Search Results

Search found 50147 results on 2006 pages for 'microsoft access 2007'.

Page 620/2006 | < Previous Page | 616 617 618 619 620 621 622 623 624 625 626 627  | Next Page >

  • Outlook Shared Mailbox automatic calendar export

    - by Arthur
    I am aware that the shared mailbox feature is an exclusive microsoft feature in exchange and does not work on any non microsoft products. I am trying to create a workaround so am looking for a way to automatically export a calendar by schedule or any other means. Does anybody know any good Outlook plugins that would do something like that? it must export either in csv or iCal or some kind of other readable format.

    Read the article

  • Is it safe to enable forced ASLR via EMET on Windows?

    - by D.W.
    I'd like to enable forced ASLR for all DLLs on Windows. Is this safe? Background: ASLR is an important security mechanism that helps defend against code injection attacks. DLLs can opt into ASLR, and most do, but some DLLs have not opted into ASLR. If a program loads even a single non-ASLRized DLL, then the program doesn't get the benefit/protection of ASLR. This is a problem, because there are a non-trivial number of DLLs that haven't opted into ASLR. For instance, it was recently revealed that Dropbox injects a DLL into a bunch of processes, and the Dropbox DLL doesn't have ASLR turned on, which negates any ASLR protection they otherwise would have had. Unfortunately, there are many other widely used DLLs that haven't opted into ASLR. This is bad for system security. Microsoft provides several ways to turn on ASLR for all DLLs, even ones that haven't opted into ASLR: On Windows 7 and Windows Server 2008, you can enable "Force ASLR" in the registry. On all Windows versions, you can use Microsoft's EMET tool and enable EMET's "Mandatory ASLR" option. These methods are possible because all DLLs are compiled as position-independent code and they can be relocated to a random location even if they haven't opted into ASLR. These options will ensure that ASLR is turned on, even if the developers of the DLL forgot to opt into ASLR. Thus, forcing on ASLR systemwide may help system security. In principle, turning on forced ASLR could potentially break a poorly-written DLL, so there is some risk of breakage. I'm interested in finding out just significant this risk is. I have the suspicion that this kind of breakage might be extremely rare. Here's what I've been able to find: Microsoft has done compatibility testing with several dozen widely used applications. The only one they found where Mandatory ASLR causes problems is Windows Media Player. All the other applications continue working fine. (See pp.39-41 of this document.) I've seen some anecdotal reports that enabling "Mandatory ASLR"/"Force ASLR" is fine and unlikely to cause problems. CERT reports that AMD and ATI video drivers used to crash if you enabled forced ASLR, but their latest drivers have now fixed this problem. They don't show any other drivers with this problem. A forum post from Microsoft shows no other applications with compatibility problems if ASLR is forced on, as of 2011. A user reports that borderlands.exe, a video game by Gearbox Software, crashes if you turn on mandatory ASLR. What else should I know? Is it relatively safe to turn on Force ASLR / Mandatory ASLR systemwide to harden the secuity of my system, or will I be in for a world of pain and broken applications? How significant is the risk of compatibility problems and broken applications?

    Read the article

  • pushing files via sftp

    - by Brettski
    A client wants us to push data files to them on a daily basis using SFTP (ssh over ftp). We are a 100% Microsoft shop with no Linux admins on staff. I am looking for recommendations on how to do achieve this. I have seen different applications for automating the sending of files via SFTP, but I don't know if they are a good approach or not. What have you found to be the easiest way to deal with this in a Microsoft Environment?

    Read the article

  • File/printer sharing issues on network with multiple OSes

    - by DanZ
    My workplace consists of computers running a variety of different operating systems, and I have been running into problems getting some of them to connect to a shared drive and printer over the network. Here is a brief description of the computers involved and the issues I have encountered: 1: Dell desktop, Windows Vista Business-- This is the computer I want the others to connect to. It has a USB printer and eSATA hard drive enclosure that I have set up for sharing, with different accounts for the various users. 2: Fujitsu laptop, Windows XP Tablet edition-- No problems. Can connect to both the shared printer and hard drive. 3: Lenovo laptop, Windows Vista Business 64 bit-- No problems. Can connect to both the shared printer and drive. 4: Apple MacBook, OS 10.4-- Can connect to the shared drive, but not to the shared printer. I am aware that the printer issue is due to a known incompatibility between Vista and OS 10.4 and earlier with regards to Samba. It is not a big problem, however, as this computer can access a network printer. 5: Sony laptop, Windows Vista Home Premium-- Can connect to the shared printer, but not the shared drive. It can see computer 1 and its shared drive on the network, and appears to successfully log in to user accounts. However, if you try to access the shared drive, it says you do not have permission. I have tried both standard and administrator accounts, and none can access the drive from this computer. 6: MacBook Pro, OS 10.5 (there are two of these)-- Can connect to the shared printer, but not the shared drive. They can't see computer 1 on the network. For that matter, they also can't see each other or the older Mac, but can see and access shared folders on the XP machine (computer 2) and can see other PCs in the building. I was able to add the shared printer manually by typing in its network location, but was unable to manually add the shared drive in the same way. So, what I am looking for is suggestions on how to get computers 5 and 6 to connect to the shared drive. Since they can already connect to the shared printer (which is on the same computer as the shared drive), it seems reasonable that they should be able to access the drive as well.

    Read the article

  • How can i install exchange server 2003?

    - by venkatesh
    Hi, I am new in asp.net, My requirement is how to install Exchange server 2003 service pack2 in system to use the microsoft office outlook web access. Downloaded Things are: 1.E3SP2ENG.exe 2.Microsoft outlook web access administator tool. Can any body say what are the procedures i need to do from here. Help me urgently. Thanks in Advance.. Regards, s.venkatesh.

    Read the article

  • Disable Device Stage Capability

    - by coelhudo
    Is it possible to prevent or disable autorun/autoplay/device-stage by modifying regedit? Because of some constraints, I cannot disable by Control Panel options. I found some related questions here, for example, and some solutions provided by Microsoft, mainly involving this key on regedit: HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\policies\Explorer\NoDriveTypeAutorun But none of these solutions worked, neither after rebooting. Is there any other key or value that controls this kind of property?

    Read the article

  • What could cause a program to stay in "Add/Remove Programs" even after removing from registry

    - by Ryan
    Trying to manually remove an entry from Control Panel Add/Remove Programs. (custom software, not MS KB patch or windows component and not doing anyting 'funky' like trying to stop itself form being uninstalled) Followed http://support.microsoft.com/kb/314481 removing all applicable registry keys for program from HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\ and even tried rebooting but still it persists. Double checked followed KB314481 and search for program name doesn't return any other matches in that part of the registry. Any ideas what would cause this or how to solve?

    Read the article

  • mpasdlta files -- what are they?

    - by Tmdean
    I noticed a bunch of folders in the root of my hard drive named with a string of hex digits that contain files named with a GUID ending with "mpasdlta.vdm" and "mpavdlta.vdm". From some Googling, I've determined that these files are spyware and virus definition files used by Microsoft Security Essentials. Are these files safe to delete? (Why doesn't Microsoft follow their own guidelines and store application data in the folders intended for that purpose? grumble grumble)

    Read the article

  • Lightweight outlook search

    - by Simon Johnson
    Does anybody know of a plugin for Outlook 2003 that makes the search fast and accurate? I tried using Microsoft Search and Google Desktop Search but I find that these product slow down my development machine too much. I heard of Lookout but it appears that Microsoft has pulled it.

    Read the article

  • Moving default web site to another drive

    - by Chadworthington
    I set the default location from c:\inetpub\wwwroot to d:\inetpub\wwwroot but when I access my .NET 4.0 site get this error: Description: An error occurred during the processing of a configuration file required to service this request. Please review the specific error details below and modify your configuration file appropriately. Parser Error Message: Unrecognized attribute 'targetFramework'. Note that attribute names are case-sensitive. Source Error: Line 105: Set explicit="true" to force declaration of all variables. Line 106: --> Line 107: <compilation debug="true" strict="true" explicit="true" targetFramework="4.0"> Line 108: <assemblies> Line 109: <add assembly="System.Web.Extensions.Design, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> When I try to Manage the Basic Settings on the Site and click the "Test Settings" button, I see that I have a problem under "authorization:" The server is configured to use pass-through authentication with a built-in account to access the specified physical path. However, IIS Manager cannot verify whether the built-in account has access. Make sure that the application pool identity has Read access to the physical path. If this server is joined to a domain, and the application pool identity is NetworkService or LocalSystem, verify that <domain>\<computer_name>$ has Read access to the physical path. Then test these settings again. 1) Do I need to grant rights to IIS to the new folder? Which user? I thought it was something like IIS_USER or something similar but I cannot determine the correct name of the user. 2) Also, do I need to set the default version of the framework somewhere at the Default Site level or at the Virtual folder level? How is this done in IIS6, I am used to IIS5 or whatever came with XP Pro. 3) My original site had a subfolder under wwwroot called "aspnet_client." How was this cleated? I manually copied it to the corresponding new location. My app was using seperate ASP specific databases for storing session state and role info, if that is relevant. Thanks

    Read the article

  • Make Mac OS X mouse acceleration more Windows-like

    - by TomA
    The mouse acceleration on Mac OS X is driving me nuts. It may work for touchpads but nothing beats the Windows' acceleration curves. Is there a way to modify the behaviour on OS X? I tried getting a Microsoft mouse driver for OS X but it didn't work since my mouse is not from Microsoft.

    Read the article

  • Can Remote Desktop Services be deployed and administered by PowerShell alone, without a Domain in WIndows Server 2012 and 2012 R2?

    - by Warren P
    Windows Server 2008 R2 allowed deployment of Terminal Server (Remote Desktop Services) without a domain, and without any insistence on domains. This was very useful, especially for standalone virtual or cloud deployments of a server that is managed remotely for a remote client who has no need or desire for any ActiveDirectory or Domain features. This has become steadily more and more difficult as Microsoft restricts its technologies further and further in each Windows release. With Windows Server 2012, configuring licensing for Remote Desktop Services, is more difficult when not on a domain, but possible still. With Windows Server 2012 R2 (at least in the preview) the barriers are now severe: The Add/Remove Roles and Features wizard in Windows Server 2012 R2 has a special RDS deployment mode that has a rule that says if you aren't on a domain you can't deploy. It tells you to create or join a domain first. This of course comes in direct conflict with the fact that an Active Directory domain controller should not be the same machine as a terminal server machine. So Microsoft's technology is not such much a Cloud Operating System as a Cluster of Unwanted Nodes, needed to support the one machine I actually WANT to deploy. This is gross, and so I am trying to find a workaround. However if you skip that wizard and just go check the checkboxes in the main Roles/Features wizard, you can deploy the features, but the UI is not there to configure them, and when you go back to the RDS configuration page on the roles wizard, you get a message saying you can not administer your Remote Desktop Services system when you are logged in as a Local-Computer Administrator, because although you have all admin priveleges you could have (in your workgroup based system), the RDS configuration UI will not accept those credentials and let you continue. My question in brief is, can I still somehow, obtain the following end result: I need to allow 10-20 users per system to have an RDS (TS) session. I do not need any of the fancy pants RDS options, unless Microsoft somehow depends on those features being present. I believe I need the "RDS Session Host" as this is the guts of "Terminal Server". Microsoft says it is "full Windows desktop for Remote Desktop Services client. I need to configure licensing so that the Grace Period does not expire leaving my RDS non functional, so this probably means I need a way to configure TS CALs. If all of the above could technically be done with the judicious use of the PowerShell, I am prepared to even consider developing all the PowerShell scripts I would need to do the above. I'm not asking someone to write that for me. What I'm asking is, does anyone know if there is a technical impediment to what I want to do above, other than the deliberate crippling of the 2012 R2 UI for Workgroup users? Would the underlying technologies all still work if I manipulate and control them from a PowerShell script? Obviously a 1 word Yes or No answer isn't that useful to anyone, so the question is really, yes or no, and why? In the case the answer is Yes, then how.

    Read the article

  • Enterprise IPv6 Migration - End of proxypac ? Start of Point-to-Point ? +10K users

    - by Yohann
    Let's start with a diagram : We can see a "typical" IPv4 company network with : An Internet acces through a proxy An "Others companys" access through an dedicated proxy A direct access to local resources All computers have a proxy.pac file that indicates which proxy to use or whether to connect directly. Computers have access to just a local DNS (no name resolution for google.com for example.) By the way ... The company does not respect the RFC1918 internally and uses public addresses! (historical reason). The use of internet proxy explicitly makes it possible to not to have problem. What if we would migrate to IPv6? Step 1 : IPv6 internet access Internet access in IPv6 is easy. Indeed, just connect the proxy in Internet IPv4 and IPv6. There is nothing to do in internal network : Step 2 : IPv6 AND IPv4 in internal network And why not full IPv6 network directly? Because there is always the old servers that are not compatible IPv6 .. Option 1 : Same architecture as in IPv4 with a proxy pac This is probably the easiest solution. But is this the best? I think the transition to IPv6 is an opportunity not to bother with this proxy pac! Option 2 : New architecture with transparent proxy, whithout proxypac, recursive DNS Oh yes! In this new architecture, we have: Explicit Internet Proxy becomes a Transparent Internet Proxy Local DNS becomes a Normal Recursive DNS + authorative for local domains No proxypac Explicit Company Proxy becomes a Transparent Company Proxy Routing Internal Routers reditect IP of appx.ext.example.com to Company Proxy. The default gateway is the Transparent Internet proxy. Questions What do you think of this architecture IPv6? This architecture will reveal the IP addresses of our internal network but it is protected by firewalls. Is this a real big problem? Should we keep the explicit use of a proxy? -How would you make for this migration scenario? -And you, how do you do in your company? Thanks! Feel free to edit my post to make it better.

    Read the article

  • rdisk value in boot.ini maps to which disk?

    - by MA1
    Hi All Following are the contents of a sample boot.ini: [boot loader] timeout=30 default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS [operating systems] multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP Professional" /NOEXECUTE=OPTIN /FASTDETECT multi(0)disk(0)rdisk(0)partition(2)\WINNT="Windows 2000 Professional" /fastdetect multi(0)disk(0)rdisk(1)partition(1)\WINDOWS="Microsoft Windows XP Home Edition" /NOEXECUTE=OPTIN /FASTDETECT rdisk value tells the physical disk number. so, if i have three hard disks say: /dev/sda /dev/sdb /dev/sdc than how to know which disk(/dev/sda or /dev/sdb or /dev/sdc) is rdisk(0) and which disk is rdisk(1) etc Regards,

    Read the article

  • Delete registry key or value via a CMD script?

    - by Derek
    How do I edit an already-in-production .cmd script file, in order to have the script delete a certain registry key in the Windows registry? Firstly, is this even possible, and secondly (if that's not possible), could I create a .reg file and execute that file from with the .cmd file? From within the .cmd script, it is not working: del "[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\CurrentVersion\SampleKey]" This method hasn't worked for me either: cmd "\\networkdrive\regfiles\deleteSampleKey.reg" Then from within the .reg file: Windows Registry Editor Version 5.00 [ -HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon ]

    Read the article

  • How to change my IE start page back?

    - by smwikipedia
    In my registry, the entry "Start Page" under [HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\Main] was changed to some bad url. And I found that i don't have permission to modify the [HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\Main], only got a "everyone" user to access it. I cannot modify any entry below it even as an Admin. Could anyone help? Thanks.

    Read the article

  • PHP and MySQL on IIS7: can't find php_mcrypt.dll in php.ini

    - by user46250
    I have installed PHP with Microsoft Web PI. Then I installed mysql. According to http://learn.iis.net/page.aspx/353/install-and-configure-mysql-for-php-applications-on-iis-7/ I have to Uncomment the following lines by removing the semicolon: extension=php_mysqli.dll extension=php_mbstring.dll extension=php_mcrypt.dll But there is no extension=php_mcrypt.dll in php.ini installed by web PI so should I add it by hand then where ? and where should I check that php_mcrypt.dll exists ? Seems nobody knows, should better ask on Microsoft forum ?

    Read the article

  • File types and locations (if any) to exclude from AntiVirus scanning?

    - by CAD bloke
    Should I add any file types to my anti-virus's file type exclusion list? If so, which types? Should I add any locations (specifically for Windows 7) to an exclusion list? If so, which locations? Google found me a few references like http://support.microsoft.com/kb/822158 http://support.microsoft.com/kb/943556 and some site purporting to conduct expert sex changes but haven't found anything particularly confidence-inspiring.

    Read the article

  • Windows update on netbook requires CD (hint, there's no CD drive)

    - by bwooceli
    An "Important" update for Microsoft Works (via Windows Update) on a Dell netbook gets about halfway through and then pops up with the super-awesome "Please insert Microsoft Works 9.0 disc" message. Of course, the netbook has no CD rom drive, there is no handy folder (that i can find) containing "Works9.msi", and I have no Works9 disc. It wouldn't be so bad, except the update keeps coming up everytime WU runs. Any suggestions?

    Read the article

  • Windows using the DNS suffix search list on all lookups, even valid FQDNs. How to stop this?

    - by RealityGone
    When doing DNS lookups (specifically using nslookup, for some reason most things are not effected) Windows XP Pro SP3 is using the DNS suffix search list for every single one. Even for fully qualified domain names. For example I lookup "www.microsoft.com" but windows actually asks for "www.microsoft.com.eondream.com" (eondream.com is my primary domain). Now I can fix the issue by removing the Primary DNS suffix, but it seems to me that the DNS suffix search list should be for short, invalid names (where dots=0 or something). I'm sure I have a misconfiguration somewhere in windows but I don't know where. I've changed every option I can think of or find. Below is the output of ipconfig /all and nslookup (with debug & db2 enabled). This is using a static IP & (internal) DNS server. C:\ipconfig /all Windows IP Configuration Host Name . . . . . . . . . . . . : frayedlogic Primary Dns Suffix . . . . . . . : eondream.com Node Type . . . . . . . . . . . . : Unknown IP Routing Enabled. . . . . . . . : No WINS Proxy Enabled. . . . . . . . : No DNS Suffix Search List. . . . . . : eondream.com Ethernet adapter Wireless Network Connection: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Dell Wireless 1390 WLAN Mini-Card Physical Address. . . . . . . . . : 00-1B-FC-29-EB-6B Dhcp Enabled. . . . . . . . . . . : No IP Address. . . . . . . . . . . . : 192.168.13.32 Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : 192.168.13.13 DNS Servers . . . . . . . . . . . : 192.168.19.19 C:\nslookup Default Server: shardik.eondream.com Address: 192.168.19.19 set debug set db2 www.microsoft.com Server: shardik.eondream.com Address: 192.168.19.19 ------------ Got answer: HEADER: opcode = QUERY, id = 2, rcode = NOERROR header flags: response, want recursion, recursion avail. questions = 1, answers = 1, authority records = 0, additional = 0 QUESTIONS: www.microsoft.com.eondream.com, type = A, class = IN ANSWERS: - www.microsoft.com.eondream.com internet address = 208.69.36.132 ttl = 0 (0 secs) ------------ Non-authoritative answer: Name: www.microsoft.com.eondream.com Address: 208.69.36.132 (Note: it resolves to that IP because I use the opendns service and that is their suggestion page or whatever you want to call it) If I am reading the nslookup output correctly then it is not a problem with my DNS server because windows is actually asking for the incorrect domain.

    Read the article

  • WPF Toolkit DataGrid SelectionChanged Getting Cell Value

    - by Dan Bater
    Hi, Please help me, Im trying to get the value of Cell[0] from the selected row in a SelectionChangedEvent. I am only managing to get lots of different Microsoft.Windows.Controls and am hoping im missing something daft. Hoping I can get some help from here... private void datagrid_SelectionChanged(object sender, SelectionChangedEventArgs e) { Microsoft.Windows.Controls.DataGrid _DataGrid = sender as Microsoft.Windows.Controls.DataGrid; } I was hoping it would be something like... _DataGrid.SelectedCells[0].Value; However .Value isn't an option.... Many many thanks this has been driving me mad! Dan

    Read the article

  • CS1685 Warning causes a CS0433 error when targeting 3.5 in VS2010

    - by Adam Driscoll
    I have a 2010 project that is targeting .NET v3.5. It was working fine until I started to mess with configurations a bit and now I cannot figure out what I'm doing wrong. The project doesn't have ANY references added. It won't even let me add a reference to System.Core as it is added by the 'build system'. warning CS1685: The predefined type 'System.Func' is defined in multiple assemblies in the global alias; using definition from 'c:\Windows\Microsoft.NET\Framework\v4.0.30319\mscorlib.dll' IFilter.cs(82,49): error CS0433: The type 'System.Func' exists in both 'c:\Program Files (x86)\Reference Assemblies\Microsoft\Framework\v3.5\System.Core.dll' and 'c:\Windows\Microsoft.NET\Framework\v4.0.30319\mscorlib.dll' Looks like something is grabbing onto 4.0 but I'm not quite sure how to fix it. Any one else run into this?

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Is LINQ to SQL deprecated?

    - by Mayo
    Back in late 2008 there was alot of debate about the future of LINQ to SQL. Many suggested that Microsoft's investments in the Entity Framework in .NET 4.0 were a sign that LINQ to SQL had no future. I figured I'd wait before making my own decision since folks were not in agreement. Fast-forward 18 months and I've got vendors providing solutions that rely on LINQ to SQL and I have personally given it a try and really enjoyed working with it. I figured it was here to stay. But I'm reading a new book (C# 4.0 How-To by Ben Watson) and in chapter 21 (LINQ), he suggests that it "has been more or less deprecated by Microsoft" and suggests using LINQ to Entity Framework. My question to you is whether or not LINQ to SQL is officially deprecated and/or if authoritative entities (Microsoft, Scott Gu, etc.) officially suggest using LINQ to Entities instead of LINQ to SQL.

    Read the article

  • C# 4: The Curious ConcurrentDictionary

    - by James Michael Hare
    In my previous post (here) I did a comparison of the new ConcurrentQueue versus the old standard of a System.Collections.Generic Queue with simple locking.  The results were exactly what I would have hoped, that the ConcurrentQueue was faster with multi-threading for most all situations.  In addition, concurrent collections have the added benefit that you can enumerate them even if they're being modified. So I set out to see what the improvements would be for the ConcurrentDictionary, would it have the same performance benefits as the ConcurrentQueue did?  Well, after running some tests and multiple tweaks and tunes, I have good and bad news. But first, let's look at the tests.  Obviously there's many things we can do with a dictionary.  One of the most notable uses, of course, in a multi-threaded environment is for a small, local in-memory cache.  So I set about to do a very simple simulation of a cache where I would create a test class that I'll just call an Accessor.  This accessor will attempt to look up a key in the dictionary, and if the key exists, it stops (i.e. a cache "hit").  However, if the lookup fails, it will then try to add the key and value to the dictionary (i.e. a cache "miss").  So here's the Accessor that will run the tests: 1: internal class Accessor 2: { 3: public int Hits { get; set; } 4: public int Misses { get; set; } 5: public Func<int, string> GetDelegate { get; set; } 6: public Action<int, string> AddDelegate { get; set; } 7: public int Iterations { get; set; } 8: public int MaxRange { get; set; } 9: public int Seed { get; set; } 10:  11: public void Access() 12: { 13: var randomGenerator = new Random(Seed); 14:  15: for (int i=0; i<Iterations; i++) 16: { 17: // give a wide spread so will have some duplicates and some unique 18: var target = randomGenerator.Next(1, MaxRange); 19:  20: // attempt to grab the item from the cache 21: var result = GetDelegate(target); 22:  23: // if the item doesn't exist, add it 24: if(result == null) 25: { 26: AddDelegate(target, target.ToString()); 27: Misses++; 28: } 29: else 30: { 31: Hits++; 32: } 33: } 34: } 35: } Note that so I could test different implementations, I defined a GetDelegate and AddDelegate that will call the appropriate dictionary methods to add or retrieve items in the cache using various techniques. So let's examine the three techniques I decided to test: Dictionary with mutex - Just your standard generic Dictionary with a simple lock construct on an internal object. Dictionary with ReaderWriterLockSlim - Same Dictionary, but now using a lock designed to let multiple readers access simultaneously and then locked when a writer needs access. ConcurrentDictionary - The new ConcurrentDictionary from System.Collections.Concurrent that is supposed to be optimized to allow multiple threads to access safely. So the approach to each of these is also fairly straight-forward.  Let's look at the GetDelegate and AddDelegate implementations for the Dictionary with mutex lock: 1: var addDelegate = (key,val) => 2: { 3: lock (_mutex) 4: { 5: _dictionary[key] = val; 6: } 7: }; 8: var getDelegate = (key) => 9: { 10: lock (_mutex) 11: { 12: string val; 13: return _dictionary.TryGetValue(key, out val) ? val : null; 14: } 15: }; Nothing new or fancy here, just your basic lock on a private object and then query/insert into the Dictionary. Now, for the Dictionary with ReadWriteLockSlim it's a little more complex: 1: var addDelegate = (key,val) => 2: { 3: _readerWriterLock.EnterWriteLock(); 4: _dictionary[key] = val; 5: _readerWriterLock.ExitWriteLock(); 6: }; 7: var getDelegate = (key) => 8: { 9: string val; 10: _readerWriterLock.EnterReadLock(); 11: if(!_dictionary.TryGetValue(key, out val)) 12: { 13: val = null; 14: } 15: _readerWriterLock.ExitReadLock(); 16: return val; 17: }; And finally, the ConcurrentDictionary, which since it does all it's own concurrency control, is remarkably elegant and simple: 1: var addDelegate = (key,val) => 2: { 3: _concurrentDictionary[key] = val; 4: }; 5: var getDelegate = (key) => 6: { 7: string s; 8: return _concurrentDictionary.TryGetValue(key, out s) ? s : null; 9: };                    Then, I set up a test harness that would simply ask the user for the number of concurrent Accessors to attempt to Access the cache (as specified in Accessor.Access() above) and then let them fly and see how long it took them all to complete.  Each of these tests was run with 10,000,000 cache accesses divided among the available Accessor instances.  All times are in milliseconds. 1: Dictionary with Mutex Locking 2: --------------------------------------------------- 3: Accessors Mostly Misses Mostly Hits 4: 1 7916 3285 5: 10 8293 3481 6: 100 8799 3532 7: 1000 8815 3584 8:  9:  10: Dictionary with ReaderWriterLockSlim Locking 11: --------------------------------------------------- 12: Accessors Mostly Misses Mostly Hits 13: 1 8445 3624 14: 10 11002 4119 15: 100 11076 3992 16: 1000 14794 4861 17:  18:  19: Concurrent Dictionary 20: --------------------------------------------------- 21: Accessors Mostly Misses Mostly Hits 22: 1 17443 3726 23: 10 14181 1897 24: 100 15141 1994 25: 1000 17209 2128 The first test I did across the board is the Mostly Misses category.  The mostly misses (more adds because data requested was not in the dictionary) shows an interesting trend.  In both cases the Dictionary with the simple mutex lock is much faster, and the ConcurrentDictionary is the slowest solution.  But this got me thinking, and a little research seemed to confirm it, maybe the ConcurrentDictionary is more optimized to concurrent "gets" than "adds".  So since the ratio of misses to hits were 2 to 1, I decided to reverse that and see the results. So I tweaked the data so that the number of keys were much smaller than the number of iterations to give me about a 2 to 1 ration of hits to misses (twice as likely to already find the item in the cache than to need to add it).  And yes, indeed here we see that the ConcurrentDictionary is indeed faster than the standard Dictionary here.  I have a strong feeling that as the ration of hits-to-misses gets higher and higher these number gets even better as well.  This makes sense since the ConcurrentDictionary is read-optimized. Also note that I tried the tests with capacity and concurrency hints on the ConcurrentDictionary but saw very little improvement, I think this is largely because on the 10,000,000 hit test it quickly ramped up to the correct capacity and concurrency and thus the impact was limited to the first few milliseconds of the run. So what does this tell us?  Well, as in all things, ConcurrentDictionary is not a panacea.  It won't solve all your woes and it shouldn't be the only Dictionary you ever use.  So when should we use each? Use System.Collections.Generic.Dictionary when: You need a single-threaded Dictionary (no locking needed). You need a multi-threaded Dictionary that is loaded only once at creation and never modified (no locking needed). You need a multi-threaded Dictionary to store items where writes are far more prevalent than reads (locking needed). And use System.Collections.Concurrent.ConcurrentDictionary when: You need a multi-threaded Dictionary where the writes are far more prevalent than reads. You need to be able to iterate over the collection without locking it even if its being modified. Both Dictionaries have their strong suits, I have a feeling this is just one where you need to know from design what you hope to use it for and make your decision based on that criteria.

    Read the article

< Previous Page | 616 617 618 619 620 621 622 623 624 625 626 627  | Next Page >