog; import android.content.DialogInterface; import android.app.Dialog; import android.os.Bundle; import android.view.View; import android.widget.Button; import android.widget.Toast; public class Dialog extends Activity { CharSequence [] items = { "google", "apple", "microsoft" }; boolean [] itemschecked = new boolean [items.length]; /** Called when the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); Button btn = (Button) findViewById(R.id.btn_dialog); btn.setOnClickListener(new View.OnClickListener() { public void onClick(View v) { showDialog(0); } }); } @Override protected Dialog onCreateDialog(int id) { switch(id) { case 0: return new AlertDialog.Builder(this) .setIcon(R.drawable.icon) .setTitle("This is a Dialog with some simple text...") .setPositiveButton("ok", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int whichbutton) { Toast.makeText(getBaseContext(), "OK Clicked!", Toast.LENGTH_SHORT).show(); } }); .setNegativeButton("cancel",new DialogInterface.OnclickListener() { public void onClick(DialogInterface dialog, int whichButton) {Toast.makeText(getBaseContext(), "cancel clicked!", Toast.LENGTH_SHORT).show(); } }); .setMultiChoiceItems(itemschecked, new DialogInterface.OnMultiChoiceClickListener() { @Override public void onClick(dialoginterface dialog, int which, boolean isChecked) { Toast.makeText(getBaseContext(), items[which] + (isChecked ? " checked!": "unchecked!"), Toast.LENGTH_SHORT).show(); } } ) .create(); } return null: }}}

    Read the article

  • PrgressDialog when load a WebView crash issue

    - by AndreaF
    I have an Activity with a WeView that load an url, and I want to display a little waiting dialog during the load of the site, so I have tried this: private ProgressDialog dialog = new ProgressDialog(MyNameActivity.this); @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); StrictMode.ThreadPolicy policy = new StrictMode.ThreadPolicy.Builder() .permitAll().build(); StrictMode.setThreadPolicy(policy); setContentView(R.layout.web_view_activity); WebView wv; wv = (WebView) findViewById(R.id.areaWebSolver); wv.setWebViewClient(new WebViewClient() { @Override public boolean shouldOverrideUrlLoading(WebView view, String url) { view.loadUrl(url); return true; } @Override public void onPageFinished(WebView view, String url) { if (dialog.isShowing()) { dialog.dismiss(); } } }); dialog.setMessage("Loading..Please wait."); dialog.setCanceledOnTouchOutside(false); dialog.show(); wv.loadUrl(url); WebSettings webSettings = wv.getSettings(); webSettings.setJavaScriptEnabled(true); } Unfortunately doesn't works and the app crashes with a source not found... If I try to remove the Progress dialog code the activity works. What's wrong? How could I fix this?

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Red Gate Coder interviews: Alex Davies

    - by Michael Williamson
    Alex Davies has been a software engineer at Red Gate since graduating from university, and is currently busy working on .NET Demon. We talked about tackling parallel programming with his actors framework, a scientific approach to debugging, and how JavaScript is going to affect the programming languages we use in years to come. So, if we start at the start, how did you get started in programming? When I was seven or eight, I was given a BBC Micro for Christmas. I had asked for a Game Boy, but my dad thought it would be better to give me a proper computer. For a year or so, I only played games on it, but then I found the user guide for writing programs in it. I gradually started doing more stuff on it and found it fun. I liked creating. As I went into senior school I continued to write stuff on there, trying to write games that weren’t very good. I got a real computer when I was fourteen and found ways to write BASIC on it. Visual Basic to start with, and then something more interesting than that. How did you learn to program? Was there someone helping you out? Absolutely not! I learnt out of a book, or by experimenting. I remember the first time I found a loop, I was like “Oh my God! I don’t have to write out the same line over and over and over again any more. It’s amazing!” When did you think this might be something that you actually wanted to do as a career? For a long time, I thought it wasn’t something that you would do as a career, because it was too much fun to be a career. I thought I’d do chemistry at university and some kind of career based on chemical engineering. And then I went to a careers fair at school when I was seventeen or eighteen, and it just didn’t interest me whatsoever. I thought “I could be a programmer, and there’s loads of money there, and I’m good at it, and it’s fun”, but also that I shouldn’t spoil my hobby. Now I don’t really program in my spare time any more, which is a bit of a shame, but I program all the rest of the time, so I can live with it. Do you think you learnt much about programming at university? Yes, definitely! I went into university knowing how to make computers do anything I wanted them to do. However, I didn’t have the language to talk about algorithms, so the algorithms course in my first year was massively important. Learning other language paradigms like functional programming was really good for breadth of understanding. Functional programming influences normal programming through design rather than actually using it all the time. I draw inspiration from it to write imperative programs which I think is actually becoming really fashionable now, but I’ve been doing it for ages. I did it first! There were also some courses on really odd programming languages, a bit of Prolog, a little bit of C. Having a little bit of each of those is something that I would have never done on my own, so it was important. And then there are knowledge-based courses which are about not programming itself but things that have been programmed like TCP. Those are really important for examples for how to approach things. Did you do any internships while you were at university? Yeah, I spent both of my summers at the same company. I thought I could code well before I went there. Looking back at the crap that I produced, it was only surpassed in its crappiness by all of the other code already in that company. I’m so much better at writing nice code now than I used to be back then. Was there just not a culture of looking after your code? There was, they just didn’t hire people for their abilities in that area. They hired people for raw IQ. The first indicator of it going wrong was that they didn’t have any computer scientists, which is a bit odd in a programming company. But even beyond that they didn’t have people who learnt architecture from anyone else. Most of them had started straight out of university, so never really had experience or mentors to learn from. There wasn’t the experience to draw from to teach each other. In the second half of my second internship, I was being given tasks like looking at new technologies and teaching people stuff. Interns shouldn’t be teaching people how to do their jobs! All interns are going to have little nuggets of things that you don’t know about, but they shouldn’t consistently be the ones who know the most. It’s not a good environment to learn. I was going to ask how you found working with people who were more experienced than you… When I reached Red Gate, I found some people who were more experienced programmers than me, and that was difficult. I’ve been coding since I was tiny. At university there were people who were cleverer than me, but there weren’t very many who were more experienced programmers than me. During my internship, I didn’t find anyone who I classed as being a noticeably more experienced programmer than me. So, it was a shock to the system to have valid criticisms rather than just formatting criticisms. However, Red Gate’s not so big on the actual code review, at least it wasn’t when I started. We did an entire product release and then somebody looked over all of the UI of that product which I’d written and say what they didn’t like. By that point, it was way too late and I’d disagree with them. Do you think the lack of code reviews was a bad thing? I think if there’s going to be any oversight of new people, then it should be continuous rather than chunky. For me I don’t mind too much, I could go out and get oversight if I wanted it, and in those situations I felt comfortable without it. If I was managing the new person, then maybe I’d be keener on oversight and then the right way to do it is continuously and in very, very small chunks. Have you had any significant projects you’ve worked on outside of a job? When I was a teenager I wrote all sorts of stuff. I used to write games, I derived how to do isomorphic projections myself once. I didn’t know what the word was so I couldn’t Google for it, so I worked it out myself. It was horrifically complicated. But it sort of tailed off when I started at university, and is now basically zero. If I do side-projects now, they tend to be work-related side projects like my actors framework, NAct, which I started in a down tools week. Could you explain a little more about NAct? It is a little C# framework for writing parallel code more easily. Parallel programming is difficult when you need to write to shared data. Sometimes parallel programming is easy because you don’t need to write to shared data. When you do need to access shared data, you could just have your threads pile in and do their work, but then you would screw up the data because the threads would trample on each other’s toes. You could lock, but locks are really dangerous if you’re using more than one of them. You get interactions like deadlocks, and that’s just nasty. Actors instead allows you to say this piece of data belongs to this thread of execution, and nobody else can read it. If you want to read it, then ask that thread of execution for a piece of it by sending a message, and it will send the data back by a message. And that avoids deadlocks as long as you follow some obvious rules about not making your actors sit around waiting for other actors to do something. There are lots of ways to write actors, NAct allows you to do it as if it was method calls on other objects, which means you get all the strong type-safety that C# programmers like. Do you think that this is suitable for the majority of parallel programming, or do you think it’s only suitable for specific cases? It’s suitable for most difficult parallel programming. If you’ve just got a hundred web requests which are all independent of each other, then I wouldn’t bother because it’s easier to just spin them up in separate threads and they can proceed independently of each other. But where you’ve got difficult parallel programming, where you’ve got multiple threads accessing multiple bits of data in multiple ways at different times, then actors is at least as good as all other ways, and is, I reckon, easier to think about. When you’re using actors, you presumably still have to write your code in a different way from you would otherwise using single-threaded code. You can’t use actors with any methods that have return types, because you’re not allowed to call into another actor and wait for it. If you want to get a piece of data out of another actor, then you’ve got to use tasks so that you can use “async” and “await” to await asynchronously for it. But other than that, you can still stick things in classes so it’s not too different really. Rather than having thousands of objects with mutable state, you can use component-orientated design, where there are only a few mutable classes which each have a small number of instances. Then there can be thousands of immutable objects. If you tend to do that anyway, then actors isn’t much of a jump. If I’ve already built my system without any parallelism, how hard is it to add actors to exploit all eight cores on my desktop? Usually pretty easy. If you can identify even one boundary where things look like messages and you have components where some objects live on one side and these other objects live on the other side, then you can have a granddaddy object on one side be an actor and it will parallelise as it goes across that boundary. Not too difficult. If we do get 1000-core desktop PCs, do you think actors will scale up? It’s hard. There are always in the order of twenty to fifty actors in my whole program because I tend to write each component as actors, and I tend to have one instance of each component. So this won’t scale to a thousand cores. What you can do is write data structures out of actors. I use dictionaries all over the place, and if you need a dictionary that is going to be accessed concurrently, then you could build one of those out of actors in no time. You can use queuing to marshal requests between different slices of the dictionary which are living on different threads. So it’s like a distributed hash table but all of the chunks of it are on the same machine. That means that each of these thousand processors has cached one small piece of the dictionary. I reckon it wouldn’t be too big a leap to start doing proper parallelism. Do you think it helps if actors get baked into the language, similarly to Erlang? Erlang is excellent in that it has thread-local garbage collection. C# doesn’t, so there’s a limit to how well C# actors can possibly scale because there’s a single garbage collected heap shared between all of them. When you do a global garbage collection, you’ve got to stop all of the actors, which is seriously expensive, whereas in Erlang garbage collections happen per-actor, so they’re insanely cheap. However, Erlang deviated from all the sensible language design that people have used recently and has just come up with crazy stuff. You can definitely retrofit thread-local garbage collection to .NET, and then it’s quite well-suited to support actors, even if it’s not baked into the language. Speaking of language design, do you have a favourite programming language? I’ll choose a language which I’ve never written before. I like the idea of Scala. It sounds like C#, only with some of the niggles gone. I enjoy writing static types. It means you don’t have to writing tests so much. When you say it doesn’t have some of the niggles? C# doesn’t allow the use of a property as a method group. It doesn’t have Scala case classes, or sum types, where you can do a switch statement and the compiler checks that you’ve checked all the cases, which is really useful in functional-style programming. Pattern-matching, in other words. That’s actually the major niggle. C# is pretty good, and I’m quite happy with C#. And what about going even further with the type system to remove the need for tests to something like Haskell? Or is that a step too far? I’m quite a pragmatist, I don’t think I could deal with trying to write big systems in languages with too few other users, especially when learning how to structure things. I just don’t know anyone who can teach me, and the Internet won’t teach me. That’s the main reason I wouldn’t use it. If I turned up at a company that writes big systems in Haskell, I would have no objection to that, but I wouldn’t instigate it. What about things in C#? For instance, there’s contracts in C#, so you can try to statically verify a bit more about your code. Do you think that’s useful, or just not worthwhile? I’ve not really tried it. My hunch is that it needs to be built into the language and be quite mathematical for it to work in real life, and that doesn’t seem to have ended up true for C# contracts. I don’t think anyone who’s tried them thinks they’re any good. I might be wrong. On a slightly different note, how do you like to debug code? I think I’m quite an odd debugger. I use guesswork extremely rarely, especially if something seems quite difficult to debug. I’ve been bitten spending hours and hours on guesswork and not being scientific about debugging in the past, so now I’m scientific to a fault. What I want is to see the bug happening in the debugger, to step through the bug happening. To watch the program going from a valid state to an invalid state. When there’s a bug and I can’t work out why it’s happening, I try to find some piece of evidence which places the bug in one section of the code. From that experiment, I binary chop on the possible causes of the bug. I suppose that means binary chopping on places in the code, or binary chopping on a stage through a processing cycle. Basically, I’m very stupid about how I debug. I won’t make any guesses, I won’t use any intuition, I will only identify the experiment that’s going to binary chop most effectively and repeat rather than trying to guess anything. I suppose it’s quite top-down. Is most of the time then spent in the debugger? Absolutely, if at all possible I will never debug using print statements or logs. I don’t really hold much stock in outputting logs. If there’s any bug which can be reproduced locally, I’d rather do it in the debugger than outputting logs. And with SmartAssembly error reporting, there’s not a lot that can’t be either observed in an error report and just fixed, or reproduced locally. And in those other situations, maybe I’ll use logs. But I hate using logs. You stare at the log, trying to guess what’s going on, and that’s exactly what I don’t like doing. You have to just look at it and see does this look right or wrong. We’ve covered how you get to grip with bugs. How do you get to grips with an entire codebase? I watch it in the debugger. I find little bugs and then try to fix them, and mostly do it by watching them in the debugger and gradually getting an understanding of how the code works using my process of binary chopping. I have to do a lot of reading and watching code to choose where my slicing-in-half experiment is going to be. The last time I did it was SmartAssembly. The old code was a complete mess, but at least it did things top to bottom. There wasn’t too much of some of the big abstractions where flow of control goes all over the place, into a base class and back again. Code’s really hard to understand when that happens. So I like to choose a little bug and try to fix it, and choose a bigger bug and try to fix it. Definitely learn by doing. I want to always have an aim so that I get a little achievement after every few hours of debugging. Once I’ve learnt the codebase I might be able to fix all the bugs in an hour, but I’d rather be using them as an aim while I’m learning the codebase. If I was a maintainer of a codebase, what should I do to make it as easy as possible for you to understand? Keep distinct concepts in different places. And name your stuff so that it’s obvious which concepts live there. You shouldn’t have some variable that gets set miles up the top of somewhere, and then is read miles down to choose some later behaviour. I’m talking from a very much SmartAssembly point of view because the old SmartAssembly codebase had tons and tons of these things, where it would read some property of the code and then deal with it later. Just thousands of variables in scope. Loads of things to think about. If you can keep concepts separate, then it aids me in my process of fixing bugs one at a time, because each bug is going to more or less be understandable in the one place where it is. And what about tests? Do you think they help at all? I’ve never had the opportunity to learn a codebase which has had tests, I don’t know what it’s like! What about when you’re actually developing? How useful do you find tests in finding bugs or regressions? Finding regressions, absolutely. Running bits of code that would be quite hard to run otherwise, definitely. It doesn’t happen very often that a test finds a bug in the first place. I don’t really buy nebulous promises like tests being a good way to think about the spec of the code. My thinking goes something like “This code works at the moment, great, ship it! Ah, there’s a way that this code doesn’t work. Okay, write a test, demonstrate that it doesn’t work, fix it, use the test to demonstrate that it’s now fixed, and keep the test for future regressions.” The most valuable tests are for bugs that have actually happened at some point, because bugs that have actually happened at some point, despite the fact that you think you’ve fixed them, are way more likely to appear again than new bugs are. Does that mean that when you write your code the first time, there are no tests? Often. The chance of there being a bug in a new feature is relatively unaffected by whether I’ve written a test for that new feature because I’m not good enough at writing tests to think of bugs that I would have written into the code. So not writing regression tests for all of your code hasn’t affected you too badly? There are different kinds of features. Some of them just always work, and are just not flaky, they just continue working whatever you throw at them. Maybe because the type-checker is particularly effective around them. Writing tests for those features which just tend to always work is a waste of time. And because it’s a waste of time I’ll tend to wait until a feature has demonstrated its flakiness by having bugs in it before I start trying to test it. You can get a feel for whether it’s going to be flaky code as you’re writing it. I try to write it to make it not flaky, but there are some things that are just inherently flaky. And very occasionally, I’ll think “this is going to be flaky” as I’m writing, and then maybe do a test, but not most of the time. How do you think your programming style has changed over time? I’ve got clearer about what the right way of doing things is. I used to flip-flop a lot between different ideas. Five years ago I came up with some really good ideas and some really terrible ideas. All of them seemed great when I thought of them, but they were quite diverse ideas, whereas now I have a smaller set of reliable ideas that are actually good for structuring code. So my code is probably more similar to itself than it used to be back in the day, when I was trying stuff out. I’ve got more disciplined about encapsulation, I think. There are operational things like I use actors more now than I used to, and that forces me to use immutability more than I used to. The first code that I wrote in Red Gate was the memory profiler UI, and that was an actor, I just didn’t know the name of it at the time. I don’t really use object-orientation. By object-orientation, I mean having n objects of the same type which are mutable. I want a constant number of objects that are mutable, and they should be different types. I stick stuff in dictionaries and then have one thing that owns the dictionary and puts stuff in and out of it. That’s definitely a pattern that I’ve seen recently. I think maybe I’m doing functional programming. Possibly. It’s plausible. If you had to summarise the essence of programming in a pithy sentence, how would you do it? Programming is the form of art that, without losing any of the beauty of architecture or fine art, allows you to produce things that people love and you make money from. So you think it’s an art rather than a science? It’s a little bit of engineering, a smidgeon of maths, but it’s not science. Like architecture, programming is on that boundary between art and engineering. If you want to do it really nicely, it’s mostly art. You can get away with doing architecture and programming entirely by having a good engineering mind, but you’re not going to produce anything nice. You’re not going to have joy doing it if you’re an engineering mind. Architects who are just engineering minds are not going to enjoy their job. I suppose engineering is the foundation on which you build the art. Exactly. How do you think programming is going to change over the next ten years? There will be an unfortunate shift towards dynamically-typed languages, because of JavaScript. JavaScript has an unfair advantage. JavaScript’s unfair advantage will cause more people to be exposed to dynamically-typed languages, which means other dynamically-typed languages crop up and the best features go into dynamically-typed languages. Then people conflate the good features with the fact that it’s dynamically-typed, and more investment goes into dynamically-typed languages. They end up better, so people use them. What about the idea of compiling other languages, possibly statically-typed, to JavaScript? It’s a reasonable idea. I would like to do it, but I don’t think enough people in the world are going to do it to make it pick up. The hordes of beginners are the lifeblood of a language community. They are what makes there be good tools and what makes there be vibrant community websites. And any particular thing which is the same as JavaScript only with extra stuff added to it, although it might be technically great, is not going to have the hordes of beginners. JavaScript is always to be quickest and easiest way for a beginner to start programming in the browser. And dynamically-typed languages are great for beginners. Compilers are pretty scary and beginners don’t write big code. And having your errors come up in the same place, whether they’re statically checkable errors or not, is quite nice for a beginner. If someone asked me to teach them some programming, I’d teach them JavaScript. If dynamically-typed languages are great for beginners, when do you think the benefits of static typing start to kick in? The value of having a statically typed program is in the tools that rely on the static types to produce a smooth IDE experience rather than actually telling me my compile errors. And only once you’re experienced enough a programmer that having a really smooth IDE experience makes a blind bit of difference, does static typing make a blind bit of difference. So it’s not really about size of codebase. If I go and write up a tiny program, I’m still going to get value out of writing it in C# using ReSharper because I’m experienced with C# and ReSharper enough to be able to write code five times faster if I have that help. Any other visions of the future? Nobody’s going to use actors. Because everyone’s going to be running on single-core VMs connected over network-ready protocols like JSON over HTTP. So, parallelism within one operating system is going to die. But until then, you should use actors. More Red Gater Coder interviews

    Read the article

  • AngularJS on top of ASP.NET: Moving the MVC framework out to the browser

    - by Varun Chatterji
    Heavily drawing inspiration from Ruby on Rails, MVC4’s convention over configuration model of development soon became the Holy Grail of .NET web development. The MVC model brought with it the goodness of proper separation of concerns between business logic, data, and the presentation logic. However, the MVC paradigm, was still one in which server side .NET code could be mixed with presentation code. The Razor templating engine, though cleaner than its predecessors, still encouraged and allowed you to mix .NET server side code with presentation logic. Thus, for example, if the developer required a certain <div> tag to be shown if a particular variable ShowDiv was true in the View’s model, the code could look like the following: Fig 1: To show a div or not. Server side .NET code is used in the View Mixing .NET code with HTML in views can soon get very messy. Wouldn’t it be nice if the presentation layer (HTML) could be pure HTML? Also, in the ASP.NET MVC model, some of the business logic invariably resides in the controller. It is tempting to use an anti­pattern like the one shown above to control whether a div should be shown or not. However, best practice would indicate that the Controller should not be aware of the div. The ShowDiv variable in the model should not exist. A controller should ideally, only be used to do the plumbing of getting the data populated in the model and nothing else. The view (ideally pure HTML) should render the presentation layer based on the model. In this article we will see how Angular JS, a new JavaScript framework by Google can be used effectively to build web applications where: 1. Views are pure HTML 2. Controllers (in the server sense) are pure REST based API calls 3. The presentation layer is loaded as needed from partial HTML only files. What is MVVM? MVVM short for Model View View Model is a new paradigm in web development. In this paradigm, the Model and View stuff exists on the client side through javascript instead of being processed on the server through postbacks. These frameworks are JavaScript frameworks that facilitate the clear separation of the “frontend” or the data rendering logic from the “backend” which is typically just a REST based API that loads and processes data through a resource model. The frameworks are called MVVM as a change to the Model (through javascript) gets reflected in the view immediately i.e. Model > View. Also, a change on the view (through manual input) gets reflected in the model immediately i.e. View > Model. The following figure shows this conceptually (comments are shown in red): Fig 2: Demonstration of MVVM in action In Fig 2, two text boxes are bound to the same variable model.myInt. Thus, changing the view manually (changing one text box through keyboard input) also changes the other textbox in real time demonstrating V > M property of a MVVM framework. Furthermore, clicking the button adds 1 to the value of model.myInt thus changing the model through JavaScript. This immediately updates the view (the value in the two textboxes) thus demonstrating the M > V property of a MVVM framework. Thus we see that the model in a MVVM JavaScript framework can be regarded as “the single source of truth“. This is an important concept. Angular is one such MVVM framework. We shall use it to build a simple app that sends SMS messages to a particular number. Application, Routes, Views, Controllers, Scope and Models Angular can be used in many ways to construct web applications. For this article, we shall only focus on building Single Page Applications (SPAs). Many of the approaches we will follow in this article have alternatives. It is beyond the scope of this article to explain every nuance in detail but we shall try to touch upon the basic concepts and end up with a working application that can be used to send SMS messages using Sent.ly Plus (a service that is itself built using Angular). Before you read on, we would like to urge you to forget what you know about Models, Views, Controllers and Routes in the ASP.NET MVC4 framework. All these words have different meanings in the Angular world. Whenever these words are used in this article, they will refer to Angular concepts and not ASP.NET MVC4 concepts. The following figure shows the skeleton of the root page of an SPA: Fig 3: The skeleton of a SPA The skeleton of the application is based on the Bootstrap starter template which can be found at: http://getbootstrap.com/examples/starter­template/ Apart from loading the Angular, jQuery and Bootstrap JavaScript libraries, it also loads our custom scripts /app/js/controllers.js /app/js/app.js These scripts define the routes, views and controllers which we shall come to in a moment. Application Notice that the body tag (Fig. 3) has an extra attribute: ng­app=”smsApp” Providing this tag “bootstraps” our single page application. It tells Angular to load a “module” called smsApp. This “module” is defined /app/js/app.js angular.module('smsApp', ['smsApp.controllers', function () {}]) Fig 4: The definition of our application module The line shows above, declares a module called smsApp. It also declares that this module “depends” on another module called “smsApp.controllers”. The smsApp.controllers module will contain all the controllers for our SPA. Routing and Views Notice that in the Navbar (in Fig 3) we have included two hyperlinks to: “#/app” “#/help” This is how Angular handles routing. Since the URLs start with “#”, they are actually just bookmarks (and not server side resources). However, our route definition (in /app/js/app.js) gives these URLs a special meaning within the Angular framework. angular.module('smsApp', ['smsApp.controllers', function () { }]) //Configure the routes .config(['$routeProvider', function ($routeProvider) { $routeProvider.when('/binding', { templateUrl: '/app/partials/bindingexample.html', controller: 'BindingController' }); }]); Fig 5: The definition of a route with an associated partial view and controller As we can see from the previous code sample, we are using the $routeProvider object in the configuration of our smsApp module. Notice how the code “asks for” the $routeProvider object by specifying it as a dependency in the [] braces and then defining a function that accepts it as a parameter. This is known as dependency injection. Please refer to the following link if you want to delve into this topic: http://docs.angularjs.org/guide/di What the above code snippet is doing is that it is telling Angular that when the URL is “#/binding”, then it should load the HTML snippet (“partial view”) found at /app/partials/bindingexample.html. Also, for this URL, Angular should load the controller called “BindingController”. We have also marked the div with the class “container” (in Fig 3) with the ng­view attribute. This attribute tells Angular that views (partial HTML pages) defined in the routes will be loaded within this div. You can see that the Angular JavaScript framework, unlike many other frameworks, works purely by extending HTML tags and attributes. It also allows you to extend HTML with your own tags and attributes (through directives) if you so desire, you can find out more about directives at the following URL: http://www.codeproject.com/Articles/607873/Extending­HTML­with­AngularJS­Directives Controllers and Models We have seen how we define what views and controllers should be loaded for a particular route. Let us now consider how controllers are defined. Our controllers are defined in the file /app/js/controllers.js. The following snippet shows the definition of the “BindingController” which is loaded when we hit the URL http://localhost:port/index.html#/binding (as we have defined in the route earlier as shown in Fig 5). Remember that we had defined that our application module “smsApp” depends on the “smsApp.controllers” module (see Fig 4). The code snippet below shows how the “BindingController” defined in the route shown in Fig 5 is defined in the module smsApp.controllers: angular.module('smsApp.controllers', [function () { }]) .controller('BindingController', ['$scope', function ($scope) { $scope.model = {}; $scope.model.myInt = 6; $scope.addOne = function () { $scope.model.myInt++; } }]); Fig 6: The definition of a controller in the “smsApp.controllers” module. The pieces are falling in place! Remember Fig.2? That was the code of a partial view that was loaded within the container div of the skeleton SPA shown in Fig 3. The route definition shown in Fig 5 also defined that the controller called “BindingController” (shown in Fig 6.) was loaded when we loaded the URL: http://localhost:22544/index.html#/binding The button in Fig 2 was marked with the attribute ng­click=”addOne()” which added 1 to the value of model.myInt. In Fig 6, we can see that this function is actually defined in the “BindingController”. Scope We can see from Fig 6, that in the definition of “BindingController”, we defined a dependency on $scope and then, as usual, defined a function which “asks for” $scope as per the dependency injection pattern. So what is $scope? Any guesses? As you might have guessed a scope is a particular “address space” where variables and functions may be defined. This has a similar meaning to scope in a programming language like C#. Model: The Scope is not the Model It is tempting to assign variables in the scope directly. For example, we could have defined myInt as $scope.myInt = 6 in Fig 6 instead of $scope.model.myInt = 6. The reason why this is a bad idea is that scope in hierarchical in Angular. Thus if we were to define a controller which was defined within the another controller (nested controllers), then the inner controller would inherit the scope of the parent controller. This inheritance would follow JavaScript prototypal inheritance. Let’s say the parent controller defined a variable through $scope.myInt = 6. The child controller would inherit the scope through java prototypical inheritance. This basically means that the child scope has a variable myInt that points to the parent scopes myInt variable. Now if we assigned the value of myInt in the parent, the child scope would be updated with the same value as the child scope’s myInt variable points to the parent scope’s myInt variable. However, if we were to assign the value of the myInt variable in the child scope, then the link of that variable to the parent scope would be broken as the variable myInt in the child scope now points to the value 6 and not to the parent scope’s myInt variable. But, if we defined a variable model in the parent scope, then the child scope will also have a variable model that points to the model variable in the parent scope. Updating the value of $scope.model.myInt in the parent scope would change the model variable in the child scope too as the variable is pointed to the model variable in the parent scope. Now changing the value of $scope.model.myInt in the child scope would ALSO change the value in the parent scope. This is because the model reference in the child scope is pointed to the scope variable in the parent. We did no new assignment to the model variable in the child scope. We only changed an attribute of the model variable. Since the model variable (in the child scope) points to the model variable in the parent scope, we have successfully changed the value of myInt in the parent scope. Thus the value of $scope.model.myInt in the parent scope becomes the “single source of truth“. This is a tricky concept, thus it is considered good practice to NOT use scope inheritance. More info on prototypal inheritance in Angular can be found in the “JavaScript Prototypal Inheritance” section at the following URL: https://github.com/angular/angular.js/wiki/Understanding­Scopes. Building It: An Angular JS application using a .NET Web API Backend Now that we have a perspective on the basic components of an MVVM application built using Angular, let’s build something useful. We will build an application that can be used to send out SMS messages to a given phone number. The following diagram describes the architecture of the application we are going to build: Fig 7: Broad application architecture We are going to add an HTML Partial to our project. This partial will contain the form fields that will accept the phone number and message that needs to be sent as an SMS. It will also display all the messages that have previously been sent. All the executable code that is run on the occurrence of events (button clicks etc.) in the view resides in the controller. The controller interacts with the ASP.NET WebAPI to get a history of SMS messages, add a message etc. through a REST based API. For the purposes of simplicity, we will use an in memory data structure for the purposes of creating this application. Thus, the tasks ahead of us are: Creating the REST WebApi with GET, PUT, POST, DELETE methods. Creating the SmsView.html partial Creating the SmsController controller with methods that are called from the SmsView.html partial Add a new route that loads the controller and the partial. 1. Creating the REST WebAPI This is a simple task that should be quite straightforward to any .NET developer. The following listing shows our ApiController: public class SmsMessage { public string to { get; set; } public string message { get; set; } } public class SmsResource : SmsMessage { public int smsId { get; set; } } public class SmsResourceController : ApiController { public static Dictionary<int, SmsResource> messages = new Dictionary<int, SmsResource>(); public static int currentId = 0; // GET api/<controller> public List<SmsResource> Get() { List<SmsResource> result = new List<SmsResource>(); foreach (int key in messages.Keys) { result.Add(messages[key]); } return result; } // GET api/<controller>/5 public SmsResource Get(int id) { if (messages.ContainsKey(id)) return messages[id]; return null; } // POST api/<controller> public List<SmsResource> Post([FromBody] SmsMessage value) { //Synchronize on messages so we don't have id collisions lock (messages) { SmsResource res = (SmsResource) value; res.smsId = currentId++; messages.Add(res.smsId, res); //SentlyPlusSmsSender.SendMessage(value.to, value.message); return Get(); } } // PUT api/<controller>/5 public List<SmsResource> Put(int id, [FromBody] SmsMessage value) { //Synchronize on messages so we don't have id collisions lock (messages) { if (messages.ContainsKey(id)) { //Update the message messages[id].message = value.message; messages[id].to = value.message; } return Get(); } } // DELETE api/<controller>/5 public List<SmsResource> Delete(int id) { if (messages.ContainsKey(id)) { messages.Remove(id); } return Get(); } } Once this class is defined, we should be able to access the WebAPI by a simple GET request using the browser: http://localhost:port/api/SmsResource Notice the commented line: //SentlyPlusSmsSender.SendMessage The SentlyPlusSmsSender class is defined in the attached solution. We have shown this line as commented as we want to explain the core Angular concepts. If you load the attached solution, this line is uncommented in the source and an actual SMS will be sent! By default, the API returns XML. For consumption of the API in Angular, we would like it to return JSON. To change the default to JSON, we make the following change to WebApiConfig.cs file located in the App_Start folder. public static class WebApiConfig { public static void Register(HttpConfiguration config) { config.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); var appXmlType = config.Formatters.XmlFormatter. SupportedMediaTypes. FirstOrDefault( t => t.MediaType == "application/xml"); config.Formatters.XmlFormatter.SupportedMediaTypes.Remove(appXmlType); } } We now have our backend REST Api which we can consume from Angular! 2. Creating the SmsView.html partial This simple partial will define two fields: the destination phone number (international format starting with a +) and the message. These fields will be bound to model.phoneNumber and model.message. We will also add a button that we shall hook up to sendMessage() in the controller. A list of all previously sent messages (bound to model.allMessages) will also be displayed below the form input. The following code shows the code for the partial: <!--­­ If model.errorMessage is defined, then render the error div -­­> <div class="alert alert-­danger alert-­dismissable" style="margin­-top: 30px;" ng­-show="model.errorMessage != undefined"> <button type="button" class="close" data­dismiss="alert" aria­hidden="true">&times;</button> <strong>Error!</strong> <br /> {{ model.errorMessage }} </div> <!--­­ The input fields bound to the model --­­> <div class="well" style="margin-­top: 30px;"> <table style="width: 100%;"> <tr> <td style="width: 45%; text-­align: center;"> <input type="text" placeholder="Phone number (eg; +44 7778 609466)" ng­-model="model.phoneNumber" class="form-­control" style="width: 90%" onkeypress="return checkPhoneInput();" /> </td> <td style="width: 45%; text-­align: center;"> <input type="text" placeholder="Message" ng­-model="model.message" class="form-­control" style="width: 90%" /> </td> <td style="text-­align: center;"> <button class="btn btn-­danger" ng-­click="sendMessage();" ng-­disabled="model.isAjaxInProgress" style="margin­right: 5px;">Send</button> <img src="/Content/ajax-­loader.gif" ng­-show="model.isAjaxInProgress" /> </td> </tr> </table> </div> <!--­­ The past messages ­­--> <div style="margin-­top: 30px;"> <!­­-- The following div is shown if there are no past messages --­­> <div ng­-show="model.allMessages.length == 0"> No messages have been sent yet! </div> <!--­­ The following div is shown if there are some past messages --­­> <div ng-­show="model.allMessages.length == 0"> <table style="width: 100%;" class="table table-­striped"> <tr> <td>Phone Number</td> <td>Message</td> <td></td> </tr> <!--­­ The ng-­repeat directive is line the repeater control in .NET, but as you can see this partial is pure HTML which is much cleaner --> <tr ng-­repeat="message in model.allMessages"> <td>{{ message.to }}</td> <td>{{ message.message }}</td> <td> <button class="btn btn-­danger" ng-­click="delete(message.smsId);" ng­-disabled="model.isAjaxInProgress">Delete</button> </td> </tr> </table> </div> </div> The above code is commented and should be self explanatory. Conditional rendering is achieved through using the ng-­show=”condition” attribute on various div tags. Input fields are bound to the model and the send button is bound to the sendMessage() function in the controller as through the ng­click=”sendMessage()” attribute defined on the button tag. While AJAX calls are taking place, the controller sets model.isAjaxInProgress to true. Based on this variable, buttons are disabled through the ng-­disabled directive which is added as an attribute to the buttons. The ng-­repeat directive added as an attribute to the tr tag causes the table row to be rendered multiple times much like an ASP.NET repeater. 3. Creating the SmsController controller The penultimate piece of our application is the controller which responds to events from our view and interacts with our MVC4 REST WebAPI. The following listing shows the code we need to add to /app/js/controllers.js. Note that controller definitions can be chained. Also note that this controller “asks for” the $http service. The $http service is a simple way in Angular to do AJAX. So far we have only encountered modules, controllers, views and directives in Angular. The $http is new entity in Angular called a service. More information on Angular services can be found at the following URL: http://docs.angularjs.org/guide/dev_guide.services.understanding_services. .controller('SmsController', ['$scope', '$http', function ($scope, $http) { //We define the model $scope.model = {}; //We define the allMessages array in the model //that will contain all the messages sent so far $scope.model.allMessages = []; //The error if any $scope.model.errorMessage = undefined; //We initially load data so set the isAjaxInProgress = true; $scope.model.isAjaxInProgress = true; //Load all the messages $http({ url: '/api/smsresource', method: "GET" }). success(function (data, status, headers, config) { this callback will be called asynchronously //when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }). error(function (data, status, headers, config) { //called asynchronously if an error occurs //or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); $scope.delete = function (id) { //We are making an ajax call so we set this to true $scope.model.isAjaxInProgress = true; $http({ url: '/api/smsresource/' + id, method: "DELETE" }). success(function (data, status, headers, config) { // this callback will be called asynchronously // when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); error(function (data, status, headers, config) { // called asynchronously if an error occurs // or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); } $scope.sendMessage = function () { $scope.model.errorMessage = undefined; var message = ''; if($scope.model.message != undefined) message = $scope.model.message.trim(); if ($scope.model.phoneNumber == undefined || $scope.model.phoneNumber == '' || $scope.model.phoneNumber.length < 10 || $scope.model.phoneNumber[0] != '+') { $scope.model.errorMessage = "You must enter a valid phone number in international format. Eg: +44 7778 609466"; return; } if (message.length == 0) { $scope.model.errorMessage = "You must specify a message!"; return; } //We are making an ajax call so we set this to true $scope.model.isAjaxInProgress = true; $http({ url: '/api/smsresource', method: "POST", data: { to: $scope.model.phoneNumber, message: $scope.model.message } }). success(function (data, status, headers, config) { // this callback will be called asynchronously // when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }). error(function (data, status, headers, config) { // called asynchronously if an error occurs // or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status // We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); } }]); We can see from the previous listing how the functions that are called from the view are defined in the controller. It should also be evident how easy it is to make AJAX calls to consume our MVC4 REST WebAPI. Now we are left with the final piece. We need to define a route that associates a particular path with the view we have defined and the controller we have defined. 4. Add a new route that loads the controller and the partial This is the easiest part of the puzzle. We simply define another route in the /app/js/app.js file: $routeProvider.when('/sms', { templateUrl: '/app/partials/smsview.html', controller: 'SmsController' }); Conclusion In this article we have seen how much of the server side functionality in the MVC4 framework can be moved to the browser thus delivering a snappy and fast user interface. We have seen how we can build client side HTML only views that avoid the messy syntax offered by server side Razor views. We have built a functioning app from the ground up. The significant advantage of this approach to building web apps is that the front end can be completely platform independent. Even though we used ASP.NET to create our REST API, we could just easily have used any other language such as Node.js, Ruby etc without changing a single line of our front end code. Angular is a rich framework and we have only touched on basic functionality required to create a SPA. For readers who wish to delve further into the Angular framework, we would recommend the following URL as a starting point: http://docs.angularjs.org/misc/started. To get started with the code for this project: Sign up for an account at http://plus.sent.ly (free) Add your phone number Go to the “My Identies Page” Note Down your Sender ID, Consumer Key and Consumer Secret Download the code for this article at: https://docs.google.com/file/d/0BzjEWqSE31yoZjZlV0d0R2Y3eW8/edit?usp=sharing Change the values of Sender Id, Consumer Key and Consumer Secret in the web.config file Run the project through Visual Studio!

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • Node.js Adventure - Storage Services and Service Runtime

    - by Shaun
    When I described on how to host a Node.js application on Windows Azure, one of questions might be raised about how to consume the vary Windows Azure services, such as the storage, service bus, access control, etc.. Interact with windows azure services is available in Node.js through the Windows Azure Node.js SDK, which is a module available in NPM. In this post I would like to describe on how to use Windows Azure Storage (a.k.a. WAS) as well as the service runtime.   Consume Windows Azure Storage Let’s firstly have a look on how to consume WAS through Node.js. As we know in the previous post we can host Node.js application on Windows Azure Web Site (a.k.a. WAWS) as well as Windows Azure Cloud Service (a.k.a. WACS). In theory, WAWS is also built on top of WACS worker roles with some more features. Hence in this post I will only demonstrate for hosting in WACS worker role. The Node.js code can be used when consuming WAS when hosted on WAWS. But since there’s no roles in WAWS, the code for consuming service runtime mentioned in the next section cannot be used for WAWS node application. We can use the solution that I created in my last post. Alternatively we can create a new windows azure project in Visual Studio with a worker role, add the “node.exe” and “index.js” and install “express” and “node-sqlserver” modules, make all files as “Copy always”. In order to use windows azure services we need to have Windows Azure Node.js SDK, as knows as a module named “azure” which can be installed through NPM. Once we downloaded and installed, we need to include them in our worker role project and make them as “Copy always”. You can use my “Copy all always” tool mentioned in my last post to update the currently worker role project file. You can also find the source code of this tool here. The source code of Windows Azure SDK for Node.js can be found in its GitHub page. It contains two parts. One is a CLI tool which provides a cross platform command line package for Mac and Linux to manage WAWS and Windows Azure Virtual Machines (a.k.a. WAVM). The other is a library for managing and consuming vary windows azure services includes tables, blobs, queues, service bus and the service runtime. I will not cover all of them but will only demonstrate on how to use tables and service runtime information in this post. You can find the full document of this SDK here. Back to Visual Studio and open the “index.js”, let’s continue our application from the last post, which was working against Windows Azure SQL Database (a.k.a. WASD). The code should looks like this. 1: var express = require("express"); 2: var sql = require("node-sqlserver"); 3:  4: var connectionString = "Driver={SQL Server Native Client 10.0};Server=tcp:ac6271ya9e.database.windows.net,1433;Database=synctile;Uid=shaunxu@ac6271ya9e;Pwd={PASSWORD};Encrypt=yes;Connection Timeout=30;"; 5: var port = 80; 6:  7: var app = express(); 8:  9: app.configure(function () { 10: app.use(express.bodyParser()); 11: }); 12:  13: app.get("/", function (req, res) { 14: sql.open(connectionString, function (err, conn) { 15: if (err) { 16: console.log(err); 17: res.send(500, "Cannot open connection."); 18: } 19: else { 20: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 21: if (err) { 22: console.log(err); 23: res.send(500, "Cannot retrieve records."); 24: } 25: else { 26: res.json(results); 27: } 28: }); 29: } 30: }); 31: }); 32:  33: app.get("/text/:key/:culture", function (req, res) { 34: sql.open(connectionString, function (err, conn) { 35: if (err) { 36: console.log(err); 37: res.send(500, "Cannot open connection."); 38: } 39: else { 40: var key = req.params.key; 41: var culture = req.params.culture; 42: var command = "SELECT * FROM [Resource] WHERE [Key] = '" + key + "' AND [Culture] = '" + culture + "'"; 43: conn.queryRaw(command, function (err, results) { 44: if (err) { 45: console.log(err); 46: res.send(500, "Cannot retrieve records."); 47: } 48: else { 49: res.json(results); 50: } 51: }); 52: } 53: }); 54: }); 55:  56: app.get("/sproc/:key/:culture", function (req, res) { 57: sql.open(connectionString, function (err, conn) { 58: if (err) { 59: console.log(err); 60: res.send(500, "Cannot open connection."); 61: } 62: else { 63: var key = req.params.key; 64: var culture = req.params.culture; 65: var command = "EXEC GetItem '" + key + "', '" + culture + "'"; 66: conn.queryRaw(command, function (err, results) { 67: if (err) { 68: console.log(err); 69: res.send(500, "Cannot retrieve records."); 70: } 71: else { 72: res.json(results); 73: } 74: }); 75: } 76: }); 77: }); 78:  79: app.post("/new", function (req, res) { 80: var key = req.body.key; 81: var culture = req.body.culture; 82: var val = req.body.val; 83:  84: sql.open(connectionString, function (err, conn) { 85: if (err) { 86: console.log(err); 87: res.send(500, "Cannot open connection."); 88: } 89: else { 90: var command = "INSERT INTO [Resource] VALUES ('" + key + "', '" + culture + "', N'" + val + "')"; 91: conn.queryRaw(command, function (err, results) { 92: if (err) { 93: console.log(err); 94: res.send(500, "Cannot retrieve records."); 95: } 96: else { 97: res.send(200, "Inserted Successful"); 98: } 99: }); 100: } 101: }); 102: }); 103:  104: app.listen(port); Now let’s create a new function, copy the records from WASD to table service. 1. Delete the table named “resource”. 2. Create a new table named “resource”. These 2 steps ensures that we have an empty table. 3. Load all records from the “resource” table in WASD. 4. For each records loaded from WASD, insert them into the table one by one. 5. Prompt to user when finished. In order to use table service we need the storage account and key, which can be found from the developer portal. Just select the storage account and click the Manage Keys button. Then create two local variants in our Node.js application for the storage account name and key. Since we need to use WAS we need to import the azure module. Also I created another variant stored the table name. In order to work with table service I need to create the storage client for table service. This is very similar as the Windows Azure SDK for .NET. As the code below I created a new variant named “client” and use “createTableService”, specified my storage account name and key. 1: var azure = require("azure"); 2: var storageAccountName = "synctile"; 3: var storageAccountKey = "/cOy9L7xysXOgPYU9FjDvjrRAhaMX/5tnOpcjqloPNDJYucbgTy7MOrAW7CbUg6PjaDdmyl+6pkwUnKETsPVNw=="; 4: var tableName = "resource"; 5: var client = azure.createTableService(storageAccountName, storageAccountKey); Now create a new function for URL “/was/init” so that we can trigger it through browser. Then in this function we will firstly load all records from WASD. 1: app.get("/was/init", function (req, res) { 2: // load all records from windows azure sql database 3: sql.open(connectionString, function (err, conn) { 4: if (err) { 5: console.log(err); 6: res.send(500, "Cannot open connection."); 7: } 8: else { 9: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 10: if (err) { 11: console.log(err); 12: res.send(500, "Cannot retrieve records."); 13: } 14: else { 15: if (results.rows.length > 0) { 16: // begin to transform the records into table service 17: } 18: } 19: }); 20: } 21: }); 22: }); When we succeed loaded all records we can start to transform them into table service. First I need to recreate the table in table service. This can be done by deleting and creating the table through table client I had just created previously. 1: app.get("/was/init", function (req, res) { 2: // load all records from windows azure sql database 3: sql.open(connectionString, function (err, conn) { 4: if (err) { 5: console.log(err); 6: res.send(500, "Cannot open connection."); 7: } 8: else { 9: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 10: if (err) { 11: console.log(err); 12: res.send(500, "Cannot retrieve records."); 13: } 14: else { 15: if (results.rows.length > 0) { 16: // begin to transform the records into table service 17: // recreate the table named 'resource' 18: client.deleteTable(tableName, function (error) { 19: client.createTableIfNotExists(tableName, function (error) { 20: if (error) { 21: error["target"] = "createTableIfNotExists"; 22: res.send(500, error); 23: } 24: else { 25: // transform the records 26: } 27: }); 28: }); 29: } 30: } 31: }); 32: } 33: }); 34: }); As you can see, the azure SDK provide its methods in callback pattern. In fact, almost all modules in Node.js use the callback pattern. For example, when I deleted a table I invoked “deleteTable” method, provided the name of the table and a callback function which will be performed when the table had been deleted or failed. Underlying, the azure module will perform the table deletion operation in POSIX async threads pool asynchronously. And once it’s done the callback function will be performed. This is the reason we need to nest the table creation code inside the deletion function. If we perform the table creation code after the deletion code then they will be invoked in parallel. Next, for each records in WASD I created an entity and then insert into the table service. Finally I send the response to the browser. Can you find a bug in the code below? I will describe it later in this post. 1: app.get("/was/init", function (req, res) { 2: // load all records from windows azure sql database 3: sql.open(connectionString, function (err, conn) { 4: if (err) { 5: console.log(err); 6: res.send(500, "Cannot open connection."); 7: } 8: else { 9: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 10: if (err) { 11: console.log(err); 12: res.send(500, "Cannot retrieve records."); 13: } 14: else { 15: if (results.rows.length > 0) { 16: // begin to transform the records into table service 17: // recreate the table named 'resource' 18: client.deleteTable(tableName, function (error) { 19: client.createTableIfNotExists(tableName, function (error) { 20: if (error) { 21: error["target"] = "createTableIfNotExists"; 22: res.send(500, error); 23: } 24: else { 25: // transform the records 26: for (var i = 0; i < results.rows.length; i++) { 27: var entity = { 28: "PartitionKey": results.rows[i][1], 29: "RowKey": results.rows[i][0], 30: "Value": results.rows[i][2] 31: }; 32: client.insertEntity(tableName, entity, function (error) { 33: if (error) { 34: error["target"] = "insertEntity"; 35: res.send(500, error); 36: } 37: else { 38: console.log("entity inserted"); 39: } 40: }); 41: } 42: // send the 43: console.log("all done"); 44: res.send(200, "All done!"); 45: } 46: }); 47: }); 48: } 49: } 50: }); 51: } 52: }); 53: }); Now we can publish it to the cloud and have a try. But normally we’d better test it at the local emulator first. In Node.js SDK there are three build-in properties which provides the account name, key and host address for local storage emulator. We can use them to initialize our table service client. We also need to change the SQL connection string to let it use my local database. The code will be changed as below. 1: // windows azure sql database 2: //var connectionString = "Driver={SQL Server Native Client 10.0};Server=tcp:ac6271ya9e.database.windows.net,1433;Database=synctile;Uid=shaunxu@ac6271ya9e;Pwd=eszqu94XZY;Encrypt=yes;Connection Timeout=30;"; 3: // sql server 4: var connectionString = "Driver={SQL Server Native Client 11.0};Server={.};Database={Caspar};Trusted_Connection={Yes};"; 5:  6: var azure = require("azure"); 7: var storageAccountName = "synctile"; 8: var storageAccountKey = "/cOy9L7xysXOgPYU9FjDvjrRAhaMX/5tnOpcjqloPNDJYucbgTy7MOrAW7CbUg6PjaDdmyl+6pkwUnKETsPVNw=="; 9: var tableName = "resource"; 10: // windows azure storage 11: //var client = azure.createTableService(storageAccountName, storageAccountKey); 12: // local storage emulator 13: var client = azure.createTableService(azure.ServiceClient.DEVSTORE_STORAGE_ACCOUNT, azure.ServiceClient.DEVSTORE_STORAGE_ACCESS_KEY, azure.ServiceClient.DEVSTORE_TABLE_HOST); Now let’s run the application and navigate to “localhost:12345/was/init” as I hosted it on port 12345. We can find it transformed the data from my local database to local table service. Everything looks fine. But there is a bug in my code. If we have a look on the Node.js command window we will find that it sent response before all records had been inserted, which is not what I expected. The reason is that, as I mentioned before, Node.js perform all IO operations in non-blocking model. When we inserted the records we executed the table service insert method in parallel, and the operation of sending response was also executed in parallel, even though I wrote it at the end of my logic. The correct logic should be, when all entities had been copied to table service with no error, then I will send response to the browser, otherwise I should send error message to the browser. To do so I need to import another module named “async”, which helps us to coordinate our asynchronous code. Install the module and import it at the beginning of the code. Then we can use its “forEach” method for the asynchronous code of inserting table entities. The first argument of “forEach” is the array that will be performed. The second argument is the operation for each items in the array. And the third argument will be invoked then all items had been performed or any errors occurred. Here we can send our response to browser. 1: app.get("/was/init", function (req, res) { 2: // load all records from windows azure sql database 3: sql.open(connectionString, function (err, conn) { 4: if (err) { 5: console.log(err); 6: res.send(500, "Cannot open connection."); 7: } 8: else { 9: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 10: if (err) { 11: console.log(err); 12: res.send(500, "Cannot retrieve records."); 13: } 14: else { 15: if (results.rows.length > 0) { 16: // begin to transform the records into table service 17: // recreate the table named 'resource' 18: client.deleteTable(tableName, function (error) { 19: client.createTableIfNotExists(tableName, function (error) { 20: if (error) { 21: error["target"] = "createTableIfNotExists"; 22: res.send(500, error); 23: } 24: else { 25: async.forEach(results.rows, 26: // transform the records 27: function (row, callback) { 28: var entity = { 29: "PartitionKey": row[1], 30: "RowKey": row[0], 31: "Value": row[2] 32: }; 33: client.insertEntity(tableName, entity, function (error) { 34: if (error) { 35: callback(error); 36: } 37: else { 38: console.log("entity inserted."); 39: callback(null); 40: } 41: }); 42: }, 43: // send reponse 44: function (error) { 45: if (error) { 46: error["target"] = "insertEntity"; 47: res.send(500, error); 48: } 49: else { 50: console.log("all done"); 51: res.send(200, "All done!"); 52: } 53: } 54: ); 55: } 56: }); 57: }); 58: } 59: } 60: }); 61: } 62: }); 63: }); Run it locally and now we can find the response was sent after all entities had been inserted. Query entities against table service is simple as well. Just use the “queryEntity” method from the table service client and providing the partition key and row key. We can also provide a complex query criteria as well, for example the code here. In the code below I queried an entity by the partition key and row key, and return the proper localization value in response. 1: app.get("/was/:key/:culture", function (req, res) { 2: var key = req.params.key; 3: var culture = req.params.culture; 4: client.queryEntity(tableName, culture, key, function (error, entity) { 5: if (error) { 6: res.send(500, error); 7: } 8: else { 9: res.json(entity); 10: } 11: }); 12: }); And then tested it on local emulator. Finally if we want to publish this application to the cloud we should change the database connection string and storage account. For more information about how to consume blob and queue service, as well as the service bus please refer to the MSDN page.   Consume Service Runtime As I mentioned above, before we published our application to the cloud we need to change the connection string and account information in our code. But if you had played with WACS you should have known that the service runtime provides the ability to retrieve configuration settings, endpoints and local resource information at runtime. Which means we can have these values defined in CSCFG and CSDEF files and then the runtime should be able to retrieve the proper values. For example we can add some role settings though the property window of the role, specify the connection string and storage account for cloud and local. And the can also use the endpoint which defined in role environment to our Node.js application. In Node.js SDK we can get an object from “azure.RoleEnvironment”, which provides the functionalities to retrieve the configuration settings and endpoints, etc.. In the code below I defined the connection string variants and then use the SDK to retrieve and initialize the table client. 1: var connectionString = ""; 2: var storageAccountName = ""; 3: var storageAccountKey = ""; 4: var tableName = ""; 5: var client; 6:  7: azure.RoleEnvironment.getConfigurationSettings(function (error, settings) { 8: if (error) { 9: console.log("ERROR: getConfigurationSettings"); 10: console.log(JSON.stringify(error)); 11: } 12: else { 13: console.log(JSON.stringify(settings)); 14: connectionString = settings["SqlConnectionString"]; 15: storageAccountName = settings["StorageAccountName"]; 16: storageAccountKey = settings["StorageAccountKey"]; 17: tableName = settings["TableName"]; 18:  19: console.log("connectionString = %s", connectionString); 20: console.log("storageAccountName = %s", storageAccountName); 21: console.log("storageAccountKey = %s", storageAccountKey); 22: console.log("tableName = %s", tableName); 23:  24: client = azure.createTableService(storageAccountName, storageAccountKey); 25: } 26: }); In this way we don’t need to amend the code for the configurations between local and cloud environment since the service runtime will take care of it. At the end of the code we will listen the application on the port retrieved from SDK as well. 1: azure.RoleEnvironment.getCurrentRoleInstance(function (error, instance) { 2: if (error) { 3: console.log("ERROR: getCurrentRoleInstance"); 4: console.log(JSON.stringify(error)); 5: } 6: else { 7: console.log(JSON.stringify(instance)); 8: if (instance["endpoints"] && instance["endpoints"]["nodejs"]) { 9: var endpoint = instance["endpoints"]["nodejs"]; 10: app.listen(endpoint["port"]); 11: } 12: else { 13: app.listen(8080); 14: } 15: } 16: }); But if we tested the application right now we will find that it cannot retrieve any values from service runtime. This is because by default, the entry point of this role was defined to the worker role class. In windows azure environment the service runtime will open a named pipeline to the entry point instance, so that it can connect to the runtime and retrieve values. But in this case, since the entry point was worker role and the Node.js was opened inside the role, the named pipeline was established between our worker role class and service runtime, so our Node.js application cannot use it. To fix this problem we need to open the CSDEF file under the azure project, add a new element named Runtime. Then add an element named EntryPoint which specify the Node.js command line. So that the Node.js application will have the connection to service runtime, then it’s able to read the configurations. Start the Node.js at local emulator we can find it retrieved the connections, storage account for local. And if we publish our application to azure then it works with WASD and storage service through the configurations for cloud.   Summary In this post I demonstrated how to use Windows Azure SDK for Node.js to interact with storage service, especially the table service. I also demonstrated on how to use WACS service runtime, how to retrieve the configuration settings and the endpoint information. And in order to make the service runtime available to my Node.js application I need to create an entry point element in CSDEF file and set “node.exe” as the entry point. I used five posts to introduce and demonstrate on how to run a Node.js application on Windows platform, how to use Windows Azure Web Site and Windows Azure Cloud Service worker role to host our Node.js application. I also described how to work with other services provided by Windows Azure platform through Windows Azure SDK for Node.js. Node.js is a very new and young network application platform. But since it’s very simple and easy to learn and deploy, as well as, it utilizes single thread non-blocking IO model, Node.js became more and more popular on web application and web service development especially for those IO sensitive projects. And as Node.js is very good at scaling-out, it’s more useful on cloud computing platform. Use Node.js on Windows platform is new, too. The modules for SQL database and Windows Azure SDK are still under development and enhancement. It doesn’t support SQL parameter in “node-sqlserver”. It does support using storage connection string to create the storage client in “azure”. But Microsoft is working on make them easier to use, working on add more features and functionalities.   PS, you can download the source code here. You can download the source code of my “Copy all always” tool here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Maven Error - Expected START_TAG or END_TAG not TEXT

    - by onepotato
    I am setting up a spring mvc web application + hibernate jpa + maven from scratch using Eclipse Indigo. I am stuck in this error when doing a Maven build. [ERROR] BUILD ERROR [INFO] ------------------------------------------------------------------------ [INFO] Error installing artifact's metadata: Error installing metadata: Error updating group repository metadata expected START_TAG or END_TAG not TEXT (position: TEXT seen ...<extension>war</... @13:25) [INFO] ------------------------------------------------------------------------ I tried googling but can't find a solution that works for me. I even search the whole project for the text <extension>war</ and mysteriously, there is no text like this in my project. However, in the tomcat web.xml there are a lot of <extension> tag, but I doubt that it has something to do in this error because I never touched that web.xml Here is my pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.mycompany.applicationname</groupId> <artifactId>Application MVC</artifactId> <packaging>war</packaging> <version>0.0.1-SNAPSHOT</version> <name>Maven Application Webapp</name> <url>http://maven.apache.org</url> <properties> <spring.version>3.0.3.RELEASE</spring.version> </properties> <dependencies> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-core</artifactId> <version>${spring.version}</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-web</artifactId> <version>${spring.version}</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-webmvc</artifactId> <version>${spring.version}</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-webmvc</artifactId> <version>${spring.version}</version> </dependency> <dependency> <groupId>org.hibernate.javax.persistence</groupId> <artifactId>hibernate-jpa-2.0-api</artifactId> <version>1.0.0.Final</version> </dependency> </dependencies> <build> <finalName>ApplicationName</finalName> </build> </project> As Funtik has suggested, I did a build with -X. Here is the stacktrace. [INFO] ------------------------------------------------------------------------ [ERROR] BUILD ERROR [INFO] ------------------------------------------------------------------------ [INFO] Error installing artifact's metadata: Error installing metadata: Error updating group repository metadata expected START_TAG or END_TAG not TEXT (position: TEXT seen ...<extension>war</... @13:25) [INFO] ------------------------------------------------------------------------ [DEBUG] Trace org.apache.maven.lifecycle.LifecycleExecutionException: Error installing artifact's metadata: Error installing metadata: Error updating group repository metadata at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(DefaultLifecycleExecutor.java:583) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalWithLifecycle(DefaultLifecycleExecutor.java:499) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoal(DefaultLifecycleExecutor.java:478) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalAndHandleFailures(DefaultLifecycleExecutor.java:330) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeTaskSegments(DefaultLifecycleExecutor.java:291) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.execute(DefaultLifecycleExecutor.java:142) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:336) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:129) at org.apache.maven.cli.MavenCli.main(MavenCli.java:287) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:592) at org.codehaus.classworlds.Launcher.launchEnhanced(Launcher.java:315) at org.codehaus.classworlds.Launcher.launch(Launcher.java:255) at org.codehaus.classworlds.Launcher.mainWithExitCode(Launcher.java:430) at org.codehaus.classworlds.Launcher.main(Launcher.java:375) Caused by: org.apache.maven.plugin.MojoExecutionException: Error installing artifact's metadata: Error installing metadata: Error updating group repository metadata at org.apache.maven.plugin.install.InstallMojo.execute(InstallMojo.java:143) at org.apache.maven.plugin.DefaultPluginManager.executeMojo(DefaultPluginManager.java:451) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(DefaultLifecycleExecutor.java:558) ... 16 more Caused by: org.apache.maven.artifact.installer.ArtifactInstallationException: Error installing artifact's metadata: Error installing metadata: Error updating group repository metadata at org.apache.maven.artifact.installer.DefaultArtifactInstaller.install(DefaultArtifactInstaller.java:91) at org.apache.maven.plugin.install.InstallMojo.execute(InstallMojo.java:105) ... 18 more Caused by: org.apache.maven.artifact.repository.metadata.RepositoryMetadataInstallationException: Error installing metadata: Error updating group repository metadata at org.apache.maven.artifact.repository.metadata.DefaultRepositoryMetadataManager.install(DefaultRepositoryMetadataManager.java:463) at org.apache.maven.artifact.installer.DefaultArtifactInstaller.install(DefaultArtifactInstaller.java:79) ... 19 more Caused by: org.apache.maven.artifact.repository.metadata.RepositoryMetadataStoreException: Error updating group repository metadata at org.apache.maven.artifact.repository.metadata.AbstractRepositoryMetadata.storeInLocalRepository(AbstractRepositoryMetadata.java:76) at org.apache.maven.artifact.repository.metadata.DefaultRepositoryMetadataManager.install(DefaultRepositoryMetadataManager.java:459) ... 20 more Caused by: org.codehaus.plexus.util.xml.pull.XmlPullParserException: expected START_TAG or END_TAG not TEXT (position: TEXT seen ...<extension>war</... @13:25) at org.codehaus.plexus.util.xml.pull.MXParser.nextTag(MXParser.java:1083) at org.apache.maven.artifact.repository.metadata.io.xpp3.MetadataXpp3Reader.parseVersioning(MetadataXpp3Reader.java:513) at org.apache.maven.artifact.repository.metadata.io.xpp3.MetadataXpp3Reader.parseMetadata(MetadataXpp3Reader.java:352) at org.apache.maven.artifact.repository.metadata.io.xpp3.MetadataXpp3Reader.read(MetadataXpp3Reader.java:866) at org.apache.maven.artifact.repository.metadata.AbstractRepositoryMetadata.updateRepositoryMetadata(AbstractRepositoryMetadata.java:98) at org.apache.maven.artifact.repository.metadata.AbstractRepositoryMetadata.storeInLocalRepository(AbstractRepositoryMetadata.java:68) ... 21 more [INFO] ------------------------------------------------------------------------ [INFO] Total time: 2 seconds [INFO] Finished at: Thu Jun 27 17:36:23 SGT 2013 [INFO] Final Memory: 9M/16M [INFO] ------------------------------------------------------------------------ web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app id="WebApp_ID" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"> <display-name>Adjustment Tool</display-name> <servlet> <servlet-name>mvc-dispatcher</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <init-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/spring-mvc.xml</param-value> </init-param> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>mvc-dispatcher</servlet-name> <url-pattern>/</url-pattern> </servlet-mapping> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> </web-app> Any ideas?

    Read the article

  • Class member functions instantiated by traits [policies, actually]

    - by Jive Dadson
    I am reluctant to say I can't figure this out, but I can't figure this out. I've googled and searched Stack Overflow, and come up empty. The abstract, and possibly overly vague form of the question is, how can I use the traits-pattern to instantiate member functions? [Update: I used the wrong term here. It should be "policies" rather than "traits." Traits describe existing classes. Policies prescribe synthetic classes.] The question came up while modernizing a set of multivariate function optimizers that I wrote more than 10 years ago. The optimizers all operate by selecting a straight-line path through the parameter space away from the current best point (the "update"), then finding a better point on that line (the "line search"), then testing for the "done" condition, and if not done, iterating. There are different methods for doing the update, the line-search, and conceivably for the done test, and other things. Mix and match. Different update formulae require different state-variable data. For example, the LMQN update requires a vector, and the BFGS update requires a matrix. If evaluating gradients is cheap, the line-search should do so. If not, it should use function evaluations only. Some methods require more accurate line-searches than others. Those are just some examples. The original version instantiates several of the combinations by means of virtual functions. Some traits are selected by setting mode bits that are tested at runtime. Yuck. It would be trivial to define the traits with #define's and the member functions with #ifdef's and macros. But that's so twenty years ago. It bugs me that I cannot figure out a whiz-bang modern way. If there were only one trait that varied, I could use the curiously recurring template pattern. But I see no way to extend that to arbitrary combinations of traits. I tried doing it using boost::enable_if, etc.. The specialized state information was easy. I managed to get the functions done, but only by resorting to non-friend external functions that have the this-pointer as a parameter. I never even figured out how to make the functions friends, much less member functions. The compiler (VC++ 2008) always complained that things didn't match. I would yell, "SFINAE, you moron!" but the moron is probably me. Perhaps tag-dispatch is the key. I haven't gotten very deeply into that. Surely it's possible, right? If so, what is best practice? UPDATE: Here's another try at explaining it. I want the user to be able to fill out an order (manifest) for a custom optimizer, something like ordering off of a Chinese menu - one from column A, one from column B, etc.. Waiter, from column A (updaters), I'll have the BFGS update with Cholesky-decompositon sauce. From column B (line-searchers), I'll have the cubic interpolation line-search with an eta of 0.4 and a rho of 1e-4, please. Etc... UPDATE: Okay, okay. Here's the playing-around that I've done. I offer it reluctantly, because I suspect it's a completely wrong-headed approach. It runs okay under vc++ 2008. #include <boost/utility.hpp> #include <boost/type_traits/integral_constant.hpp> namespace dj { struct CBFGS { void bar() {printf("CBFGS::bar %d\n", data);} CBFGS(): data(1234){} int data; }; template<class T> struct is_CBFGS: boost::false_type{}; template<> struct is_CBFGS<CBFGS>: boost::true_type{}; struct LMQN {LMQN(): data(54.321){} void bar() {printf("LMQN::bar %lf\n", data);} double data; }; template<class T> struct is_LMQN: boost::false_type{}; template<> struct is_LMQN<LMQN> : boost::true_type{}; // "Order form" struct default_optimizer_traits { typedef CBFGS update_type; // Selection from column A - updaters }; template<class traits> class Optimizer; template<class traits> void foo(typename boost::enable_if<is_LMQN<typename traits::update_type>, Optimizer<traits> >::type& self) { printf(" LMQN %lf\n", self.data); } template<class traits> void foo(typename boost::enable_if<is_CBFGS<typename traits::update_type>, Optimizer<traits> >::type& self) { printf("CBFGS %d\n", self.data); } template<class traits = default_optimizer_traits> class Optimizer{ friend typename traits::update_type; //friend void dj::foo<traits>(typename Optimizer<traits> & self); // How? public: //void foo(void); // How??? void foo() { dj::foo<traits>(*this); } void bar() { data.bar(); } //protected: // How? typedef typename traits::update_type update_type; update_type data; }; } // namespace dj int main() { dj::Optimizer<> opt; opt.foo(); opt.bar(); std::getchar(); return 0; }

    Read the article

  • error when I use GWT RPC

    - by Sebe
    Hello everyone... I have a problem with Eclipse when I use an RPC.. If I use a single method call it's all in the right direction but if I add a new method to handle the server I get the following error: com.google.gwt.core.client.JavaScriptException: (null): null at com.google.gwt.dev.shell.BrowserChannelServer.invokeJavascript(BrowserChannelServer.java:237) at com.google.gwt.dev.shell.ModuleSpaceOOPHM.doInvoke(ModuleSpaceOOPHM.java:126) at com.google.gwt.dev.shell.ModuleSpace.invokeNative(ModuleSpace.java:561) at com.google.gwt.dev.shell.ModuleSpace.invokeNativeBoolean(ModuleSpace.java:184) at com.google.gwt.dev.shell.JavaScriptHost.invokeNativeBoolean(JavaScriptHost.java:35) at com.google.gwt.user.client.rpc.impl.RpcStatsContext.isStatsAvailable(RpcStatsContext.java) at com.google.gwt.user.client.rpc.impl.RequestCallbackAdapter.onResponseReceived(RequestCallbackAdapter.java:221) at com.google.gwt.http.client.Request.fireOnResponseReceived(Request.java:287) at com.google.gwt.http.client.RequestBuilder$1.onReadyStateChange(RequestBuilder.java:395) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at com.google.gwt.dev.shell.MethodAdaptor.invoke(MethodAdaptor.java:103) at com.google.gwt.dev.shell.MethodDispatch.invoke(MethodDispatch.java:71) at com.google.gwt.dev.shell.OophmSessionHandler.invoke(OophmSessionHandler.java:157) at com.google.gwt.dev.shell.BrowserChannelServer.reactToMessagesWhileWaitingForReturn(BrowserChannelServer.java:326) at com.google.gwt.dev.shell.BrowserChannelServer.invokeJavascript(BrowserChannelServer.java:207) at com.google.gwt.dev.shell.ModuleSpaceOOPHM.doInvoke(ModuleSpaceOOPHM.java:126) at com.google.gwt.dev.shell.ModuleSpace.invokeNative(ModuleSpace.java:561) at com.google.gwt.dev.shell.ModuleSpace.invokeNativeObject(ModuleSpace.java:269) at com.google.gwt.dev.shell.JavaScriptHost.invokeNativeObject(JavaScriptHost.java:91) at com.google.gwt.core.client.impl.Impl.apply(Impl.java) at com.google.gwt.core.client.impl.Impl.entry0(Impl.java:214) at sun.reflect.GeneratedMethodAccessor13.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at com.google.gwt.dev.shell.MethodAdaptor.invoke(MethodAdaptor.java:103) at com.google.gwt.dev.shell.MethodDispatch.invoke(MethodDispatch.java:71) at com.google.gwt.dev.shell.OophmSessionHandler.invoke(OophmSessionHandler.java:157) at com.google.gwt.dev.shell.BrowserChannelServer.reactToMessages(BrowserChannelServer.java:281) at com.google.gwt.dev.shell.BrowserChannelServer.processConnection(BrowserChannelServer.java:531) at com.google.gwt.dev.shell.BrowserChannelServer.run(BrowserChannelServer.java:352) at java.lang.Thread.run(Thread.java:619) Can I have more services in an asynchronous call right? Where am I wrong? This is my implementation MyService: package de.vogella.gwt.helloworld.client; import com.google.gwt.user.client.rpc.RemoteService; public interface MyService extends RemoteService { //chiamo i metodi presenti sul server public void creaXML(String nickname,String pass,String email2,String gio,String mes, String ann); public void setWeb(String userCorrect,String query, String titolo,String snippet,String url); } MyServiceAsync package de.vogella.gwt.helloworld.client; import com.google.gwt.user.client.rpc.AsyncCallback; public interface MyServiceAsync { void creaXML(String nickname,String pass,String email2,String gio,String mes, String ann,AsyncCallback<Void> callback); void setWeb(String userCorrect,String query, String titolo,String snippet,String url, AsyncCallback<Void> callback); } RPCService: package de.vogella.gwt.helloworld.client; import com.google.gwt.core.client.GWT; import com.google.gwt.user.client.rpc.AsyncCallback; import com.google.gwt.user.client.rpc.ServiceDefTarget; import com.google.gwt.user.client.ui.FlexTable; public class RPCService implements MyServiceAsync { MyServiceAsync service = (MyServiceAsync) GWT.create(MyService.class); ServiceDefTarget endpoint = (ServiceDefTarget) service; public RPCService() { endpoint.setServiceEntryPoint(GWT.getModuleBaseURL() + "rpc"); } public void creaXML(String nickname,String pass,String email2,String gio,String mes, String ann,AsyncCallback callback) { service.creaXML(nickname, pass, email2, gio, mes, ann, callback); } public void setWeb(String userCorrect,String query, String titolo,String snippet,String url,AsyncCallback callback) { service.setWeb(userCorrect,query, titolo,snippet,url,callback); } } MyServiceImpl package de.vogella.gwt.helloworld.server; import java.io.*; import org.w3c.dom.*; import org.xml.sax.SAXException; import javax.xml.parsers.DocumentBuilder; import javax.xml.parsers.DocumentBuilderFactory; import javax.xml.parsers.ParserConfigurationException; import javax.xml.transform.*; import javax.xml.transform.dom.DOMSource; import javax.xml.transform.stream.StreamResult; import de.vogella.gwt.helloworld.client.MyService; import com.google.gwt.user.client.ui.FlexTable; import com.google.gwt.user.server.rpc.RemoteServiceServlet; import com.google.gwt.xml.client.Element; import com.google.gwt.xml.client.NodeList; public class MyServiceImpl extends RemoteServiceServlet implements MyService { //metodo che inserisce il nuovo iscritto public void creaXML(String nickname,String pass,String email2,String gio,String mes, String ann){ ....... } public void setWeb(String userCorrect,String query, String titolo,String snippet,String url) { ..... } In the app in client-side I do RPCService rpc2 = New RPCService() rpc2.setWeb(..,...,...,...,callback); and RPCService rpc = New RPCService() rpc.creaXML(..,...,...,...,callback); (in other posizions in the code...) and.. AsyncCallback callback = new AsyncCallback() { public void onFailure(Throwable caught) { Window.alert("Failure!"); } public void onSuccess(Object result) { Window.alert("Successoooooo"); } }; Web.xml: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd"> <web-app> <!-- Servlets --> <!-- Default page to serve --> <welcome-file-list> <welcome-file>De_vogella_gwt_helloworld.html</welcome-file> </welcome-file-list> <servlet> <servlet-name>rPCImpl</servlet-name> <servlet-class>de.vogella.gwt.helloworld.server.MyServiceImpl</servlet-class> </servlet> <servlet-mapping> <servlet-name>rPCImpl</servlet-name> <url-pattern>/de_vogella_gwt_helloworld/rpc</url-pattern> </servlet-mapping> </web-app> Thank you all for your attention Sebe

    Read the article

  • Xen won't start after it had been working

    - by Paul Tomblin
    I've been setting up this Debian Stable system with a dom0 and 3 domUs. It was working fine for several days, and I'm almost ready to deploy it to the rack. But last night I shut it down with all three domUs still running for the first time, and today when I started it up, xend won't start. In /var/log/messages, I have: Apr 18 13:01:33 xen-test BLKTAPCTRL[4248]: blktapctrl: v1.0.0 Apr 18 13:01:33 xen-test BLKTAPCTRL[4248]: Found driver: [raw image (aio)] Apr 18 13:01:33 xen-test BLKTAPCTRL[4248]: Found driver: [raw image (sync)] Apr 18 13:01:33 xen-test BLKTAPCTRL[4248]: Found driver: [vmware image (vmdk)] Apr 18 13:01:33 xen-test BLKTAPCTRL[4248]: Found driver: [ramdisk image (ram)] Apr 18 13:01:33 xen-test BLKTAPCTRL[4248]: Found driver: [qcow disk (qcow)] Apr 18 13:01:33 xen-test BLKTAPCTRL[4248]: couldn't find device number for 'blktap0' Apr 18 13:01:33 xen-test BLKTAPCTRL[4248]: Unable to start blktapctrl and in /var/log/xen/xend.log, I have this: [2010-04-18 12:46:32 3523] INFO (SrvDaemon:219) Xend exited with status 1. [2010-04-18 13:01:34 4255] INFO (SrvDaemon:331) Xend Daemon started [2010-04-18 13:01:34 4255] INFO (SrvDaemon:335) Xend changeset: unavailable. [2010-04-18 13:01:34 4255] INFO (SrvDaemon:342) Xend version: Unknown. [2010-04-18 13:01:34 4255] ERROR (SrvDaemon:353) Exception starting xend (no element found: line 1, column 0) Traceback (most recent call last): File "/usr/lib/xen-3.2-1/lib/python/xen/xend/server/SrvDaemon.py", line 345, in run servers = SrvServer.create() File "/usr/lib/xen-3.2-1/lib/python/xen/xend/server/SrvServer.py", line 251, in create root.putChild('xend', SrvRoot()) File "/usr/lib/xen-3.2-1/lib/python/xen/xend/server/SrvRoot.py", line 40, in __init__ self.get(name) File "/usr/lib/xen-3.2-1/lib/python/xen/web/SrvDir.py", line 82, in get val = val.getobj() File "/usr/lib/xen-3.2-1/lib/python/xen/web/SrvDir.py", line 52, in getobj File "/usr/lib/xen-3.2-1/lib/python/xen/xend/server/SrvNode.py", line 30, in _ _init__ self.xn = XendNode.instance() File "/usr/lib/xen-3.2-1/lib/python/xen/xend/XendNode.py", line 709, in instance inst = XendNode() File "/usr/lib/xen-3.2-1/lib/python/xen/xend/XendNode.py", line 164, in __init__ saved_pifs = self.state_store.load_state('pif') File "/usr/lib/xen-3.2-1/lib/python/xen/xend/XendStateStore.py", line 104, in load_state dom = minidom.parse(xml_path) File "/usr/lib/python2.5/xml/dom/minidom.py", line 1915, in parse return expatbuilder.parse(file) File "/usr/lib/python2.5/xml/dom/expatbuilder.py", line 924, in parse result = builder.parseFile(fp) File "/usr/lib/python2.5/xml/dom/expatbuilder.py", line 211, in parseFile parser.Parse("", True) ExpatError: no element found: line 1, column 0 [2010-04-18 13:01:34 4253] INFO (SrvDaemon:219) Xend exited with status 1. Any clues as to what might be going wrong?

    Read the article

  • Rails 3 shows 404 error instead of index.html (nginx + unicorn)

    - by Miko
    I have an index.html in public/ that should be loading by default but instead I get a 404 error when I try to access http://example.com/ The page you were looking for doesn't exist. You may have mistyped the address or the page may have moved. This has something to do with nginx and unicorn which I am using to power Rails 3 When take unicorn out of the nginx configuration file, the problem goes away and index.html loads just fine. Here is my nginx configuration file: upstream unicorn { server unix:/tmp/.sock fail_timeout=0; } server { server_name example.com; root /www/example.com/current/public; index index.html; keepalive_timeout 5; location / { try_files $uri @unicorn; } location @unicorn { proxy_pass http://unicorn; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header Host $host; proxy_redirect off; } } My config/routes.rb is pretty much empty: Advertise::Application.routes.draw do |map| resources :users end The index.html file is located in public/index.html and it loads fine if I request it directly: http://example.com/index.html To reiterate, when I remove all references to unicorn from the nginx conf, index.html loads without any problems, I have a hard time understanding why this occurs because nginx should be trying to load that file on its own by default. -- Here is the error stack from production.log: Started GET "/" for 68.107.80.21 at 2010-08-08 12:06:29 -0700 Processing by HomeController#index as HTML Completed in 1ms ActionView::MissingTemplate (Missing template home/index with {:handlers=>[:erb, :rjs, :builder, :rhtml, :rxml, :haml], :formats=>[:html], :locale=>[:en, :en]} in view paths "/www/example.com/releases/20100808170224/app/views", "/www/example.com/releases/20100808170224/vendor/plugins/paperclip/app/views", "/www/example.com/releases/20100808170224/vendor/plugins/haml/app/views"): /usr/local/rvm/gems/ruby-1.9.2-rc2/gems/actionpack-3.0.0.beta4/lib/action_view/paths.rb:14:in `find' /usr/local/rvm/gems/ruby-1.9.2-rc2/gems/actionpack-3.0.0.beta4/lib/action_view/lookup_context.rb:79:in `find' /usr/local/rvm/gems/ruby-1.9.2-rc2/gems/actionpack-3.0.0.beta4/lib/action_view/base.rb:186:in `find_template' /usr/local/rvm/gems/ruby-1.9.2-rc2/gems/actionpack-3.0.0.beta4/lib/action_view/render/rendering.rb:45:in `_determine_template' /usr/local/rvm/gems/ruby-1.9.2-rc2/gems/actionpack-3.0.0.beta4/lib/action_view/render/rendering.rb:23:in `render' /usr/local/rvm/gems/ruby-1.9.2-rc2/gems/haml-3.0.15/lib/haml/helpers/action_view_mods.rb:13:in `render_with_haml' etc... -- nginx error log for this virtualhost comes up empty: 2010/08/08 12:40:22 [info] 3118#0: *1 client 68.107.80.21 closed keepalive connection My guess is unicorn is intercepting the request to index.html before nginx gets to process it.

    Read the article

  • Cannot install g++ on ubuntu

    - by Erel Segal
    I don't have g++: erelsgl@ubuntu:/etc/apt$ which g++ erelsgl@ubuntu:/etc/apt$ erelsgl@ubuntu:/etc/apt$ g++ The program 'g++' can be found in the following packages: * g++ * pentium-builder Try: sudo apt-get install <selected package> So I try to install it: erelsgl@ubuntu:~/srilm$ sudo apt-get install g++ Reading package lists... Done Building dependency tree Reading state information... Done g++ is already the newest version. 0 upgraded, 0 newly installed, 0 to remove and 5 not upgraded. 2 not fully installed or removed. After this operation, 0B of additional disk space will be used. Setting up g++ (4:4.4.3-1ubuntu1) ... update-alternatives: error: alternative path /usr/bin/g++ doesn't exist. dpkg: error processing g++ (--configure): subprocess installed post-installation script returned error exit status 2 dpkg: dependency problems prevent configuration of build-essential: build-essential depends on g++ (>= 4:4.3.1); however: Package g++ is not configured yet. dpkg: error processing build-essential (--configure): dependency problems - leaving unconfigured No apport report written because the error message indicates its a followup error from a previous failure. Errors were encountered while processing: g++ build-essential E: Sub-process /usr/bin/dpkg returned an error code (1) I also try to install build-essential, and get same results. I also tried "sudo apt-get update" - didn't help. This is my apt-cache: erelsgl@ubuntu:/etc/apt$ apt-cache policy g++ build-essential g++: Installed: 4:4.4.3-1ubuntu1 Candidate: 4:4.4.3-1ubuntu1 Version table: *** 4:4.4.3-1ubuntu1 0 500 http://il.archive.ubuntu.com/ubuntu/ lucid/main Packages 100 /var/lib/dpkg/status build-essential: Installed: 11.4build1 Candidate: 11.4build1 Version table: *** 11.4build1 0 500 http://il.archive.ubuntu.com/ubuntu/ lucid/main Packages 100 /var/lib/dpkg/status erelsgl@ubuntu:/etc/apt$ I also tried this and got the same error: erelsgl@ubuntu:~/Ace/Files/corpus$ sudo dpkg --configure -a Setting up g++ (4:4.4.3-1ubuntu1) ... update-alternatives: error: alternative path /usr/bin/g++ doesn't exist. dpkg: error processing g++ (--configure): subprocess installed post-installation script returned error exit status 2 dpkg: dependency problems prevent configuration of build-essential: build-essential depends on g++ (>= 4:4.3.1); however: Package g++ is not configured yet. dpkg: error processing build-essential (--configure): dependency problems - leaving unconfigured Errors were encountered while processing: g++ build-essential

    Read the article

  • Python regex to parse text file, get the items in list and count the list

    - by Nemo
    I have a text file which contains some data. I m particularly interested in finding the count of the number of items in v_dims v_dims pattern in my text file looks like this : v_dims={ "Sales", "Product Family", "Sales Organization", "Region", "Sales Area", "Sales office", "Sales Division", "Sales Person", "Sales Channel", "Sales Order Type", "Sales Number", "Sales Person", "Sales Quantity", "Sales Amount" } So I m thinking of getting all the elements in v_dims and dumping them out in a Python list. Then compute the len(mylist) to get the count of the items. The challenge is in getting all the elements of v_dims from my text file and putting them in an empty list. I m particularly interested in items in v_dims in my text file. The text file has data in the form of v_dims pattern i showed in my original post. Some data has nested patterns of v_dims. Thanks. Here's what I have tried and failed. Any help is appreciated. TIA. import re fname = "C:\Users\XXXX\Test.mrk" with open(fname, "r") as fo: content_as_string = fo.read() match = re.findall(r'v_dims={\"(.+?)\"}',content_as_string) Though I have a big text file, Here's a snippet of what's the structure of my text file version "1"; // Computer generated object language file object 'MRKR' "Main" { Data_Type=2, HeaderBlock={ Version_String="6.3 (25)" }, Printer_Info={ Orientation=0, Page_Width=8.50000000, Page_Height=11.00000000, Page_Header="", Page_Footer="", Margin_type=0, Top_Margin=0.50000000, Left_Margin=0.50000000, Bottom_Margin=0.50000000, Right_Margin=0.50000000 }, Marker_Options={ Close_All="TRUE", Hide_Console="FALSE", Console_Left="FALSE", Console_Width=217, Main_Style="Maximized", MDI_Rect={ 0, 0, 892, 1063 } }, Dives={ { Dive="A", Windows={ { View_Index=0, Window_Info={ Window_Rect={ 0, -288, 400, 1008 }, Window_Style="Maximized Front", Window_Name="Theater [Previous Qtr Diveplan-Dive A]" }, Dependent_bool="FALSE", Colset={ Dive_Type="Normal", Dimension_Name="Theater", Action_List={ Actions={ { Action_Type="Select", select_type=5 }, { Action_Type="Select", select_type=0, Key_Names={ "Theater" }, Key_Indexes={ { "AMERICAS" } } }, { Action_Type="Focus", Focus_Rows="True" }, { Action_Type="Dimensions", v_dims={ "Theater", "Product Family", "Division", "Region", "Install at Country Name", "Connect Home Type", "Connect In Type", "SymmConnect Enabled", "Connect Home Refusal Reason", "Sales Order Channel Type", "Maintained By Group", "PS Flag", "Avalanche Flag", "Product Item Family" }, Xtab_Bool="False", Xtab_Flip="False" }, { Action_Type="Select", select_type=5 }, { Action_Type="Select", select_type=0, Key_Names={ "Theater", "Product Family", "Division", "Region", "Install at Country Name", "Connect Home Type", "Connect In Type", "SymmConnect Enabled", "Connect Home Refusal Reason", "Sales Order Channel Type", "Maintained By Group", "PS Flag", "Avalanche Flag" }, Key_Indexes={ { "AMERICAS", "ATMOS", "Latin America CS Division", "37000 CS Region", "Mexico", "", "", "", "", "DIRECT", "EMC", "N", "0" } } } } }, Num_Palette_cols=0, Num_Palette_rows=0 }, Format={ Window_Type="Tabular", Tabular={ Num_row_labels=8 } } } } } }, Widget_Set={ Widget_Layout="Vertical", Go_Button=1, Picklist_Width=0, Sort_Subset_Dimensions="TRUE", Order={ } }, Views={ { Data_Type=1, dbname="Previous Qtr Diveplan", diveline_dbname="Current Qtr Diveplan", logical_name="Current Qtr Diveplan", cols={ { name="Total TSS installs", column_type="Calc[Total TSS installs]", output_type="Number", format_string="." }, { name="TSS Valid Connectivity Records", column_type="Calc[TSS Valid Connectivity Records]", output_type="Number", format_string="." }, { name="% TSS Connectivity Record", column_type="Calc[% TSS Connectivity Record]", output_type="Number" }, { name="TSS Not Applicable", column_type="Calc[TSS Not Applicable]", output_type="Number", format_string="." }, { name="TSS Customer Refusals", column_type="Calc[TSS Customer Refusals]", output_type="Number", format_string="." }, { name="% TSS Refusals", column_type="Calc[% TSS Refusals]", output_type="Number" }, { name="TSS Eligible for Physical Connectivity", column_type="Calc[TSS Eligible for Physical Connectivity]", output_type="Number", format_string="." }, { name="TSS Boxes with Physical Connectivty", column_type="Calc[TSS Boxes with Physical Connectivty]", output_type="Number", format_string="." }, { name="% TSS Physical Connectivity", column_type="Calc[% TSS Physical Connectivity]", output_type="Number" } }, dim_cols={ { name="Model", column_type="Dimension[Model]", output_type="None" }, { name="Model", column_type="Dimension[Model]", output_type="None" }, { name="Connect In Type", column_type="Dimension[Connect In Type]", output_type="None" }, { name="Connect Home Type", column_type="Dimension[Connect Home Type]", output_type="None" }, { name="SymmConnect Enabled", column_type="Dimension[SymmConnect Enabled]", output_type="None" }, { name="Theater", column_type="Dimension[Theater]", output_type="None" }, { name="Division", column_type="Dimension[Division]", output_type="None" }, { name="Region", column_type="Dimension[Region]", output_type="None" }, { name="Sales Order Number", column_type="Dimension[Sales Order Number]", output_type="None" }, { name="Product Item Family", column_type="Dimension[Product Item Family]", output_type="None" }, { name="Item Serial Number", column_type="Dimension[Item Serial Number]", output_type="None" }, { name="Sales Order Deal Number", column_type="Dimension[Sales Order Deal Number]", output_type="None" }, { name="Item Install Date", column_type="Dimension[Item Install Date]", output_type="None" }, { name="SYR Last Dial Home Date", column_type="Dimension[SYR Last Dial Home Date]", output_type="None" }, { name="Maintained By Group", column_type="Dimension[Maintained By Group]", output_type="None" }, { name="PS Flag", column_type="Dimension[PS Flag]", output_type="None" }, { name="Connect Home Refusal Reason", column_type="Dimension[Connect Home Refusal Reason]", output_type="None", col_width=177 }, { name="Cust Name", column_type="Dimension[Cust Name]", output_type="None" }, { name="Sales Order Channel Type", column_type="Dimension[Sales Order Channel Type]", output_type="None" }, { name="Sales Order Type", column_type="Dimension[Sales Order Type]", output_type="None" }, { name="Part Model Key", column_type="Dimension[Part Model Key]", output_type="None" }, { name="Ship Date", column_type="Dimension[Ship Date]", output_type="None" }, { name="Model Number", column_type="Dimension[Model Number]", output_type="None" }, { name="Item Description", column_type="Dimension[Item Description]", output_type="None" }, { name="Customer Classification", column_type="Dimension[Customer Classification]", output_type="None" }, { name="CS Customer Name", column_type="Dimension[CS Customer Name]", output_type="None" }, { name="Install At Customer Number", column_type="Dimension[Install At Customer Number]", output_type="None" }, { name="Install at Country Name", column_type="Dimension[Install at Country Name]", output_type="None" }, { name="TLA Serial Number", column_type="Dimension[TLA Serial Number]", output_type="None" }, { name="Product Version", column_type="Dimension[Product Version]", output_type="None" }, { name="Avalanche Flag", column_type="Dimension[Avalanche Flag]", output_type="None" }, { name="Product Family", column_type="Dimension[Product Family]", output_type="None" }, { name="Project Number", column_type="Dimension[Project Number]", output_type="None" }, { name="PROJECT_STATUS", column_type="Dimension[PROJECT_STATUS]", output_type="None" } }, Available_Columns={ "Total TSS installs", "TSS Valid Connectivity Records", "% TSS Connectivity Record", "TSS Not Applicable", "TSS Customer Refusals", "% TSS Refusals", "TSS Eligible for Physical Connectivity", "TSS Boxes with Physical Connectivty", "% TSS Physical Connectivity", "Total Installs", "All Boxes with Valid Connectivty Record", "% All Connectivity Record", "Overall Refusals", "Overall Refusals %", "All Eligible for Physical Connectivty", "Boxes with Physical Connectivity", "% All with Physical Conectivity" }, Remaining_columns={ { name="Total Installs", column_type="Calc[Total Installs]", output_type="Number", format_string="." }, { name="All Boxes with Valid Connectivty Record", column_type="Calc[All Boxes with Valid Connectivty Record]", output_type="Number", format_string="." }, { name="% All Connectivity Record", column_type="Calc[% All Connectivity Record]", output_type="Number" }, { name="Overall Refusals", column_type="Calc[Overall Refusals]", output_type="Number", format_string="." }, { name="Overall Refusals %", column_type="Calc[Overall Refusals %]", output_type="Number" }, { name="All Eligible for Physical Connectivty", column_type="Calc[All Eligible for Physical Connectivty]", output_type="Number" }, { name="Boxes with Physical Connectivity", column_type="Calc[Boxes with Physical Connectivity]", output_type="Number" }, { name="% All with Physical Conectivity", column_type="Calc[% All with Physical Conectivity]", output_type="Number" } }, calcs={ { name="Total TSS installs", definition="Total[Total TSS installs]", ts_flag="Not TS Calc" }, { name="TSS Valid Connectivity Records", definition="Total[PS Boxes w/ valid connectivity record (1=yes)]", ts_flag="Not TS Calc" }, { name="% TSS Connectivity Record", definition="Total[PS Boxes w/ valid connectivity record (1=yes)] /Total[Total TSS installs]", ts_flag="Not TS Calc" }, { name="TSS Not Applicable", definition="Total[Bozes w/ valid connectivity record (1=yes)]-Total[Boxes Eligible (1=yes)]-Total[TSS Refusals]", ts_flag="Not TS Calc" }, { name="TSS Customer Refusals", definition="Total[TSS Refusals]", ts_flag="Not TS Calc" }, { name="% TSS Refusals", definition="Total[TSS Refusals]/Total[PS Boxes w/ valid connectivity record (1=yes)]", ts_flag="Not TS Calc" }, { name="TSS Eligible for Physical Connectivity", definition="Total[TSS Eligible]-Total[Exception]", ts_flag="Not TS Calc" }, { name="TSS Boxes with Physical Connectivty", definition="Total[PS Physical Connectivity] - Total[PS Physical Connectivity, SymmConnect Enabled=\"Capable not enabled\"]", ts_flag="Not TS Calc" }, { name="% TSS Physical Connectivity", definition="Total[Boxes w/ phys conn]/Total[Boxes Eligible (1=yes)]", ts_flag="Not TS Calc" }, { name="Total Installs", definition="Total[Total Installs]", ts_flag="Not TS Calc" }, { name="All Boxes with Valid Connectivty Record", definition="Total[Bozes w/ valid connectivity record (1=yes)]", ts_flag="Not TS Calc" }, { name="% All Connectivity Record", definition="Total[Bozes w/ valid connectivity record (1=yes)]/Total[Total Installs]", ts_flag="Not TS Calc" }, { name="Overall Refusals", definition="Total[Overall Refusals]", ts_flag="Not TS Calc" }, { name="Overall Refusals %", definition="Total[Overall Refusals]/Total[Bozes w/ valid connectivity record (1=yes)]", ts_flag="Not TS Calc" }, { name="All Eligible for Physical Connectivty", definition="Total[Boxes Eligible (1=yes)]-Total[Exception]", ts_flag="Not TS Calc" }, { name="Boxes with Physical Connectivity", definition="Total[Boxes w/ phys conn]-Total[Boxes w/ phys conn,SymmConnect Enabled=\"Capable not enabled\"]", ts_flag="Not TS Calc" }, { name="% All with Physical Conectivity", definition="Total[Boxes w/ phys conn]/Total[Boxes Eligible (1=yes)]", ts_flag="Not TS Calc" } }, merge_type="consolidate", merge_dbs={ { dbname="connectivityallproducts.mdl", diveline_dbname="/DI_PSREPORTING/connectivityallproducts.mdl" } }, skip_constant_columns="FALSE", categories={ { name="Geography", dimensions={ "Theater", "Division", "Region", "Install at Country Name" } }, { name="Mappings and Flags", dimensions={ "Connect Home Type", "Connect In Type", "SymmConnect Enabled", "Connect Home Refusal Reason", "Sales Order Channel Type", "Maintained By Group", "Customer Installable", "PS Flag", "Top Level Flag", "Avalanche Flag" } }, { name="Product Information", dimensions={ "Product Family", "Product Item Family", "Product Version", "Item Description" } }, { name="Sales Order Info", dimensions={ "Sales Order Deal Number", "Sales Order Number", "Sales Order Type" } }, { name="Dates", dimensions={ "Item Install Date", "Ship Date", "SYR Last Dial Home Date" } }, { name="Details", dimensions={ "Item Serial Number", "TLA Serial Number", "Part Model Key", "Model Number" } }, { name="Customer Infor", dimensions={ "CS Customer Name", "Install At Customer Number", "Customer Classification", "Cust Name" } }, { name="Other Dimensions", dimensions={ "Model" } } }, Maintain_Category_Order="FALSE", popup_info="false" } } };

    Read the article

  • javax.validation.ConstraintViolationException: validation failed for classes during update time for groups

    - by Tim
    Hello all! I have a Java / Spring MVC 3 application, using Hibernate and a MySQL database. In my controller, I have this source code: Set<ConstraintViolation<Person>> failures = validator.validate(p); if (failures.isEmpty()) { Project project = this.projectService.findProjectById(projectid); Person newPerson = this.personService.addPerson(p); Set<Person> persons = this.personService.getAllPersonsByProjectId(projectid); persons.add(newPerson); project.setPersons(persons); Set<ConstraintViolation<Project>> failures1 = validator.validate(project); if (!failures1.isEmpty()) { System.out.println("ERROR"); } else { System.out.println("NO ERROR"); } this.projectService.updateProject(project); return Collections.singletonMap("person", newPerson); } Project and Person are a many-to-many relation annotated with @manytomany and Project is the mapping owner. The new Person is added, but on the line with this.projectService.updateProject(project); I get an error. What it does it this in a Dao Hibernate implementation: public void updateProject(Project p) { SessionFactory sessionFactory = HibernateUtil.getSessionFactory(); Session sess = sessionFactory.getCurrentSession(); Transaction tx = sess.beginTransaction(); sess.update(p); tx.commit(); } It failed on the line tx.commit();. My check with if (!failures1.isEmpty()) { tell me that there are nor errors in my project. So what's wrong here? And why there is a validation of my project? I did not call a validation method... so why is there a org.hibernate.cfg.beanvalidation.BeanValidationEventListener.validate()? I hope, someone can help me how to fix this! Best Regards, Tim. Here the full error stack trace: 13.01.2011 00:06:36 org.apache.catalina.core.ApplicationDispatcher invoke SERVE: Servlet.service() for servlet project3 threw exception javax.validation.ConstraintViolationException: validation failed for classes [com.mydomain.myproject.domain.Person] during update time for groups [javax.validation.groups.Default, ] at org.hibernate.cfg.beanvalidation.BeanValidationEventListener.validate(BeanValidationEventListener.java:155) at org.hibernate.cfg.beanvalidation.BeanValidationEventListener.onPreUpdate(BeanValidationEventListener.java:102) at org.hibernate.action.EntityUpdateAction.preUpdate(EntityUpdateAction.java:235) at org.hibernate.action.EntityUpdateAction.execute(EntityUpdateAction.java:86) at org.hibernate.engine.ActionQueue.execute(ActionQueue.java:273) at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:265) at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:185) at org.hibernate.event.def.AbstractFlushingEventListener.performExecutions(AbstractFlushingEventListener.java:321) at org.hibernate.event.def.DefaultFlushEventListener.onFlush(DefaultFlushEventListener.java:51) at org.hibernate.impl.SessionImpl.flush(SessionImpl.java:1216) at org.hibernate.impl.SessionImpl.managedFlush(SessionImpl.java:383) at org.hibernate.transaction.JDBCTransaction.commit(JDBCTransaction.java:133) at com.mydomain.myproject.dao.impl.ProjectDaoImplHibernate.updateProject(ProjectDaoImplHibernate.java:44) at com.mydomain.myproject.service.impl.ProjectServiceImpl.updateProject(ProjectServiceImpl.java:39) at com.mydomain.myproject.controller.ProjectPersonController.addPerson(ProjectPersonController.java:189) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.springframework.web.bind.annotation.support.HandlerMethodInvoker.invokeHandlerMethod(HandlerMethodInvoker.java:176) at org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter.invokeHandlerMethod(AnnotationMethodHandlerAdapter.java:426) at org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter.handle(AnnotationMethodHandlerAdapter.java:414) at org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet.java:790) at org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:719) at org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:644) at org.springframework.web.servlet.FrameworkServlet.doPost(FrameworkServlet.java:560) at javax.servlet.http.HttpServlet.service(HttpServlet.java:637) at javax.servlet.http.HttpServlet.service(HttpServlet.java:717) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:290) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.catalina.core.ApplicationDispatcher.invoke(ApplicationDispatcher.java:646) at org.apache.catalina.core.ApplicationDispatcher.processRequest(ApplicationDispatcher.java:436) at org.apache.catalina.core.ApplicationDispatcher.doForward(ApplicationDispatcher.java:374) at org.apache.catalina.core.ApplicationDispatcher.forward(ApplicationDispatcher.java:302) at org.tuckey.web.filters.urlrewrite.NormalRewrittenUrl.doRewrite(NormalRewrittenUrl.java:195) at org.tuckey.web.filters.urlrewrite.RuleChain.handleRewrite(RuleChain.java:159) at org.tuckey.web.filters.urlrewrite.RuleChain.doRules(RuleChain.java:141) at org.tuckey.web.filters.urlrewrite.UrlRewriter.processRequest(UrlRewriter.java:90) at org.tuckey.web.filters.urlrewrite.UrlRewriteFilter.doFilter(UrlRewriteFilter.java:417) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.springframework.web.filter.CharacterEncodingFilter.doFilterInternal(CharacterEncodingFilter.java:88) at org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:76) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:233) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:191) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:102) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:109) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:298) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:857) at org.apache.coyote.http11.Http11Protocol$Http11ConnectionHandler.process(Http11Protocol.java:588) at org.apache.tomcat.util.net.JIoEndpoint$Worker.run(JIoEndpoint.java:489) at java.lang.Thread.run(Thread.java:619) 13.01.2011 00:06:36 org.apache.catalina.core.StandardWrapperValve invoke SERVE: Servlet.service() for servlet default threw exception javax.validation.ConstraintViolationException: validation failed for classes [com.mydomain.myproject.domain.Person] during update time for groups [javax.validation.groups.Default, ] at org.hibernate.cfg.beanvalidation.BeanValidationEventListener.validate(BeanValidationEventListener.java:155) at org.hibernate.cfg.beanvalidation.BeanValidationEventListener.onPreUpdate(BeanValidationEventListener.java:102) at org.hibernate.action.EntityUpdateAction.preUpdate(EntityUpdateAction.java:235) at org.hibernate.action.EntityUpdateAction.execute(EntityUpdateAction.java:86) at org.hibernate.engine.ActionQueue.execute(ActionQueue.java:273) at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:265) at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:185) at org.hibernate.event.def.AbstractFlushingEventListener.performExecutions(AbstractFlushingEventListener.java:321) at org.hibernate.event.def.DefaultFlushEventListener.onFlush(DefaultFlushEventListener.java:51) at org.hibernate.impl.SessionImpl.flush(SessionImpl.java:1216) at org.hibernate.impl.SessionImpl.managedFlush(SessionImpl.java:383) at org.hibernate.transaction.JDBCTransaction.commit(JDBCTransaction.java:133) at com.mydomain.myproject.dao.impl.ProjectDaoImplHibernate.updateProject(ProjectDaoImplHibernate.java:44) at com.mydomain.myproject.service.impl.ProjectServiceImpl.updateProject(ProjectServiceImpl.java:39) at com.mydomain.myproject.controller.ProjectPersonController.addPerson(ProjectPersonController.java:189) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.springframework.web.bind.annotation.support.HandlerMethodInvoker.invokeHandlerMethod(HandlerMethodInvoker.java:176) at org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter.invokeHandlerMethod(AnnotationMethodHandlerAdapter.java:426) at org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter.handle(AnnotationMethodHandlerAdapter.java:414) at org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet.java:790) at org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:719) at org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:644) at org.springframework.web.servlet.FrameworkServlet.doPost(FrameworkServlet.java:560) at javax.servlet.http.HttpServlet.service(HttpServlet.java:637) at javax.servlet.http.HttpServlet.service(HttpServlet.java:717) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:290) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.catalina.core.ApplicationDispatcher.invoke(ApplicationDispatcher.java:646) at org.apache.catalina.core.ApplicationDispatcher.processRequest(ApplicationDispatcher.java:436) at org.apache.catalina.core.ApplicationDispatcher.doForward(ApplicationDispatcher.java:374) at org.apache.catalina.core.ApplicationDispatcher.forward(ApplicationDispatcher.java:302) at org.tuckey.web.filters.urlrewrite.NormalRewrittenUrl.doRewrite(NormalRewrittenUrl.java:195) at org.tuckey.web.filters.urlrewrite.RuleChain.handleRewrite(RuleChain.java:159) at org.tuckey.web.filters.urlrewrite.RuleChain.doRules(RuleChain.java:141) at org.tuckey.web.filters.urlrewrite.UrlRewriter.processRequest(UrlRewriter.java:90) at org.tuckey.web.filters.urlrewrite.UrlRewriteFilter.doFilter(UrlRewriteFilter.java:417) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.springframework.web.filter.CharacterEncodingFilter.doFilterInternal(CharacterEncodingFilter.java:88) at org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:76) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:233) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:191) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:102) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:109) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:298) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:857) at org.apache.coyote.http11.Http11Protocol$Http11ConnectionHandler.process(Http11Protocol.java:588) at org.apache.tomcat.util.net.JIoEndpoint$Worker.run(JIoEndpoint.java:489) at java.lang.Thread.run(Thread.java:619) UPDATE Before updating the Project where the error occurs, I add a person which have this annotated: @NotNull @Size(min = 1, max = 255) @Pattern(regexp="(?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*|\"(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21\\x23-\\x5b\\x5d-\\x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])*\")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21-\\x5a\\x53-\\x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])+)\\])", message="{my.email.error.message}") private String email; Without the @Pattern no error... So, what's wrong here? UPDATE-2: I use Hibernate 3.6.0.Final and I have these in my Maven pom.xml: <!-- JSR 303 with Hibernate Validator --> <dependency> <groupId>javax.validation</groupId> <artifactId>validation-api</artifactId> <version>1.0.0.GA</version> </dependency> <dependency> <groupId>org.hibernate</groupId> <artifactId>hibernate-validator</artifactId> <version>4.1.0.Final</version> </dependency>

    Read the article

  • Error with JSF2 and RichFaces

    - by Miguel Ping
    Hi, I'm trying to use RichFaces on a working JSF2 application. I incorporated the RichFaces jars, changed the web.xml but got the following error: 17:49:13,097 SEVERE [javax.enterprise.resource.webcontainer.jsf.application] Error Rendering View[/login.xhtml]: java.lang.NullPointerExcept ion at com.sun.faces.application.ApplicationImpl.createComponent(ApplicationImpl.java:936) at com.sun.faces.facelets.tag.jsf.CompositeComponentTagHandler.createComponent(CompositeComponentTagHandler.java:154) at com.sun.faces.facelets.tag.jsf.ComponentTagHandlerDelegateImpl.createComponent(ComponentTagHandlerDelegateImpl.java:311) at com.sun.faces.facelets.tag.jsf.ComponentTagHandlerDelegateImpl.apply(ComponentTagHandlerDelegateImpl.java:145) at javax.faces.view.facelets.DelegatingMetaTagHandler.apply(DelegatingMetaTagHandler.java:114) at javax.faces.view.facelets.CompositeFaceletHandler.apply(CompositeFaceletHandler.java:91) at javax.faces.view.facelets.DelegatingMetaTagHandler.applyNextHandler(DelegatingMetaTagHandler.java:120) at com.sun.faces.facelets.tag.jsf.ComponentTagHandlerDelegateImpl.apply(ComponentTagHandlerDelegateImpl.java:204) at javax.faces.view.facelets.DelegatingMetaTagHandler.apply(DelegatingMetaTagHandler.java:114) at javax.faces.view.facelets.CompositeFaceletHandler.apply(CompositeFaceletHandler.java:91) at com.sun.faces.facelets.compiler.NamespaceHandler.apply(NamespaceHandler.java:86) at javax.faces.view.facelets.CompositeFaceletHandler.apply(CompositeFaceletHandler.java:91) at com.sun.faces.facelets.compiler.EncodingHandler.apply(EncodingHandler.java:75) at com.sun.faces.facelets.impl.DefaultFacelet.include(DefaultFacelet.java:301) at com.sun.faces.facelets.impl.DefaultFacelet.include(DefaultFacelet.java:360) at com.sun.faces.facelets.impl.DefaultFacelet.include(DefaultFacelet.java:339) at com.sun.faces.facelets.impl.DefaultFaceletContext.includeFacelet(DefaultFaceletContext.java:191) at com.sun.faces.facelets.tag.ui.CompositionHandler.apply(CompositionHandler.java:149) at com.sun.faces.facelets.compiler.NamespaceHandler.apply(NamespaceHandler.java:86) at com.sun.faces.facelets.compiler.EncodingHandler.apply(EncodingHandler.java:75) at com.sun.faces.facelets.impl.DefaultFacelet.apply(DefaultFacelet.java:145) at com.sun.faces.application.view.FaceletViewHandlingStrategy.buildView(FaceletViewHandlingStrategy.java:716) at com.sun.faces.application.view.FaceletViewHandlingStrategy.renderView(FaceletViewHandlingStrategy.java:351) at com.sun.faces.application.view.MultiViewHandler.renderView(MultiViewHandler.java:126) at org.ajax4jsf.application.ViewHandlerWrapper.renderView(ViewHandlerWrapper.java:100) at org.ajax4jsf.application.AjaxViewHandler.renderView(AjaxViewHandler.java:176) at com.sun.faces.lifecycle.RenderResponsePhase.execute(RenderResponsePhase.java:127) at com.sun.faces.lifecycle.Phase.doPhase(Phase.java:101) at com.sun.faces.lifecycle.LifecycleImpl.render(LifecycleImpl.java:139) at javax.faces.webapp.FacesServlet.service(FacesServlet.java:313) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:336) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:242) at org.ajax4jsf.webapp.BaseXMLFilter.doXmlFilter(BaseXMLFilter.java:206) at org.ajax4jsf.webapp.BaseFilter.handleRequest(BaseFilter.java:290) at org.ajax4jsf.webapp.BaseFilter.processUploadsAndHandleRequest(BaseFilter.java:388) at org.ajax4jsf.webapp.BaseFilter.doFilter(BaseFilter.java:515) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:274) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:242) at org.apache.catalina.core.ApplicationDispatcher.invoke(ApplicationDispatcher.java:734) at org.apache.catalina.core.ApplicationDispatcher.processRequest(ApplicationDispatcher.java:541) at org.apache.catalina.core.ApplicationDispatcher.doForward(ApplicationDispatcher.java:479) at org.apache.catalina.core.ApplicationDispatcher.forward(ApplicationDispatcher.java:407) at org.apache.catalina.authenticator.FormAuthenticator.forwardToLoginPage(FormAuthenticator.java:318) at org.apache.catalina.authenticator.FormAuthenticator.authenticate(FormAuthenticator.java:243) at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:559) at org.jboss.web.tomcat.security.JaccContextValve.invoke(JaccContextValve.java:95) at org.jboss.web.tomcat.security.SecurityContextEstablishmentValve.process(SecurityContextEstablishmentValve.java:126) at org.jboss.web.tomcat.security.SecurityContextEstablishmentValve.invoke(SecurityContextEstablishmentValve.java:70) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:102) at org.jboss.web.tomcat.service.jca.CachedConnectionValve.invoke(CachedConnectionValve.java:158) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:109) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:368) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:872) at org.apache.coyote.http11.Http11Protocol$Http11ConnectionHandler.process(Http11Protocol.java:653) at org.apache.tomcat.util.net.JIoEndpoint$Worker.run(JIoEndpoint.java:951) at java.lang.Thread.run(Thread.java:619) It seems that some jars are missing, but I cannot seem to find this cause. The above error is the only thing that the log spits out. Here's web.xml: <context-param> <param-name>javax.faces.FACELETS_LIBRARIES</param-name> <param-value>/WEB-INF/faces-validator-tags/general.taglib.xml; /WEB-INF/faces-converter-tags/general.converter.taglib.xml </param-value> </context-param> <!-- Startup Servlet <servlet> <servlet-name>StartUpServlet</servlet-name> <servlet-class>pt.cgd.agile.util.StartupServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> --> <context-param> <param-name>javax.faces.DISABLE_FACELET_JSF_VIEWHANDLER</param-name> <param-value>true</param-value> </context-param> <context-param> <param-name>org.richfaces.SKIN</param-name> <param-value>blueSky</param-value> </context-param> <!-- Making the RichFaces skin spread to standard HTML controls --> <context-param> <param-name>org.richfaces.CONTROL_SKINNING</param-name> <param-value>enable</param-value> </context-param> <context-param> <param-name>javax.faces.STATE_SAVING_METHOD</param-name> <param-value>server</param-value> </context-param> <context-param> <param-name>org.richfaces.SKIN</param-name> <param-value>blueSky</param-value> </context-param> <context-param> <param-name>org.richfaces.CONTROL_SKINNING</param-name> <param-value>enable</param-value> </context-param> <filter> <display-name>RichFaces Filter</display-name> <filter-name>richfaces</filter-name> <filter-class>org.ajax4jsf.Filter</filter-class> </filter> <filter-mapping> <filter-name>richfaces</filter-name> <servlet-name>Faces Servlet</servlet-name> <dispatcher>REQUEST</dispatcher> <dispatcher>FORWARD</dispatcher> <dispatcher>INCLUDE</dispatcher> </filter-mapping> <listener> <listener-class>com.sun.faces.config.ConfigureListener</listener-class> </listener> <!-- Just here so the JSF implementation can initialize, *not* used at runtime --> <servlet> <servlet-name>Faces Servlet</servlet-name> <servlet-class>javax.faces.webapp.FacesServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> <!-- Just here so the JSF implementation can initialize --> <servlet-mapping> <servlet-name>Faces Servlet</servlet-name> <url-pattern>*.jsf</url-pattern> </servlet-mapping> <login-config> <auth-method>FORM</auth-method> <form-login-config> <form-login-page>/login.jsf</form-login-page> <form-error-page>/loginError.jsf</form-error-page> </form-login-config> </login-config> <error-page> <exception-type>java.lang.Throwable</exception-type> <location>/errors/error.jsf</location> </error-page>

    Read the article

  • Installing Glassfish 3.1 on Ubuntu 10.10 Server

    - by andand
    I've used the directions here to successfully install Glassfish 3.0.1 on an virtualized (VirtualBox and VMWare) Ubuntu 10.10 Server instance without any real difficulty not resolved by more closely following the directions. However when I try applying them to Glassfish 3.1, I seem to keep getting stuck at section 6. "Security configuration before first startup". In particular, there are some differences I noted: 1) There are two keys in the default keystore. The 's1as' key is still there, but another named 'glassfish-instance' is also there. When I saw this, I deleted and recreated them both along with a 'myAlias' key which I was going to use where needed. 2) When turning the security on it seems like part of the server thinks it's on, but others don't. For instances: $ /home/glassfish/bin/asadmin set server-config.network-config.protocols.protocol.admin-listener.security-enabled=true server-config.network-config.protocols.protocol.admin-listener.security-enabled=true Command set executed successfully. $ /home/glassfish/bin/asadmin get server-config.network-config.protocols.protocol.admin-listener.security-enabled server-config.network-config.protocols.protocol.admin-listener.security-enabled=true Command get executed successfully. $ /home/glassfish/bin/asadmin --secure list-jvm-options It appears that server [localhost:4848] does not accept secure connections. Retry with --secure=false. javax.net.ssl.SSLHandshakeException: Remote host closed connection during handshake Command list-jvm-options failed. $ /home/glassfish/bin/asadmin --secure=false list-jvm-options -XX:MaxPermSize=192m -client -Djavax.management.builder.initial=com.sun.enterprise.v3.admin.AppServerMBeanServerBuilder -XX: UnlockDiagnosticVMOptions -Djava.endorsed.dirs=${com.sun.aas.installRoot}/modules/endorsed${path.separator}${com.sun.aas.installRoot}/lib/endorsed -Djava.security.policy=${com.sun.aas.instanceRoot}/config/server.policy -Djava.security.auth.login.config=${com.sun.aas.instanceRoot}/config/login.conf -Dcom.sun.enterprise.security.httpsOutboundKeyAlias=s1as -Xmx512m -Djavax.net.ssl.keyStore=${com.sun.aas.instanceRoot}/config/keystore.jks -Djavax.net.ssl.trustStore=${com.sun.aas.instanceRoot}/config/cacerts.jks -Djava.ext.dirs=${com.sun.aas.javaRoot}/lib/ext${path.separator}${com.sun.aas.javaRoot}/jre/lib/ext${path.separator}${com.sun.aas.in stanceRoot}/lib/ext -Djdbc.drivers=org.apache.derby.jdbc.ClientDriver -DANTLR_USE_DIRECT_CLASS_LOADING=true -Dcom.sun.enterprise.config.config_environment_factory_class=com.sun.enterprise.config.serverbeans.AppserverConfigEnvironmentFactory -Dorg.glassfish.additionalOSGiBundlesToStart=org.apache.felix.shell,org.apache.felix.gogo.runtime,org.apache.felix.gogo.shell,org.apache.felix.gogo.command -Dosgi.shell.telnet.port=6666 -Dosgi.shell.telnet.maxconn=1 -Dosgi.shell.telnet.ip=127.0.0.1 -Dgosh.args=--nointeractive -Dfelix.fileinstall.dir=${com.sun.aas.installRoot}/modules/autostart/ -Dfelix.fileinstall.poll=5000 -Dfelix.fileinstall.log.level=2 -Dfelix.fileinstall.bundles.new.start=true -Dfelix.fileinstall.bundles.startTransient=true -Dfelix.fileinstall.disableConfigSave=false -XX:NewRatio=2 Command list-jvm-options executed successfully. Also the admin console responds only to http (not https) requests. Thoughts?

    Read the article

  • spring mvc 3.0 small web application not quite working

    - by lurscher
    Hi, i'm creating a very simple (hello World quality) web application using spring mvc 3.0. when deploying the application on tomcat 6.0.26 and i try to open http://localhost:8080/protoweb/helloWorld.html i get 404, resource /protoweb/WEB-INF/jsp/helloWorld.jsp is not available. The funny thing is that there IS a helloWorld.jsp in there. any idea what i'm doing wrong? here is my web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" id="WebApp_ID" version="2.5"> <display-name>hello-spring3-RC1</display-name> <context-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/yummy-servlet.xml</param-value> </context-param> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> <servlet> <servlet-name>yummy</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>yummy</servlet-name> <url-pattern>*.html</url-pattern> </servlet-mapping> <welcome-file-list> <welcome-file>index.html</welcome-file> </welcome-file-list> </web-app> my yummy-servlet.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.0.xsd"> <context:component-scan base-package="com.mine.web.controllers"/> <bean id="jspViewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/> <property name="prefix" value="/WEB-INF/jsp/"/> <property name="suffix" value=".jsp"/> </bean> </beans> my very simple controller: package com.mine.web.controllers; import org.springframework.stereotype.Controller; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.servlet.ModelAndView; @Controller public class BasicController { @RequestMapping(value = "/helloWorld") public ModelAndView helloWorld() { ModelAndView mav = new ModelAndView(); mav.setViewName("helloWorld"); mav.addObject("message", "Hello some basic message for u"); return mav; } } and my webapp/jsp/helloWorld.jsp <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> <title>Hello</title> </head> <body> ${message} </body> </html> also, it might be helpful to post my pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.mine</groupId> <artifactId>protoweb</artifactId> <packaging>war</packaging> <version>1.0-SNAPSHOT</version> <name>protoweb Maven Webapp</name> <url>http://maven.apache.org</url> <repositories> <repository> <id>springsource maven repo</id> <url>http://maven.springframework.org/milestone</url> </repository> </repositories> <dependencies> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-webmvc</artifactId> <version>3.0.0.RC1</version> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>3.8.1</version> <scope>test</scope> </dependency> <dependency> <groupId>javax.servlet</groupId> <artifactId>jstl</artifactId> <version>1.1.2</version> <scope>compile</scope> </dependency> </dependencies> <build> <finalName>protoweb</finalName> <plugins> <plugin> <groupId>org.codehaus.mojo</groupId> <artifactId>tomcat-maven-plugin</artifactId> <configuration> <configurationDir>tomcat</configurationDir> <url>http://localhost:8080/manager</url> <username>test</username> <password>test</password> </configuration> </plugin> </plugins> </build> </project>

    Read the article

  • svchost.exe crash on wake up

    - by Serge
    Lately whenever I wake up my laptop from sleep I get a series of errors (generated by a host process failing) I haven't been able to figure out why this happens but I know which host process fails and was wondering if someone had some insight on why this keeps occuring 99% of the time when my laptop wakes up. here's the host process error Faulting application svchost.exe_SysMain, version 6.0.6001.18000, time stamp 0x47919291, faulting module ntdll.dll, version 6.0.6002.18005, time stamp 0x49e0421d, exception code 0xc0000006, fault offset 0x000000000005a02d, process id 0x1738, application start time 0x01cae656279b1010. and here are some services that fail because of that host The Windows Audio Endpoint Builder service terminated unexpectedly. It has done this 1 time(s). The following corrective action will be taken in 60000 milliseconds: Restart the service. The Wired AutoConfig service terminated unexpectedly. It has done this 1 time(s). The following corrective action will be taken in 0 milliseconds: Restart the service. The ReadyBoost service terminated unexpectedly. It has done this 2 time(s). The following corrective action will be taken in 60000 milliseconds: Restart the service. The Human Interface Device Access service terminated unexpectedly. It has done this 1 time(s). The following corrective action will be taken in 120000 milliseconds: Restart the service. The Network Connections service terminated unexpectedly. It has done this 2 time(s). The following corrective action will be taken in 100 milliseconds: Restart the service. The Program Compatibility Assistant Service service terminated unexpectedly. It has done this 2 time(s). The following corrective action will be taken in 60000 milliseconds: Restart the service. The Superfetch service terminated unexpectedly. It has done this 2 time(s). The following corrective action will be taken in 60000 milliseconds: Restart the service. Anyways I think you get the point, there are a few more. It got really annoying to wait for those services to restart so I created a batch file that does it automatically whenever the wlan stops I'm using Vista x64 on a Studio XPS 1640

    Read the article

  • "vagrant up" fails with "NS_ERROR_CALL_FAILED" error [on hold]

    - by TahitiPetey
    I am following the basic "Getting Started" guide: http://docs.vagrantup.com/v2/getting-started/index.html I ran vagrant init <etc> followed by vagrant up, but it fails with "NS_ERROR_CALL_FAILED" error. Then by enabling debug logging with VAGRANT_LOG=debug vagrant up, I get the following error output: ERROR vagrant: /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/plugins/providers/virtualbox/driver/base.rb:316:in `execute' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/plugins/providers/virtualbox/driver/version_4_2.rb:165:in `import' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/plugins/providers/virtualbox/action/import.rb:15:in `call' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/action/warden.rb:34:in `call' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/action/builtin/handle_box_url.rb:72:in `call' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/action/warden.rb:34:in `call' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/plugins/providers/virtualbox/action/check_accessible.rb:18:in `call' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/action/warden.rb:34:in `call' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/action/runner.rb:61:in `block in run' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/util/busy.rb:19:in `busy' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/action/runner.rb:61:in `run' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/action/builtin/call.rb:51:in `call' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/action/warden.rb:34:in `call' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/action/builtin/config_validate.rb:25:in `call' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/action/warden.rb:34:in `call' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/plugins/providers/virtualbox/action/check_virtualbox.rb:17:in `call' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/action/warden.rb:34:in `call' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/action/builder.rb:116:in `call' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/action/runner.rb:61:in `block in run' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/util/busy.rb:19:in `busy' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/action/runner.rb:61:in `run' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/machine.rb:147:in `action' /Applications/Vagrant/embedded/gems/gems/vagrant-1.2.2/lib/vagrant/batch_action.rb:63:in `block (2 levels) in run' INFO interface: error: There was an error while executing `VBoxManage`, a CLI used by Vagrant for controlling VirtualBox. The command and stderr is shown below. Command: ["import", "/Users/me/.vagrant.d/boxes/precise32/virtualbox/box.ovf"] Stderr: 0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100% Interpreting /Users/me/.vagrant.d/boxes/precise32/virtualbox/box.ovf... OK. 0%... Progress object failure: NS_ERROR_CALL_FAILED My system setup info: Vagrant 1.2.2 VirtualBox 4.2.14 (Also tried 4.2.10, same error) Mac OSX 10.8.3

    Read the article

  • Rails 3 shows 404 error instead of index.html (nginx + unicorn)

    - by Miko
    I have an index.html in public/ that should be loading by default but instead I get a 404 error when I try to access http://example.com/ The page you were looking for doesn't exist. You may have mistyped the address or the page may have moved. This has something to do with nginx and unicorn which I am using to power Rails 3 When take unicorn out of the nginx configuration file, the problem goes away and index.html loads just fine. Here is my nginx configuration file: upstream unicorn { server unix:/tmp/.sock fail_timeout=0; } server { server_name example.com; root /www/example.com/current/public; index index.html; keepalive_timeout 5; location / { try_files $uri @unicorn; } location @unicorn { proxy_pass http://unicorn; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header Host $host; proxy_redirect off; } } My config/routes.rb is pretty much empty: Advertise::Application.routes.draw do |map| resources :users end The index.html file is located in public/index.html and it loads fine if I request it directly: http://example.com/index.html To reiterate, when I remove all references to unicorn from the nginx conf, index.html loads without any problems, I have a hard time understanding why this occurs because nginx should be trying to load that file on its own by default. -- Here is the error stack from production.log: Started GET "/" for 68.107.80.21 at 2010-08-08 12:06:29 -0700 Processing by HomeController#index as HTML Completed in 1ms ActionView::MissingTemplate (Missing template home/index with {:handlers=>[:erb, :rjs, :builder, :rhtml, :rxml, :haml], :formats=>[:html], :locale=>[:en, :en]} in view paths "/www/example.com/releases/20100808170224/app/views", "/www/example.com/releases/20100808170224/vendor/plugins/paperclip/app/views", "/www/example.com/releases/20100808170224/vendor/plugins/haml/app/views"): /usr/local/rvm/gems/ruby-1.9.2-rc2/gems/actionpack-3.0.0.beta4/lib/action_view/paths.rb:14:in `find' /usr/local/rvm/gems/ruby-1.9.2-rc2/gems/actionpack-3.0.0.beta4/lib/action_view/lookup_context.rb:79:in `find' /usr/local/rvm/gems/ruby-1.9.2-rc2/gems/actionpack-3.0.0.beta4/lib/action_view/base.rb:186:in `find_template' /usr/local/rvm/gems/ruby-1.9.2-rc2/gems/actionpack-3.0.0.beta4/lib/action_view/render/rendering.rb:45:in `_determine_template' /usr/local/rvm/gems/ruby-1.9.2-rc2/gems/actionpack-3.0.0.beta4/lib/action_view/render/rendering.rb:23:in `render' /usr/local/rvm/gems/ruby-1.9.2-rc2/gems/haml-3.0.15/lib/haml/helpers/action_view_mods.rb:13:in `render_with_haml' etc... -- nginx error log for this virtualhost comes up empty: 2010/08/08 12:40:22 [info] 3118#0: *1 client 68.107.80.21 closed keepalive connection My guess is unicorn is intercepting the request to index.html before nginx gets to process it.

    Read the article

  • facescontext.getcurrentinstance returns nullpointerexception

    - by mvg
    I am creating a Spring based JSF application, where I am getting FacesContext.getCurrentInstance which returns null. Here is my Java code public static ServletContext getServletContext() { return (ServletContext) FacesContext.getCurrentInstance() .getExternalContext().getContext(); } This is the stack trace of my error SEVERE: Exception sending context initialized event to listener instance of class org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'dbSettingsServiceTarget' defined in ServletContext resource [/WEB-INF/applicationContext.xml]: Instantiation of bean failed; nested exception is org.springframework.beans.BeanInstantiationException: Could not instantiate bean class [com.baytalkitec.smartcall.service.impl.DbSettingsServiceImpl]: Constructor threw exception; nested exception is java.lang.NullPointerException at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.instantiateBean(AbstractAutowireCapableBeanFactory.java:883) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBeanInstance(AbstractAutowireCapableBeanFactory.java:839) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:440) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory$1.run(AbstractAutowireCapableBeanFactory.java:409) at java.security.AccessController.doPrivileged(Native Method) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:380) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:264) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:221) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:261) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:185) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:164) at org.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:429) at org.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:729) at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:381) at org.springframework.web.context.ContextLoader.createWebApplicationContext(ContextLoader.java:255) at org.springframework.web.context.ContextLoader.initWebApplicationContext(ContextLoader.java:199) at org.springframework.web.context.ContextLoaderListener.contextInitialized(ContextLoaderListener.java:45) at org.apache.catalina.core.StandardContext.listenerStart(StandardContext.java:3972) at org.apache.catalina.core.StandardContext.start(StandardContext.java:4467) at org.apache.catalina.core.ContainerBase.start(ContainerBase.java:1045) at org.apache.catalina.core.StandardHost.start(StandardHost.java:785) at org.apache.catalina.core.ContainerBase.start(ContainerBase.java:1045) at org.apache.catalina.core.StandardEngine.start(StandardEngine.java:443) at org.apache.catalina.core.StandardService.start(StandardService.java:519) at org.apache.catalina.core.StandardServer.start(StandardServer.java:710) at org.apache.catalina.startup.Catalina.start(Catalina.java:581) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.catalina.startup.Bootstrap.start(Bootstrap.java:289) at org.apache.catalina.startup.Bootstrap.main(Bootstrap.java:414) Caused by: org.springframework.beans.BeanInstantiationException: Could not instantiate bean class [com.baytalkitec.smartcall.service.impl.DbSettingsServiceImpl]: Constructor threw exception; nested exception is java.lang.NullPointerException at org.springframework.beans.BeanUtils.instantiateClass(BeanUtils.java:115) at org.springframework.beans.factory.support.SimpleInstantiationStrategy.instantiate(SimpleInstantiationStrategy.java:61) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.instantiateBean(AbstractAutowireCapableBeanFactory.java:877) ... 31 more Caused by: java.lang.NullPointerException at com.smartcall.util.FacesUtil.getServletContext(FacesUtil.java:21) at com.smartcall.util.SpringApplicationContextUtil.init(SpringApplicationContextUtil.java:21) at com.smartcall.util.SpringApplicationContextUtil.<init>(SpringApplicationContextUtil.java:16) at com.smartcall.service.impl.DbSettingsServiceImpl.init(DbSettingsServiceImpl.java:17) at com.smartcall.service.impl.DbSettingsServiceImpl.<init>(DbSettingsServiceImpl.java:12) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:513) at org.springframework.beans.BeanUtils.instantiateClass(BeanUtils.java:100) ... 33 more and hence due to this error Server console in Eclipse reports that application failed to startup due to previous errors My web.xml file <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" id="WebApp_ID" version="2.5"> <display-name>smartcall2.0</display-name> <context-param> <param-name>javax.faces.STATE_SAVING_METHOD</param-name> <param-value>server</param-value> </context-param> <context-param> <param-name>javax.faces.CONFIG_FILES</param-name> <param-value> /WEB-INF/faces-config.xml,/WEB-INF/faces-managed-bean.xml,/WEB-INF/faces-navigation.xml </param-value> </context-param> <listener> <listener-class> com.sun.faces.config.ConfigureListener </listener-class> </listener> <listener> <listener-class> org.springframework.web.context.ContextLoaderListener </listener-class> </listener> <filter> <display-name>RichFaces Filter</display-name> <filter-name>richfaces</filter-name> <filter-class>org.ajax4jsf.Filter</filter-class> </filter> <filter-mapping> <filter-name>richfaces</filter-name> <servlet-name>Faces Servlet</servlet-name> <dispatcher>REQUEST</dispatcher> <dispatcher>FORWARD</dispatcher> <dispatcher>INCLUDE</dispatcher> </filter-mapping> <servlet> <servlet-name>Faces Servlet</servlet-name> <servlet-class>javax.faces.webapp.FacesServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> <context-param> <param-name>javax.faces.DEFAULT_SUFFIX</param-name> <param-value>.xhtml</param-value> </context-param> <servlet-mapping> <servlet-name>Faces Servlet</servlet-name> <url-pattern>*.jsf</url-pattern> </servlet-mapping> <session-config> <session-timeout>180</session-timeout> </session-config> <welcome-file-list> <welcome-file>index.html</welcome-file> <welcome-file>index.htm</welcome-file> <welcome-file>index.jsp</welcome-file> <welcome-file>default.html</welcome-file> <welcome-file>default.htm</welcome-file> <welcome-file>default.jsp</welcome-file> </welcome-file-list> I am not clear whether this error belongs to Spring or JSF or Eclipse. I am using Eclipse Galileo, JSF 1.2,Spring 3 Please help Thanks in advance

    Read the article

< Previous Page | 258 259 260 261 262 263 264 265 266 267 268 269  | Next Page >