Search Results

Search found 42304 results on 1693 pages for 'request object'.

Page 305/1693 | < Previous Page | 301 302 303 304 305 306 307 308 309 310 311 312  | Next Page >

  • In developing a soap client proxy, which return structure is easier to use and more sensible?

    - by cori
    I'm writing (in PHP) a client/proxy for a SOAP web service. The return types are consistently wrapped in response objects that contain the return values. In many cases this make a lot of sense - for instance when multiple values are being returned: GetDetailsResponse Object ( Results Object ( [TotalResults] => 10 [NextPage] => 2 ) [Details] => Array ( [0] => Detail Object ( [Id] => 1 ) ) ) But some of the methods return a single scalar value or a single object or array wrapped in a response object: GetThingummyIdResponse Object ( [ThingummyId] => 42 ) In some cases these objects might be pretty deep, so getting at properties within requires drilling down several layers: $response->Details->Detail[0]->Contents->Item[5]->Id And if I unwrap them before passing them back I can strip out a layer from consumers' code. I know I'm probably being a little bit of an Architecture Astronaut here, but the latter style really bug me, so I've been working through my code to have my proxy methods just return the scalar value to the client code where there's no absolute need for a wrapper object. My question is, am I actually making things more difficult for the consumers of my code? Would I be better off just leaving the return values wrapped in response objects so that everything is consistent, or is removing unneccessary layers of indirection/abstraction worthwhile?

    Read the article

  • Enabling Kerberos Authentication for Reporting Services

    - by robcarrol
    Recently, I’ve helped several customers with Kerberos authentication problems with Reporting Services and Analysis Services, so I’ve decided to write this blog post and pull together some useful resources in one place (there are 2 whitepapers in particular that I found invaluable configuring Kerberos authentication, and these can be found in the references section at the bottom of this post). In most of these cases, the problem has manifested itself with the Login failed for User ‘NT Authority\Anonymous’ (“double-hop”) error. By default, Reporting Services uses Windows Integrated Authentication, which includes the Kerberos and NTLM protocols for network authentication. Additionally, Windows Integrated Authentication includes the negotiate security header, which prompts the client to select Kerberos or NTLM for authentication. The client can access reports which have the appropriate permissions by using Kerberos for authentication. Servers that use Kerberos authentication can impersonate those clients and use their security context to access network resources. You can configure Reporting Services to use both Kerberos and NTLM authentication; however this may lead to a failure to authenticate. With negotiate, if Kerberos cannot be used, the authentication method will default to NTLM. When negotiate is enabled, the Kerberos protocol is always used except when: Clients/servers that are involved in the authentication process cannot use Kerberos. The client does not provide the information necessary to use Kerberos. An in-depth discussion of Kerberos authentication is beyond the scope of this post, however when users execute reports that are configured to use Windows Integrated Authentication, their logon credentials are passed from the report server to the server hosting the data source. Delegation needs to be set on the report server and Service Principle Names (SPNs) set for the relevant services. When a user processes a report, the request must go through a Web server on its way to a database server for processing. Kerberos authentication enables the Web server to request a service ticket from the domain controller; impersonate the client when passing the request to the database server; and then restrict the request based on the user’s permissions. Each time a server is required to pass the request to another server, the same process must be used. Kerberos authentication is supported in both native and SharePoint integrated mode, but I’ll focus on native mode for the purpose of this post (I’ll explain configuring SharePoint integrated mode and Kerberos authentication in a future post). Configuring Kerberos avoids the authentication failures due to double-hop issues. These double-hop errors occur when a users windows domain credentials can’t be passed to another server to complete the user’s request. In the case of my customers, users were executing Reporting Services reports that were configured to query Analysis Services cubes on a separate machine using Windows Integrated security. The double-hop issue occurs as NTLM credentials are valid for only one network hop, subsequent hops result in anonymous authentication. The client attempts to connect to the report server by making a request from a browser (or some other application), and the connection process begins with authentication. With NTLM authentication, client credentials are presented to Computer 2. However Computer 2 can’t use the same credentials to access Computer 3 (so we get the Anonymous login error). To access Computer 3 it is necessary to configure the connection string with stored credentials, which is what a number of customers I have worked with have done to workaround the double-hop authentication error. However, to get the benefits of Windows Integrated security, a better solution is to enable Kerberos authentication. Again, the connection process begins with authentication. With Kerberos authentication, the client and the server must demonstrate to one another that they are genuine, at which point authentication is successful and a secure client/server session is established. In the illustration above, the tiers represent the following: Client tier (computer 1): The client computer from which an application makes a request. Middle tier (computer 2): The Web server or farm where the client’s request is directed. Both the SharePoint and Reporting Services server(s) comprise the middle tier (but we’re only concentrating on native deployments just now). Back end tier (computer 3): The Database/Analysis Services server/Cluster where the requested data is stored. In order to enable Kerberos authentication for Reporting Services it’s necessary to configure the relevant SPNs, configure trust for delegation for server accounts, configure Kerberos with full delegation and configure the authentication types for Reporting Services. Service Principle Names (SPNs) are unique identifiers for services and identify the account’s type of service. If an SPN is not configured for a service, a client account will be unable to authenticate to the servers using Kerberos. You need to be a domain administrator to add an SPN, which can be added using the SetSPN utility. For Reporting Services in native mode, the following SPNs need to be registered --SQL Server Service SETSPN -S mssqlsvc/servername:1433 Domain\SQL For named instances, or if the default instance is running under a different port, then the specific port number should be used. --Reporting Services Service SETSPN -S http/servername Domain\SSRS SETSPN -S http/servername.domain.com Domain\SSRS The SPN should be set for the NETBIOS name of the server and the FQDN. If you access the reports using a host header or DNS alias, then that should also be registered SETSPN -S http/www.reports.com Domain\SSRS --Analysis Services Service SETSPN -S msolapsvc.3/servername Domain\SSAS Next, you need to configure trust for delegation, which refers to enabling a computer to impersonate an authenticated user to services on another computer: Location Description Client 1. The requesting application must support the Kerberos authentication protocol. 2. The user account making the request must be configured on the domain controller. Confirm that the following option is not selected: Account is sensitive and cannot be delegated. Servers 1. The service accounts must be trusted for delegation on the domain controller. 2. The service accounts must have SPNs registered on the domain controller. If the service account is a domain user account, the domain administrator must register the SPNs. In Active Directory Users and Computers, verify that the domain user accounts used to access reports have been configured for delegation (the ‘Account is sensitive and cannot be delegated’ option should not be selected): We then need to configure the Reporting Services service account and computer to use Kerberos with full delegation:   We also need to do the same for the SQL Server or Analysis Services service accounts and computers (depending on what type of data source you are connecting to in your reports). Finally, and this is the part that sometimes gets over-looked, we need to configure the authentication type correctly for reporting services to use Kerberos authentication. This is configured in the Authentication section of the RSReportServer.config file on the report server. <Authentication> <AuthenticationTypes>           <RSWindowsNegotiate/> </AuthenticationTypes> <EnableAuthPersistence>true</EnableAuthPersistence> </Authentication> This will enable Kerberos authentication for Internet Explorer. For other browsers, see the link below. The report server instance must be restarted for these changes to take effect. Once these changes have been made, all that’s left to do is test to make sure Kerberos authentication is working properly by running a report from report manager that is configured to use Windows Integrated authentication (either connecting to Analysis Services or SQL Server back-end). Resources: Manage Kerberos Authentication Issues in a Reporting Services Environment http://download.microsoft.com/download/B/E/1/BE1AABB3-6ED8-4C3C-AF91-448AB733B1AF/SSRSKerberos.docx Configuring Kerberos Authentication for Microsoft SharePoint 2010 Products http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=23176 How to: Configure Windows Authentication in Reporting Services http://msdn.microsoft.com/en-us/library/cc281253.aspx RSReportServer Configuration File http://msdn.microsoft.com/en-us/library/ms157273.aspx#Authentication Planning for Browser Support http://msdn.microsoft.com/en-us/library/ms156511.aspx

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Silverlight for Windows Embedded tutorial (step 4)

    - by Valter Minute
    I’m back with my Silverlight for Windows Embedded tutorial. Sorry for the long delay between step 3 and step 4, the MVP summit and some work related issue prevented me from working on the tutorial during the last weeks. In our first,  second and third tutorial steps we implemented some very simple applications, just to understand the basic structure of a Silverlight for Windows Embedded application, learn how to handle events and how to operate on images. In this third step our sample application will be slightly more complicated, to introduce two new topics: list boxes and custom control. We will also learn how to create controls at runtime. I choose to explain those topics together and provide a sample a bit more complicated than usual just to start to give the feeling of how a “real” Silverlight for Windows Embedded application is organized. As usual we can start using Expression Blend to define our main page. In this case we will have a listbox and a textblock. Here’s the XAML code: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" x:Class="ListDemo.Page" Width="640" Height="480" x:Name="ListPage" xmlns:ListDemo="clr-namespace:ListDemo">   <Grid x:Name="LayoutRoot" Background="White"> <ListBox Margin="19,57,19,66" x:Name="FileList" SelectionChanged="Filelist_SelectionChanged"/> <TextBlock Height="35" Margin="19,8,19,0" VerticalAlignment="Top" TextWrapping="Wrap" x:Name="CurrentDir" Text="TextBlock" FontSize="20"/> </Grid> </UserControl> In our listbox we will load a list of directories, starting from the filesystem root (there are no drives in Windows CE, the filesystem has a single root named “\”). When the user clicks on an item inside the list, the corresponding directory path will be displayed in the TextBlock object and the subdirectories of the selected branch will be shown inside the list. As you can see we declared an event handler for the SelectionChanged event of our listbox. We also used a different font size for the TextBlock, to make it more readable. XAML and Expression Blend allow you to customize your UI pretty heavily, experiment with the tools and discover how you can completely change the aspect of your application without changing a single line of code! Inside our ListBox we want to insert the directory presenting a nice icon and their name, just like you are used to see them inside Windows 7 file explorer, for example. To get this we will define a user control. This is a custom object that will behave like “regular” Silverlight for Windows Embedded objects inside our application. First of all we have to define the look of our custom control, named DirectoryItem, using XAML: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" x:Class="ListDemo.DirectoryItem" Width="500" Height="80">   <StackPanel x:Name="LayoutRoot" Orientation="Horizontal"> <Canvas Width="31.6667" Height="45.9583" Margin="10,10,10,10" RenderTransformOrigin="0.5,0.5"> <Canvas.RenderTransform> <TransformGroup> <ScaleTransform/> <SkewTransform/> <RotateTransform Angle="-31.27"/> <TranslateTransform/> </TransformGroup> </Canvas.RenderTransform> <Rectangle Width="31.6667" Height="45.8414" Canvas.Left="0" Canvas.Top="0.116943" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.569519" Canvas.Top="1.05249" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142632,0.753441" EndPoint="1.01886,0.753441"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142632" CenterY="0.753441" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142632" CenterY="0.753441" Angle="-35.3437"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="2.28036" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="1.34485" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="26.4269" Height="45.8414" Canvas.Left="0.227798" Canvas.Top="0" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="1.25301" Height="45.8414" Canvas.Left="1.70862" Canvas.Top="0.116943" Stretch="Fill" Fill="#FFEBFF07"/> </Canvas> <TextBlock Height="80" x:Name="Name" Width="448" TextWrapping="Wrap" VerticalAlignment="Center" FontSize="24" Text="Directory"/> </StackPanel> </UserControl> As you can see, this XAML contains many graphic elements. Those elements are used to design the folder icon. The original drawing has been designed in Expression Design and then exported as XAML. In Silverlight for Windows Embedded you can use vector images. This means that your images will look good even when scaled or rotated. In our DirectoryItem custom control we have a TextBlock named Name, that will be used to display….(suspense)…. the directory name (I’m too lazy to invent fancy names for controls, and using “boring” intuitive names will make code more readable, I hope!). Now that we have some XAML code, we may execute XAML2CPP to generate part of the aplication code for us. We should then add references to our XAML2CPP generated resource file and include in our code and add a reference to the XAML runtime library to our sources file (you can follow the instruction of the first tutorial step to do that), To generate the code used in this tutorial you need XAML2CPP ver 1.0.1.0, that is downloadable here: http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2010/03/08/xaml2cpp-1.0.1.0.aspx We can now create our usual simple Win32 application inside Platform Builder, using the same step described in the first chapter of this tutorial (http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2009/10/01/silverlight-for-embedded-tutorial.aspx). We can declare a class for our main page, deriving it from the template that XAML2CPP generated for us: class ListPage : public TListPage<ListPage> { ... } We will see the ListPage class code in a short time, but before we will see the code of our DirectoryItem user control. This object will be used to populate our list, one item for each directory. To declare a user control things are a bit more complicated (but also in this case XAML2CPP will write most of the “boilerplate” code for use. To interact with a user control you should declare an interface. An interface defines the functions of a user control that can be called inside the application code. Our custom control is currently quite simple and we just need some member functions to store and retrieve a full pathname inside our control. The control will display just the last part of the path inside the control. An interface is declared as a C++ class that has only abstract virtual members. It should also have an UUID associated with it. UUID means Universal Unique IDentifier and it’s a 128 bit number that will identify our interface without the need of specifying its fully qualified name. UUIDs are used to identify COM interfaces and, as we discovered in chapter one, Silverlight for Windows Embedded is based on COM or, at least, provides a COM-like Application Programming Interface (API). Here’s the declaration of the DirectoryItem interface: class __declspec(novtable,uuid("{D38C66E5-2725-4111-B422-D75B32AA8702}")) IDirectoryItem : public IXRCustomUserControl { public:   virtual HRESULT SetFullPath(BSTR fullpath) = 0; virtual HRESULT GetFullPath(BSTR* retval) = 0; }; The interface is derived from IXRCustomControl, this will allow us to add our object to a XAML tree. It declares the two functions needed to set and get the full path, but don’t implement them. Implementation will be done inside the control class. The interface only defines the functions of our control class that are accessible from the outside. It’s a sort of “contract” between our control and the applications that will use it. We must support what’s inside the contract and the application code should know nothing else about our own control. To reference our interface we will use the UUID, to make code more readable we can declare a #define in this way: #define IID_IDirectoryItem __uuidof(IDirectoryItem) Silverlight for Windows Embedded objects (like COM objects) use a reference counting mechanism to handle object destruction. Every time you store a pointer to an object you should call its AddRef function and every time you no longer need that pointer you should call Release. The object keeps an internal counter, incremented for each AddRef and decremented on Release. When the counter reaches 0, the object is destroyed. Managing reference counting in our code can be quite complicated and, since we are lazy (I am, at least!), we will use a great feature of Silverlight for Windows Embedded: smart pointers.A smart pointer can be connected to a Silverlight for Windows Embedded object and manages its reference counting. To declare a smart pointer we must use the XRPtr template: typedef XRPtr<IDirectoryItem> IDirectoryItemPtr; Now that we have defined our interface, it’s time to implement our user control class. XAML2CPP has implemented a class for us, and we have only to derive our class from it, defining the main class and interface of our new custom control: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { ... } XAML2CPP has generated some code for us to support the user control, we don’t have to mind too much about that code, since it will be generated (or written by hand, if you like) always in the same way, for every user control. But knowing how does this works “under the hood” is still useful to understand the architecture of Silverlight for Windows Embedded. Our base class declaration is a bit more complex than the one we used for a simple page in the previous chapters: template <class A,class B> class DirectoryItemUserControlRegister : public XRCustomUserControlImpl<A,B>,public TDirectoryItem<A,XAML2CPPUserControl> { ... } This class derives from the XAML2CPP generated template class, like the ListPage class, but it uses XAML2CPPUserControl for the implementation of some features. This class shares the same ancestor of XAML2CPPPage (base class for “regular” XAML pages), XAML2CPPBase, implements binding of member variables and event handlers but, instead of loading and creating its own XAML tree, it attaches to an existing one. The XAML tree (and UI) of our custom control is created and loaded by the XRCustomUserControlImpl class. This class is part of the Silverlight for Windows Embedded framework and implements most of the functions needed to build-up a custom control in Silverlight (the guys that developed Silverlight for Windows Embedded seem to care about lazy programmers!). We have just to initialize it, providing our class (DirectoryItem) and interface (IDirectoryItem). Our user control class has also a static member: protected:   static HINSTANCE hInstance; This is used to store the HINSTANCE of the modules that contain our user control class. I don’t like this implementation, but I can’t find a better one, so if somebody has good ideas about how to handle the HINSTANCE object, I’ll be happy to hear suggestions! It also implements two static members required by XRCustomUserControlImpl. The first one is used to load the XAML UI of our custom control: static HRESULT GetXamlSource(XRXamlSource* pXamlSource) { pXamlSource->SetResource(hInstance,TEXT("XAML"),IDR_XAML_DirectoryItem); return S_OK; }   It initializes a XRXamlSource object, connecting it to the XAML resource that XAML2CPP has included in our resource script. The other method is used to register our custom control, allowing Silverlight for Windows Embedded to create it when it load some XAML or when an application creates a new control at runtime (more about this later): static HRESULT Register() { return XRCustomUserControlImpl<A,B>::Register(__uuidof(B), L"DirectoryItem", L"clr-namespace:DirectoryItemNamespace"); } To register our control we should provide its interface UUID, the name of the corresponding element in the XAML tree and its current namespace (namespaces compatible with Silverlight must use the “clr-namespace” prefix. We may also register additional properties for our objects, allowing them to be loaded and saved inside XAML. In this case we have no permanent properties and the Register method will just register our control. An additional static method is implemented to allow easy registration of our custom control inside our application WinMain function: static HRESULT RegisterUserControl(HINSTANCE hInstance) { DirectoryItemUserControlRegister::hInstance=hInstance; return DirectoryItemUserControlRegister<A,B>::Register(); } Now our control is registered and we will be able to create it using the Silverlight for Windows Embedded runtime functions. But we need to bind our members and event handlers to have them available like we are used to do for other XAML2CPP generated objects. To bind events and members we need to implement the On_Loaded function: virtual HRESULT OnLoaded(__in IXRDependencyObject* pRoot) { HRESULT retcode; IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; return ((A*)this)->Init(pRoot,hInstance,app); } This function will call the XAML2CPPUserControl::Init member that will connect the “root” member with the XAML sub tree that has been created for our control and then calls BindObjects and BindEvents to bind members and events to our code. Now we can go back to our application code (the code that you’ll have to actually write) to see the contents of our DirectoryItem class: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { protected:   WCHAR fullpath[_MAX_PATH+1];   public:   DirectoryItem() { *fullpath=0; }   virtual HRESULT SetFullPath(BSTR fullpath) { wcscpy_s(this->fullpath,fullpath);   WCHAR* p=fullpath;   for(WCHAR*q=wcsstr(p,L"\\");q;p=q+1,q=wcsstr(p,L"\\")) ;   Name->SetText(p); return S_OK; }   virtual HRESULT GetFullPath(BSTR* retval) { *retval=SysAllocString(fullpath); return S_OK; } }; It’s pretty easy and contains a fullpath member (used to store that path of the directory connected with the user control) and the implementation of the two interface members that can be used to set and retrieve the path. The SetFullPath member parses the full path and displays just the last branch directory name inside the “Name” TextBlock object. As you can see, implementing a user control in Silverlight for Windows Embedded is not too complex and using XAML also for the UI of the control allows us to re-use the same mechanisms that we learnt and used in the previous steps of our tutorial. Now let’s see how the main page is managed by the ListPage class. class ListPage : public TListPage<ListPage> { protected:   // current path TCHAR curpath[_MAX_PATH+1]; It has a member named “curpath” that is used to store the current directory. It’s initialized inside the constructor: ListPage() { *curpath=0; } And it’s value is displayed inside the “CurrentDir” TextBlock inside the initialization function: virtual HRESULT Init(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode;   if (FAILED(retcode=TListPage<ListPage>::Init(hInstance,app))) return retcode;   CurrentDir->SetText(L"\\"); return S_OK; } The FillFileList function is used to enumerate subdirectories of the current dir and add entries for each one inside the list box that fills most of the client area of our main page: HRESULT FillFileList() { HRESULT retcode; IXRItemCollectionPtr items; IXRApplicationPtr app;   if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; // retrieves the items contained in the listbox if (FAILED(retcode=FileList->GetItems(&items))) return retcode;   // clears the list if (FAILED(retcode=items->Clear())) return retcode;   // enumerates files and directory in the current path WCHAR filemask[_MAX_PATH+1];   wcscpy_s(filemask,curpath); wcscat_s(filemask,L"\\*.*");   WIN32_FIND_DATA finddata; HANDLE findhandle;   findhandle=FindFirstFile(filemask,&finddata);   // the directory is empty? if (findhandle==INVALID_HANDLE_VALUE) return S_OK;   do { if (finddata.dwFileAttributes&=FILE_ATTRIBUTE_DIRECTORY) { IXRListBoxItemPtr listboxitem;   // add a new item to the listbox if (FAILED(retcode=app->CreateObject(IID_IXRListBoxItem,&listboxitem))) { FindClose(findhandle); return retcode; }   if (FAILED(retcode=items->Add(listboxitem,NULL))) { FindClose(findhandle); return retcode; }   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=app->CreateObject(IID_IDirectoryItem,&directoryitem))) { FindClose(findhandle); return retcode; }   WCHAR fullpath[_MAX_PATH+1];   wcscpy_s(fullpath,curpath); wcscat_s(fullpath,L"\\"); wcscat_s(fullpath,finddata.cFileName);   if (FAILED(retcode=directoryitem->SetFullPath(fullpath))) { FindClose(findhandle); return retcode; }   XAML2CPPXRValue value((IXRDependencyObject*)directoryitem);   if (FAILED(retcode=listboxitem->SetContent(&value))) { FindClose(findhandle); return retcode; } } } while (FindNextFile(findhandle,&finddata));   FindClose(findhandle); return S_OK; } This functions retrieve a pointer to the collection of the items contained in the directory listbox. The IXRItemCollection interface is used by listboxes and comboboxes and allow you to clear the list (using Clear(), as our function does at the beginning) and change its contents by adding and removing elements. This function uses the FindFirstFile/FindNextFile functions to enumerate all the objects inside our current directory and for each subdirectory creates a IXRListBoxItem object. You can insert any kind of control inside a list box, you don’t need a IXRListBoxItem, but using it will allow you to handle the selected state of an item, highlighting it inside the list. The function creates a list box item using the CreateObject function of XRApplication. The same function is then used to create an instance of our custom control. The function returns a pointer to the control IDirectoryItem interface and we can use it to store the directory full path inside the object and add it as content of the IXRListBox item object, adding it to the listbox contents. The listbox generates an event (SelectionChanged) each time the user clicks on one of the items contained in the listbox. We implement an event handler for that event and use it to change our current directory and repopulate the listbox. The current directory full path will be displayed in the TextBlock: HRESULT Filelist_SelectionChanged(IXRDependencyObject* source,XRSelectionChangedEventArgs* args) { HRESULT retcode;   IXRListBoxItemPtr listboxitem;   if (!args->pAddedItem) return S_OK;   if (FAILED(retcode=args->pAddedItem->QueryInterface(IID_IXRListBoxItem,(void**)&listboxitem))) return retcode;   XRValue content; if (FAILED(retcode=listboxitem->GetContent(&content))) return retcode;   if (content.vType!=VTYPE_OBJECT) return E_FAIL;   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=content.pObjectVal->QueryInterface(IID_IDirectoryItem,(void**)&directoryitem))) return retcode;   content.pObjectVal->Release(); content.pObjectVal=NULL;   BSTR fullpath=NULL;   if (FAILED(retcode=directoryitem->GetFullPath(&fullpath))) return retcode;   CurrentDir->SetText(fullpath);   wcscpy_s(curpath,fullpath); FillFileList(); SysFreeString(fullpath);     return S_OK; } }; The function uses the pAddedItem member of the XRSelectionChangedEventArgs object to retrieve the currently selected item, converts it to a IXRListBoxItem interface using QueryInterface, and then retrives its contents (IDirectoryItem object). Using the GetFullPath method we can get the full path of our selected directory and assing it to the curdir member. A call to FillFileList will update the listbox contents, displaying the list of subdirectories of the selected folder. To build our sample we just need to add code to our WinMain function: int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { if (!XamlRuntimeInitialize()) return -1;   HRESULT retcode;   IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return -1;   if (FAILED(retcode=DirectoryItem::RegisterUserControl(hInstance))) return retcode;   ListPage page;   if (FAILED(page.Init(hInstance,app))) return -1;   page.FillFileList();   UINT exitcode;   if (FAILED(page.GetVisualHost()->StartDialog(&exitcode))) return -1;   return 0; } This code is very similar to the one of the WinMains of our previous samples. The main differences are that we register our custom control (you should do that as soon as you have initialized the XAML runtime) and call FillFileList after the initialization of our ListPage object to load the contents of the root folder of our device inside the listbox. As usual you can download the full sample source code from here: http://cid-9b7b0aefe3514dc5.skydrive.live.com/self.aspx/.Public/ListBoxTest.zip

    Read the article

  • Enhanced REST Support in Oracle Service Bus 11gR1

    - by jeff.x.davies
    In a previous entry on REST and Oracle Service Bus (see http://blogs.oracle.com/jeffdavies/2009/06/restful_services_with_oracle_s_1.html) I encoded the REST query string really as part of the relative URL. For example, consider the following URI: http://localhost:7001/SimpleREST/Products/id=1234 Now, technically there is nothing wrong with this approach. However, it is generally more common to encode the search parameters into the query string. Take a look at the following URI that shows this principle http://localhost:7001/SimpleREST/Products?id=1234 At first blush this appears to be a trivial change. However, this approach is more intuitive, especially if you are passing in multiple parameters. For example: http://localhost:7001/SimpleREST/Products?cat=electronics&subcat=television&mfg=sony The above URI is obviously used to retrieve a list of televisions made by Sony. In prior versions of OSB (before 11gR1PS3), parsing the query string of a URI was more difficult than in the current release. In 11gR1PS3 it is now much easier to parse the query strings, which in turn makes developing REST services in OSB even easier. In this blog entry, we will re-implement the REST-ful Products services using query strings for passing parameter information. Lets begin with the implementation of the Products REST service. This service is implemented in the Products.proxy file of the project. Lets begin with the overall structure of the service, as shown in the following screenshot. This is a common pattern for REST services in the Oracle Service Bus. You implement different flows for each of the HTTP verbs that you want your service to support. Lets take a look at how the GET verb is implemented. This is the path that is taken of you were to point your browser to: http://localhost:7001/SimpleREST/Products/id=1234 There is an Assign action in the request pipeline that shows how to extract a query parameter. Here is the expression that is used to extract the id parameter: $inbound/ctx:transport/ctx:request/http:query-parameters/http:parameter[@name="id"]/@value The Assign action that stores the value into an OSB variable named id. Using this type of XPath statement you can query for any variables by name, without regard to their order in the parameter list. The Log statement is there simply to provided some debugging info in the OSB server console. The response pipeline contains a Replace action that constructs the response document for our rest service. Most of the response data is static, but the ID field that is returned is set based upon the query-parameter that was passed into the REST proxy. Testing the REST service with a browser is very simple. Just point it to the URL I showed you earlier. However, the browser is really only good for testing simple GET services. The OSB Test Console provides a much more robust environment for testing REST services, no matter which HTTP verb is used. Lets see how to use the Test Console to test this GET service. Open the OSB we console (http://localhost:7001/sbconsole) and log in as the administrator. Click on the Test Console icon (the little "bug") next to the Products proxy service in the SimpleREST project. This will bring up the Test Console browser window. Unlike SOAP services, we don't need to do much work in the request document because all of our request information will be encoded into the URI of the service itself. Belore the Request Document section of the Test Console is the Transport section. Expand that section and modify the query-parameters and http-method fields as shown in the next screenshot. By default, the query-parameters field will have the tags already defined. You just need to add a tag for each parameter you want to pass into the service. For out purposes with this particular call, you'd set the quer-parameters field as follows: <tp:parameter name="id" value="1234" /> </tp:query-parameters> Now you are ready to push the Execute button to see the results of the call. That covers the process for parsing query parameters using OSB. However, what if you have an OSB proxy service that needs to consume a REST-ful service? How do you tell OSB to pass the query parameters to the external service? In the sample code you will see a 2nd proxy service called CallREST. It invokes the Products proxy service in exactly the same way it would invoke any REST service. Our CallREST proxy service is defined as a SOAP service. This help to demonstrate OSBs ability to mediate between service consumers and service providers, decreasing the level of coupling between them. If you examine the message flow for the CallREST proxy service, you'll see that it uses an Operational branch to isolate processing logic for each operation that is defined by the SOAP service. We will focus on the getProductDetail branch, that calls the Products REST service using the HTTP GET verb. Expand the getProduct pipeline and the stage node that it contains. There is a single Assign statement that simply extracts the productID from the SOA request and stores it in a local OSB variable. Nothing suprising here. The real work (and the real learning) occurs in the Route node below the pipeline. The first thing to learn is that you need to use a route node when calling REST services, not a Service Callout or a Publish action. That's because only the Routing action has access to the $oubound variable, especially when invoking a business service. The Routing action contains 3 Insert actions. The first Insert action shows how to specify the HTTP verb as a GET. The second insert action simply inserts the XML node into the request. This element does not exist in the request by default, so we need to add it manually. Now that we have the element defined in our outbound request, we can fill it with the parameters that we want to send to the REST service. In the following screenshot you can see how we define the id parameter based on the productID value we extracted earlier from the SOAP request document. That expression will look for the parameter that has the name id and extract its value. That's all there is to it. You now know how to take full advantage of the query parameter parsing capability of the Oracle Service Bus 11gR1PS2. Download the sample source code here: rest2_sbconfig.jar Ubuntu and the OSB Test Console You will get an error when you try to use the Test Console with the Oracle Service Bus, using Ubuntu (or likely a number of other Linux distros also). The error (shown below) will state that the Test Console service is not running. The fix for this problem is quite simple. Open up the WebLogic Server administrator console (usually running at http://localhost:7001/console). In the Domain Structure window on the left side of the console, select the Servers entry under the Environment heading. The select the Admin Server entry in the main window of the console. By default, you should be viewing the Configuration tabe and the General sub tab in the main window. Look for the Listen Address field. By default it is blank, which means it is listening on all interfaces. For some reason Ubuntu doesn't like this. So enter a value like localhost or the specific IP address or DNS name for your server (usually its just localhost in development envirionments). Save your changes and restart the server. Your Test Console will now work correctly.

    Read the article

  • JavaScript Class Patterns

    - by Liam McLennan
    To write object-oriented programs we need objects, and likely lots of them. JavaScript makes it easy to create objects: var liam = { name: "Liam", age: Number.MAX_VALUE }; But JavaScript does not provide an easy way to create similar objects. Most object-oriented languages include the idea of a class, which is a template for creating objects of the same type. From one class many similar objects can be instantiated. Many patterns have been proposed to address the absence of a class concept in JavaScript. This post will compare and contrast the most significant of them. Simple Constructor Functions Classes may be missing but JavaScript does support special constructor functions. By prefixing a call to a constructor function with the ‘new’ keyword we can tell the JavaScript runtime that we want the function to behave like a constructor and instantiate a new object containing the members defined by that function. Within a constructor function the ‘this’ keyword references the new object being created -  so a basic constructor function might be: function Person(name, age) { this.name = name; this.age = age; this.toString = function() { return this.name + " is " + age + " years old."; }; } var john = new Person("John Galt", 50); console.log(john.toString()); Note that by convention the name of a constructor function is always written in Pascal Case (the first letter of each word is capital). This is to distinguish between constructor functions and other functions. It is important that constructor functions be called with the ‘new’ keyword and that not constructor functions are not. There are two problems with the pattern constructor function pattern shown above: It makes inheritance difficult The toString() function is redefined for each new object created by the Person constructor. This is sub-optimal because the function should be shared between all of the instances of the Person type. Constructor Functions with a Prototype JavaScript functions have a special property called prototype. When an object is created by calling a JavaScript constructor all of the properties of the constructor’s prototype become available to the new object. In this way many Person objects can be created that can access the same prototype. An improved version of the above example can be written: function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { toString: function() { return this.name + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); In this version a single instance of the toString() function will now be shared between all Person objects. Private Members The short version is: there aren’t any. If a variable is defined, with the var keyword, within the constructor function then its scope is that function. Other functions defined within the constructor function will be able to access the private variable, but anything defined outside the constructor (such as functions on the prototype property) won’t have access to the private variable. Any variables defined on the constructor are automatically public. Some people solve this problem by prefixing properties with an underscore and then not calling those properties by convention. function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { _getName: function() { return this.name; }, toString: function() { return this._getName() + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); Note that the _getName() function is only private by convention – it is in fact a public function. Functional Object Construction Because of the weirdness involved in using constructor functions some JavaScript developers prefer to eschew them completely. They theorize that it is better to work with JavaScript’s functional nature than to try and force it to behave like a traditional class-oriented language. When using the functional approach objects are created by returning them from a factory function. An excellent side effect of this pattern is that variables defined with the factory function are accessible to the new object (due to closure) but are inaccessible from anywhere else. The Person example implemented using the functional object construction pattern is: var personFactory = function(name, age) { var privateVar = 7; return { toString: function() { return name + " is " + age * privateVar / privateVar + " years old."; } }; }; var john2 = personFactory("John Lennon", 40); console.log(john2.toString()); Note that the ‘new’ keyword is not used for this pattern, and that the toString() function has access to the name, age and privateVar variables because of closure. This pattern can be extended to provide inheritance and, unlike the constructor function pattern, it supports private variables. However, when working with JavaScript code bases you will find that the constructor function is more common – probably because it is a better approximation of mainstream class oriented languages like C# and Java. Inheritance Both of the above patterns can support inheritance but for now, favour composition over inheritance. Summary When JavaScript code exceeds simple browser automation object orientation can provide a powerful paradigm for controlling complexity. Both of the patterns presented in this article work – the choice is a matter of style. Only one question still remains; who is John Galt?

    Read the article

  • JavaScript Class Patterns

    - by Liam McLennan
    To write object-oriented programs we need objects, and likely lots of them. JavaScript makes it easy to create objects: var liam = { name: "Liam", age: Number.MAX_VALUE }; But JavaScript does not provide an easy way to create similar objects. Most object-oriented languages include the idea of a class, which is a template for creating objects of the same type. From one class many similar objects can be instantiated. Many patterns have been proposed to address the absence of a class concept in JavaScript. This post will compare and contrast the most significant of them. Simple Constructor Functions Classes may be missing but JavaScript does support special constructor functions. By prefixing a call to a constructor function with the ‘new’ keyword we can tell the JavaScript runtime that we want the function to behave like a constructor and instantiate a new object containing the members defined by that function. Within a constructor function the ‘this’ keyword references the new object being created -  so a basic constructor function might be: function Person(name, age) { this.name = name; this.age = age; this.toString = function() { return this.name + " is " + age + " years old."; }; } var john = new Person("John Galt", 50); console.log(john.toString()); Note that by convention the name of a constructor function is always written in Pascal Case (the first letter of each word is capital). This is to distinguish between constructor functions and other functions. It is important that constructor functions be called with the ‘new’ keyword and that not constructor functions are not. There are two problems with the pattern constructor function pattern shown above: It makes inheritance difficult The toString() function is redefined for each new object created by the Person constructor. This is sub-optimal because the function should be shared between all of the instances of the Person type. Constructor Functions with a Prototype JavaScript functions have a special property called prototype. When an object is created by calling a JavaScript constructor all of the properties of the constructor’s prototype become available to the new object. In this way many Person objects can be created that can access the same prototype. An improved version of the above example can be written: function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { toString: function() { return this.name + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); In this version a single instance of the toString() function will now be shared between all Person objects. Private Members The short version is: there aren’t any. If a variable is defined, with the var keyword, within the constructor function then its scope is that function. Other functions defined within the constructor function will be able to access the private variable, but anything defined outside the constructor (such as functions on the prototype property) won’t have access to the private variable. Any variables defined on the constructor are automatically public. Some people solve this problem by prefixing properties with an underscore and then not calling those properties by convention. function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { _getName: function() { return this.name; }, toString: function() { return this._getName() + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); Note that the _getName() function is only private by convention – it is in fact a public function. Functional Object Construction Because of the weirdness involved in using constructor functions some JavaScript developers prefer to eschew them completely. They theorize that it is better to work with JavaScript’s functional nature than to try and force it to behave like a traditional class-oriented language. When using the functional approach objects are created by returning them from a factory function. An excellent side effect of this pattern is that variables defined with the factory function are accessible to the new object (due to closure) but are inaccessible from anywhere else. The Person example implemented using the functional object construction pattern is: var john = new Person("John Galt", 50); console.log(john.toString()); var personFactory = function(name, age) { var privateVar = 7; return { toString: function() { return name + " is " + age * privateVar / privateVar + " years old."; } }; }; var john2 = personFactory("John Lennon", 40); console.log(john2.toString()); Note that the ‘new’ keyword is not used for this pattern, and that the toString() function has access to the name, age and privateVar variables because of closure. This pattern can be extended to provide inheritance and, unlike the constructor function pattern, it supports private variables. However, when working with JavaScript code bases you will find that the constructor function is more common – probably because it is a better approximation of mainstream class oriented languages like C# and Java. Inheritance Both of the above patterns can support inheritance but for now, favour composition over inheritance. Summary When JavaScript code exceeds simple browser automation object orientation can provide a powerful paradigm for controlling complexity. Both of the patterns presented in this article work – the choice is a matter of style. Only one question still remains; who is John Galt?

    Read the article

  • Caveats with the runAllManagedModulesForAllRequests in IIS 7/8

    - by Rick Strahl
    One of the nice enhancements in IIS 7 (and now 8) is the ability to be able to intercept non-managed - ie. non ASP.NET served - requests from within ASP.NET managed modules. This opened up a ton of new functionality that could be applied across non-managed content using .NET code. I thought I had a pretty good handle on how IIS 7's Integrated mode pipeline works, but when I put together some samples last tonight I realized that the way that managed and unmanaged requests fire into the pipeline is downright confusing especially when it comes to the runAllManagedModulesForAllRequests attribute. There are a number of settings that can affect whether a managed module receives non-ASP.NET content requests such as static files or requests from other frameworks like PHP or ASP classic, and this is topic of this blog post. Native and Managed Modules The integrated mode IIS pipeline for IIS 7 and later - as the name suggests - allows for integration of ASP.NET pipeline events in the IIS request pipeline. Natively IIS runs unmanaged code and there are a host of native mode modules that handle the core behavior of IIS. If you set up a new IIS site or application without managed code support only the native modules are supported and fired without any interaction between native and managed code. If you use the Integrated pipeline with managed code enabled however things get a little more confusing as there both native modules and .NET managed modules can fire against the same IIS request. If you open up the IIS Modules dialog you see both managed and unmanaged modules. Unmanaged modules point at physical files on disk, while unmanaged modules point at .NET types and files referenced from the GAC or the current project's BIN folder. Both native and managed modules can co-exist and execute side by side and on the same request. When running in IIS 7 the IIS pipeline actually instantiates a the ASP.NET  runtime (via the System.Web.PipelineRuntime class) which unlike the core HttpRuntime classes in ASP.NET receives notification callbacks when IIS integrated mode events fire. The IIS pipeline is smart enough to detect whether managed handlers are attached and if they're none these notifications don't fire, improving performance. The good news about all of this for .NET devs is that ASP.NET style modules can be used for just about every kind of IIS request. All you need to do is create a new Web Application and enable ASP.NET on it, and then attach managed handlers. Handlers can look at ASP.NET content (ie. ASPX pages, MVC, WebAPI etc. requests) as well as non-ASP.NET content including static content like HTML files, images, javascript and css resources etc. It's very cool that this capability has been surfaced. However, with that functionality comes a lot of responsibility. Because every request passes through the ASP.NET pipeline if managed modules (or handlers) are attached there are possible performance implications that come with it. Running through the ASP.NET pipeline does add some overhead. ASP.NET and Your Own Modules When you create a new ASP.NET project typically the Visual Studio templates create the modules section like this: <system.webServer> <validation validateIntegratedModeConfiguration="false" /> <modules runAllManagedModulesForAllRequests="true" > </modules> </system.webServer> Specifically the interesting thing about this is the runAllManagedModulesForAllRequest="true" flag, which seems to indicate that it controls whether any registered modules always run, even when the value is set to false. Realistically though this flag does not control whether managed code is fired for all requests or not. Rather it is an override for the preCondition flag on a particular handler. With the flag set to the default true setting, you can assume that pretty much every IIS request you receive ends up firing through your ASP.NET module pipeline and every module you have configured is accessed even by non-managed requests like static files. In other words, your module will have to handle all requests. Now so far so obvious. What's not quite so obvious is what happens when you set the runAllManagedModulesForAllRequest="false". You probably would expect that immediately the non-ASP.NET requests no longer get funnelled through the ASP.NET Module pipeline. But that's not what actually happens. For example, if I create a module like this:<add name="SharewareModule" type="HowAspNetWorks.SharewareMessageModule" /> by default it will fire against ALL requests regardless of the runAllManagedModulesForAllRequests flag. Even if the value runAllManagedModulesForAllRequests="false", the module is fired. Not quite expected. So what is the runAllManagedModulesForAllRequests really good for? It's essentially an override for managedHandler preCondition. If I declare my handler in web.config like this:<add name="SharewareModule" type="HowAspNetWorks.SharewareMessageModule" preCondition="managedHandler" /> and the runAllManagedModulesForAllRequests="false" my module only fires against managed requests. If I switch the flag to true, now my module ends up handling all IIS requests that are passed through from IIS. The moral of the story here is that if you intend to only look at ASP.NET content, you should always set the preCondition="managedHandler" attribute to ensure that only managed requests are fired on this module. But even if you do this, realize that runAllManagedModulesForAllRequests="true" can override this setting. runAllManagedModulesForAllRequests and Http Application Events Another place the runAllManagedModulesForAllRequest attribute affects is the Global Http Application object (typically in global.asax) and the Application_XXXX events that you can hook up there. So while the events there are dynamically hooked up to the application class, they basically behave as if they were set with the preCodition="managedHandler" configuration switch. The end result is that if you have runAllManagedModulesForAllRequests="true" you'll see every Http request passed through the Application_XXXX events, and you only see ASP.NET requests with the flag set to "false". What's all that mean? Configuring an application to handle requests for both ASP.NET and other content requests can be tricky especially if you need to mix modules that might require both. Couple of things are important to remember. If your module doesn't need to look at every request, by all means set a preCondition="managedHandler" on it. This will at least allow it to respond to the runAllManagedModulesForAllRequests="false" flag and then only process ASP.NET requests. Look really carefully to see whether you actually need runAllManagedModulesForAllRequests="true" in your applications as set by the default new project templates in Visual Studio. Part of the reason, this is the default because it was required for the initial versions of IIS 7 and ASP.NET 2 in order to handle MVC extensionless URLs. However, if you are running IIS 7 or later and .NET 4.0 you can use the ExtensionlessUrlHandler instead to allow you MVC functionality without requiring runAllManagedModulesForAllRequests="true": <handlers> <remove name="ExtensionlessUrlHandler-Integrated-4.0" /> <add name="ExtensionlessUrlHandler-Integrated-4.0" path="*." verb="GET,HEAD,POST,DEBUG,PUT,DELETE,PATCH,OPTIONS" type="System.Web.Handlers.TransferRequestHandler" preCondition="integratedMode,runtimeVersionv4.0" /> </handlers> Oddly this is the default for Visual Studio 2012 MVC template apps, so I'm not sure why the default template still adds runAllManagedModulesForAllRequests="true" is - it should be enabled only if there's a specific need to access non ASP.NET requests. As a side note, it's interesting that when you access a static HTML resource, you can actually write into the Response object and get the output to show, which is trippy. I haven't looked closely to see how this works - whether ASP.NET just fires directly into the native output stream or whether the static requests are re-routed directly through the ASP.NET pipeline once a managed code module is detected. This doesn't work for all non ASP.NET resources - for example, I can't do the same with ASP classic requests, but it makes for an interesting demo when injecting HTML content into a static HTML page :-) Note that on the original Windows Server 2008 and Vista (IIS 7.0) you might need a HotFix in order for ExtensionLessUrlHandler to work properly for MVC projects. On my live server I needed it (about 6 months ago), but others have observed that the latest service updates have integrated this functionality and the hotfix is not required. On IIS 7.5 and later I've not needed any patches for things to just work. Plan for non-ASP.NET Requests It's important to remember that if you write a .NET Module to run on IIS 7, there's no way for you to prevent non-ASP.NET requests from hitting your module. So make sure you plan to support requests to extensionless URLs, to static resources like files. Luckily ASP.NET creates a full Request and full Response object for you for non ASP.NET content. So even for static files and even for ASP classic for example, you can look at Request.FilePath or Request.ContentType (in post handler pipeline events) to determine what content you are dealing with. As always with Module design make sure you check for the conditions in your code that make the module applicable and if a filter fails immediately exit - minimize the code that runs if your module doesn't need to process the request.© Rick Strahl, West Wind Technologies, 2005-2012Posted in IIS7   ASP.NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • C# async and actors

    - by Alex.Davies
    If you read my last post about async, you might be wondering what drove me to write such odd code in the first place. The short answer is that .NET Demon is written using NAct Actors. Actors are an old idea, which I believe deserve a renaissance under C# 5. The idea is to isolate each stateful object so that only one thread has access to its state at any point in time. That much should be familiar, it's equivalent to traditional lock-based synchronization. The different part is that actors pass "messages" to each other rather than calling a method and waiting for it to return. By doing that, each thread can only ever be holding one lock. This completely eliminates deadlocks, my least favourite concurrency problem. Most people who use actors take this quite literally, and there are plenty of frameworks which help you to create message classes and loops which can receive the messages, inspect what type of message they are, and process them accordingly. But I write C# for a reason. Do I really have to choose between using actors and everything I love about object orientation in C#? Type safety Interfaces Inheritance Generics As it turns out, no. You don't need to choose between messages and method calls. A method call makes a perfectly good message, as long as you don't wait for it to return. This is where asynchonous methods come in. I have used NAct for a while to wrap my objects in a proxy layer. As long as I followed the rule that methods must always return void, NAct queued up the call for later, and immediately released my thread. When I needed to get information out of other actors, I could use EventHandlers and callbacks (continuation passing style, for any CS geeks reading), and NAct would call me back in my isolated thread without blocking the actor that raised the event. Using callbacks looks horrible though. To remind you: m_BuildControl.FilterEnabledForBuilding(    projects,    enabledProjects = m_OutOfDateProjectFinder.FilterNeedsBuilding(        enabledProjects,             newDirtyProjects =             {                 ....... Which is why I'm really happy that NAct now supports async methods. Now, methods are allowed to return Task rather than just void. I can await those methods, and C# 5 will turn the rest of my method into a continuation for me. NAct will run the other method in the other actor's context, but will make sure that when my method resumes, we're back in my context. Neither actor was ever blocked waiting for the other one. Apart from when they were actually busy doing something, they were responsive to concurrent messages from other sources. To be fair, you could use async methods with lock statements to achieve exactly the same thing, but it's ugly. Here's a realistic example of an object that has a queue of data that gets passed to another object to be processed: class QueueProcessor {    private readonly ItemProcessor m_ItemProcessor = ...     private readonly object m_Sync = new object();    private Queue<object> m_DataQueue = ...    private List<object> m_Results = ...     public async Task ProcessOne() {         object data = null;         lock (m_Sync)         {             data = m_DataQueue.Dequeue();         }         var processedData = await m_ItemProcessor.ProcessData(data); lock (m_Sync)         {             m_Results.Add(processedData);         }     } } We needed to write two lock blocks, one to get the data to process, one to store the result. The worrying part is how easily we could have forgotten one of the locks. Compare that to the version using NAct: class QueueProcessorActor : IActor { private readonly ItemProcessor m_ItemProcessor = ... private Queue<object> m_DataQueue = ... private List<object> m_Results = ... public async Task ProcessOne()     {         // We are an actor, it's always thread-safe to access our private fields         var data = m_DataQueue.Dequeue();         var processedData = await m_ItemProcessor.ProcessData(data);         m_Results.Add(processedData);     } } You don't have to explicitly lock anywhere, NAct ensures that your code will only ever run on one thread, because it's an actor. Either way, async is definitely better than traditional synchronous code. Here's a diagram of what a typical synchronous implementation might do: The left side shows what is running on the thread that has the lock required to access the QueueProcessor's data. The red section is where that lock is held, but doesn't need to be. Contrast that with the async version we wrote above: Here, the lock is released in the middle. The QueueProcessor is free to do something else. Most importantly, even if the ItemProcessor sometimes calls the QueueProcessor, they can never deadlock waiting for each other. So I thoroughly recommend you use async for all code that has to wait a while for things. And if you find yourself writing lots of lock statements, think about using actors as well. Using actors and async together really takes the misery out of concurrent programming.

    Read the article

  • Nginx no longer servers uwsgi application behind HAProxy - Looks for static file instead

    - by Ralph
    We implemented our web application using web2py. It consists of several modules offering a REST API at various resources (e.g. /dids, /replicas, ...). The API is used by clients implementing requests.py. My problem is that our web app works fine if it's behind HAProxy and hosted by Apache using mod_wsgi. It also works fine if the clients interact with nginx directly. It doesn't work though when using HAProxy in front of nginx. My guess is that HAProxy somehow modifies the request and thus nginx behaves differently i.e. looking for a static file instead of calling the WSGI container. Unfortunately I can't figure out what's exactly going (wr)on(g). Here are the relevant config sections of these three component's config files. At least I guess they are interesting. If you miss anything, please let me know. 1) haproxy.conf frontend app-lb bind loadbalancer:443 ssl crt /etc/grid-security/hostcertkey.pem default_backend nginx-servers mode http backend nginx-servers balance leastconn option forwardfor server nginx-01 nginx-server-int-01.domain.com:80 check 2) nginx.conf: sendfile off; #tcp_nopush on; keepalive_timeout 65; include /etc/nginx/conf.d/*.conf; server { server_name nginx-server-int-01.domain.com; root /path/to/app/; location / { uwsgi_pass unix:///tmp/app.sock; include uwsgi_params; uwsgi_read_timeout 600; # Requests can run for a serious long time } 3) uwsgi.ini [uwsgi] chdir = /path/to/app/ chmod-socket = 777 no-default-app = True socket = /tmp/app.sock manage-script-name = True mount = /dids=did.py mount = /replicas=replica.py callable = application Now when I let my clients go against nginx-server-int-01.domain.com everything is fine. In the access.log of nginx lines like these are appearing: 128.142.XXX.XX0 - - [23/Aug/2014:01:29:20 +0200] "POST /dids/attachments HTTP/1.1" 201 17 "-" "python-requests/2.3.0 CPython/2.6.6 Linux/2.6.32-358.23.2.el6.x86_64" "-" 128.142.XXX.XX0 - - [23/Aug/2014:01:29:20 +0200] "POST /dids/attachments HTTP/1.1" 201 17 "-" "python-requests/2.3.0 CPython/2.6.6 Linux/2.6.32-358.23.2.el6.x86_64" "-" 128.142.XXX.XX0 - - [23/Aug/2014:01:29:20 +0200] "POST /dids/user.ogueta/cnt_mc12_8TeV.16304.stream_name_too_long.other.notype.004202218365415e990b9997ea859f20.user/dids HTTP/1.1" 201 17 "-" "python-requests/2.3.0 CPython/2.6.6 Linux/2.6.32-358.23.2.el6.x86_64" "-" 128.142.XXX.XX0 - - [23/Aug/2014:01:29:20 +0200] "POST /replicas/list HTTP/1.1" 200 5282 "-" "python-requests/2.3.0 CPython/2.6.6 Linux/2.6.32-358.23.2.el6.x86_64" "-" 128.142.XXX.XX0 - - [23/Aug/2014:01:29:20 +0200] "POST /replicas/list HTTP/1.1" 200 5094 "-" "python-requests/2.3.0 CPython/2.6.6 Linux/2.6.32-358.23.2.el6.x86_64" "-" 128.142.XXX.XX0 - - [23/Aug/2014:01:29:20 +0200] "POST /replicas/list HTTP/1.1" 200 528 "-" "python-requests/2.3.0 CPython/2.6.6 Linux/2.6.32-358.23.2.el6.x86_64" "-" 128.142.XXX.XX0 - - [23/Aug/2014:01:29:21 +0200] "GET /dids/mc13_14TeV/dids/search?project=mc13_14TeV&stream_name=%2Adummy&type=dataset&datatype=NTUP_SMDYMUMU HTTP/1.1" 401 73 "-" "python-requests/2.3.0 CPython/2.6.6 Linux/2.6.32-358.23.2.el6.x86_64" "-" 128.142.XXX.XX0 - - [23/Aug/2014:01:29:21 +0200] "POST /replicas/list HTTP/1.1" 200 713 "-" "python-requests/2.3.0 CPython/2.6.6 Linux/2.6.32-358.23.2.el6.x86_64" "-" 128.142.XXX.XX0 - - [23/Aug/2014:01:29:21 +0200] "POST /dids/attachments HTTP/1.1" 201 17 "-" "python-requests/2.3.0 CPython/2.6.6 Linux/2.6.32-358.23.2.el6.x86_64" "-" But when I switch the clients to go against HAProxy (loadbalancer.domain.com:443), the error.log of nginx shows lines like these: 2014/08/23 01:26:01 [error] 1705#0: *21231 open() "/usr/share/nginx/html/dids/attachments" failed (2: No such file or directory), client: 128.142.XXX.XX1, server: localhost, request: "POST /dids/attachments HTTP/1.1", host: "loadbalancer.domain.com" 2014/08/23 01:26:02 [error] 1705#0: *21232 open() "/usr/share/nginx/html/replicas/list" failed (2: No such file or directory), client: 128.142.XXX.XX1, server: localhost, request: "POST /replicas/list HTTP/1.1", host: "loadbalancer.domain.com" 2014/08/23 01:26:02 [error] 1705#0: *21233 open() "/usr/share/nginx/html/dids/attachments" failed (2: No such file or directory), client: 128.142.XXX.XX1, server: localhost, request: "POST /dids/attachments HTTP/1.1", host: "loadbalancer.domain.com" 2014/08/23 01:26:02 [error] 1705#0: *21234 open() "/usr/share/nginx/html/replicas/list" failed (2: No such file or directory), client: 128.142.XXX.XX1, server: localhost, request: "POST /replicas/list HTTP/1.1", host: "loadbalancer.domain.com" 2014/08/23 01:26:02 [error] 1705#0: *21235 open() "/usr/share/nginx/html/dids/attachments" failed (2: No such file or directory), client: 128.142.XXX.XXX, server: localhost, request: "POST /dids/attachments HTTP/1.1", host: "loadbalancer" 2014/08/23 01:26:02 [error] 1705#0: *21238 open() "/usr/share/nginx/html/replicas/list" failed (2: No such file or directory), client: 128.142.XXX.XXX, server: localhost, request: "POST /replicas/list HTTP/1.1", host: "loadbalancer.domain.com" 2014/08/23 01:26:02 [error] 1705#0: *21239 open() "/usr/share/nginx/html/dids/attachments" failed (2: No such file or directory), client: 128.142.XXX.XXX, server: localhost, request: "POST /dids/attachments HTTP/1.1", host: "loadbalancer.domain.com" 2014/08/23 01:26:02 [error] 1705#0: *21242 open() "/usr/share/nginx/html/replicas/list" failed (2: No such file or directory), client: 128.142.XXX.XXX, server: localhost, request: "POST /replicas/list HTTP/1.1", host: "loadbalancer.domain.com" 2014/08/23 01:26:02 [error] 1705#0: *21244 open() "/usr/share/nginx/html/dids/attachments" failed (2: No such file or directory), client: 128.142.XXX.XXX, server: localhost, request: "POST /dids/attachments HTTP/1.1", host: "loadbalancer.domain.com" As you can see, that request looks the same, only the client IP changed, from the client's host to the one from loadbalancer.domain.com. But due to what ever reasons ngxin seems to assume that it is a static file to be served which eventually results in the file not found message. I searched the web for multiple hours already, but without much luck so far. Any help is very much appreciated. Cheers, Ralph

    Read the article

  • jQuery Templates, Data Link

    - by Renso
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Query Templates, Data Link, and Globalization I am sure you must have read Scott Guthrie’s blog post about jQuery support and officially supporting jQuery's templating, data linking and globalization, if not here it is: jQuery Templating Since we are an open source shop and use jQuery and jQuery plugins extensively to say the least, decided to look into the templating a bit and see what data linking is all about. For those not familiar with those terms here is the summary, plenty of material out there on what it is, but here is what in my experience it means: jQuery Templating: A templating engine that allows you to specify a client-side template where you indicate which properties/tags you want dynamically updated. You in a sense specify which parts of the html is dynamic and since it is pluggable you are able to use tools data jQuery data linking and others to let it sync up your template with data. What makes it more powerful is that you can easily work with rows of data, adding and removing rows. Once the template has been generated, which you do dynamically on a client-side event, you then append/inject the resulting template somewhere in your DOM, like for example you would get a JSON object from the database, map it to your template, it populates the template with your data in the indicated places, and then let’s say for example append it to a row in a table. I have not found it that useful for lets say a single record of data since you could easily just get a partial view from the server via an html type ajax call. It really shines when you dynamically add/remove rows from a list in the DOM. I have not found an alternative that meets the functionality of the jQuery template and helps of course that Microsoft officially supports it. In future versions of the jQuery plug-in it may even ship as part of the standard jQuery library and with future versions of Visual Studio. jQuery Data Linking: In short I was fascinated by it initially by how with one line of code I can sync up my JSON object with my form elements. That's where my enthusiasm stopped. It was one-line to let is deal with syncing up your form with your JSON object, but it is not bidirectional as they state and I tried all the work arounds they suggested and none of them work. The problem is that when you update your JSON object it DOES NOT sync it up with your form. In an example, accounts are being edited client side by selecting the account from a list by clicking on the row, it then fetches the entire account JSON object via ajax json-type call and then refreshes the form with the account’s details from the new JSON object. What is the use of syncing up my JSON with the form if I still have to programmatically sync up my new JSON object with each DOM property?! So you may ask: “what is the alternative”? Good question and the same one I was pondering, maybe I can just use it for keeping my from n sync with my JSON object so I can post that JSON object back to the server and update my database. That’s when I discovered Knockout: Knockout It addresses the issues mentioned above and also supports event handling through the observer pattern. Not wanting to go into detail here, Steve Sanderson, the creator of Knockout, has already done a terrific job of that, thanks Steve for a great plug-in! Best of all it integrates perfectly with the jQuery Templating engine as well. I have not found an alternative to this plugin that supports the depth and width of functionality and would recommend it to anyone. The only drawback is the embedded html attributes (data-bind=””) tags that you have to add to the HTML, in my opinion tying your behavior to your HTML, where I like to separate behavior from HTML as well as CSS, so the HTML is purely to define content, not styling or behavior. But there are plusses to this as well and also a nifty work around to this that I will just shortly mention here with an example. Instead of data binding an html tag with knockout event handling like so:  <%=Html.TextBox("PrepayDiscount", String.Empty, new { @class = "number" })%>   Do: <%=Html.DataBoundTextBox("PrepayDiscount", String.Empty, new { @class = "number" })%>   The html extension above then takes care of the internals and you could then swap Knockout for something else if you want to inside the extension and keep the HTML plugin agnostic. Here is what the extension looks like, you can easily build a whole library to support all kinds of data binding options from this:      public static class HtmlExtensions       {         public static MvcHtmlString DataBoundTextBox(this HtmlHelper helper, string name, object value, object htmlAttributes)         {             var dic = new RouteValueDictionary(htmlAttributes);             dic.Add("data-bind", String.Format("value: {0}", name));             return helper.TextBox(name, value, dic);         }       }   Hope this helps in making a decision when and where to consider jQuery templating, data linking and Knockout.

    Read the article

  • HttpWebRequest: How to find a postal code at Canada Post through a WebRequest with x-www-form-enclos

    - by Will Marcouiller
    I'm currently writing some tests so that I may improve my skills with the Internet interaction through Windows Forms. One of those tests is to find a postal code which should be returned by Canada Post website. My default URL setting is set to: http://www.canadapost.ca/cpotools/apps/fpc/personal/findByCity?execution=e4s1 The required form fields are: streetNumber, streetName, city, province The contentType is "application/x-www-form-enclosed" EDIT: Please consider the value "application/x-www-form-encoded" instead of point 3 value as the contentType. (Thanks EricLaw-MSFT!) The result I get is not the result expected. I get the HTML source code of the page where I could manually enter the information to find the postal code, but not the HTML source code with the found postal code. Any idea of what I'm doing wrong? Shall I consider going the XML way? Is it first of all possible to search on Canada Post anonymously? Here's a code sample for better description: public static string FindPostalCode(ICanadadianAddress address) { var postData = string.Concat(string.Format("&streetNumber={0}", address.StreetNumber) , string.Format("&streetName={0}", address.StreetName) , string.Format("&city={0}", address.City) , string.Format("&province={0}", address.Province)); var encoding = new ASCIIEncoding(); byte[] postDataBytes = encoding.GetBytes(postData); request = (HttpWebRequest)WebRequest.Create(DefaultUrlSettings); request.ImpersonationLevel = System.Security.Principal.TokenImpersonationLevel.Anonymous; request.Container = new CookieContainer(); request.Timeout = 10000; request.ContentType = contentType; request.ContentLength = postDataBytes.LongLength; request.Method = @"post"; var senderStream = new StreamWriter(request.GetRequestStream()); senderStream.Write(postDataBytes, 0, postDataBytes.Length); senderStream.Close(); string htmlResponse = new StreamReader(request.GetResponse().GetResponseStream()).ReadToEnd(); return processedResult(htmlResponse); // Processing the HTML source code parsing, etc. } I seem stuck in a bottle neck in my point of view. I find no way out to the desired result. EDIT: There seems to have to parameters as for the ContentType of this site. Let me explain. There's one with the "meta"-variables which stipulates the following: meta http-equiv="Content-Type" content="application/xhtml+xml, text/xml, text/html; charset=utf-8" And another one later down the code that is read as: form id="fpcByAdvancedSearch:fpcSearch" name="fpcByAdvancedSearch:fpcSearch" method="post" action="/cpotools/apps/fpc/personal/findByCity?execution=e1s1" enctype="application/x-www-form-urlencoded" My question is the following: With which one do I have to stick? Let me guess, the first ContentType is to be considered as the second is only for another request to a function or so when the data is posted? EDIT: As per request, the closer to the solution I am is listed under this question: WebRequest: How to find a postal code using a WebRequest against this ContentType=”application/xhtml+xml, text/xml, text/html; charset=utf-8”? Thanks for any help! :-)

    Read the article

  • BasicAuthProvider in ServiceStack

    - by Per
    I've got an issue with the BasicAuthProvider in ServiceStack. POST-ing to the CredentialsAuthProvider (/auth/credentials) is working fine. The problem is that when GET-ing (in Chrome): http://foo:pwd@localhost:81/tag/string/list the following is the result Handler for Request not found: Request.HttpMethod: GET Request.HttpMethod: GET Request.PathInfo: /login Request.QueryString: System.Collections.Specialized.NameValueCollection Request.RawUrl: /login?redirect=http%3a%2f%2flocalhost%3a81%2ftag%2fstring%2flist which tells me that it redirected me to /login instead of serving the /tag/... request. Here's the entire code for my AppHost: public class AppHost : AppHostHttpListenerBase, IMessageSubscriber { private ITagProvider myTagProvider; private IMessageSender mySender; private const string UserName = "foo"; private const string Password = "pwd"; public AppHost( TagConfig config, IMessageSender sender ) : base( "BM App Host", typeof( AppHost ).Assembly ) { myTagProvider = new TagProvider( config ); mySender = sender; } public class CustomUserSession : AuthUserSession { public override void OnAuthenticated( IServiceBase authService, IAuthSession session, IOAuthTokens tokens, System.Collections.Generic.Dictionary<string, string> authInfo ) { authService.RequestContext.Get<IHttpRequest>().SaveSession( session ); } } public override void Configure( Funq.Container container ) { Plugins.Add( new MetadataFeature() ); container.Register<BeyondMeasure.WebAPI.Services.Tags.ITagProvider>( myTagProvider ); container.Register<IMessageSender>( mySender ); Plugins.Add( new AuthFeature( () => new CustomUserSession(), new AuthProvider[] { new CredentialsAuthProvider(), //HTML Form post of UserName/Password credentials new BasicAuthProvider(), //Sign-in with Basic Auth } ) ); container.Register<ICacheClient>( new MemoryCacheClient() ); var userRep = new InMemoryAuthRepository(); container.Register<IUserAuthRepository>( userRep ); string hash; string salt; new SaltedHash().GetHashAndSaltString( Password, out hash, out salt ); // Create test user userRep.CreateUserAuth( new UserAuth { Id = 1, DisplayName = "DisplayName", Email = "[email protected]", UserName = UserName, FirstName = "FirstName", LastName = "LastName", PasswordHash = hash, Salt = salt, }, Password ); } } Could someone please tell me what I'm doing wrong with either the SS configuration or how I am calling the service, i.e. why does it not accept the supplied user/pwd? Update1: Request/Response captured in Fiddler2when only BasicAuthProvider is used. No Auth header sent in the request, but also no Auth header in the response. GET /tag/string/AAA HTTP/1.1 Host: localhost:81 Connection: keep-alive User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Encoding: gzip,deflate,sdch Accept-Language: en-US,en;q=0.8,sv;q=0.6 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3 Cookie: ss-pid=Hu2zuD/T8USgvC8FinMC9Q==; X-UAId=1; ss-id=1HTqSQI9IUqRAGxM8vKlPA== HTTP/1.1 302 Found Location: /login?redirect=http%3a%2f%2flocalhost%3a81%2ftag%2fstring%2fAAA Server: Microsoft-HTTPAPI/2.0 X-Powered-By: ServiceStack/3,926 Win32NT/.NET Date: Sat, 10 Nov 2012 22:41:51 GMT Content-Length: 0 Update2 Request/Response with HtmlRedirect = null . SS now answers with the Auth header, which Chrome then issues a second request for and authentication succeeds GET http://localhost:81/tag/string/Abc HTTP/1.1 Host: localhost:81 Connection: keep-alive User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Encoding: gzip,deflate,sdch Accept-Language: en-US,en;q=0.8,sv;q=0.6 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3 Cookie: ss-pid=Hu2zuD/T8USgvC8FinMC9Q==; X-UAId=1; ss-id=1HTqSQI9IUqRAGxM8vKlPA== HTTP/1.1 401 Unauthorized Transfer-Encoding: chunked Server: Microsoft-HTTPAPI/2.0 X-Powered-By: ServiceStack/3,926 Win32NT/.NET WWW-Authenticate: basic realm="/auth/basic" Date: Sat, 10 Nov 2012 22:49:19 GMT 0 GET http://localhost:81/tag/string/Abc HTTP/1.1 Host: localhost:81 Connection: keep-alive Authorization: Basic Zm9vOnB3ZA== User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Encoding: gzip,deflate,sdch Accept-Language: en-US,en;q=0.8,sv;q=0.6 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3 Cookie: ss-pid=Hu2zuD/T8USgvC8FinMC9Q==; X-UAId=1; ss-id=1HTqSQI9IUqRAGxM8vKlPA==

    Read the article

  • claimsResponse Always Return Null

    - by Chirag Pandya
    hello i have a following code in asp.net. i have used DotNetOpenAuth.dll for openID. the code is under protected void openidValidator_ServerValidate(object source, ServerValidateEventArgs args) { // This catches common typos that result in an invalid OpenID Identifier. args.IsValid = Identifier.IsValid(args.Value); } protected void loginButton_Click(object sender, EventArgs e) { if (!this.Page.IsValid) { return; // don't login if custom validation failed. } try { using (OpenIdRelyingParty openid = this.createRelyingParty()) { IAuthenticationRequest request = openid.CreateRequest(this.openIdBox.Text); // This is where you would add any OpenID extensions you wanted // to include in the authentication request. ClaimsRequest objClmRequest = new ClaimsRequest(); objClmRequest.Email = DemandLevel.Request; objClmRequest.Country = DemandLevel.Request; request.AddExtension(objClmRequest); // Send your visitor to their Provider for authentication. request.RedirectToProvider(); } } catch (ProtocolException ex) { this.openidValidator.Text = ex.Message; this.openidValidator.IsValid = false; } } protected void Page_Load(object sender, EventArgs e) { this.openIdBox.Focus(); if (Request.QueryString["clearAssociations"] == "1") { Application.Remove("DotNetOpenAuth.OpenId.RelyingParty.OpenIdRelyingParty.ApplicationStore"); UriBuilder builder = new UriBuilder(Request.Url); builder.Query = null; Response.Redirect(builder.Uri.AbsoluteUri); } OpenIdRelyingParty openid = this.createRelyingParty(); var response = openid.GetResponse(); if (response != null) { switch (response.Status) { case AuthenticationStatus.Authenticated: // This is where you would look for any OpenID extension responses included // in the authentication assertion. var claimsResponse = response.GetExtension<ClaimsResponse>(); State.ProfileFields = claimsResponse; // Store off the "friendly" username to display -- NOT for username lookup State.FriendlyLoginName = response.FriendlyIdentifierForDisplay; // Use FormsAuthentication to tell ASP.NET that the user is now logged in, // with the OpenID Claimed Identifier as their username. FormsAuthentication.RedirectFromLoginPage(response.ClaimedIdentifier, false); break; case AuthenticationStatus.Canceled: this.loginCanceledLabel.Visible = true; break; case AuthenticationStatus.Failed: this.loginFailedLabel.Visible = true; break; // We don't need to handle SetupRequired because we're not setting // IAuthenticationRequest.Mode to immediate mode. ////case AuthenticationStatus.SetupRequired: //// break; } } } private OpenIdRelyingParty createRelyingParty() { OpenIdRelyingParty openid = new OpenIdRelyingParty(); int minsha, maxsha, minversion; if (int.TryParse(Request.QueryString["minsha"], out minsha)) { openid.SecuritySettings.MinimumHashBitLength = minsha; } if (int.TryParse(Request.QueryString["maxsha"], out maxsha)) { openid.SecuritySettings.MaximumHashBitLength = maxsha; } if (int.TryParse(Request.QueryString["minversion"], out minversion)) { switch (minversion) { case 1: openid.SecuritySettings.MinimumRequiredOpenIdVersion = ProtocolVersion.V10; break; case 2: openid.SecuritySettings.MinimumRequiredOpenIdVersion = ProtocolVersion.V20; break; default: throw new ArgumentOutOfRangeException("minversion"); } } return openid; } for above code i am always getting var claimsResponse = response.GetExtension<ClaimsResponse>(); i am always getting claimsResponse= null. what is the reason why it happen. is there any requirement which is required for openid like domain validation for RelyingParty?? please give me answer as soon as possible.

    Read the article

  • Passing multiple POST parameters to Web API Controller Methods

    - by Rick Strahl
    ASP.NET Web API introduces a new API for creating REST APIs and making AJAX callbacks to the server. This new API provides a host of new great functionality that unifies many of the features of many of the various AJAX/REST APIs that Microsoft created before it - ASP.NET AJAX, WCF REST specifically - and combines them into a whole more consistent API. Web API addresses many of the concerns that developers had with these older APIs, namely that it was very difficult to build consistent REST style resource APIs easily. While Web API provides many new features and makes many scenarios much easier, a lot of the focus has been on making it easier to build REST compliant APIs that are focused on resource based solutions and HTTP verbs. But  RPC style calls that are common with AJAX callbacks in Web applications, have gotten a lot less focus and there are a few scenarios that are not that obvious, especially if you're expecting Web API to provide functionality similar to ASP.NET AJAX style AJAX callbacks. RPC vs. 'Proper' REST RPC style HTTP calls mimic calling a method with parameters and returning a result. Rather than mapping explicit server side resources or 'nouns' RPC calls tend simply map a server side operation, passing in parameters and receiving a typed result where parameters and result values are marshaled over HTTP. Typically RPC calls - like SOAP calls - tend to always be POST operations rather than following HTTP conventions and using the GET/POST/PUT/DELETE etc. verbs to implicitly determine what operation needs to be fired. RPC might not be considered 'cool' anymore, but for typical private AJAX backend operations of a Web site I'd wager that a large percentage of use cases of Web API will fall towards RPC style calls rather than 'proper' REST style APIs. Web applications that have needs for things like live validation against data, filling data based on user inputs, handling small UI updates often don't lend themselves very well to limited HTTP verb usage. It might not be what the cool kids do, but I don't see RPC calls getting replaced by proper REST APIs any time soon.  Proper REST has its place - for 'real' API scenarios that manage and publish/share resources, but for more transactional operations RPC seems a better choice and much easier to implement than trying to shoehorn a boatload of endpoint methods into a few HTTP verbs. In any case Web API does a good job of providing both RPC abstraction as well as the HTTP Verb/REST abstraction. RPC works well out of the box, but there are some differences especially if you're coming from ASP.NET AJAX service or WCF Rest when it comes to multiple parameters. Action Routing for RPC Style Calls If you've looked at Web API demos you've probably seen a bunch of examples of how to create HTTP Verb based routing endpoints. Verb based routing essentially maps a controller and then uses HTTP verbs to map the methods that are called in response to HTTP requests. This works great for resource APIs but doesn't work so well when you have many operational methods in a single controller. HTTP Verb routing is limited to the few HTTP verbs available (plus separate method signatures) and - worse than that - you can't easily extend the controller with custom routes or action routing beyond that. Thankfully Web API also supports Action based routing which allows you create RPC style endpoints fairly easily:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumApi", action = "GetAblums" } ); This uses traditional MVC style {action} method routing which is different from the HTTP verb based routing you might have read a bunch about in conjunction with Web API. Action based routing like above lets you specify an end point method in a Web API controller either via the {action} parameter in the route string or via a default value for custom routes. Using routing you can pass multiple parameters either on the route itself or pass parameters on the query string, via ModelBinding or content value binding. For most common scenarios this actually works very well. As long as you are passing either a single complex type via a POST operation, or multiple simple types via query string or POST buffer, there's no issue. But if you need to pass multiple parameters as was easily done with WCF REST or ASP.NET AJAX things are not so obvious. Web API has no issue allowing for single parameter like this:[HttpPost] public string PostAlbum(Album album) { return String.Format("{0} {1:d}", album.AlbumName, album.Entered); } There are actually two ways to call this endpoint: albums/PostAlbum Using the Model Binder with plain POST values In this mechanism you're sending plain urlencoded POST values to the server which the ModelBinder then maps the parameter. Each property value is matched to each matching POST value. This works similar to the way that MVC's  ModelBinder works. Here's how you can POST using the ModelBinder and jQuery:$.ajax( { url: "albums/PostAlbum", type: "POST", data: { AlbumName: "Dirty Deeds", Entered: "5/1/2012" }, success: function (result) { alert(result); }, error: function (xhr, status, p3, p4) { var err = "Error " + " " + status + " " + p3; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); Here's what the POST data looks like for this request: The model binder and it's straight form based POST mechanism is great for posting data directly from HTML pages to model objects. It avoids having to do manual conversions for many operations and is a great boon for AJAX callback requests. Using Web API JSON Formatter The other option is to post data using a JSON string. The process for this is similar except that you create a JavaScript object and serialize it to JSON first.album = { AlbumName: "PowerAge", Entered: new Date(1977,0,1) } $.ajax( { url: "albums/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify(album), success: function (result) { alert(result); } }); Here the data is sent using a JSON object rather than form data and the data is JSON encoded over the wire. The trace reveals that the data is sent using plain JSON (Source above), which is a little more efficient since there's no UrlEncoding that occurs. BTW, notice that WebAPI automatically deals with the date. I provided the date as a plain string, rather than a JavaScript date value and the Formatter and ModelBinder both automatically map the date propertly to the Entered DateTime property of the Album object. Passing multiple Parameters to a Web API Controller Single parameters work fine in either of these RPC scenarios and that's to be expected. ModelBinding always works against a single object because it maps a model. But what happens when you want to pass multiple parameters? Consider an API Controller method that has a signature like the following:[HttpPost] public string PostAlbum(Album album, string userToken) Here I'm asking to pass two objects to an RPC method. Is that possible? This used to be fairly straight forward either with WCF REST and ASP.NET AJAX ASMX services, but as far as I can tell this is not directly possible using a POST operation with WebAPI. There a few workarounds that you can use to make this work: Use both POST *and* QueryString Parameters in Conjunction If you have both complex and simple parameters, you can pass simple parameters on the query string. The above would actually work with: /album/PostAlbum?userToken=sekkritt but that's not always possible. In this example it might not be a good idea to pass a user token on the query string though. It also won't work if you need to pass multiple complex objects, since query string values do not support complex type mapping. They only work with simple types. Use a single Object that wraps the two Parameters If you go by service based architecture guidelines every service method should always pass and return a single value only. The input should wrap potentially multiple input parameters and the output should convey status as well as provide the result value. You typically have a xxxRequest and a xxxResponse class that wraps the inputs and outputs. Here's what this method might look like:public PostAlbumResponse PostAlbum(PostAlbumRequest request) { var album = request.Album; var userToken = request.UserToken; return new PostAlbumResponse() { IsSuccess = true, Result = String.Format("{0} {1:d} {2}", album.AlbumName, album.Entered,userToken) }; } with these support types:public class PostAlbumRequest { public Album Album { get; set; } public User User { get; set; } public string UserToken { get; set; } } public class PostAlbumResponse { public string Result { get; set; } public bool IsSuccess { get; set; } public string ErrorMessage { get; set; } }   To call this method you now have to assemble these objects on the client and send it up as JSON:var album = { AlbumName: "PowerAge", Entered: "1/1/1977" } var user = { Name: "Rick" } var userToken = "sekkritt"; $.ajax( { url: "samples/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify({ Album: album, User: user, UserToken: userToken }), success: function (result) { alert(result.Result); } }); I assemble the individual types first and then combine them in the data: property of the $.ajax() call into the actual object passed to the server, that mimics the structure of PostAlbumRequest server class that has Album, User and UserToken properties. This works well enough but it gets tedious if you have to create Request and Response types for each method signature. If you have common parameters that are always passed (like you always pass an album or usertoken) you might be able to abstract this to use a single object that gets reused for all methods, but this gets confusing too: Overload a single 'parameter' too much and it becomes a nightmare to decipher what your method actual can use. Use JObject to parse multiple Property Values out of an Object If you recall, ASP.NET AJAX and WCF REST used a 'wrapper' object to make default AJAX calls. Rather than directly calling a service you always passed an object which contained properties for each parameter: { parm1: Value, parm2: Value2 } WCF REST/ASP.NET AJAX would then parse this top level property values and map them to the parameters of the endpoint method. This automatic type wrapping functionality is no longer available directly in Web API, but since Web API now uses JSON.NET for it's JSON serializer you can actually simulate that behavior with a little extra code. You can use the JObject class to receive a dynamic JSON result and then using the dynamic cast of JObject to walk through the child objects and even parse them into strongly typed objects. Here's how to do this on the API Controller end:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } This is clearly not as nice as having the parameters passed directly, but it works to allow you to pass multiple parameters and access them using Web API. JObject is JSON.NET's generic object container which sports a nice dynamic interface that allows you to walk through the object's properties using standard 'dot' object syntax. All you have to do is cast the object to dynamic to get access to the property interface of the JSON type. Additionally JObject also allows you to parse JObject instances into strongly typed objects, which enables us here to retrieve the two objects passed as parameters from this jquery code:var album = { AlbumName: "PowerAge", Entered: "1/1/1977" } var user = { Name: "Rick" } var userToken = "sekkritt"; $.ajax( { url: "samples/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify({ Album: album, User: user, UserToken: userToken }), success: function (result) { alert(result); } }); Summary ASP.NET Web API brings many new features and many advantages over the older Microsoft AJAX and REST APIs, but realize that some things like passing multiple strongly typed object parameters will work a bit differently. It's not insurmountable, but just knowing what options are available to simulate this behavior is good to know. Now let me say here that it's probably not a good practice to pass a bunch of parameters to an API call. Ideally APIs should be closely factored to accept single parameters or a single content parameter at least along with some identifier parameters that can be passed on the querystring. But saying that doesn't mean that occasionally you don't run into a situation where you have the need to pass several objects to the server and all three of the options I mentioned might have merit in different situations. For now I'm sure the question of how to pass multiple parameters will come up quite a bit from people migrating WCF REST or ASP.NET AJAX code to Web API. At least there are options available to make it work.© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Creating ASP.NET MVC Negotiated Content Results

    - by Rick Strahl
    In a recent ASP.NET MVC application I’m involved with, we had a late in the process request to handle Content Negotiation: Returning output based on the HTTP Accept header of the incoming HTTP request. This is standard behavior in ASP.NET Web API but ASP.NET MVC doesn’t support this functionality directly out of the box. Another reason this came up in discussion is last week’s announcements of ASP.NET vNext, which seems to indicate that ASP.NET Web API is not going to be ported to the cloud version of vNext, but rather be replaced by a combined version of MVC and Web API. While it’s not clear what new API features will show up in this new framework, it’s pretty clear that the ASP.NET MVC style syntax will be the new standard for all the new combined HTTP processing framework. Why negotiated Content? Content negotiation is one of the key features of Web API even though it’s such a relatively simple thing. But it’s also something that’s missing in MVC and once you get used to automatically having your content returned based on Accept headers it’s hard to go back to manually having to create separate methods for different output types as you’ve had to with Microsoft server technologies all along (yes, yes I know other frameworks – including my own – have done this for years but for in the box features this is relatively new from Web API). As a quick review,  Accept Header content negotiation works off the request’s HTTP Accept header:POST http://localhost/mydailydosha/Editable/NegotiateContent HTTP/1.1 Content-Type: application/json Accept: application/json Host: localhost Content-Length: 76 Pragma: no-cache { ElementId: "header", PageName: "TestPage", Text: "This is a nice header" } If I make this request I would expect to get back a JSON result based on my application/json Accept header. To request XML  I‘d just change the accept header:Accept: text/xml and now I’d expect the response to come back as XML. Now this only works with media types that the server can process. In my case here I need to handle JSON, XML, HTML (using Views) and Plain Text. HTML results might need more than just a data return – you also probably need to specify a View to render the data into either by specifying the view explicitly or by using some sort of convention that can automatically locate a view to match. Today ASP.NET MVC doesn’t support this sort of automatic content switching out of the box. Unfortunately, in my application scenario we have an application that started out primarily with an AJAX backend that was implemented with JSON only. So there are lots of JSON results like this:[Route("Customers")] public ActionResult GetCustomers() { return Json(repo.GetCustomers(),JsonRequestBehavior.AllowGet); } These work fine, but they are of course JSON specific. Then a couple of weeks ago, a requirement came in that an old desktop application needs to also consume this API and it has to use XML to do it because there’s no JSON parser available for it. Ooops – stuck with JSON in this case. While it would have been easy to add XML specific methods I figured it’s easier to add basic content negotiation. And that’s what I show in this post. Missteps – IResultFilter, IActionFilter My first attempt at this was to use IResultFilter or IActionFilter which look like they would be ideal to modify result content after it’s been generated using OnResultExecuted() or OnActionExecuted(). Filters are great because they can look globally at all controller methods or individual methods that are marked up with the Filter’s attribute. But it turns out these filters don’t work for raw POCO result values from Action methods. What we wanted to do for API calls is get back to using plain .NET types as results rather than result actions. That is  you write a method that doesn’t return an ActionResult, but a standard .NET type like this:public Customer UpdateCustomer(Customer cust) { … do stuff to customer :-) return cust; } Unfortunately both OnResultExecuted and OnActionExecuted receive an MVC ContentResult instance from the POCO object. MVC basically takes any non-ActionResult return value and turns it into a ContentResult by converting the value using .ToString(). Ugh. The ContentResult itself doesn’t contain the original value, which is lost AFAIK with no way to retrieve it. So there’s no way to access the raw customer object in the example above. Bummer. Creating a NegotiatedResult This leaves mucking around with custom ActionResults. ActionResults are MVC’s standard way to return action method results – you basically specify that you would like to render your result in a specific format. Common ActionResults are ViewResults (ie. View(vn,model)), JsonResult, RedirectResult etc. They work and are fairly effective and work fairly well for testing as well as it’s the ‘standard’ interface to return results from actions. The problem with the this is mainly that you’re explicitly saying that you want a specific result output type. This works well for many things, but sometimes you do want your result to be negotiated. My first crack at this solution here is to create a simple ActionResult subclass that looks at the Accept header and based on that writes the output. I need to support JSON and XML content and HTML as well as text – so effectively 4 media types: application/json, text/xml, text/html and text/plain. Everything else is passed through as ContentResult – which effecively returns whatever .ToString() returns. Here’s what the NegotiatedResult usage looks like:public ActionResult GetCustomers() { return new NegotiatedResult(repo.GetCustomers()); } public ActionResult GetCustomer(int id) { return new NegotiatedResult("Show", repo.GetCustomer(id)); } There are two overloads of this method – one that returns just the raw result value and a second version that accepts an optional view name. The second version returns the Razor view specified only if text/html is requested – otherwise the raw data is returned. This is useful in applications where you have an HTML front end that can also double as an API interface endpoint that’s using the same model data you send to the View. For the application I mentioned above this was another actual use-case we needed to address so this was a welcome side effect of creating a custom ActionResult. There’s also an extension method that directly attaches a Negotiated() method to the controller using the same syntax:public ActionResult GetCustomers() { return this.Negotiated(repo.GetCustomers()); } public ActionResult GetCustomer(int id) { return this.Negotiated("Show",repo.GetCustomer(id)); } Using either of these mechanisms now allows you to return JSON, XML, HTML or plain text results depending on the Accept header sent. Send application/json you get just the Customer JSON data. Ditto for text/xml and XML data. Pass text/html for the Accept header and the "Show.cshtml" Razor view is rendered passing the result model data producing final HTML output. While this isn’t as clean as passing just POCO objects back as I had intended originally, this approach fits better with how MVC action methods are intended to be used and we get the bonus of being able to specify a View to render (optionally) for HTML. How does it work An ActionResult implementation is pretty straightforward. You inherit from ActionResult and implement the ExecuteResult method to send your output to the ASP.NET output stream. ActionFilters are an easy way to effectively do post processing on ASP.NET MVC controller actions just before the content is sent to the output stream, assuming your specific action result was used. Here’s the full code to the NegotiatedResult class (you can also check it out on GitHub):/// <summary> /// Returns a content negotiated result based on the Accept header. /// Minimal implementation that works with JSON and XML content, /// can also optionally return a view with HTML. /// </summary> /// <example> /// // model data only /// public ActionResult GetCustomers() /// { /// return new NegotiatedResult(repo.Customers.OrderBy( c=> c.Company) ) /// } /// // optional view for HTML /// public ActionResult GetCustomers() /// { /// return new NegotiatedResult("List", repo.Customers.OrderBy( c=> c.Company) ) /// } /// </example> public class NegotiatedResult : ActionResult { /// <summary> /// Data stored to be 'serialized'. Public /// so it's potentially accessible in filters. /// </summary> public object Data { get; set; } /// <summary> /// Optional name of the HTML view to be rendered /// for HTML responses /// </summary> public string ViewName { get; set; } public static bool FormatOutput { get; set; } static NegotiatedResult() { FormatOutput = HttpContext.Current.IsDebuggingEnabled; } /// <summary> /// Pass in data to serialize /// </summary> /// <param name="data">Data to serialize</param> public NegotiatedResult(object data) { Data = data; } /// <summary> /// Pass in data and an optional view for HTML views /// </summary> /// <param name="data"></param> /// <param name="viewName"></param> public NegotiatedResult(string viewName, object data) { Data = data; ViewName = viewName; } public override void ExecuteResult(ControllerContext context) { if (context == null) throw new ArgumentNullException("context"); HttpResponseBase response = context.HttpContext.Response; HttpRequestBase request = context.HttpContext.Request; // Look for specific content types if (request.AcceptTypes.Contains("text/html")) { response.ContentType = "text/html"; if (!string.IsNullOrEmpty(ViewName)) { var viewData = context.Controller.ViewData; viewData.Model = Data; var viewResult = new ViewResult { ViewName = ViewName, MasterName = null, ViewData = viewData, TempData = context.Controller.TempData, ViewEngineCollection = ((Controller)context.Controller).ViewEngineCollection }; viewResult.ExecuteResult(context.Controller.ControllerContext); } else response.Write(Data); } else if (request.AcceptTypes.Contains("text/plain")) { response.ContentType = "text/plain"; response.Write(Data); } else if (request.AcceptTypes.Contains("application/json")) { using (JsonTextWriter writer = new JsonTextWriter(response.Output)) { var settings = new JsonSerializerSettings(); if (FormatOutput) settings.Formatting = Newtonsoft.Json.Formatting.Indented; JsonSerializer serializer = JsonSerializer.Create(settings); serializer.Serialize(writer, Data); writer.Flush(); } } else if (request.AcceptTypes.Contains("text/xml")) { response.ContentType = "text/xml"; if (Data != null) { using (var writer = new XmlTextWriter(response.OutputStream, new UTF8Encoding())) { if (FormatOutput) writer.Formatting = System.Xml.Formatting.Indented; XmlSerializer serializer = new XmlSerializer(Data.GetType()); serializer.Serialize(writer, Data); writer.Flush(); } } } else { // just write data as a plain string response.Write(Data); } } } /// <summary> /// Extends Controller with Negotiated() ActionResult that does /// basic content negotiation based on the Accept header. /// </summary> public static class NegotiatedResultExtensions { /// <summary> /// Return content-negotiated content of the data based on Accept header. /// Supports: /// application/json - using JSON.NET /// text/xml - Xml as XmlSerializer XML /// text/html - as text, or an optional View /// text/plain - as text /// </summary> /// <param name="controller"></param> /// <param name="data">Data to return</param> /// <returns>serialized data</returns> /// <example> /// public ActionResult GetCustomers() /// { /// return this.Negotiated( repo.Customers.OrderBy( c=> c.Company) ) /// } /// </example> public static NegotiatedResult Negotiated(this Controller controller, object data) { return new NegotiatedResult(data); } /// <summary> /// Return content-negotiated content of the data based on Accept header. /// Supports: /// application/json - using JSON.NET /// text/xml - Xml as XmlSerializer XML /// text/html - as text, or an optional View /// text/plain - as text /// </summary> /// <param name="controller"></param> /// <param name="viewName">Name of the View to when Accept is text/html</param> /// /// <param name="data">Data to return</param> /// <returns>serialized data</returns> /// <example> /// public ActionResult GetCustomers() /// { /// return this.Negotiated("List", repo.Customers.OrderBy( c=> c.Company) ) /// } /// </example> public static NegotiatedResult Negotiated(this Controller controller, string viewName, object data) { return new NegotiatedResult(viewName, data); } } Output Generation – JSON and XML Generating output for XML and JSON is simple – you use the desired serializer and off you go. Using XmlSerializer and JSON.NET it’s just a handful of lines each to generate serialized output directly into the HTTP output stream. Please note this implementation uses JSON.NET for its JSON generation rather than the default JavaScriptSerializer that MVC uses which I feel is an additional bonus to implementing this custom action. I’d already been using a custom JsonNetResult class previously, but now this is just rolled into this custom ActionResult. Just keep in mind that JSON.NET outputs slightly different JSON for certain things like collections for example, so behavior may change. One addition to this implementation might be a flag to allow switching the JSON serializer. Html View Generation Html View generation actually turned out to be easier than anticipated. Initially I used my generic ASP.NET ViewRenderer Class that can render MVC views from any ASP.NET application. However it turns out since we are executing inside of an active MVC request there’s an easier way: We can simply create a custom ViewResult and populate its members and then execute it. The code in text/html handling code that renders the view is simply this:response.ContentType = "text/html"; if (!string.IsNullOrEmpty(ViewName)) { var viewData = context.Controller.ViewData; viewData.Model = Data; var viewResult = new ViewResult { ViewName = ViewName, MasterName = null, ViewData = viewData, TempData = context.Controller.TempData, ViewEngineCollection = ((Controller)context.Controller).ViewEngineCollection }; viewResult.ExecuteResult(context.Controller.ControllerContext); } else response.Write(Data); which is a neat and easy way to render a Razor view assuming you have an active controller that’s ready for rendering. Sweet – dependency removed which makes this class self-contained without any external dependencies other than JSON.NET. Summary While this isn’t exactly a new topic, it’s the first time I’ve actually delved into this with MVC. I’ve been doing content negotiation with Web API and prior to that with my REST library. This is the first time it’s come up as an issue in MVC. But as I have worked through this I find that having a way to specify both HTML Views *and* JSON and XML results from a single controller certainly is appealing to me in many situations as we are in this particular application returning identical data models for each of these operations. Rendering content negotiated views is something that I hope ASP.NET vNext will provide natively in the combined MVC and WebAPI model, but we’ll see how this actually will be implemented. In the meantime having a custom ActionResult that provides this functionality is a workable and easily adaptable way of handling this going forward. Whatever ends up happening in ASP.NET vNext the abstraction can probably be changed to support the native features of the future. Anyway I hope some of you found this useful if not for direct integration then as insight into some of the rendering logic that MVC uses to get output into the HTTP stream… Related Resources Latest Version of NegotiatedResult.cs on GitHub Understanding Action Controllers Rendering ASP.NET Views To String© Rick Strahl, West Wind Technologies, 2005-2014Posted in MVC  ASP.NET  HTTP   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How and where to implement basic authentication in Kibana 3

    - by Jabb
    I have put my elasticsearch server behind a Apache reverse proxy that provides basic authentication. Authenticating to Apache directly from the browser works fine. However, when I use Kibana 3 to access the server, I receive authentication errors. Obviously because no auth headers are sent along with Kibana's Ajax calls. I added the below to elastic-angular-client.js in the Kibana vendor directory to implement authentication quick and dirty. But for some reason it does not work. $http.defaults.headers.common.Authorization = 'Basic ' + Base64Encode('user:Password'); What is the best approach and place to implement basic authentication in Kibana? /*! elastic.js - v1.1.1 - 2013-05-24 * https://github.com/fullscale/elastic.js * Copyright (c) 2013 FullScale Labs, LLC; Licensed MIT */ /*jshint browser:true */ /*global angular:true */ 'use strict'; /* Angular.js service wrapping the elastic.js API. This module can simply be injected into your angular controllers. */ angular.module('elasticjs.service', []) .factory('ejsResource', ['$http', function ($http) { return function (config) { var // use existing ejs object if it exists ejs = window.ejs || {}, /* results are returned as a promise */ promiseThen = function (httpPromise, successcb, errorcb) { return httpPromise.then(function (response) { (successcb || angular.noop)(response.data); return response.data; }, function (response) { (errorcb || angular.noop)(response.data); return response.data; }); }; // check if we have a config object // if not, we have the server url so // we convert it to a config object if (config !== Object(config)) { config = {server: config}; } // set url to empty string if it was not specified if (config.server == null) { config.server = ''; } /* implement the elastic.js client interface for angular */ ejs.client = { server: function (s) { if (s == null) { return config.server; } config.server = s; return this; }, post: function (path, data, successcb, errorcb) { $http.defaults.headers.common.Authorization = 'Basic ' + Base64Encode('user:Password'); console.log($http.defaults.headers); path = config.server + path; var reqConfig = {url: path, data: data, method: 'POST'}; return promiseThen($http(angular.extend(reqConfig, config)), successcb, errorcb); }, get: function (path, data, successcb, errorcb) { $http.defaults.headers.common.Authorization = 'Basic ' + Base64Encode('user:Password'); path = config.server + path; // no body on get request, data will be request params var reqConfig = {url: path, params: data, method: 'GET'}; return promiseThen($http(angular.extend(reqConfig, config)), successcb, errorcb); }, put: function (path, data, successcb, errorcb) { $http.defaults.headers.common.Authorization = 'Basic ' + Base64Encode('user:Password'); path = config.server + path; var reqConfig = {url: path, data: data, method: 'PUT'}; return promiseThen($http(angular.extend(reqConfig, config)), successcb, errorcb); }, del: function (path, data, successcb, errorcb) { $http.defaults.headers.common.Authorization = 'Basic ' + Base64Encode('user:Password'); path = config.server + path; var reqConfig = {url: path, data: data, method: 'DELETE'}; return promiseThen($http(angular.extend(reqConfig, config)), successcb, errorcb); }, head: function (path, data, successcb, errorcb) { $http.defaults.headers.common.Authorization = 'Basic ' + Base64Encode('user:Password'); path = config.server + path; // no body on HEAD request, data will be request params var reqConfig = {url: path, params: data, method: 'HEAD'}; return $http(angular.extend(reqConfig, config)) .then(function (response) { (successcb || angular.noop)(response.headers()); return response.headers(); }, function (response) { (errorcb || angular.noop)(undefined); return undefined; }); } }; return ejs; }; }]); UPDATE 1: I implemented Matts suggestion. However, the server returns a weird response. It seems that the authorization header is not working. Could it have to do with the fact, that I am running Kibana on port 81 and elasticsearch on 8181? OPTIONS /solar_vendor/_search HTTP/1.1 Host: 46.252.46.173:8181 User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:25.0) Gecko/20100101 Firefox/25.0 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Language: de-de,de;q=0.8,en-us;q=0.5,en;q=0.3 Accept-Encoding: gzip, deflate Origin: http://46.252.46.173:81 Access-Control-Request-Method: POST Access-Control-Request-Headers: authorization,content-type Connection: keep-alive Pragma: no-cache Cache-Control: no-cache This is the response HTTP/1.1 401 Authorization Required Date: Fri, 08 Nov 2013 23:47:02 GMT WWW-Authenticate: Basic realm="Username/Password" Vary: Accept-Encoding Content-Encoding: gzip Content-Length: 346 Connection: close Content-Type: text/html; charset=iso-8859-1 UPDATE 2: Updated all instances with the modified headers in these Kibana files root@localhost:/var/www/kibana# grep -r 'ejsResource(' . ./src/app/controllers/dash.js: $scope.ejs = ejsResource({server: config.elasticsearch, headers: {'Access-Control-Request-Headers': 'Accept, Origin, Authorization', 'Authorization': 'Basic XXXXXXXXXXXXXXXXXXXXXXXXXXXXX=='}}); ./src/app/services/querySrv.js: var ejs = ejsResource({server: config.elasticsearch, headers: {'Access-Control-Request-Headers': 'Accept, Origin, Authorization', 'Authorization': 'Basic XXXXXXXXXXXXXXXXXXXXXXXXXXXXX=='}}); ./src/app/services/filterSrv.js: var ejs = ejsResource({server: config.elasticsearch, headers: {'Access-Control-Request-Headers': 'Accept, Origin, Authorization', 'Authorization': 'Basic XXXXXXXXXXXXXXXXXXXXXXXXXXXXX=='}}); ./src/app/services/dashboard.js: var ejs = ejsResource({server: config.elasticsearch, headers: {'Access-Control-Request-Headers': 'Accept, Origin, Authorization', 'Authorization': 'Basic XXXXXXXXXXXXXXXXXXXXXXXXXXXXX=='}}); And modified my vhost conf for the reverse proxy like this <VirtualHost *:8181> ProxyRequests Off ProxyPass / http://127.0.0.1:9200/ ProxyPassReverse / https://127.0.0.1:9200/ <Location /> Order deny,allow Allow from all AuthType Basic AuthName “Username/Password” AuthUserFile /var/www/cake2.2.4/.htpasswd Require valid-user Header always set Access-Control-Allow-Methods "GET, POST, DELETE, OPTIONS, PUT" Header always set Access-Control-Allow-Headers "Content-Type, X-Requested-With, X-HTTP-Method-Override, Origin, Accept, Authorization" Header always set Access-Control-Allow-Credentials "true" Header always set Cache-Control "max-age=0" Header always set Access-Control-Allow-Origin * </Location> ErrorLog ${APACHE_LOG_DIR}/error.log </VirtualHost> Apache sends back the new response headers but the request header still seems to be wrong somewhere. Authentication just doesn't work. Request Headers OPTIONS /solar_vendor/_search HTTP/1.1 Host: 46.252.26.173:8181 User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:25.0) Gecko/20100101 Firefox/25.0 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Language: de-de,de;q=0.8,en-us;q=0.5,en;q=0.3 Accept-Encoding: gzip, deflate Origin: http://46.252.26.173:81 Access-Control-Request-Method: POST Access-Control-Request-Headers: authorization,content-type Connection: keep-alive Pragma: no-cache Cache-Control: no-cache Response Headers HTTP/1.1 401 Authorization Required Date: Sat, 09 Nov 2013 08:48:48 GMT Access-Control-Allow-Methods: GET, POST, DELETE, OPTIONS, PUT Access-Control-Allow-Headers: Content-Type, X-Requested-With, X-HTTP-Method-Override, Origin, Accept, Authorization Access-Control-Allow-Credentials: true Cache-Control: max-age=0 Access-Control-Allow-Origin: * WWW-Authenticate: Basic realm="Username/Password" Vary: Accept-Encoding Content-Encoding: gzip Content-Length: 346 Connection: close Content-Type: text/html; charset=iso-8859-1 SOLUTION: After doing some more research, I found out that this is definitely a configuration issue with regard to CORS. There are quite a few posts available regarding that topic but it appears that in order to solve my problem, it would be necessary to to make some very granular configurations on apache and also make sure that the right stuff is sent from the browser. So I reconsidered the strategy and found a much simpler solution. Just modify the vhost reverse proxy config to move the elastisearch server AND kibana on the same http port. This also adds even better security to Kibana. This is what I did: <VirtualHost *:8181> ProxyRequests Off ProxyPass /bigdatadesk/ http://127.0.0.1:81/bigdatadesk/src/ ProxyPassReverse /bigdatadesk/ http://127.0.0.1:81/bigdatadesk/src/ ProxyPass / http://127.0.0.1:9200/ ProxyPassReverse / https://127.0.0.1:9200/ <Location /> Order deny,allow Allow from all AuthType Basic AuthName “Username/Password” AuthUserFile /var/www/.htpasswd Require valid-user </Location> ErrorLog ${APACHE_LOG_DIR}/error.log </VirtualHost>

    Read the article

  • Fatal error: Call to a member function getAttribute() on a non-object in C:\xampp\htdocs\giftshoes\s

    - by Sadiqur Rahman
    I am getting following error message when using Doctrine ORM in Codeigniter. Please help me... ------------------Doctrin Table Defination------------- abstract class BaseShoes extends Doctrine_Record { public function setTableDefinition() { $this-setTableName('shoes'); $this-hasColumn('sku', 'integer', 11, array('primary' = true, 'autoincrement' = false)); $this-hasColumn('name', 'string', 255); $this-hasColumn('keywords', 'string', 255); $this-hasColumn('description', 'string'); $this-hasColumn('manufacturer', 'string', 20); $this-hasColumn('sale_price', 'double'); $this-hasColumn('price', 'double'); $this-hasColumn('url', 'string'); $this-hasColumn('image', 'string'); $this-hasColumn('category', 'string', 50); } public function setUp() { } } ------------------------Doctrin Table Code ------------------- class ShoesTable extends Doctrine_Table { function getAllShoes($from = 0, $total = 15) { $q = Doctrine_Query::create() -from('Shoes s') -limit($total) -offset($from); return $q->execute(array(), Doctrine::HYDRATE_ARRAY); } } -----------------Model Code----------------- class Shoes extends BaseShoes { function __construct() { $this-table = Doctrine::getTable('shoes'); } public function getAllShoes() { $this-table-getAllShoes(); } } -------------------ERROR I am getting-------------------- ( ! ) Fatal error: Call to a member function getAttribute() on a non-object in C:\xampp\htdocs\giftshoes\system\database\doctrine\Doctrine\Record.php on line 1424 Call Stack Time Memory Function Location 1 0.0011 327560 {main}( ) ..\index.php:0 2 0.0363 3210720 require_once( 'C:\xampp\htdocs\giftshoes\system\codeigniter\CodeIgniter.php' ) ..\index.php:116 3 0.0492 3922368 Welcome-Welcome( ) ..\CodeIgniter.php:201 4 0.0817 6234096 CI_Loader-model( ) ..\welcome.php:14 5 0.0824 6248376 Shoes-__construct( ) ..\Loader.php:184 6 0.0824 6248424 Doctrine_Core::getTable( ) ..\Shoes.php:5 7 0.0824 6248424 Doctrine_Connection-getTable( ) ..\Core.php:1080 8 0.0824 6254304 Doctrine_Table-__construct( ) ..\Connection.php:1123 9 0.0841 6396128 Doctrine_Table-initDefinition( ) ..\Table.php:249 10 0.0841 6397472 Shoes-__construct( ) ..\Table.php:301 11 0.0841 6397680 Doctrine_Access-__set( ) ..\Access.php:0 12 0.0841 6397680 Doctrine_Record-set( ) ..\Access.php:60

    Read the article

  • How can I pass an arbitrary object to jasper report as parameter?

    - by spderosso
    Hi, I would like to pass as a parameter to my .jrxml an arbitrary object of my domain, e.g a Person. InputStream reportFile = MyPage.this.getClass().getResourceAsStream("test.jrxml"); HashMap<String, Person> parameters = new HashMap<String, Person>(); parameters.put("person", new Person("John", "Doe")); ... JasperReport report = JasperCompileManager.compileReport(reportFile); JasperPrint print = JasperFillManager.fillReport(report, parameters, new JREmptyDataSource()); return JasperExportManager.exportReportToPdf(print); And on the .jrxml do something like: <?xml version="1.0" encoding="UTF-8"?> <jasperReport xmlns="http://jasperreports.sourceforge.net/jasperreports" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://jasperreports.sourceforge.net/jasperreports http://jasperreports.sourceforge.net/xsd/jasperreport.xsd" name="test" pageWidth="595" pageHeight="842" columnWidth="555" leftMargin="20" rightMargin="20" topMargin="20" bottomMargin="20"> <property name="ireport.zoom" value="1.0"/> <property name="ireport.x" value="0"/> <property name="ireport.y" value="0"/> <parameter name="PERSON" isForPrompting="false" class="myApp.domain.person"/> <background> <band splitType="Stretch"/> </background> <title> <band height="20"> <staticText> <reportElement x="180" y="0" width="200" height="20"/> <text><![CDATA[$P{PERSON.lastName}]]></text> </staticText> </band> </title> ... Is something like this possible? Where can I find more complex tutorials that show more than just passing a java.lang.String? Thanks

    Read the article

  • Is it possible to store controls(Panel) as object, serialize it and store it as a file?

    - by ikky
    The topic says it all. Using Compact Framework C# I'm tiling (order/sequence is important) some images that i download from an url, into a Panel(each image is a PictureBox). This can be a huge process, and may take some time. Therefor i only want the user to download the images and tile them once. So the next time the user uses the Tile Application, the Panel that was created the first time is already stored in a file and is loaded from that file. So what i want is a method to store a Panel as a file. Is this possible, or do you think i should do it another way? I've tried something like this: BinaryWriter panelStorage = new BinaryWriter(new FileStream("imagePanel.panel", FileMode.OpenOrCreate, FileAccess.Write, FileShare.None)); Byte[] bImageObject = new Byte[20000]; bImageObject = (byte[])(object)this.imagePanel; panelStorage .Write(bMapObject); panelStorage .Close(); But the casting was not very legal :P "InvalidCastException" Can anyone help me with this problem? Thank you in advance!

    Read the article

  • How would I make a mouse controlled physics object in Box2D / AS3?

    - by Marty Wallace
    I recently created this tennis game using my own basic physics: http://martywallace.com/sandbox/tennis/ Basically a tennis racquet sticks to your mouse and you can hit the tennis balls upward. The physics aren't that great, and I want to make a more interesting version of this game with milestones and levels in Flash. I am planning to use Box2D because I have moderate experience with it. I'm not sure how to go about creating the racquet - as far as I understand Box2D, the racquet needs a velocity to influence the velocities of the balls when you hit them (so that you can hit them harder or softer upward to keep them up). With that said, I'm assuming I can't just have a kinematic body that will have its position set to the mouse, because it won't affect the velocities of the balls as expected. I've also thought about setting the velocity to the difference between the racquet position and the mouse each frame, but I am concerned that won't provide accurate positioning and am also thinking that the velocity could end up really large if you move the mouse quickly. What is the correct way to have a physics object locked to the mouse but also to have its displacement in the last frame (from where it was to the mouse) affect the balls?

    Read the article

  • Can a function return an object? Objective-C and NSMutableArray

    - by seaworthy
    I have an NSMutableArray. It's members eventually become members of an array instance in a class. I want to put the instantiantion of NSMutable into a function and to return an array object. If I can do this, I can make some of my code easier to read. Is this possible? Here is what I am trying to figure out. //Definition: > function Objects (float a, float b) { > NSMutableArray *array = [[NSMutableArray alloc] init]; > [array addObject:[NSNumber numberWithFloat:a]]; > [array addObject:[NSNumber numberWithFloat:b]]; > //[release array]; ???????? return array; > } //Declaration: Math *operator = [[Math alloc] init]; [operator findSum:Objects(20.0,30.0)]; My code compiles if I instantiate NSMutableArray right before I send the message to the receiver. I know I can have an array argument along with the method. What I have problem seeing is how to use a function and to replace the argument with a function call. Any help is appreciated. I am interested in the concept not in suggestions to replace the findSum method.

    Read the article

  • How can I read the properties of an object that I assign to the Session in ASP.NET MVC?

    - by quakkels
    Hey all, I'm trying my hand at creating a session which stores member information which the application can use to reveal certain navigation and allow access to certain pages and member role specific functionality. I've been able to assign my MemberLoggedIn object to the session in this way: //code excerpt start... MemberLoggedIn loggedIn = new MemberLoggedIn(); if (computedHash == member.Hash) { loggedIn.ID = member.ID; loggedIn.Username = member.Username; loggedIn.Email = member.Email; loggedIn.Superuser = member.Superuser; loggedIn.Active = member.Active; Session["loggedIn"] = loggedIn; } else if (ModelState.IsValid) { ModelState.AddModelError("Password", "Incorrect Username or Password."); } return View(); That works great. I then can send the properties of Session["loggedIn"] to the View in this way: [ChildActionOnly] public ActionResult Login() { if (Session["loggedIn"] != null) ViewData.Model = Session["loggedIn"]; else ViewData.Model = null; return PartialView(); } In the Partial View I can reference the session data by using Model.Username or Model.Superuser. However, it doesn't seem to work that way in the controller or in a custom Action Filter. Is there a way to get the equivalent of Session["loggedIn"].Username?

    Read the article

  • Why I got a "sent to freed object error"?

    - by Tattat
    I have a Table View, and CharTableController, the CharTableController works like this: .h: #import <Foundation/Foundation.h> @interface CharTableController : UITableViewController <UITableViewDelegate, UITableViewDataSource>{ // IBOutlet UILabel *debugLabel; NSArray *listData; } //@property (nonatomic, retain) IBOutlet UILabel *debugLabel; @property (nonatomic, retain) NSArray *listData; @end The .m: #import "CharTableController.h" @implementation CharTableController @synthesize listData; - (void)viewDidLoad { NSArray *array = [[NSArray alloc] initWithObjects:@"Sleepy", @"Sneezy", @"Bashful", @"Happy", @"Doc", @"Grumpy", @"Dopey", @"Thorin", @"Dorin", @"Nori", @"Ori", @"Balin", @"Dwalin", @"Fili", @"Kili", @"Oin", @"Gloin", @"Bifur", @"Bofur", @"Bombur", nil]; self.listData = array; [array release]; [super viewDidLoad]; } - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section { return [self.listData count]; } - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { static NSString *SimpleTableIdentifier = @"SimpleTableIdentifier"; UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier: SimpleTableIdentifier]; if (cell == nil) { cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault reuseIdentifier:SimpleTableIdentifier] autorelease]; NSUInteger row = [indexPath row]; cell.textLabel.text = [listData objectAtIndex:row]; } return cell; } @end And I Use the IB to link the TableView's dataSource and delegate to the CharTableController. In the CharTableController's view is the TableView in IB obviously. Reference Object in dataSource TableView and delegate TableView. What's wrong with my setting? thz.

    Read the article

  • How can I create a new Person object correctly in Javascript?

    - by TimDog
    I'm still struggling with this concept. I have two different Person objects, very simply: ;Person1 = (function() { function P (fname, lname) { P.FirstName = fname; P.LastName = lname; return P; } P.FirstName = ''; P.LastName = ''; var prName = 'private'; P.showPrivate = function() { alert(prName); }; return P; })(); ;Person2 = (function() { var prName = 'private'; this.FirstName = ''; this.LastName = ''; this.showPrivate = function() { alert(prName); }; return function(fname, lname) { this.FirstName = fname; this.LastName = lname; } })(); And let's say I invoke them like this: var s = new Array(); //Person1 s.push(new Person1("sal", "smith")); s.push(new Person1("bill", "wonk")); alert(s[0].FirstName); alert(s[1].FirstName); s[1].showPrivate(); //Person2 s.push(new Person2("sal", "smith")); s.push(new Person2("bill", "wonk")); alert(s[2].FirstName); alert(s[3].FirstName); s[3].showPrivate(); The Person1 set alerts "bill" twice, then alerts "private" once -- so it recognizes the showPrivate function, but the local FirstName variable gets overwritten. The second Person2 set alerts "sal", then "bill", but it fails when the showPrivate function is called. The new keyword here works as I'd expect, but showPrivate (which I thought was a publicly exposed function within the closure) is apparently not public. I want to get my object to have distinct copies of all local variables and also expose public methods -- I've been studying closures quite a bit, but I'm still confused on this one. Thanks for your help.

    Read the article

< Previous Page | 301 302 303 304 305 306 307 308 309 310 311 312  | Next Page >