Search Results

Search found 15490 results on 620 pages for 'oracle fusion crm'.

Page 430/620 | < Previous Page | 426 427 428 429 430 431 432 433 434 435 436 437  | Next Page >

  • Greatest not null column

    - by Álvaro G. Vicario
    I need to update a row with a formula based on the largest value of two DATETIME columns. I would normally do this: GREATEST(date_one, date_two) However, both columns are allowed to be NULL. I need the greatest date even when the other is NULL (of course, I expect NULL when both are NULL) and GREATEST() returns NULL when one of the columns is NULL. This seems to work: GREATEST(COALESCE(date_one, date_two), COALESCE(date_two, date_one)) But I wonder... am I missing a more straightforward method?

    Read the article

  • Multiple column Union Query without duplicates

    - by Adam Halegua
    I'm trying to write a Union Query with multiple columns from two different talbes (duh), but for some reason the second column of the second Select statement isn't showing up in the output. I don't know if that painted the picture properly but here is my code: Select empno, job From EMP Where job = 'MANAGER' Union Select empno, empstate From EMPADDRESS Where empstate = 'NY' Order By empno The output looks like: EMPNO JOB 4600 NY 5300 MANAGER 5300 NY 7566 MANAGER 7698 MANAGER 7782 MANAGER 7782 NY 7934 NY 9873 NY Instead of 5300 and 7782 appearing twice, I thought empstate would appear next to job in the output. For all other empno's I thought the values in the fields would be (null). Am I not understanding Unions correctly, or is this how they are supposed to work? Thanks for any help in advance.

    Read the article

  • SQL Modify question

    - by Jeff
    I need to replace a lot of values for a Table in SQL if the inactivity is greater then 30 days. I have UPDATE VERSION SET isActive = 0 WHERE customerNo = ( SELECT c.VersionNo FROM Activity b INNER JOIN VERSION c ON b.VersionNo = c.VersionNo WHERE (Months_between(sysdate, b.Activitye) > 30) ); It only works for one value though, if there is more then one returned it fails. What am I missing here? If someone could educate me on what is going on, I'd also appreciate it.

    Read the article

  • Performance: Subquery or Joining

    - by Auro
    Hello I got a little question about performance of a subquery / joining another table INSERT INTO Original.Person ( PID, Name, Surname, SID ) ( SELECT ma.PID_new , TBL.Name , ma.Surname, TBL.SID FROM Copy.Person TBL , original.MATabelle MA WHERE TBL.PID = p_PID_old AND TBL.PID = MA.PID_old ); This is my SQL, now this thing runs around 1 million times or more. Now my question is what would be faster? if I change TBL.SID to (Select new from helptable where old = tbl.sid) or if I add helptable to the from and do the joining in the where? greets Auro

    Read the article

  • Long to timestamp for historic data (pre-1900s)

    - by Mike
    I have a database of start and stop times that have previously all had fairly recent data (1960s through present day) which i've been able to store as long integers. This is very simialr to unix timestamps, only with millisecond precision, so a function like java.util.Date.getTime() would be the value of the current time. This has worked well so far, but we recently got data from the 1860s, and the following code no longer works: to_timestamp('1-JAN-1970 00:00:00', 'dd-mon-yyyy hh24:mi:ss') + numtodsinterval(int_to_convert/(1000),'SECOND' ); This wraps the date and we get timestamps in the year 2038. Is there a way around this issue? All of the documentation i've looked at the documentation and timestamps should be able to handle years all the way back to the -4000 (BC), so i'm suspecting an issue with the numtodsinterval. Any ideas suggestions would be greatly appreciated.

    Read the article

  • Does the order of the columns in a SELECT statement make a difference?

    - by Frank Computer
    This question was inspired by a previous question posted on SO, "Does the order of the WHERE clause make a differnece?". Would it improve a SELECT statement's performance if the the columns used in the WHERE section are placed at the begining of the SELECT statement? example: SELECT customer.id, transaction.id, transaction.efective_date, transaction.a, [...] FROM customer, transaction WHERE customer.id = transaction.id; I do know that limiting the list of columns to only the needed ones in a SELECT statement improves performance as opposed to using SELECT * because the current list is smaller.

    Read the article

  • trigger execution against condition satisfaction

    - by maheshasoni
    I have created this trigger which should give a error, whenever the value of new rctmemenrolno of table-receipts1 is matched with the memenrolno of table- memmast, but it is giving error in both condition(it is matched or not matched). kindly help me. CREATE OR REPLACE TRIGGER HDD_CABLE.trg_rctenrolno before insert ON HDD_CABLE.RECEIPTS1 for each row declare v_enrolno varchar2(9); cursor c1 is select memenrolno from memmast; begin open c1; fetch c1 into v_enrolno; LOOP If :new.rctmemenrolno<>v_enrolno then raise_application_error(-20186,'PLEASE ENTER CORRECT ENROLLMENT NO'); close c1; end if; END LOOP; end;

    Read the article

  • Commit In loop gives wrong output?

    - by Vineet
    I am trying to insert 1 to 10 numbers except 6and 8 in table messages,but when i fetch it from table mesages1, output is coming in this order 4 5 7 9 10 1 2 3 It should be like this 1 2 3 4 5 7 9 10 According to the logic ,it works fine when i omit commit or put it some where else, Please explain why it is happening? this is my code. BEGIN FOR i IN 1..10 LOOP IF i<>6 AND i<>8 THEN INSERT INTO messages1 VALUES (i); END IF; commit; END LOOP; END; select * from messages1;

    Read the article

  • Not sure how to use Decode, NVL, and/or isNull (or something else?) in this situation

    - by RSW
    I have a table of orders for particular products, and a table of products that are on sale. (It's not ideal database structure, but that's out of my control.) What I want to do is outer join the order table to the sale table via product number, but I don't want to include any particular data from the sale table, I just want a Y if the join exists or N if it doesn't in the output. Can anyone explain how I can do this in SQL? Thanks in advance!

    Read the article

  • replicating master tables mapping in transaction tables

    - by NoDisplay
    I have three master tables for location information Country {ID, Name} State {ID, Name, CountryID} City {ID, Name, StateID} Now I have one transcation table called Person which hold the person name and his location information. My Question is shall I have only CityID in the Person table like this: Person {ID, Name, CityID}' And have view of join query which give me detail like "Person{ID,Name,City,State,Country}" or Shall I replicate the mapping Person {ID, Name, CityID, StateID, CountryID} Please suggest which do you feel is to be selected and why? if there is any other option available, please suggest. Thanks in advance.

    Read the article

  • sql exception handling

    - by christine33990
    CREATE OR REPLACE PROCEDURE p_createLocaltable IS table_already_exist EXCEPTION; PRAGMA EXCEPTION_INIT (table_already_exist, -00955); BEGIN create table local_table as select * from supplied_table where rownum < 1; EXCEPTION when table_already_exist then DBMS_OUTPUT.put_line('Table already exists , does not need to recreate it'); END; can anyone see any problem of the above code?

    Read the article

  • Create trigger for auto incerment id and default unix datetime

    - by user1804985
    Any one help me to create a trigger for auto increment fld_id and Unix datetime. My table field is fld_id(int),fld_date(number),fld_value(varchar2). My insert query is insert into table (fld_value)values('xxx'); insert into table (fld_value)values('yyy'); I need the table record like this fld_id fld_date fld_value 1 1354357476 xxx 2 1354357478 yyy Please help me to create this.I can't able to do this..

    Read the article

  • Delete from empty table taking forver

    - by Will
    Hello, I have an empty table that previously had a large amount of rows. The table has about 10 columns and indexes on many of them, as well as indexes on multiple columns. DELETE FROM item WHERE 1=1 This takes approximately 40 seconds to complete SELECT * FROM item this takes 4 seconds. The execution plan of SELECT * FROM ITEM shows the following; SQL> select * from midas_item; no rows selected Elapsed: 00:00:04.29 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=19 Card=123 Bytes=73 80) 1 0 TABLE ACCESS (FULL) OF 'MIDAS_ITEM' (Cost=19 Card=123 Byte s=7380) Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 5263 consistent gets 5252 physical reads 0 redo size 1030 bytes sent via SQL*Net to client 372 bytes received via SQL*Net from client 1 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 0 rows processed any idea why these would be taking so long and how to fix it would be greatly appreciated!!

    Read the article

  • Difference between INSERT INTO and INSERT ALL INTO

    - by emily soto
    While I was inserting some records in table i found that.. INSERT INTO T_CANDYBAR_DATA SELECT CONSUMER_ID,CANDYBAR_NAME,SURVEY_YEAR,GENDER,1 AS STAT_TYPE,OVERALL_RATING FROM CANDYBAR_CONSUMPTION_DATA UNION SELECT CONSUMER_ID,CANDYBAR_NAME,SURVEY_YEAR,GENDER,2 AS STAT_TYPE,NUMBER_BARS_CONSUMED FROM CANDYBAR_CONSUMPTION_DATA; 79 rows inserted. INSERT ALL INTO t_candybar_data VALUES (consumer_id,candybar_name,survey_year,gender,1,overall_rating) INTO t_candybar_data VALUES (consumer_id,candybar_name,survey_year,gender,2,number_bars_consumed) SELECT * FROM candybar_consumption_data 86 rows inserted. I have read somewhere that INSERT ALL INTO automatically unions then why those difference is showing.

    Read the article

  • if not (i_ReLaunch = 1 and (dt_enddate is not null)) How this epression will be evaluated in Oracle

    - by Phani Kumar PV
    if not (i_ReLaunch = 1 and (dt_enddate is not null)) How this epression will be evaluated in Oracle 10g when the input value of the i_ReLaunch = null and the value of the dt_enddate is not null it is entering the loop. according to the rules in normal c# and all it should not enter the loop as it will be as follows with the values. If( not(false and (true)) = if not( false) =if( true) which implies it should enters the loop But it is not happening Can someone let me know if i am wrong at any place

    Read the article

  • Select distinct ... inner join vs. select ... where id in (...)

    - by Tonio
    I'm trying to create a subset of a table (as a materialized view), defined as those records which have a matching record in another materialized view. For example, let's say I have a Users table with user_id and name columns, and a Log table, with entry_id, user_id, activity, and timestamp columns. First I create a materialized view of the Log table, selecting only those rows with timestamp some_date. Now I want a materliazed view of the Users referenced in my snapshot of the Log table. I can either create it as select * from Users where user_id in (select user_id from Log_mview), or I can do select distinct u.* from Users u inner join Log_mview l on u.user_id = l.user_id (need the distinct to avoid multiple hits from users with multiple log entries). The former seems cleaner and more elegant, but takes much longer. Am I missing something? Is there a better way to do this?

    Read the article

  • Fill data gaps without UNION

    - by Dave Jarvis
    Problem There are data gaps that need to be filled, possibly using PARTITION BY. Query Statement The select statement reads as follows: SELECT count( r.incident_id ) AS incident_tally, r.severity_cd, r.incident_typ_cd FROM report_vw r GROUP BY r.severity_cd, r.incident_typ_cd ORDER BY r.severity_cd, r.incident_typ_cd Code Tables The severity codes and incident type codes are from: severity_vw incident_type_vw Actual Result Data 36 0 ENVIRONMENT 1 1 DISASTER 27 1 ENVIRONMENT 4 2 SAFETY 1 3 SAFETY Required Result Data 36 0 ENVIRONMENT 0 0 DISASTER 0 0 SAFETY 27 1 ENVIRONMENT 0 1 DISASTER 0 1 SAFETY 0 2 ENVIRONMENT 0 2 DISASTER 4 2 SAFETY 0 3 ENVIRONMENT 0 3 DISASTER 1 3 SAFETY Any ideas how to use PARTITION BY (or JOINs) to fill in the zero counts?

    Read the article

  • Caluculating sum of activity

    - by Maddy
    I have a table which is with following kind of information activity cost order date other information 10 1 100 -- 20 2 100 10 1 100 30 4 100 40 4 100 20 2 100 40 4 100 20 2 100 10 1 101 10 1 101 20 1 101 My requirement is to get sum of all activities over a work order ex: for order 100 1+2+4+4=11 1(for activity 10) 2(for activity 20) 4 (for activity 30) etc. i tried with group by, its taking lot time for calculation. There are 1lakh plus records in warehouse. is there any possibility in efficient way. SELECT SUM(MIN(cost)) FROM COST_WAREHOUSE a WHERE order = 100 GROUP BY (order, ACTIVITY)

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Oracle (xe) 10 vs 11 . Have I lost the SQL tuning pages ? Am I going out of my mind?

    - by Richard Green
    Ok .. so perhaps the title needs calming down a bit, but basically I am after the xe 11g equivalent of the pages that you can see here : http://docs.oracle.com/cd/B25329_01/doc/admin.102/b25107/getstart.htm#BABHJAGE whcih you can then navigate to stuff like "top 50 queries" and "longest running queries" etc etc. For the life of me, I can't find that on the most recent xe edition. Please can someone direct me to where I might find these very useful admin pages ! Or was I imagining it all along :-/ Edit: These are the pages I am after: http://docs.oracle.com/cd/B25329_01/doc/admin.102/b25107/monitoring.htm

    Read the article

< Previous Page | 426 427 428 429 430 431 432 433 434 435 436 437  | Next Page >