Search Results

Search found 18401 results on 737 pages for 'oracle customer hub'.

Page 534/737 | < Previous Page | 530 531 532 533 534 535 536 537 538 539 540 541  | Next Page >

  • Ops Center zip documentation

    - by Owen Allen
    If you're operating in a dark site, or are otherwise without easy access to the internet, it can be tricky to get access to the docs. The readme comes along with the product, but that's not exactly the same as the whole doc library. Well, we've put a zip file with the whole doc library contents up on the main doc page. So, if you are in a site without internet access, you can get the zip, extract it, and have a portable version of the site, including the pdf and html versions of all of the docs.

    Read the article

  • EU Digital Agenda scores 85/100

    - by trond-arne.undheim
    If the Digital Agenda was a bottle of wine and I were wine critic Robert Parker, I would say the Digital Agenda has "a great bouquet, many good elements, with astringent, dry and puckering mouth feel that will not please everyone, but still displaying some finesse. A somewhat controlled effort with no surprises and a few noticeable flaws in the delivery. Noticeably shorter aftertaste than advertised by the producers. Score: 85/100. Enjoy now". The EU Digital Agenda states that "standards are vital for interoperability" and has a whole chapter on interoperability and standards. With this strong emphasis, there is hope the EU's outdated standardization system finally is headed for reform. It has been 23 years since the legal framework of standardisation was completed by Council Decision 87/95/EEC8 in the Information and Communications Technology (ICT) sector. Standardization is market driven. For several decades the IT industry has been developing standards and specifications in global open standards development organisations (fora/consortia), many of which have transparency procedures and practices far superior to the European Standards Organizations. The Digital Agenda rightly states: "reflecting the rise and growing importance of ICT standards developed by certain global fora and consortia". Some fora/consortia, of course, are distorted, influenced by single vendors, have poor track record, and need constant vigilance, but they are the minority. Therefore, the recognition needs to be accompanied by eligibility criteria focused on openness. Will the EU reform its ICT standardization by the end of 2010? Possibly, and only if DG Enterprise takes on board that Information and Communications Technologies (ICTs) have driven half of the productivity growth in Europe over the past 15 years, a prominent fact in the EU's excellent Digital Competitiveness report 2010 published on Monday 17 May. It is ok to single out the ICT sector. It simply is the most important sector right now as it fuels growth in all other sectors. Let's not wait for the entire standardization package which may take another few years. Europe does not have time. The Digital Agenda is an umbrella strategy with deliveries from a host of actors across the Commission. For instance, the EU promises to issue "guidance on transparent ex-ante disclosure rules for essential intellectual property rights and licensing terms and conditions in the context of standard setting", by 2011 in the Horisontal Guidelines now out for public consultation by DG COMP and to some extent by DG ENTR's standardization policy reform. This is important. The EU will issue procurement guidance as interoperability frameworks are put into practice. This is a joint responsibility of several DGs, and is likely to suffer coordination problems, controversy and delays. We have seen plenty of the latter already and I have commented on the Commission's own interoperability elsewhere, with mixed luck. :( Yesterday, I watched the cartoonesque Korean western film The Good, the Bad and the Weird. In the movie (and I meant in the movie only), a bandit, a thief, and a bounty hunter, all excellent at whatever they do, fight for a treasure map. Whether that is a good analogy for the situation within the Commission, others are better judges of than I. However, as a movie fanatic, I still await the final shoot-out, and, as in the film, the only certainty is that "life is about chasing and being chased". The missed opportunity (in this case not following up the push from Member States to better define open standards based interoperability) is a casualty of the chaos ensued in the European Wild West (and I mean that in the most endearing sense, and my excuses beforehand to actors who possibly justifiably cannot bear being compared to fictional movie characters). Instead of exposing the ongoing fight, the EU opted for the legalistic use of the term "standards" throughout the document. This is a term that--to the EU-- excludes most standards used by the IT industry world wide. So, while it, for a moment, meant "weapon down", it will not lead to lasting peace. The Digital Agenda calls for the Member States to "Implement commitments on interoperability and standards in the Malmö and Granada Declarations by 2013". This is a far cry from the actual Ministerial Declarations which called upon the Commission to help them with this implementation by recognizing and further defining open standards based interoperability. Unless there is more forthcoming from the Commission, the market's judgement will be: you simply fall short. Generally, I think the EU focus now should be "from policy to practice" and the Digital Agenda does indeed stop short of tackling some highly practical issues. There is need for progress beyond the Digital Agenda. Here are some suggestions that would help Europe re-take global leadership on openness, public sector reform, and economic growth: A strong European software strategy centred around open standards based interoperability by 2011. An ambitious new eCommission strategy for 2011-15 focused on migration to open standards by 2015. Aligning the IT portfolio across the Commission into one Digital Agenda DG by 2012. Focusing all best practice exchange in eGovernment on one social networking site, epractice.eu (full disclosure: I had a role in getting that site up and running) Prioritizing public sector needs in global standardization over European standardization by 2014.

    Read the article

  • OAGi Architecture Council OAGIS Ten Work Group Completes first round review of Concepts for OAGIS Te

    - by michael.rowell
    Today the OAGi Architecture Council OAGIS Ten Work group completed the first level review of concepts for existing content for OAGIS Ten. This is one of the first milestones for OAGIS Ten. In doing this the concepts of key objects (the Nouns) have been identified along with the key context for their use. While OAGIS Ten remains a work-in-process the work group shows progress. Going forward the other councils will provide additional input to these and there own concepts and the contexts for each. Additionally, sub groups will focus on concepts for given domains. Stay tuned for future progress. If anyone is interested in joining the effort. OAGi membership is open to anyone, please see the OAGi Web site.

    Read the article

  • Patrick Curran Session-Keynote at DOAG 2012

    - by Heather VanCura
    Patrick Curran, Chair of the  Java Community Process (JCP) and Director of the JCP Program Management Office, will be speaking this week at the DOAG 2012 event in Nuremberg Germany. Keynote Java: Restructuring the Java Community ProcessNovember, 22nd | 09:00-09:45 am The Java Community Process (JCP) plays a critical role in the evolution of Java.  This keynote will explain how the JCP is organized and how interested members of the Java community - commercial organizations, non-profits, Java user-groups, and individual developers - work together to advance the Java language and platforms. It will then discuss recent and upcoming changes to the JCP's structure and operating processes, and will explain how these changes ('JCP.next') will make the organization more efficient and will ensure that its work is carried out in a more open and more transparent manner.

    Read the article

  • SSAS: Utility to check you have the correct data types and sizes in your cube definition

    - by DrJohn
    This blog describes a tool I developed which allows you to compare the data types and data sizes found in the cube’s data source view with the data types/sizes of the corresponding dimensional attribute.  Why is this important?  Well when creating named queries in a cube’s data source view, it is often necessary to use the SQL CAST or CONVERT operation to change the data type to something more appropriate for SSAS.  This is particularly important when your cube is based on an Oracle data source or using custom SQL queries rather than views in the relational database.   The problem with BIDS is that if you change the underlying SQL query, then the size of the data type in the dimension does not update automatically.  This then causes problems during deployment whereby processing the dimension fails because the data in the relational database is wider than that allowed by the dimensional attribute. In particular, if you use some string manipulation functions provided by SQL Server or Oracle in your queries, you may find that the 10 character string you expect suddenly turns into an 8,000 character monster.  For example, the SQL Server function REPLACE returns column with a width of 8,000 characters.  So if you use this function in the named query in your DSV, you will get a column width of 8,000 characters.  Although the Oracle REPLACE function is far more intelligent, the generated column size could still be way bigger than the maximum length of the data actually in the field. Now this may not be a problem when prototyping, but in your production cubes you really should clean up this kind of thing as these massive strings will add to processing times and storage space. Similarly, you do not want to forget to change the size of the dimension attribute if your database columns increase in size. Introducing CheckCubeDataTypes Utiltity The CheckCubeDataTypes application extracts all the data types and data sizes for all attributes in the cube and compares them to the data types and data sizes in the cube’s data source view.  It then generates an Excel CSV file which contains all this metadata along with a flag indicating if there is a mismatch between the DSV and the dimensional attribute.  Note that the app not only checks all the attribute keys but also the name and value columns for each attribute. Another benefit of having the metadata held in a CSV text file format is that you can place the file under source code control.  This allows you to compare the metadata of the previous cube release with your new release to highlight problems introduced by new development. You can download the C# source code from here: CheckCubeDataTypes.zip A typical example of the output Excel CSV file is shown below - note that the last column shows a data size mismatch by TRUE appearing in the column

    Read the article

  • Thank You MySQL Community! MySQL 5.6.9 Release Candidate Available Now!

    - by Rob Young
    The MySQL Community continues its good work in testing and refining MySQL 5.6, and as such the next iteration of the 5.6 Release Candidate is now available for download.  You can get MySQL 5.6.9 here (look under the "Development Releases" tab).  This version is the result of feedback we have gotten since MySQL 5.6.7 was announced at MySQL Connect in late September. As iron sharpens iron, Community feedback sharpens the quality and performance of MySQL so please download 5.6.9 and let us know how we can improve it as we move toward the production-ready product release in early 2013. MySQL 5.6 is designed to meet the agility demands of the next generation of web apps and services and includes across the board improvements to the Optimizer, InnoDB performance/scale and online DDL operations, self-healing Replication, Performance Schema Instrumentation, Security and developer enabling NoSQL functionality.  You can learn all the details and follow MySQL Engineering blogs on all of the key features in this MySQL DevZone article. On a related note, plan to join this week's live webinars to learn more about MySQL 5.6 Self-Healing Replication Clusters and Building the Next Generation of Web, Cloud, SaaS, Embedded Application and Services with MySQL 5.6.  Hurry!  Seating is limited!  As always, thanks for your continued support of MySQL!

    Read the article

  • Do your filesystems have un-owned files ?

    - by darrenm
    As part of our work for integrated compliance reporting in Solaris we plan to provide a check for determining if the system has "un-owned files", ie those which are owned by a uid that does not exist in our configured nameservice.  Tests such as this already exist in the Solaris CIS Benchmark (9.24 Find Un-owned Files and Directories) and other security benchmarks. The obvious method of doing this would be using find(1) with the -nouser flag.  However that requires we bring into memory the metadata for every single file and directory in every local file system we have mounted.  That is probaby not an acceptable thing to do on a production system that has a large amount of storage and it is potentially going to take a long time. Just as I went to bed last night an idea for a much faster way of listing file systems that have un-owned files came to me. I've now implemented it and I'm happy to report it works very well and peforms many orders of magnatude better than using find(1) ever will.   ZFS (since pool version 15) has per user space accounting and quotas.  We can report very quickly and without actually reading any files at all how much space any given user id is using on a ZFS filesystem.  Using that information we can implement a check to very quickly list which filesystems contain un-owned files. First a few caveats because the output data won't be exactly the same as what you get with find but it answers the same basic question.  This only works for ZFS and it will only tell you which filesystems have files owned by unknown users not the actual files.  If you really want to know what the files are (ie to give them an owner) you still have to run find(1).  However it has the huge advantage that it doesn't use find(1) so it won't be dragging the metadata for every single file and directory on the system into memory. It also has the advantage that it can check filesystems that are not mounted currently (which find(1) can't do). It ran in about 4 seconds on a system with 300 ZFS datasets from 2 pools totalling about 3.2T of allocated space, and that includes the uid lookups and output. #!/bin/sh for fs in $(zfs list -H -o name -t filesystem -r rpool) ; do unknowns="" for uid in $(zfs userspace -Hipn -o name,used $fs | cut -f1); do if [ -z "$(getent passwd $uid)" ]; then unknowns="$unknowns$uid " fi done if [ ! -z "$unknowns" ]; then mountpoint=$(zfs list -H -o mountpoint $fs) mounted=$(zfs list -H -o mounted $fs) echo "ZFS File system $fs mounted ($mounted) on $mountpoint \c" echo "has files owned by unknown user ids: $unknowns"; fi done Sample output: ZFS File system rpool/ROOT/solaris-30/var mounted (no) on /var has files owned by unknown user ids: 6435 33667 101 ZFS File system rpool/ROOT/solaris-32/var mounted (yes) on /var has files owned by unknown user ids: 6435 33667ZFS File system builds/bob mounted (yes) on /builds/bob has files owned by unknown user ids: 101 Note that the above might not actually appear exactly like that in any future Solaris product or feature, it is provided just as an example of what you can do with ZFS user space accounting to answer questions like the above.

    Read the article

  • Eine gelöschte APEX-Anwendung wiederherstellen ...? Das geht!

    - by carstenczarski
    Eine versehentlich gelöschte APEX-Anwendung lässt sich tatsächlich wiederherstellen; allerdings darf seit dem Löschen nicht allzuviel Zeit vergangen sein. Grundlage ist die Möglichkeit, Flashback-Funktionen beim Anwendungsexport zu nutzen. Doch wie soll man die zu exportierende Anwendung einstellen ...? In der Auswahlliste für die zu exportierende Anwendung fehlt sie natürlich, denn sie ist ja gelöscht. Hier hilft ein Trick: Legen Sie einfach eine neue Anwendung an - diese muss die gleiche ID haben, wie die, die versehentlich gelöscht wurde. Und voilá: Nun können Sie die Anwendung auswählen; tragen Sie bei As Of soviele Minuten ein, dass der Export zu einer Zeit stattfindet, als die "alte" Anwendung noch da war und exportieren Sie. Sie erhalten die verlorene Anwendung zurück. Wie weit Sie "in die Vergangenheit" zurückkommen, hängt von der Konfiguration des Datenbankservers (hier: der UNDO-Tablespace) durch den Administrator ab. Realistisch sind meist 10 bis 30 Minuten. Wenn Sie APEX-Entwicklungsstände auch über längere Zeiträume hinweg wiederherstellen möchten, bietet sich der regelmäßige, skriptgesteuerte Export per Kommandozeile und das Einchecken der Exportdateien in ein Versionskonstrollsystem an.

    Read the article

  • NightHacking Tour: Join the fun!

    - by terrencebarr
    My colleague and esteemed JavaFX hacker Stephen Chin is currently on the road on his NightHacking Tour through Europe, geeking with toys and projects, hacking code, and interviewing Java luminaries along the way. You might know the guy on the left – James Gosling was the first stop of the tour. What’s more, you can follow live on UStream at each stop along the way. Very cool! To learn all about the NightHacking Tour, check here.  Stephen will swing past my place in Freiburg, Germany, on Saturday (Nov 3). We’ll be chatting about all the stuff that’s happening in the embedded space these days and play with the latest small Java – if the demo gods allow For the latest UStream schedule and past recordings, go here. And follow #nighthacking on Twitter. Cheers, – Terrence Filed under: Mobile & Embedded Tagged: embedded, Java, Java Embedded, nighthacking

    Read the article

  • API's

    - by raghu.yadav
    lets dump API's here .... // if you want to put/get something in/from the pageFlowScope, use thisMap pfsMap = AdfFacesContext.getCurrentInstance().getPageFlowScope(); pfsMap.put(key, value); // pfsMap.put("#{pageFlowScope.param}, "sample"); pfsMap.get(key); // pfsMap.get("#{pageFlowScope.param} // if you want to set bean's property value, use this MyBackingBean bean = (MyBackingBean)pfsMap.get("my_backing_bean_name"); // the name under which the bean is registered in the task flow bean.setMyParam(newValue);

    Read the article

  • Great Example of Community How-To Doc

    - by ultan o'broin
    Always on the lookout for examples of community doc, and here's a great one: Chet Justice (@oraclenerd) just launched an eBook version (PDF actually) of John Piwowar's (@jpiwowar) very popular multi-part E-Business Suite Installation Guide. You can obtain it using the PayPal buttons here. All in a good cause too. Creation of how-to information like this for functional or technical tasks, along with working examples about post-install steps, configurations and customizations, is what an applications community value-add is all about. Each community is different of course, an Adobe PhotoShop community might be more interested in templates. Great to see the needs of the community being met like this. If you have other examples you'd like to share, then find the comments.

    Read the article

  • First JSRs Proposed for Java EE 7

    - by Jacob Lehrbaum
    With the approval of Java SE 7 and Java SE 8 JSRs last month, attention is now shifting towards the Java EE platform.  While functionality pegged for Java EE 7 was previewed at least as early as Devoxx, the filing of these JSRs marks the first, officially proposed, specifications for the next generation of the popular application server standard.  Let's take a quick look at the proposed new functionality.Java Persistence API 2.1The first of the new proposed specifications is JSR 338: Java Persistence API (JPA) 2.1. JPA is designed for use with both Java EE and Java SE and: "deals with the way relational data is mapped to Java objects ("persistent entities"), the way that these objects are stored in a relational database so that they can be accessed at a later time, and the continued existence of an entity's state even after the application that uses it ends. In addition to simplifying the entity persistence model, the Java Persistence API standardizes object-relational mapping." (more about JPA)JAX-RS 2.0The second of the new Java specifications that have been proposed is JSR 339, otherwise known as JAX-RS 2.0. JAX-RS provides an API that enables the easy creation of web services using the Representational State Transfer (REST) architecture.  Key features proposed in the new JSR include a Client API, improved support for URIs, a Model-View-Controller architecture and much more!More informationOfficial proposal for Java Persistence 2.1 (jcp.org)Official proposal for JAX-RS 2.0 (jcp.org)Kicking off Java EE 7 with 2 JSRs: JAX-RS 2.0 / JPA 2.1 (the Aquarium)

    Read the article

  • 5 Ways to Determine Mobile Location

    - by David Dorf
    In my previous post, I mentioned the importance of determining the location of a consumer using their mobile phone.  Retailers can track anonymous mobile phones to determine traffic patterns both inside and outside their stores.  And with consumers' permission, retailers can send location-aware offers to mobile phones; for example, a coupon for cereal as you walk down that aisle.  When paying with Square, your location is matched with the transaction.  So there are lots of reasons for retailers to want to know the location of their customers.  But how is it done? I thought I'd dive a little deeper on that topic and consider the approaches to determining location. 1. Tower Triangulation By comparing the relative signal strength from multiple antenna towers, a general location of a phone can be roughly determined to an accuracy of 200-1000 meters.  The more towers involved, the more accurate the location. 2. GPS Using Global Positioning Satellites is more accurate than using cell towers, but it takes longer to find the satellites, it uses more battery, and it won't well indoors.  For geo-fencing applications, like those provided by Placecast and Digby, cell towers are often used to determine if the consumer is nearing a "fence" then switches to GPS to determine the actual crossing of the fence. 3. WiFi Triangulation WiFi triangulation is usually more accurate than using towers just because there are so many more WiFi access points (i.e. radios in routers) around. The position of each WiFi AP needs to be recorded in a database and used in the calculations, which is what Skyhook has been doing since 2008.  Another advantage to this method is that works well indoors, although it usually requires additional WiFi beacons to get the accuracy down to 5-10 meters.  Companies like ZuluTime, Aisle411, and PointInside have been perfecting this approach for retailers like Meijer, Walgreens, and HomeDepot. Keep in mind that a mobile phone doesn't have to connect to the WiFi network in order for it to be located.  The WiFi radio in the phone only needs to be on.  Even when not connected, WiFi radios talk to each other to prepare for a possible connection. 4. Hybrid Approaches Naturally the most accurate approach is to combine the approaches described above.  The more available data points, the greater the accuracy.  Companies like ShopKick like to add in acoustic triangulation using the phone's microphone, and NearBuy can use video analytics to increase accuracy. 5. Magnetic Fields The latest approach, and this one is really new, takes a page from the animal kingdom.  As you've probably learned from guys like Marlin Perkins, some animals use the Earth's magnetic fields to navigate.  By recording magnetic variations within a store, then matching those readings with ones from a consumer's phone, location can be accurately determined.  At least that's the approach IndoorAtlas is taking, and the science seems to bear out.  It works well indoors, and doesn't require retailers to purchase any additional hardware.  Keep an eye on this one.

    Read the article

  • Preventing Users From Accessing wp-admin

    - by Gary Pendergast
    If you have a WordPress site that you allow people to sign up for, you often don’t want them to be able to access wp-admin. It’s not that there are any security issues, you just want to ensure that your users are accessing your site in a predictable manner.To block non-admin users from getting into wp-admin, you just need to add the following code to your functions.php, or somewhere similar:add_action( 'init', 'blockusers_init' );   function blockusers_init() { if ( is_admin() && ! current_user_can( 'administrator' ) ) { wp_redirect( home_url() ); exit; } }Ta-da! Now, only administrator users can access wp-admin, everyone else will be re-directed to the homepage.

    Read the article

  • Creating a Successful Cloud Roadmap

    - by stephen.g.bennett
    No matter what type of cloud services or deployment models you are considering as part of your overall IT strategy, you must have a cloud services adoption roadmap to guide your journey. A cloud services adoption roadmap provides guidance that enables multiple projects to progress in parallel yet remain coordinated and ultimately result in a common end goal. The cloud services adoption roadmap consists of program-level efforts and a portfolio of cloud services. The program-level effort creates strategic assets such as the cloud architecture, cloud infrastructure, cloud governance, risk, and compliance (GRC) processes, and security policies that are leveraged across all the individual projects. A feature article on this topic can be found in the latest SOA and Cloud Magazine.

    Read the article

  • JSR Updates and Inactive JSRs

    - by heathervc
     The following JSRs have made progress in the JCP program this week: JSR 342, Java Platform, Enterprise Edition 7 (Java EE 7) Specification, has posted an Early Draft 2 Review.  This review closes 30 November. JSR 338, Java Persistence 2.1, has posted an Early Draft 2 Review.  This review closes 30 November.  JSR 346, Contexts and Dependency Injection for Java, EE 1.1, has posted a Public Review.  This review closes 3 December.  JSR 352, Batch Applications for the Java Platform, has posted a Public Review.  This review closes 3 December. Inactive JSRs: In 2008, we initiated an effort to identify JSRs that had not continued to make progress in the JCP program.  We have reported on this topic since that time at JCP Executive Committee Meetings. The term 'Inactive JSRs' was introduced, and a process was developed with the guidance of the EC to reduce the number of Inactive JSRs  (reduced from over 60 to 2 JSRs) through either moving to the next JSR stage or being Withdrawn or declared Dormant.  This process has been formalized in JCP 2.8 and above, with the introduction of JSR deadlines.  The JSRs which were put to a Dormancy Ballot in September 2012  have been approved by the EC and are now declared Dormant.  You can view the results of the JSR Voting on JCP.org.  The latest Inactive JSRs report is available as part of the September 2012 JCP EC Face-to-Face Meeting Materials. 

    Read the article

  • How to get a Sun Ray to load a firmware from elsewhere

    - by vdiozguy
    I run a Sun Ray/VDI demo environment internally within the company - and because it's not a public service, I need to tell my Sun Rays to connect to it directly so that I don't get redirected to the corporate servers. To get any new Sun Ray to connect to *my* setup I usually pull out my laptop so that the Sun Ray can load the new version of the F/W along with the permission to pull up the management GUI via STOP-S.But there is a better way if you have another Sun Ray server handy:1) allow your Sun Ray to connect to the default corporate server2) log in to a "regular" session, that is a Solaris or Linux desktop on the Sun Ray server itself3) in a terminal, utswitch to your server (/opt/SUNWut/bin/utswitch -h myserver)4) again, login to a regular session there5) in a terminal,  issue "/opt/SUNWut/lib/utload -S myserver -w"6) Watch your firmware load and wait7) the Sun Ray will reboot and connect to the first server again. Repeat steps 2-48) issue "/opt/SUNWut/lib/utload -S myserver -f SunRay.enableGUI"9) Press STOP-S and be merryNOTE: I'm sure there is even yet a better way - this is totally unsupported, most likely a figment of my imagination. In any case, this post will self-destruct in BOOM.

    Read the article

  • How to Calculate TCP Socket Buffer Sizes for Data Guard Environments

    - by alejandro.vargas
    The MAA best practices contains an example of how to calculate the optimal TCP socket buffer sizes, that is quite important for very busy Data Guard environments, this document Formula to Calculate TCP Socket Buffer Sizes.pdf contains an example of using the instructions provided on the best practices document. In order to execute the calculation you need to know which is the band with or your network interface, usually will be 1Gb, on my example is a 10Gb network; and the round trip time, RTT, that is the time it takes for a packet to make a travel to the other end of the network and come back, on my example that was provided by the network administrator and was 3 ms (1000/seconds)

    Read the article

  • Twitte API for Java - Hello Twitter Servlet (TOTD #178)

    - by arungupta
    There are a few Twitter APIs for Java that allow you to integrate Twitter functionality in a Java application. This is yet another API, built using JAX-RS and Jersey stack. I started this effort earlier this year and kept delaying to share because wanted to provide a more comprehensive API. But I've delayed enough and releasing it as a work-in-progress. I'm happy to take contributions in order to evolve this API and make it complete, useful, and robust. Drop a comment on the blog if you are interested or ping me at @arungupta. How do you get started ? Just add the following to your "pom.xml": <dependency> <groupId>org.glassfish.samples</groupId> <artifactId>twitter-api</artifactId> <version>1.0-SNAPSHOT</version></dependency> The implementation of this API uses Jersey OAuth Filters for authentication with Twitter and so the following dependencies are required if any API that requires authentication, which is pretty much all the APIs ;-) <dependency> <groupId>com.sun.jersey.contribs.jersey-oauth</groupId>     <artifactId>oauth-client</artifactId>     <version>${jersey.version}</version> </dependency> <dependency>     <groupId>com.sun.jersey.contribs.jersey-oauth</groupId>     <artifactId>oauth-signature</artifactId>     <version>${jersey.version}</version> </dependency> Once the dependencies are added to your project, inject Twitter  API in your Servlet (or any other Java EE component) as: @Inject Twitter twitter; Here is a simple non-secure invocation of the API to get you started: SearchResults result = twitter.search("glassfish", SearchResults.class);for (SearchResultsTweet t : result.getResults()) { out.println(t.getText() + "<br/>");} This code returns the tweets that matches the query "glassfish". The source code for the complete project can be downloaded here. Download it, unzip, and mvn package will build the .war file. And then deploy it on GlassFish or any other Java EE 6 compliant application server! The source code for the API also acts as the javadocs and can be checked out from here. A more detailed sample using security and several other API from this library is coming soon!

    Read the article

  • Transparent Technology from Amazon

    - by David Dorf
    Amazon has been making some interesting moves again, this time in the augmented humanity area.  Augmented humanity is about helping humans overcome their shortcomings using technology.  Putting a powerful smartphone in your pocket helps you in many ways like navigating streets, communicating with far off friends, and accessing information.  But the interface for smartphones is somewhat limiting and unnatural, so companies have been looking for ways to make the technology more transparent and therefore easier to use. When Apple helped us drop the stylus, we took a giant leap forward in simplicity.  Using touchscreens with intuitive gestures was part of the iPhone's original appeal.  People don't want to know that technology is there -- they just want the benefits.  So what's the next leap beyond the touchscreen to make smartphones even easier to use? Two natural ways we interact with the world around us is by using sight and voice.  Google and Apple have been using both in their mobile platforms for limited uses cases.  Nobody actually wants to type a text message, so why not just speak it?  Any if you want more information about a book, why not just snap a picture of the cover?  That's much more accurate than trying to key the title and/or author. So what's Amazon been doing?  First, Amazon released a new iPhone app called Flow that allows iPhone users to see information about products in context.  Yes, its an augmented reality app that uses the phone's camera to view products, and overlays data about the products on the screen.  For the most part it requires the barcode to be visible to correctly identify the product, but I believe it can also recognize certain logos as well.  Download the app and try it out but don't expect perfection.  Its good enough to demonstrate the concept, but its far from accurate enough.  (MobileBeat did a pretty good review.)  Extrapolate to the future and we might just have a heads-up display in our eyeglasses. The second interesting area is voice response, for which Siri is getting lots of attention.  Amazon may have purchased a voice recognition company called Yap, although the deal is not confirmed.  But it would make perfect sense, especially with the Kindle Fire in Amazon's lineup. I believe over the next 3-5 years the way in which we interact with smartphones will mature, and they will become more transparent yet more important to our daily lives.  This will, of course, impact the way we shop, making information more readily accessible than it already is.  Amazon seems to be positioning itself to be at the forefront of this trend, so we should be watching them carefully.

    Read the article

  • SOA Suite 11g Dynamic Payload Testing with soapUI Free Edition

    - by Greg Mally
    Overview Many web service developers use soapUI for various tests like: smoke test, unit test, and load testing because you can get a free edition that is fairly robust. However, if you need to venture into more complex testing that requires a dynamic payload, then the free edition doesn't necessarily make it easy. This feature does exist in soapUI, but for obvious reasons it is in the Pro version. In this blog I will show you how to use soapUI free edition for dynamic payloads in a simplified example. Hopefully this will open the doors for you to expand into more complex scenarios. The following assumes that you have a working knowledge of soapUI and will not go into concepts like setting up a project etc. For the basics, please review the documentation for soapUI: http://www.soapui.org/Getting-Started/. Additionally, we will be using asynchronous web services and you can review the setup for this in my blog: SOA Suite 11g Asynchronous Testing with soapUI. Features in soapUI Free Edition Relating to this Topic The soapUI test tool provides a very feature rich environment that can do many things provided you are willing to go beyond point and click. For this example, we will be leveraging just a couple features for our dynamic payload example: Test Case Properties Scripting with Groovy Basically, we will be using a property as a global variable and we will manipulate that property using a Groovy script. Setting Up Our Property Properties are available throughout soapUI and here is a snippet from the soapUI website defining the locations: Projects : for handling Project scope values, for example a subscription ID TestSuite : for handling TestSuite scoped values, can be seen as "arguments" to a TestSuite TestCases : for handling TestCase scoped values, can be seen as "arguments" to a TestCase Properties TestStep : for providing local values/state within a TestCase Local TestStep properties : several TestStep types maintain their own list of properties specific to their functionality : DataSource, DataSink, Run TestCase MockServices : for handling MockService scoped values/arguments MockResponses : for handling MockResponse scoped values Global Properties : for handling Global properties, optionally from an external source For our example, we will be defining a custom property in a TestCase called SimpleAsyncPayload. The property can be created in either the Custom Properties tab located at the bottom of the Navigator panel when the TestCase is selected in the Navigator or the Properties label in the TestCase editor: Navigator Panel TestCase Editor You will notice that I set a value of “0” for the custom property. For this simplified example, we will need to retrieve that value and manipulate it prior to making the web service request invocation. In order to accomplish this, we will need to get Groovy ;) Let's Get Groovy We will now add a new Groovy Script step to the TestCase called Manipulate Payload: TestCase Editor > Append Step > Groovy Script Once we have added the Groovy Script step to our TestCase, we can open the Groovy Script editor to add the code to: Get the current value of the property we created called SimpleAsyncPayload. Convert the value of the property to an integer. Increment the value. Store the incremented value back into the TestCase property called SimpleAsyncPayload. The script should look something like the following: Groovy Script Editor – Manipulate Payload At this point we can test the script to see if it is working by simply running the TestCase (left-click on the green triangle in the upper left-hand corner of the TestCase editor). To verify if it ran correctly, we can look at the value of the SimpleAsyncPayload property which should now be 1: TestCase Editor – Run Results All that is left to complete the TestCase is to append another step of type Test Request. The information required to append the request is a name and an operation to invoke. In this example we will use the default name and select the SimpleAsyncBPELProcessBingd -> process as the operation (any other information being requested, simply use the defaults unless you are calling an asynchronous operation then do not add any assertions). We are now in familiar ground with the Test Request editor. Depending upon the type of operation you are invoking (synchronous or asynchronous), please update the request with the necessary information (e.g., callback information for asynchronous operations). We will now tweak the Test Request payload to retrieve the value of the SimpleAsyncPayload property. The soapUI editor makes this very simple: right-click in the payload and navigate to the property (e.g., right-click > Get Data.. > TestCase: [Groovy TestCase] > Property [SimpleAsyncPayload]): Test Request Editor – Insert Property Value Your payload should now look something like the following: Test Request Editor – Inserted Property Value Just like before, we are now ready to run the TestCase. If everything goes as expected we should see a response like the following: Message Viewer – Results of TestCase Run We are now setup to be able to run a stress test where the payload will change for each request. This simple example can be expanded to include multiple payload values, complex calculations in the scripts, or whatever can be done via the soapUI scripting. Hopefully you have found this useful and happy testing to you :)

    Read the article

  • WebSocket Samples in GlassFish 4 build 66 - javax.websocket.* package: TOTD #190

    - by arungupta
    This blog has published a few blogs on using JSR 356 Reference Implementation (Tyrus) integrated in GlassFish 4 promoted builds. TOTD #183: Getting Started with WebSocket in GlassFish TOTD #184: Logging WebSocket Frames using Chrome Developer Tools, Net-internals and Wireshark TOTD #185: Processing Text and Binary (Blob, ArrayBuffer, ArrayBufferView) Payload in WebSocket TOTD #186: Custom Text and Binary Payloads using WebSocket TOTD #189: Collaborative Whiteboard using WebSocket in GlassFish 4 The earlier blogs created a WebSocket endpoint as: import javax.net.websocket.annotations.WebSocketEndpoint;@WebSocketEndpoint("websocket")public class MyEndpoint { . . . Based upon the discussion in JSR 356 EG, the package names have changed to javax.websocket.*. So the updated endpoint definition will look like: import javax.websocket.WebSocketEndpoint;@WebSocketEndpoint("websocket")public class MyEndpoint { . . . The POM dependency is: <dependency> <groupId>javax.websocket</groupId> <artifactId>javax.websocket-api</artifactId> <version>1.0-b09</version> </dependency> And if you are using GlassFish 4 build 66, then you also need to provide a dummy EndpointFactory implementation as: import javax.websocket.WebSocketEndpoint;@WebSocketEndpoint(value="websocket", factory=MyEndpoint.DummyEndpointFactory.class)public class MyEndpoint { . . .   class DummyEndpointFactory implements EndpointFactory {    @Override public Object createEndpoint() { return null; }  }} This is only interim and will be cleaned up in subsequent builds. But I've seen couple of complaints about this already and so this deserves a short blog. Have you been tracking the latest Java EE 7 implementations in GlassFish 4 promoted builds ?

    Read the article

  • 64-bit Archives Needed

    - by user9154181
    A little over a year ago, we received a question from someone who was trying to build software on Solaris. He was getting errors from the ar command when creating an archive. At that time, the ar command on Solaris was a 32-bit command. There was more than 2GB of data, and the ar command was hitting the file size limit for a 32-bit process that doesn't use the largefile APIs. Even in 2011, 2GB is a very large amount of code, so we had not heard this one before. Most of our toolchain was extended to handle 64-bit sized data back in the 1990's, but archives were not changed, presumably because there was no perceived need for it. Since then of course, programs have continued to get larger, and in 2010, the time had finally come to investigate the issue and find a way to provide for larger archives. As part of that process, I had to do a deep dive into the archive format, and also do some Unix archeology. I'm going to record what I learned here, to document what Solaris does, and in the hope that it might help someone else trying to solve the same problem for their platform. Archive Format Details Archives are hardly cutting edge technology. They are still used of course, but their basic form hasn't changed in decades. Other than to fix a bug, which is rare, we don't tend to touch that code much. The archive file format is described in /usr/include/ar.h, and I won't repeat the details here. Instead, here is a rough overview of the archive file format, implemented by System V Release 4 (SVR4) Unix systems such as Solaris: Every archive starts with a "magic number". This is a sequence of 8 characters: "!<arch>\n". The magic number is followed by 1 or more members. A member starts with a fixed header, defined by the ar_hdr structure in/usr/include/ar.h. Immediately following the header comes the data for the member. Members must be padded at the end with newline characters so that they have even length. The requirement to pad members to an even length is a dead giveaway as to the age of the archive format. It tells you that this format dates from the 1970's, and more specifically from the era of 16-bit systems such as the PDP-11 that Unix was originally developed on. A 32-bit system would have required 4 bytes, and 64-bit systems such as we use today would probably have required 8 bytes. 2 byte alignment is a poor choice for ELF object archive members. 32-bit objects require 4 byte alignment, and 64-bit objects require 64-bit alignment. The link-editor uses mmap() to process archives, and if the members have the wrong alignment, we have to slide (copy) them to the correct alignment before we can access the ELF data structures inside. The archive format requires 2 byte padding, but it doesn't prohibit more. The Solaris ar command takes advantage of this, and pads ELF object members to 8 byte boundaries. Anything else is padded to 2 as required by the format. The archive header (ar_hdr) represents all numeric values using an ASCII text representation rather than as binary integers. This means that an archive that contains only text members can be viewed using tools such as cat, more, or a text editor. The original designers of this format clearly thought that archives would be used for many file types, and not just for objects. Things didn't turn out that way of course — nearly all archives contain relocatable objects for a single operating system and machine, and are used primarily as input to the link-editor (ld). Archives can have special members that are created by the ar command rather than being supplied by the user. These special members are all distinguished by having a name that starts with the slash (/) character. This is an unambiguous marker that says that the user could not have supplied it. The reason for this is that regular archive members are given the plain name of the file that was inserted to create them, and any path components are stripped off. Slash is the delimiter character used by Unix to separate path components, and as such cannot occur within a plain file name. The ar command hides the special members from you when you list the contents of an archive, so most users don't know that they exist. There are only two possible special members: A symbol table that maps ELF symbols to the object archive member that provides it, and a string table used to hold member names that exceed 15 characters. The '/' convention for tagging special members provides room for adding more such members should the need arise. As I will discuss below, we took advantage of this fact to add an alternate 64-bit symbol table special member which is used in archives that are larger than 4GB. When an archive contains ELF object members, the ar command builds a special archive member known as the symbol table that maps all ELF symbols in the object to the archive member that provides it. The link-editor uses this symbol table to determine which symbols are provided by the objects in that archive. If an archive has a symbol table, it will always be the first member in the archive, immediately following the magic number. Unlike member headers, symbol tables do use binary integers to represent offsets. These integers are always stored in big-endian format, even on a little endian host such as x86. The archive header (ar_hdr) provides 15 characters for representing the member name. If any member has a name that is longer than this, then the real name is written into a special archive member called the string table, and the member's name field instead contains a slash (/) character followed by a decimal representation of the offset of the real name within the string table. The string table is required to precede all normal archive members, so it will be the second member if the archive contains a symbol table, and the first member otherwise. The archive format is not designed to make finding a given member easy. Such operations move through the archive from front to back examining each member in turn, and run in O(n) time. This would be bad if archives were commonly used in that manner, but in general, they are not. Typically, the ar command is used to build an new archive from scratch, inserting all the objects in one operation, and then the link-editor accesses the members in the archive in constant time by using the offsets provided by the symbol table. Both of these operations are reasonably efficient. However, listing the contents of a large archive with the ar command can be rather slow. Factors That Limit Solaris Archive Size As is often the case, there was more than one limiting factor preventing Solaris archives from growing beyond the 32-bit limits of 2GB (32-bit signed) and 4GB (32-bit unsigned). These limits are listed in the order they are hit as archive size grows, so the earlier ones mask those that follow. The original Solaris archive file format can handle sizes up to 4GB without issue. However, the ar command was delivered as a 32-bit executable that did not use the largefile APIs. As such, the ar command itself could not create a file larger than 2GB. One can solve this by building ar with the largefile APIs which would allow it to reach 4GB, but a simpler and better answer is to deliver a 64-bit ar, which has the ability to scale well past 4GB. Symbol table offsets are stored as 32-bit big-endian binary integers, which limits the maximum archive size to 4GB. To get around this limit requires a different symbol table format, or an extension mechanism to the current one, similar in nature to the way member names longer than 15 characters are handled in member headers. The size field in the archive member header (ar_hdr) is an ASCII string capable of representing a 32-bit unsigned value. This places a 4GB size limit on the size of any individual member in an archive. In considering format extensions to get past these limits, it is important to remember that very few archives will require the ability to scale past 4GB for many years. The old format, while no beauty, continues to be sufficient for its purpose. This argues for a backward compatible fix that allows newer versions of Solaris to produce archives that are compatible with older versions of the system unless the size of the archive exceeds 4GB. Archive Format Differences Among Unix Variants While considering how to extend Solaris archives to scale to 64-bits, I wanted to know how similar archives from other Unix systems are to those produced by Solaris, and whether they had already solved the 64-bit issue. I've successfully moved archives between different Unix systems before with good luck, so I knew that there was some commonality. If it turned out that there was already a viable defacto standard for 64-bit archives, it would obviously be better to adopt that rather than invent something new. The archive file format is not formally standardized. However, the ar command and archive format were part of the original Unix from Bell Labs. Other systems started with that format, extending it in various often incompatible ways, but usually with the same common shared core. Most of these systems use the same magic number to identify their archives, despite the fact that their archives are not always fully compatible with each other. It is often true that archives can be copied between different Unix variants, and if the member names are short enough, the ar command from one system can often read archives produced on another. In practice, it is rare to find an archive containing anything other than objects for a single operating system and machine type. Such an archive is only of use on the type of system that created it, and is only used on that system. This is probably why cross platform compatibility of archives between Unix variants has never been an issue. Otherwise, the use of the same magic number in archives with incompatible formats would be a problem. I was able to find information for a number of Unix variants, described below. These can be divided roughly into three tribes, SVR4 Unix, BSD Unix, and IBM AIX. Solaris is a SVR4 Unix, and its archives are completely compatible with those from the other members of that group (GNU/Linux, HP-UX, and SGI IRIX). AIX AIX is an exception to rule that Unix archive formats are all based on the original Bell labs Unix format. It appears that AIX supports 2 formats (small and big), both of which differ in fundamental ways from other Unix systems: These formats use a different magic number than the standard one used by Solaris and other Unix variants. They include support for removing archive members from a file without reallocating the file, marking dead areas as unused, and reusing them when new archive items are inserted. They have a special table of contents member (File Member Header) which lets you find out everything that's in the archive without having to actually traverse the entire file. Their symbol table members are quite similar to those from other systems though. Their member headers are doubly linked, containing offsets to both the previous and next members. Of the Unix systems described here, AIX has the only format I saw that will have reasonable insert/delete performance for really large archives. Everyone else has O(n) performance, and are going to be slow to use with large archives. BSD BSD has gone through 4 versions of archive format, which are described in their manpage. They use the same member header as SVR4, but their symbol table format is different, and their scheme for long member names puts the name directly after the member header rather than into a string table. GNU/Linux The GNU toolchain uses the SVR4 format, and is compatible with Solaris. HP-UX HP-UX seems to follow the SVR4 model, and is compatible with Solaris. IRIX IRIX has 32 and 64-bit archives. The 32-bit format is the standard SVR4 format, and is compatible with Solaris. The 64-bit format is the same, except that the symbol table uses 64-bit integers. IRIX assumes that an archive contains objects of a single ELFCLASS/MACHINE, and any archive containing ELFCLASS64 objects receives a 64-bit symbol table. Although they only use it for 64-bit objects, nothing in the archive format limits it to ELFCLASS64. It would be perfectly valid to produce a 64-bit symbol table in an archive containing 32-bit objects, text files, or anything else. Tru64 Unix (Digital/Compaq/HP) Tru64 Unix uses a format much like ours, but their symbol table is a hash table, making specific symbol lookup much faster. The Solaris link-editor uses archives by examining the entire symbol table looking for unsatisfied symbols for the link, and not by looking up individual symbols, so there would be no benefit to Solaris from such a hash table. The Tru64 ld must use a different approach in which the hash table pays off for them. Widening the existing SVR4 archive symbol tables rather than inventing something new is the simplest path forward. There is ample precedent for this approach in the ELF world. When ELF was extended to support 64-bit objects, the approach was largely to take the existing data structures, and define 64-bit versions of them. We called the old set ELF32, and the new set ELF64. My guess is that there was no need to widen the archive format at that time, but had there been, it seems obvious that this is how it would have been done. The Implementation of 64-bit Solaris Archives As mentioned earlier, there was no desire to improve the fundamental nature of archives. They have always had O(n) insert/delete behavior, and for the most part it hasn't mattered. AIX made efforts to improve this, but those efforts did not find widespread adoption. For the purposes of link-editing, which is essentially the only thing that archives are used for, the existing format is adequate, and issues of backward compatibility trump the desire to do something technically better. Widening the existing symbol table format to 64-bits is therefore the obvious way to proceed. For Solaris 11, I implemented that, and I also updated the ar command so that a 64-bit version is run by default. This eliminates the 2 most significant limits to archive size, leaving only the limit on an individual archive member. We only generate a 64-bit symbol table if the archive exceeds 4GB, or when the new -S option to the ar command is used. This maximizes backward compatibility, as an archive produced by Solaris 11 is highly likely to be less than 4GB in size, and will therefore employ the same format understood by older versions of the system. The main reason for the existence of the -S option is to allow us to test the 64-bit format without having to construct huge archives to do so. I don't believe it will find much use outside of that. Other than the new ability to create and use extremely large archives, this change is largely invisible to the end user. When reading an archive, the ar command will transparently accept either form of symbol table. Similarly, the ELF library (libelf) has been updated to understand either format. Users of libelf (such as the link-editor ld) do not need to be modified to use the new format, because these changes are encapsulated behind the existing functions provided by libelf. As mentioned above, this work did not lift the limit on the maximum size of an individual archive member. That limit remains fixed at 4GB for now. This is not because we think objects will never get that large, for the history of computing says otherwise. Rather, this is based on an estimation that single relocatable objects of that size will not appear for a decade or two. A lot can change in that time, and it is better not to overengineer things by writing code that will sit and rot for years without being used. It is not too soon however to have a plan for that eventuality. When the time comes when this limit needs to be lifted, I believe that there is a simple solution that is consistent with the existing format. The archive member header size field is an ASCII string, like the name, and as such, the overflow scheme used for long names can also be used to handle the size. The size string would be placed into the archive string table, and its offset in the string table would then be written into the archive header size field using the same format "/ddd" used for overflowed names.

    Read the article

< Previous Page | 530 531 532 533 534 535 536 537 538 539 540 541  | Next Page >