Search Results

Search found 54001 results on 2161 pages for 'asp net 3 5sp1'.

Page 709/2161 | < Previous Page | 705 706 707 708 709 710 711 712 713 714 715 716  | Next Page >

  • Swap references at build time in VS

    - by NitroxDM
    I have a project that runs on both .NET and .NET CF. But it uses a 3rd party library that will not run on both. So I end up changing the reference every time the project gets built. Project A - References the 3rd party dll. Project B - References A and runs .NET CF Project C - References A and runs .NET Is there a way to automate it?

    Read the article

  • Confused about Base class libary and Framework Class Library

    - by n0vic3c0d3r
    Is ADO.NET and ASP.NET a part of Base Class Library? The information given in wikipedia looks ambiguous to me. In the figure, it is shown as a separate block. What is the difference between Base Class Library(BCL) and Framework Class Library(FCL)? Is FCL as a part of .NET Framework? If so why is FCL not shown in the figure as part of .NET framework? Got confused!!

    Read the article

  • Recursively parse XmlDOcument

    - by user177883
    I have an XML document as follows: <directory> <file><monitored>0</monitored> <xferStatus>1</xferStatus> <name>test1.txt</name> <size>7</size> <created>03/31/10 11:30:02 AM</created> <modified>03/31/10 11:30:00 AM</modified> <tPathList><tPath>http://hwcdn.net/p2f4h2b5/cds/testing/test1.txt</tPath> </tPathList> <tPath>http://hwcdn.net/p2f4h2b5/cds/testing/test1.txt</tPath> <oPathList><oPath>http://hwcdn.net/p2f4h2b5/w9m3i4q9/test1.txt</oPath> </oPathList> <oPath>http://hwcdn.net/p2f4h2b5/w9m3i4q9/test1.txt</oPath> <aPath></aPath> </file> <file><monitored>0</monitored> <xferStatus>1</xferStatus> <name>GenericDAO.cs</name> <size>1843</size> <created>03/31/10 11:41:10 AM</created> <modified>03/31/10 11:41:10 AM</modified> <tPathList><tPath>http://hwcdn.net/p2f4h2b5/cds/testing/GenericDAO.cs</tPath> </tPathList> <tPath>http://hwcdn.net/p2f4h2b5/cds/testing/GenericDAO.cs</tPath> <oPathList><oPath>http://hwcdn.net/p2f4h2b5/w9m3i4q9/GenericDAO.cs</oPath> </oPathList> <oPath>http://hwcdn.net/p2f4h2b5/w9m3i4q9/GenericDAO.cs</oPath> <aPath></aPath> </file> <nEntries>2</nEntries> </directory> Well there are two files in the document, how can i recursively or iteratively get the files, sizes, etc.. The response was in string format, and converted to XML as follows : XmlDocument xmlDoc = new XmlDocument(); xmlDoc.LoadXml(response);

    Read the article

  • Serialize() not using .XmlSerializers.dll produced with Sgen

    - by MDE
    I have a sgen step in my .NET 3.5 library, producing a correct XYZ.XmlSerializers.dll in the output directory. Still having poor serialization performance, I discovered that .NET was still invoking a csc at runtime. Using process monitor, I saw that .NET was searching for a dll named "XYZ.XmlSerializers.-1378521009.dll". Why is there a '-1378521009' in the filename ? How to tell .NET to use the 'normal' DLL produced by sgen ?

    Read the article

  • Coding With Windows Azure IaaS

    - by Hisham El-bereky
    This post will focus on some advanced programming topics concerned with IaaS (Infrastructure as a Service) which provided as windows azure virtual machine (with its related resources like virtual disk and virtual network), you know that windows azure started as PaaS cloud platform but regarding to some business cases which need to have full control over their virtual machine, so windows azure directed toward providing IaaS. Sometimes you will need to manage your cloud IaaS through code may be for these reasons: Working on hyper-cloud system by providing bursting connector to windows azure virtual machines Providing multi-tenant system which consume windows azure virtual machine Automated process on your on-premises or cloud service which need to utilize some virtual resources We are going to implement the following basic operation using C# code: List images Create virtual machine List virtual machines Restart virtual machine Delete virtual machine Before going to implement the above operations we need to prepare client side and windows azure subscription to communicate correctly by providing management certificate (x.509 v3 certificates) which permit client access to resources in your Windows Azure subscription, whilst requests made using the Windows Azure Service Management REST API require authentication against a certificate that you provide to Windows Azure More info about setting management certificate located here. And to install .cer on other client machine you will need the .pfx file, or if not exist by exporting .cer as .pfx Note: You will need to install .net 4.5 on your machine to try the code So let start This post built on the post sent by Michael Washam "Advanced Windows Azure IaaS – Demo Code", so I'm here to declare some points and to add new operation which is not exist in Michael's demo The basic C# class object used here as client to azure REST API for IaaS service is HttpClient (Provides a base class for sending HTTP requests and receiving HTTP responses from a resource identified by a URI) this object must be initialized with the required data like certificate, headers and content if required. Also I'd like to refer here that the code is based on using Asynchronous programming with calls to azure which enhance the performance and gives us the ability to work with complex calls which depends on more than one sub-call to achieve some operation The following code explain how to get certificate and initializing HttpClient object with required data like headers and content HttpClient GetHttpClient() { X509Store certificateStore = null; X509Certificate2 certificate = null; try { certificateStore = new X509Store(StoreName.My, StoreLocation.CurrentUser); certificateStore.Open(OpenFlags.ReadOnly); string thumbprint = ConfigurationManager.AppSettings["CertThumbprint"]; var certificates = certificateStore.Certificates.Find(X509FindType.FindByThumbprint, thumbprint, false); if (certificates.Count > 0) { certificate = certificates[0]; } } finally { if (certificateStore != null) certificateStore.Close(); }   WebRequestHandler handler = new WebRequestHandler(); if (certificate!= null) { handler.ClientCertificates.Add(certificate); HttpClient httpClient = new HttpClient(handler); //And to set required headers lik x-ms-version httpClient.DefaultRequestHeaders.Add("x-ms-version", "2012-03-01"); httpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue("application/xml")); return httpClient; } return null; }  Let us keep the object httpClient as reference object used to call windows azure REST API IaaS service. For each request operation we need to define: Request URI HTTP Method Headers Content body (1) List images The List OS Images operation retrieves a list of the OS images from the image repository Request URI https://management.core.windows.net/<subscription-id>/services/images] Replace <subscription-id> with your windows Id HTTP Method GET (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None.  C# Code List<String> imageList = new List<String>(); //replace _subscriptionid with your WA subscription String uri = String.Format("https://management.core.windows.net/{0}/services/images", _subscriptionid);  HttpClient http = GetHttpClient(); Stream responseStream = await http.GetStreamAsync(uri);  if (responseStream != null) {      XDocument xml = XDocument.Load(responseStream);      var images = xml.Root.Descendants(ns + "OSImage").Where(i => i.Element(ns + "OS").Value == "Windows");      foreach (var image in images)      {      string img = image.Element(ns + "Name").Value;      imageList.Add(img);      } } More information about the REST call (Request/Response) located here on this link http://msdn.microsoft.com/en-us/library/windowsazure/jj157191.aspx (2) Create Virtual Machine Creating virtual machine required service and deployment to be created first, so creating VM should be done through three steps incase hosted service and deployment is not created yet Create hosted service, a container for service deployments in Windows Azure. A subscription may have zero or more hosted services Create deployment, a service that is running on Windows Azure. A deployment may be running in either the staging or production deployment environment. It may be managed either by referencing its deployment ID, or by referencing the deployment environment in which it's running. Create virtual machine, the previous two steps info required here in this step I suggest here to use the same name for service, deployment and service to make it easy to manage virtual machines Note: A name for the hosted service that is unique within Windows Azure. This name is the DNS prefix name and can be used to access the hosted service. For example: http://ServiceName.cloudapp.net// 2.1 Create service Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices HTTP Method POST (HTTP 1.1) Header x-ms-version: 2012-03-01 Content-Type: application/xml Body More details about request body (and other information) are located here http://msdn.microsoft.com/en-us/library/windowsazure/gg441304.aspx C# code The following method show how to create hosted service async public Task<String> NewAzureCloudService(String ServiceName, String Location, String AffinityGroup, String subscriptionid) { String requestID = String.Empty;   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices", subscriptionid); HttpClient http = GetHttpClient();   System.Text.ASCIIEncoding ae = new System.Text.ASCIIEncoding(); byte[] svcNameBytes = ae.GetBytes(ServiceName);   String locationEl = String.Empty; String locationVal = String.Empty;   if (String.IsNullOrEmpty(Location) == false) { locationEl = "Location"; locationVal = Location; } else { locationEl = "AffinityGroup"; locationVal = AffinityGroup; }   XElement srcTree = new XElement("CreateHostedService", new XAttribute(XNamespace.Xmlns + "i", ns1), new XElement("ServiceName", ServiceName), new XElement("Label", Convert.ToBase64String(svcNameBytes)), new XElement(locationEl, locationVal) ); ApplyNamespace(srcTree, ns);   XDocument CSXML = new XDocument(srcTree); HttpContent content = new StringContent(CSXML.ToString()); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml");   HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); } return requestID; } 2.2 Create Deployment Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name>/deploymentslots/<deployment-slot-name> <deployment-slot-name> with staging or production, depending on where you wish to deploy your service package <service-name> provided as input from the previous step HTTP Method POST (HTTP 1.1) Header x-ms-version: 2012-03-01 Content-Type: application/xml Body More details about request body (and other information) are located here http://msdn.microsoft.com/en-us/library/windowsazure/ee460813.aspx C# code The following method show how to create hosted service deployment async public Task<String> NewAzureVMDeployment(String ServiceName, String VMName, String VNETName, XDocument VMXML, XDocument DNSXML) { String requestID = String.Empty;     String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments", _subscriptionid, ServiceName); HttpClient http = GetHttpClient(); XElement srcTree = new XElement("Deployment", new XAttribute(XNamespace.Xmlns + "i", ns1), new XElement("Name", ServiceName), new XElement("DeploymentSlot", "Production"), new XElement("Label", ServiceName), new XElement("RoleList", null) );   if (String.IsNullOrEmpty(VNETName) == false) { srcTree.Add(new XElement("VirtualNetworkName", VNETName)); }   if(DNSXML != null) { srcTree.Add(new XElement("DNS", new XElement("DNSServers", DNSXML))); }   XDocument deploymentXML = new XDocument(srcTree); ApplyNamespace(srcTree, ns);   deploymentXML.Descendants(ns + "RoleList").FirstOrDefault().Add(VMXML.Root);     String fixedXML = deploymentXML.ToString().Replace(" xmlns=\"\"", ""); HttpContent content = new StringContent(fixedXML); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml");   HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); }   return requestID; } 2.3 Create Virtual Machine Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<cloudservice-name>/deployments/<deployment-name>/roles <cloudservice-name> and <deployment-name> are provided as input from the previous steps Http Method POST (HTTP 1.1) Header x-ms-version: 2012-03-01 Content-Type: application/xml Body More details about request body (and other information) located here http://msdn.microsoft.com/en-us/library/windowsazure/jj157186.aspx C# code async public Task<String> NewAzureVM(String ServiceName, String VMName, XDocument VMXML) { String requestID = String.Empty;   String deployment = await GetAzureDeploymentName(ServiceName);   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}/roles", _subscriptionid, ServiceName, deployment);   HttpClient http = GetHttpClient(); HttpContent content = new StringContent(VMXML.ToString()); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml"); HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); } return requestID; } (3) List Virtual Machines To list virtual machine hosted on windows azure subscription we have to loop over all hosted services to get its hosted virtual machines To do that we need to execute the following operations: listing hosted services listing hosted service Virtual machine 3.1 Listing Hosted Services Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices HTTP Method GET (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. More info about this HTTP request located here on this link http://msdn.microsoft.com/en-us/library/windowsazure/ee460781.aspx C# Code async private Task<List<XDocument>> GetAzureServices(String subscriptionid) { String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices ", subscriptionid); List<XDocument> services = new List<XDocument>();   HttpClient http = GetHttpClient();   Stream responseStream = await http.GetStreamAsync(uri);   if (responseStream != null) { XDocument xml = XDocument.Load(responseStream); var svcs = xml.Root.Descendants(ns + "HostedService"); foreach (XElement r in svcs) { XDocument vm = new XDocument(r); services.Add(vm); } }   return services; }  3.2 Listing Hosted Service Virtual Machines Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name>/deployments/<deployment-name>/roles/<role-name> HTTP Method GET (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. More info about this HTTP request here http://msdn.microsoft.com/en-us/library/windowsazure/jj157193.aspx C# Code async public Task<XDocument> GetAzureVM(String ServiceName, String VMName, String subscriptionid) { String deployment = await GetAzureDeploymentName(ServiceName); XDocument vmXML = new XDocument();   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}/roles/{3}", subscriptionid, ServiceName, deployment, VMName);   HttpClient http = GetHttpClient(); Stream responseStream = await http.GetStreamAsync(uri); if (responseStream != null) { vmXML = XDocument.Load(responseStream); }   return vmXML; }  So the final method which can be used to list all virtual machines is: async public Task<XDocument> GetAzureVMs() { List<XDocument> services = await GetAzureServices(); XDocument vms = new XDocument(); vms.Add(new XElement("VirtualMachines")); ApplyNamespace(vms.Root, ns); foreach (var svc in services) { string ServiceName = svc.Root.Element(ns + "ServiceName").Value;   String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deploymentslots/{2}", _subscriptionid, ServiceName, "Production");   try { HttpClient http = GetHttpClient(); Stream responseStream = await http.GetStreamAsync(uri);   if (responseStream != null) { XDocument xml = XDocument.Load(responseStream); var roles = xml.Root.Descendants(ns + "RoleInstance"); foreach (XElement r in roles) { XElement svcnameel = new XElement("ServiceName", ServiceName); ApplyNamespace(svcnameel, ns); r.Add(svcnameel); // not part of the roleinstance vms.Root.Add(r); } } } catch (HttpRequestException http) { // no vms with cloud service } } return vms; }  (4) Restart Virtual Machine Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name>/deployments/<deployment-name>/roles/<role-name>/Operations HTTP Method POST (HTTP 1.1) Headers x-ms-version: 2012-03-01 Content-Type: application/xml Body <RestartRoleOperation xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> <OperationType>RestartRoleOperation</OperationType> </RestartRoleOperation>  More details about this http request here http://msdn.microsoft.com/en-us/library/windowsazure/jj157197.aspx  C# Code async public Task<String> RebootVM(String ServiceName, String RoleName) { String requestID = String.Empty;   String deployment = await GetAzureDeploymentName(ServiceName); String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}/roleInstances/{3}/Operations", _subscriptionid, ServiceName, deployment, RoleName);   HttpClient http = GetHttpClient();   XElement srcTree = new XElement("RestartRoleOperation", new XAttribute(XNamespace.Xmlns + "i", ns1), new XElement("OperationType", "RestartRoleOperation") ); ApplyNamespace(srcTree, ns);   XDocument CSXML = new XDocument(srcTree); HttpContent content = new StringContent(CSXML.ToString()); content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/xml");   HttpResponseMessage responseMsg = await http.PostAsync(uri, content); if (responseMsg != null) { requestID = responseMsg.Headers.GetValues("x-ms-request-id").FirstOrDefault(); } return requestID; }  (5) Delete Virtual Machine You can delete your hosted virtual machine by deleting its deployment, but I prefer to delete its hosted service also, so you can easily manage your virtual machines from code 5.1 Delete Deployment Request URI https://management.core.windows.net/< subscription-id >/services/hostedservices/< service-name >/deployments/<Deployment-Name> HTTP Method DELETE (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. C# code async public Task<HttpResponseMessage> DeleteDeployment( string deploymentName) { string xml = string.Empty; String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}/deployments/{2}", _subscriptionid, deploymentName, deploymentName); HttpClient http = GetHttpClient(); HttpResponseMessage responseMessage = await http.DeleteAsync(uri); return responseMessage; }  5.2 Delete Hosted Service Request URI https://management.core.windows.net/<subscription-id>/services/hostedservices/<service-name> HTTP Method DELETE (HTTP 1.1) Headers x-ms-version: 2012-03-01 Body None. C# code async public Task<HttpResponseMessage> DeleteService(string serviceName) { string xml = string.Empty; String uri = String.Format("https://management.core.windows.net/{0}/services/hostedservices/{1}", _subscriptionid, serviceName); Log.Info("Windows Azure URI (http DELETE verb): " + uri, typeof(VMManager)); HttpClient http = GetHttpClient(); HttpResponseMessage responseMessage = await http.DeleteAsync(uri); return responseMessage; }  And the following is the method which can used to delete both of deployment and service async public Task<string> DeleteVM(string vmName) { string responseString = string.Empty;   // as a convention here in this post, a unified name used for service, deployment and VM instance to make it easy to manage VMs HttpClient http = GetHttpClient(); HttpResponseMessage responseMessage = await DeleteDeployment(vmName);   if (responseMessage != null) {   string requestID = responseMessage.Headers.GetValues("x-ms-request-id").FirstOrDefault(); OperationResult result = await PollGetOperationStatus(requestID, 5, 120); if (result.Status == OperationStatus.Succeeded) { responseString = result.Message; HttpResponseMessage sResponseMessage = await DeleteService(vmName); if (sResponseMessage != null) { OperationResult sResult = await PollGetOperationStatus(requestID, 5, 120); responseString += sResult.Message; } } else { responseString = result.Message; } } return responseString; }  Note: This article is subject to be updated Hisham  References Advanced Windows Azure IaaS – Demo Code Windows Azure Service Management REST API Reference Introduction to the Azure Platform Representational state transfer Asynchronous Programming with Async and Await (C# and Visual Basic) HttpClient Class

    Read the article

  • Exception Handling Frequency/Log Detail

    - by Cyborgx37
    I am working on a fairly complex .NET application that interacts with another application. Many single-line statements are possible culprits for throwing an Exception and there is often nothing I can do to check the state before executing them to prevent these Exceptions. The question is, based on best practices and seasoned experience, how frequently should I lace my code with try/catch blocks? I've listed three examples below, but I'm open to any advice. I'm really hoping to get some pros/cons of various approaches. I can certainly come up with some of my own (greater log granularity for the O-C approach, better performance for the Monolithic approach), so I'm looking for experience over opinion. EDIT: I should add that this application is a batch program. The only "recovery" necessary in most cases is to log the error, clean up gracefully, and quit. So this could be seen to be as much a question of log granularity as exception handling. In my mind's eye I can imagine good reasons for both, so I'm looking for some general advice to help me find an appropriate balance. Monolitich Approach class Program{ public static void Main(){ try{ Step1(); Step2(); Step3(); } catch (Exception e) { Log(e); } finally { CleanUp(); } } public static void Step1(){ ExternalApp.Dangerous1(); ExternalApp.Dangerous2(); } public static void Step2(){ ExternalApp.Dangerous3(); ExternalApp.Dangerous4(); } public static void Step3(){ ExternalApp.Dangerous5(); ExternalApp.Dangerous6(); } } Delegated Approach class Program{ public static void Main(){ try{ Step1(); Step2(); Step3(); } finally { CleanUp(); } } public static void Step1(){ try{ ExternalApp.Dangerous1(); ExternalApp.Dangerous2(); } catch (Exception e) { Log(e); throw; } } public static void Step2(){ try{ ExternalApp.Dangerous3(); ExternalApp.Dangerous4(); } catch (Exception e) { Log(e); throw; } } public static void Step3(){ try{ ExternalApp.Dangerous5(); ExternalApp.Dangerous6(); } catch (Exception e) { Log(e); throw; } } } Obsessive-Compulsive Approach class Program{ public static void Main(){ try{ Step1(); Step2(); Step3(); } finally { CleanUp(); } } public static void Step1(){ try{ ExternalApp.Dangerous1(); } catch (Exception e) { Log(e); throw; } try{ ExternalApp.Dangerous2(); } catch (Exception e) { Log(e); throw; } } public static void Step2(){ try{ ExternalApp.Dangerous3(); } catch (Exception e) { Log(e); throw; } try{ ExternalApp.Dangerous4(); } catch (Exception e) { Log(e); throw; } } public static void Step3(){ try{ ExternalApp.Dangerous5(); } catch (Exception e) { Log(e); throw; } try{ ExternalApp.Dangerous6(); } catch (Exception e) { Log(e); throw; } } } Other approaches welcomed and encouraged. Above are examples only.

    Read the article

  • CodePlex Daily Summary for Sunday, August 03, 2014

    CodePlex Daily Summary for Sunday, August 03, 2014Popular ReleasesBoxStarter: Boxstarter 2.4.76: Running the Setup.bat file will install Chocolatey if not present and then install the Boxstarter modules.GMare: GMare Beta 1.2: Features Added: - Instance painting by holding the alt key down while pressing the left mouse button - Functionality to the binary exporter so that backgrounds from image files can be used - On the binary exporter background information can be edited manually now - Update to the GMare binary read GML script - Game Maker Studio export - Import from GMare project. Multiple options to import desired properties of a .gmpx - 10 undo/redo levels instead of 5 is now the default - New preferences dia...Json.NET: Json.NET 6.0 Release 4: New feature - Added Merge to LINQ to JSON New feature - Added JValue.CreateNull and JValue.CreateUndefined New feature - Added Windows Phone 8.1 support to .NET 4.0 portable assembly New feature - Added OverrideCreator to JsonObjectContract New feature - Added support for overriding the creation of interfaces and abstract types New feature - Added support for reading UUID BSON binary values as a Guid New feature - Added MetadataPropertyHandling.Ignore New feature - Improv...SQL Server Dialog: SQL Server Dialog: Input server, user and password Show folder and file in treeview Customize icon Filter file extension Skip system generate folder and fileAitso-a platform for spatial optimization and based on artificial immune systems: Aitso_0.14.08.01: Aitso0.14.08.01Installer.zipVidCoder: 1.5.24 Beta: Added NL-Means denoiser. Updated HandBrake core to SVN 6254. Added extra error handling to DVD player code to avoid a crash when the player was moved.AutoUpdater.NET : Auto update library for VB.NET and C# Developer: AutoUpdater.NET 1.3: Fixed problem in DownloadUpdateDialog where download continues even if you close the dialog. Added support for new url field for 64 bit application setup. AutoUpdater.NET will decide which download url to use by looking at the value of IntPtr.Size. Added German translation provided by Rene Kannegiesser. Now developer can handle update logic herself using event suggested by ricorx7. Added italian translation provided by Gianluca Mariani. Fixed bug that prevents Application from exiti...SEToolbox: SEToolbox 01.041.012 Release 1: Added voxel material textures to read in with mods. Fixed missing texture replacements for mods. Fixed rounding issue in raytrace code. Fixed repair issue with corrupt checkpoint file. Fixed issue with updated SE binaries 01.041.012 using new container configuration.Magick.NET: Magick.NET 6.8.9.601: Magick.NET linked with ImageMagick 6.8.9.6 Breaking changes: - Changed arguments for the Map method of MagickImage. - QuantizeSettings uses Riemersma by default.Multiple Threads TCP Server: Project: this Project is based on VS 2013, .net freamwork 4.0, you can open it by vs 2010 or laterAricie Shared: Aricie.Shared Version 1.8.00: Version 1.8.0 - Release Notes New: Expression Builder to design Flee Expressions New: Cryptographic helpers and configuration classes Improvement: Many fixes and improvements with property editor Improvement: Token Replace Property explorer now has a restricted mode for additional security Improvement: Better variables, types and object manipulation Fixed: smart file and flee bugs Fixed: Removed Exception while trying to read unsuported files Improvement: several performance twe...Accesorios de sitios Torrent en Español para Synology Download Station: Pack de Torrents en Español 6.0.0: Agregado los módulos de DivXTotal, el módulo de búsqueda depende del de alojamiento para bajar las series Utiliza el rss: http://www.divxtotal.com/rss.php DbEntry.Net (Leafing Framework): DbEntry.Net 4.2: DbEntry.Net is a lightweight Object Relational Mapping (ORM) database access compnent for .Net 4.0+. It has clearly and easily programing interface for ORM and sql directly, and supoorted Access, Sql Server, MySql, SQLite, Firebird, PostgreSQL and Oracle. It also provide a Ruby On Rails style MVC framework. Asp.Net DataSource and a simple IoC. DbEntry.Net.v4.2.Setup.zip include the setup package. DbEntry.Net.v4.2.Src.zip include source files and unit tests. DbEntry.Net.v4.2.Samples.zip ...Azure Storage Explorer: Azure Storage Explorer 6 Preview 1: Welcome to Azure Storage Explorer 6 Preview 1 This is the first release of the latest Azure Storage Explorer, code-named Phoenix. What's New?Here are some important things to know about version 6: Open Source Now being run as a full open source project. Full source code on CodePlex. Collaboration encouraged! Updated Code Base Brand-new code base (WPF/C#/.NET 4.5) Visual Studio 2013 solution (previously VS2010) Uses the Task Parallel Library (TPL) for asynchronous background operat...Wsus Package Publisher: release v1.3.1407.29: Updated WPP to recognize the very latest console version. Some files was missing into the latest release of WPP which lead to crash when trying to make a custom update. Add a workaround to avoid clipboard modification when double-clicking on a label when creating a custom update. Add the ability to publish detectoids. (This feature is still in a BETA phase. Packages relying on these detectoids to determine which computers need to be updated, may apply to all computers).VG-Ripper & PG-Ripper: PG-Ripper 1.4.32: changes NEW: Added Support for 'ImgMega.com' links NEW: Added Support for 'ImgCandy.net' links NEW: Added Support for 'ImgPit.com' links NEW: Added Support for 'Img.yt' links FIXED: 'Radikal.ru' links FIXED: 'ImageTeam.org' links FIXED: 'ImgSee.com' links FIXED: 'Img.yt' linksAsp.Net MVC-4,Entity Framework and JQGrid Demo with Todo List WebApplication: Asp.Net MVC-4,Entity Framework and JQGrid Demo: Asp.Net MVC-4,Entity Framework and JQGrid Demo with simple Todo List WebApplication, Overview TodoList is a simple web application to create, store and modify Todo tasks to be maintained by the users, which comprises of following fields to the user (Task Name, Task Description, Severity, Target Date, Task Status). TodoList web application is created using MVC - 4 architecture, code-first Entity Framework (ORM) and Jqgrid for displaying the data.Waterfox: Waterfox 31.0 Portable: New features in Waterfox 31.0: Added support for Unicode 7.0 Experimental support for WebCL New features in Firefox 31.0:New Add the search field to the new tab page Support of Prefer:Safe http header for parental control mozilla::pkix as default certificate verifier Block malware from downloaded files Block malware from downloaded files audio/video .ogg and .pdf files handled by Firefox if no application specified Changed Removal of the CAPS infrastructure for specifying site-sp...SuperSocket, an extensible socket server framework: SuperSocket 1.6.3: The changes below are included in this release: fixed an exception when collect a server's status but it has been stopped fixed a bug that can cause an exception in case of sending data when the connection dropped already fixed the log4net missing issue for a QuickStart project fixed a warning in a QuickStart projectYnote Classic: Ynote Classic 2.8.5 Beta: Several Changes - Multiple Carets and Multiple Selections - Improved Startup Time - Improved Syntax Highlighting - Search Improvements - Shell Command - Improved StabilityNew ProjectsCreek: Creek is a Collection of many C# Frameworks and my ownSpeaking Speedometer (android): Simple speaking speedometerT125Protocol { Alpha version }: implement T125 Protocol for communicate with a mainframe.Unix Time: This library provides a System.UnixTime as a new Type providing conversion between Unix Time and .NET DateTime.

    Read the article

  • C#/.NET Little Wonders: Interlocked CompareExchange()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Two posts ago, I discussed the Interlocked Add(), Increment(), and Decrement() methods (here) for adding and subtracting values in a thread-safe, lightweight manner.  Then, last post I talked about the Interlocked Read() and Exchange() methods (here) for safely and efficiently reading and setting 32 or 64 bit values (or references).  This week, we’ll round out the discussion by talking about the Interlocked CompareExchange() method and how it can be put to use to exchange a value if the current value is what you expected it to be. Dirty reads can lead to bad results Many of the uses of Interlocked that we’ve explored so far have centered around either reading, setting, or adding values.  But what happens if you want to do something more complex such as setting a value based on the previous value in some manner? Perhaps you were creating an application that reads a current balance, applies a deposit, and then saves the new modified balance, where of course you’d want that to happen atomically.  If you read the balance, then go to save the new balance and between that time the previous balance has already changed, you’ll have an issue!  Think about it, if we read the current balance as $400, and we are applying a new deposit of $50.75, but meanwhile someone else deposits $200 and sets the total to $600, but then we write a total of $450.75 we’ve lost $200! Now, certainly for int and long values we can use Interlocked.Add() to handles these cases, and it works well for that.  But what if we want to work with doubles, for example?  Let’s say we wanted to add the numbers from 0 to 99,999 in parallel.  We could do this by spawning several parallel tasks to continuously add to a total: 1: double total = 0; 2:  3: Parallel.For(0, 10000, next => 4: { 5: total += next; 6: }); Were this run on one thread using a standard for loop, we’d expect an answer of 4,999,950,000 (the sum of all numbers from 0 to 99,999).  But when we run this in parallel as written above, we’ll likely get something far off.  The result of one of my runs, for example, was 1,281,880,740.  That is way off!  If this were banking software we’d be in big trouble with our clients.  So what happened?  The += operator is not atomic, it will read in the current value, add the result, then store it back into the total.  At any point in all of this another thread could read a “dirty” current total and accidentally “skip” our add.   So, to clean this up, we could use a lock to guarantee concurrency: 1: double total = 0.0; 2: object locker = new object(); 3:  4: Parallel.For(0, count, next => 5: { 6: lock (locker) 7: { 8: total += next; 9: } 10: }); Which will give us the correct result of 4,999,950,000.  One thing to note is that locking can be heavy, especially if the operation being locked over is trivial, or the life of the lock is a high percentage of the work being performed concurrently.  In the case above, the lock consumes pretty much all of the time of each parallel task – and the task being locked on is relatively trivial. Now, let me put in a disclaimer here before we go further: For most uses, lock is more than sufficient for your needs, and is often the simplest solution!    So, if lock is sufficient for most needs, why would we ever consider another solution?  The problem with locking is that it can suspend execution of your thread while it waits for the signal that the lock is free.  Moreover, if the operation being locked over is trivial, the lock can add a very high level of overhead.  This is why things like Interlocked.Increment() perform so well, instead of locking just to perform an increment, we perform the increment with an atomic, lockless method. As with all things performance related, it’s important to profile before jumping to the conclusion that you should optimize everything in your path.  If your profiling shows that locking is causing a high level of waiting in your application, then it’s time to consider lighter alternatives such as Interlocked. CompareExchange() – Exchange existing value if equal some value So let’s look at how we could use CompareExchange() to solve our problem above.  The general syntax of CompareExchange() is: T CompareExchange<T>(ref T location, T newValue, T expectedValue) If the value in location == expectedValue, then newValue is exchanged.  Either way, the value in location (before exchange) is returned. Actually, CompareExchange() is not one method, but a family of overloaded methods that can take int, long, float, double, pointers, or references.  It cannot take other value types (that is, can’t CompareExchange() two DateTime instances directly).  Also keep in mind that the version that takes any reference type (the generic overload) only checks for reference equality, it does not call any overridden Equals(). So how does this help us?  Well, we can grab the current total, and exchange the new value if total hasn’t changed.  This would look like this: 1: // grab the snapshot 2: double current = total; 3:  4: // if the total hasn’t changed since I grabbed the snapshot, then 5: // set it to the new total 6: Interlocked.CompareExchange(ref total, current + next, current); So what the code above says is: if the amount in total (1st arg) is the same as the amount in current (3rd arg), then set total to current + next (2nd arg).  This check and exchange pair is atomic (and thus thread-safe). This works if total is the same as our snapshot in current, but the problem, is what happens if they aren’t the same?  Well, we know that in either case we will get the previous value of total (before the exchange), back as a result.  Thus, we can test this against our snapshot to see if it was the value we expected: 1: // if the value returned is != current, then our snapshot must be out of date 2: // which means we didn't (and shouldn't) apply current + next 3: if (Interlocked.CompareExchange(ref total, current + next, current) != current) 4: { 5: // ooops, total was not equal to our snapshot in current, what should we do??? 6: } So what do we do if we fail?  That’s up to you and the problem you are trying to solve.  It’s possible you would decide to abort the whole transaction, or perhaps do a lightweight spin and try again.  Let’s try that: 1: double current = total; 2:  3: // make first attempt... 4: if (Interlocked.CompareExchange(ref total, current + i, current) != current) 5: { 6: // if we fail, go into a spin wait, spin, and try again until succeed 7: var spinner = new SpinWait(); 8:  9: do 10: { 11: spinner.SpinOnce(); 12: current = total; 13: } 14: while (Interlocked.CompareExchange(ref total, current + i, current) != current); 15: } 16:  This is not trivial code, but it illustrates a possible use of CompareExchange().  What we are doing is first checking to see if we succeed on the first try, and if so great!  If not, we create a SpinWait and then repeat the process of SpinOnce(), grab a fresh snapshot, and repeat until CompareExchnage() succeeds.  You may wonder why not a simple do-while here, and the reason it’s more efficient to only create the SpinWait until we absolutely know we need one, for optimal efficiency. Though not as simple (or maintainable) as a simple lock, this will perform better in many situations.  Comparing an unlocked (and wrong) version, a version using lock, and the Interlocked of the code, we get the following average times for multiple iterations of adding the sum of 100,000 numbers: 1: Unlocked money average time: 2.1 ms 2: Locked money average time: 5.1 ms 3: Interlocked money average time: 3 ms So the Interlocked.CompareExchange(), while heavier to code, came in lighter than the lock, offering a good compromise of safety and performance when we need to reduce contention. CompareExchange() - it’s not just for adding stuff… So that was one simple use of CompareExchange() in the context of adding double values -- which meant we couldn’t have used the simpler Interlocked.Add() -- but it has other uses as well. If you think about it, this really works anytime you want to create something new based on a current value without using a full lock.  For example, you could use it to create a simple lazy instantiation implementation.  In this case, we want to set the lazy instance only if the previous value was null: 1: public static class Lazy<T> where T : class, new() 2: { 3: private static T _instance; 4:  5: public static T Instance 6: { 7: get 8: { 9: // if current is null, we need to create new instance 10: if (_instance == null) 11: { 12: // attempt create, it will only set if previous was null 13: Interlocked.CompareExchange(ref _instance, new T(), (T)null); 14: } 15:  16: return _instance; 17: } 18: } 19: } So, if _instance == null, this will create a new T() and attempt to exchange it with _instance.  If _instance is not null, then it does nothing and we discard the new T() we created. This is a way to create lazy instances of a type where we are more concerned about locking overhead than creating an accidental duplicate which is not used.  In fact, the BCL implementation of Lazy<T> offers a similar thread-safety choice for Publication thread safety, where it will not guarantee only one instance was created, but it will guarantee that all readers get the same instance.  Another possible use would be in concurrent collections.  Let’s say, for example, that you are creating your own brand new super stack that uses a linked list paradigm and is “lock free”.  We could use Interlocked.CompareExchange() to be able to do a lockless Push() which could be more efficient in multi-threaded applications where several threads are pushing and popping on the stack concurrently. Yes, there are already concurrent collections in the BCL (in .NET 4.0 as part of the TPL), but it’s a fun exercise!  So let’s assume we have a node like this: 1: public sealed class Node<T> 2: { 3: // the data for this node 4: public T Data { get; set; } 5:  6: // the link to the next instance 7: internal Node<T> Next { get; set; } 8: } Then, perhaps, our stack’s Push() operation might look something like: 1: public sealed class SuperStack<T> 2: { 3: private volatile T _head; 4:  5: public void Push(T value) 6: { 7: var newNode = new Node<int> { Data = value, Next = _head }; 8:  9: if (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next) 10: { 11: var spinner = new SpinWait(); 12:  13: do 14: { 15: spinner.SpinOnce(); 16: newNode.Next = _head; 17: } 18: while (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next); 19: } 20: } 21:  22: // ... 23: } Notice a similar paradigm here as with adding our doubles before.  What we are doing is creating the new Node with the data to push, and with a Next value being the original node referenced by _head.  This will create our stack behavior (LIFO – Last In, First Out).  Now, we have to set _head to now refer to the newNode, but we must first make sure it hasn’t changed! So we check to see if _head has the same value we saved in our snapshot as newNode.Next, and if so, we set _head to newNode.  This is all done atomically, and the result is _head’s original value, as long as the original value was what we assumed it was with newNode.Next, then we are good and we set it without a lock!  If not, we SpinWait and try again. Once again, this is much lighter than locking in highly parallelized code with lots of contention.  If I compare the method above with a similar class using lock, I get the following results for pushing 100,000 items: 1: Locked SuperStack average time: 6 ms 2: Interlocked SuperStack average time: 4.5 ms So, once again, we can get more efficient than a lock, though there is the cost of added code complexity.  Fortunately for you, most of the concurrent collection you’d ever need are already created for you in the System.Collections.Concurrent (here) namespace – for more information, see my Little Wonders – The Concurent Collections Part 1 (here), Part 2 (here), and Part 3 (here). Summary We’ve seen before how the Interlocked class can be used to safely and efficiently add, increment, decrement, read, and exchange values in a multi-threaded environment.  In addition to these, Interlocked CompareExchange() can be used to perform more complex logic without the need of a lock when lock contention is a concern. The added efficiency, though, comes at the cost of more complex code.  As such, the standard lock is often sufficient for most thread-safety needs.  But if profiling indicates you spend a lot of time waiting for locks, or if you just need a lock for something simple such as an increment, decrement, read, exchange, etc., then consider using the Interlocked class’s methods to reduce wait. Technorati Tags: C#,CSharp,.NET,Little Wonders,Interlocked,CompareExchange,threading,concurrency

    Read the article

  • Should I expose IObservable<T> on my interfaces?

    - by Alex
    My colleague and I have dispute. We are writing a .NET application that processes massive amounts of data. It receives data elements, groups subsets of them into blocks according to some criterion and processes those blocks. Let's say we have data items of type Foo arriving some source (from the network, for example) one by one. We wish to gather subsets of related objects of type Foo, construct an object of type Bar from each such subset and process objects of type Bar. One of us suggested the following design. Its main theme is exposing IObservable objects directly from the interfaces of our components. // ********* Interfaces ********** interface IFooSource { // this is the event-stream of objects of type Foo IObservable<Foo> FooArrivals { get; } } interface IBarSource { // this is the event-stream of objects of type Bar IObservable<Bar> BarArrivals { get; } } / ********* Implementations ********* class FooSource : IFooSource { // Here we put logic that receives Foo objects from the network and publishes them to the FooArrivals event stream. } class FooSubsetsToBarConverter : IBarSource { IFooSource fooSource; IObservable<Bar> BarArrivals { get { // Do some fancy Rx operators on fooSource.FooArrivals, like Buffer, Window, Join and others and return IObservable<Bar> } } } // this class will subscribe to the bar source and do processing class BarsProcessor { BarsProcessor(IBarSource barSource); void Subscribe(); } // ******************* Main ************************ class Program { public static void Main(string[] args) { var fooSource = FooSourceFactory.Create(); var barsProcessor = BarsProcessorFactory.Create(fooSource) // this will create FooSubsetToBarConverter and BarsProcessor barsProcessor.Subscribe(); fooSource.Run(); // this enters a loop of listening for Foo objects from the network and notifying about their arrival. } } The other suggested another design that its main theme is using our own publisher/subscriber interfaces and using Rx inside the implementations only when needed. //********** interfaces ********* interface IPublisher<T> { void Subscribe(ISubscriber<T> subscriber); } interface ISubscriber<T> { Action<T> Callback { get; } } //********** implementations ********* class FooSource : IPublisher<Foo> { public void Subscribe(ISubscriber<Foo> subscriber) { /* ... */ } // here we put logic that receives Foo objects from some source (the network?) publishes them to the registered subscribers } class FooSubsetsToBarConverter : ISubscriber<Foo>, IPublisher<Bar> { void Callback(Foo foo) { // here we put logic that aggregates Foo objects and publishes Bars when we have received a subset of Foos that match our criteria // maybe we use Rx here internally. } public void Subscribe(ISubscriber<Bar> subscriber) { /* ... */ } } class BarsProcessor : ISubscriber<Bar> { void Callback(Bar bar) { // here we put code that processes Bar objects } } //********** program ********* class Program { public static void Main(string[] args) { var fooSource = fooSourceFactory.Create(); var barsProcessor = barsProcessorFactory.Create(fooSource) // this will create BarsProcessor and perform all the necessary subscriptions fooSource.Run(); // this enters a loop of listening for Foo objects from the network and notifying about their arrival. } } Which one do you think is better? Exposing IObservable and making our components create new event streams from Rx operators, or defining our own publisher/subscriber interfaces and using Rx internally if needed? Here are some things to consider about the designs: In the first design the consumer of our interfaces has the whole power of Rx at his/her fingertips and can perform any Rx operators. One of us claims this is an advantage and the other claims that this is a drawback. The second design allows us to use any publisher/subscriber architecture under the hood. The first design ties us to Rx. If we wish to use the power of Rx, it requires more work in the second design because we need to translate the custom publisher/subscriber implementation to Rx and back. It requires writing glue code for every class that wishes to do some event processing.

    Read the article

  • COMException when trying to use a Library

    - by sarkie
    Hi Guys, I have an ASP.net WebService which uses a Library, this has a dependency on some third party .dlls. If I add a reference to the Library to my webservice, I get a COMException and I can't load the site. I thought it may be to do with aspnet user credentials, so I have tried impersonating and using processModel in machine.config but nothing seems to work. The .dlls are for communicating with hardware so I am not even using them on the server just other parts of the library, is there any way I can fix this? I'm running on Windows XP Pro SP3 with Visual 2008 SP1 and .net 3.5. I am thinking the only way of fixing it, is to split up the library into hardware and non-hardware based. Cheers, Sarkie The specified procedure could not be found. (Exception from HRESULT: 0x8007007F) Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.Runtime.InteropServices.COMException: The specified procedure could not be found. (Exception from HRESULT: 0x8007007F) Source Error: An unhandled exception was generated during the execution of the current web request. Information regarding the origin and location of the exception can be identified using the exception stack trace below. Stack Trace: [COMException (0x8007007f): The specified procedure could not be found. (Exception from HRESULT: 0x8007007F)] [FileLoadException: A procedure imported by 'OBIDISC4NETnative, Version=0.0.0.0, Culture=neutral, PublicKeyToken=900ed37a7058e4f2' could not be loaded.] System.Reflection.Assembly._nLoad(AssemblyName fileName, String codeBase, Evidence assemblySecurity, Assembly locationHint, StackCrawlMark& stackMark, Boolean throwOnFileNotFound, Boolean forIntrospection) +0 System.Reflection.Assembly.nLoad(AssemblyName fileName, String codeBase, Evidence assemblySecurity, Assembly locationHint, StackCrawlMark& stackMark, Boolean throwOnFileNotFound, Boolean forIntrospection) +43 System.Reflection.Assembly.InternalLoad(AssemblyName assemblyRef, Evidence assemblySecurity, StackCrawlMark& stackMark, Boolean forIntrospection) +127 System.Reflection.Assembly.InternalLoad(String assemblyString, Evidence assemblySecurity, StackCrawlMark& stackMark, Boolean forIntrospection) +142 System.Reflection.Assembly.Load(String assemblyString) +28 System.Web.Configuration.CompilationSection.LoadAssemblyHelper(String assemblyName, Boolean starDirective) +46 [ConfigurationErrorsException: A procedure imported by 'OBIDISC4NETnative, Version=0.0.0.0, Culture=neutral, PublicKeyToken=900ed37a7058e4f2' could not be loaded.] System.Web.Configuration.CompilationSection.LoadAssemblyHelper(String assemblyName, Boolean starDirective) +613 System.Web.Configuration.CompilationSection.LoadAllAssembliesFromAppDomainBinDirectory() +203 System.Web.Configuration.CompilationSection.LoadAssembly(AssemblyInfo ai) +105 System.Web.Compilation.BuildManager.GetReferencedAssemblies(CompilationSection compConfig) +178 System.Web.Compilation.WebDirectoryBatchCompiler..ctor(VirtualDirectory vdir) +163 System.Web.Compilation.BuildManager.BatchCompileWebDirectoryInternal(VirtualDirectory vdir, Boolean ignoreErrors) +53 System.Web.Compilation.BuildManager.BatchCompileWebDirectory(VirtualDirectory vdir, VirtualPath virtualDir, Boolean ignoreErrors) +175 System.Web.Compilation.BuildManager.CompileWebFile(VirtualPath virtualPath) +83 System.Web.Compilation.BuildManager.GetVPathBuildResultInternal(VirtualPath virtualPath, Boolean noBuild, Boolean allowCrossApp, Boolean allowBuildInPrecompile) +261 System.Web.Compilation.BuildManager.GetVPathBuildResultWithNoAssert(HttpContext context, VirtualPath virtualPath, Boolean noBuild, Boolean allowCrossApp, Boolean allowBuildInPrecompile) +101 System.Web.Compilation.BuildManager.GetVPathBuildResult(HttpContext context, VirtualPath virtualPath, Boolean noBuild, Boolean allowCrossApp, Boolean allowBuildInPrecompile) +83 System.Web.Compilation.BuildManager.GetVPathBuildResult(HttpContext context, VirtualPath virtualPath) +10 System.Web.UI.WebServiceParser.GetCompiledType(String inputFile, HttpContext context) +43 System.Web.Services.Protocols.WebServiceHandlerFactory.GetHandler(HttpContext context, String verb, String url, String filePath) +180 System.Web.Script.Services.ScriptHandlerFactory.GetHandler(HttpContext context, String requestType, String url, String pathTranslated) +102 System.Web.HttpApplication.MapHttpHandler(HttpContext context, String requestType, VirtualPath path, String pathTranslated, Boolean useAppConfig) +193 System.Web.MapHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +93 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +155 -------------------------------------------------------------------------------- Version Information: Microsoft .NET Framework Version:2.0.50727.3082; ASP.NET Version:2.0.50727.3082

    Read the article

  • Unable to host WCF service correctly in IIS7

    - by user206736
    I have a WCF Service library written in .NET 4.0. I have a WCF application (in order to host this service in IIS) within the same solution. It contains the WCF library assembly reference and a service.svc file pointing to the service from the library along with a web.config that is a replica of the WCF service library's app.config. The WCF application is set to host the service in IIS7 (the virtual directory has been set). The same solution contains an ASP.NET Webforms solution to which I have added a service reference pointing to the WCF service I hosted in IIS (as mentioned). When i start an instance of this ASP.NET Web application, I get a message saying that "The WCF service has been hosted" and the ASP.NET application can access the data from it correctly. However, when i try and access this data via a service reference added to an MVC 2 Web Application on the same machine in a different solution (pointing to the service hosted in IIS), I get a "The remote server returned an error: (405) Method Not Allowed." protocol exception . However, the MVC application is able to access the service data if I manually invoke an instance of the WCF Application that I was using to host the WCF Service Library from the other solution. I am using VS2010 Beta 2 as my development IDE. I have been stuck with this issue for a while now. Any help would be appreciated. My service config is as follows:- <system.serviceModel> <services> <service behaviorConfiguration="CruxServices.BasicSearchServiceBehavior" name="CruxServices.BasicSearch.BasicSearch"> <endpoint address="" binding="wsHttpBinding" name="WSBindingEndpoint" bindingConfiguration="WSBindingConfig" contract="CruxServices.BasicSearch.Interfaces.IPropertyListFilter"> <identity> <dns value="localhost" /> </identity> </endpoint> <endpoint address="mex" binding="mexHttpBinding" name="MexEndpoint" contract="IMetadataExchange" /> <host> <baseAddresses> <add baseAddress="http://localhost/CruxServices" /> </baseAddresses> </host> </service> </services> <behaviors> <serviceBehaviors> <behavior name="CruxServices.BasicSearchServiceBehavior"> <serviceMetadata httpGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="false" /> </behavior> </serviceBehaviors> </behaviors> <bindings> <wsHttpBinding> <binding name="WSBindingConfig"> <security mode="None"> <transport clientCredentialType="None"/> <message establishSecurityContext="false"/> </security> </binding> </wsHttpBinding> </bindings>

    Read the article

  • asp:FileUpload not working in UpdatePanel

    - by James123
    asp:FileUpload control is not working in update panel in ascx control. Why? any work around. <span dir="ltr"> <asp:FileUpload ID="InputFile" runat="server" class="ms-fileinput" size="35" /> </span> and also I added <Triggers> <asp:PostBackTrigger ControlID="btnOK" /> </Triggers> Still it is not working.

    Read the article

  • When to choose LAMP over ASP.NET?

    - by Carlo
    Hello. A friend wants to start a dating website, she wants me to help her. We still haven't discussed on what platform it'll be developed, but I'm thinking she'll suggest LAMP to save a buck (which is one reason already to chose over ASP.NET already). If the dating website does well, it'll potentially hold a large amount of data (I'm not sure if this would be another reason to consider either ASP.NET or LAMP). Anyway, I ask this from an ASP.NET developer point of view. I have very little, almost null experience with LAMP, and I don't like it very much either, so if she decides to go with PHP odds are I won't help her. So what would be some good points to bring up when deciding which platform to develop on? Please be objective, I don't want this to be argumentative or anything, try to stick to facts, not opinions alone. Thanks!

    Read the article

  • Add the Date Filter SharePoint webpart to an ASP.Net page

    - by Javaman59
    I want to add the out-of-the-box SharePoint date filter webpart to an ASP.Net web page. I want to do it either in an ASPX... <%@ Register Assembly="<DatePickerDLL??>" Namespace="<??>" TagPrefix="DP" %> <...> <asp:WebPartManager ID="WebPartManager1" runat="server"> </asp:WebPartManager> <...> <ZoneTemplate> <DP:<DatePickerWebPart??> ID="DatePicker" runat="server" /> or programmatically, in the ASPX.CS protected void Page_Load(object sender, EventArgs e) { this.Controls.Add(<Microsoft.Something.DatePicker??> }

    Read the article

  • Thanks to .Net Developers Network in Bristol - Hyper-V for Developers slides not available for downl

    - by Liam Westley
    Thanks to the guys at .Net Developers Network (http://www.dotnetdevnet.com) for inviting me down to Bristol to present on Hyper-V for Developers.  There were some great questions and genuine interest, especially surprising for a topic that often has a soporific effect on developers. You can download the original PowerPoint file or the PDF complete with speaker notes from here, http://www.tigernews.co.uk/blog-twickers/dotnetdevnet/HyperV4Devs-PPT.zip http://www.tigernews.co.uk/blog-twickers/dotnetdevnet/HyperV4Devs-PDF.zip I should be back for DDD SouthWest (http://www.dddsouthwest.com).  You can get voting from Monday 29th March 2010, and for a change my proposed topic is not about virtualisation! Finally, apologies to Guy Smith-Ferrier for dragging him away from the Bristol Girl Geek Dinners (http://bristolgirlgeekdinners.com) crew so I could catch my train back to London.

    Read the article

  • Launching a WPF Window in a Separate Thread, Part 1

    - by Reed
    Typically, I strongly recommend keeping the user interface within an application’s main thread, and using multiple threads to move the actual “work” into background threads.  However, there are rare times when creating a separate, dedicated thread for a Window can be beneficial.  This is even acknowledged in the MSDN samples, such as the Multiple Windows, Multiple Threads sample.  However, doing this correctly is difficult.  Even the referenced MSDN sample has major flaws, and will fail horribly in certain scenarios.  To ease this, I wrote a small class that alleviates some of the difficulties involved. The MSDN Multiple Windows, Multiple Threads Sample shows how to launch a new thread with a WPF Window, and will work in most cases.  The sample code (commented and slightly modified) works out to the following: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { // Create and show the Window Window1 tempWindow = new Window1(); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Set the apartment state newWindowThread.SetApartmentState(ApartmentState.STA); // Make the thread a background thread newWindowThread.IsBackground = true; // Start the thread newWindowThread.Start(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This sample creates a thread, marks it as single threaded apartment state, and starts the Dispatcher on that thread. That is the minimum requirements to get a Window displaying and handling messages correctly, but, unfortunately, has some serious flaws. The first issue – the created thread will run continuously until the application shuts down, given the code in the sample.  The problem is that the ThreadStart delegate used ends with running the Dispatcher.  However, nothing ever stops the Dispatcher processing.  The thread was created as a Background thread, which prevents it from keeping the application alive, but the Dispatcher will continue to pump dispatcher frames until the application shuts down. In order to fix this, we need to call Dispatcher.InvokeShutdown after the Window is closed.  This would require modifying the above sample to subscribe to the Window’s Closed event, and, at that point, shutdown the Dispatcher: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { Window1 tempWindow = new Window1(); // When the window closes, shut down the dispatcher tempWindow.Closed += (s,e) => Dispatcher.CurrentDispatcher.BeginInvokeShutdown(DispatcherPriority.Background); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Setup and start thread as before This eliminates the first issue.  Now, when the Window is closed, the new thread’s Dispatcher will shut itself down, which in turn will cause the thread to complete. The above code will work correctly for most situations.  However, there is still a potential problem which could arise depending on the content of the Window1 class.  This is particularly nasty, as the code could easily work for most windows, but fail on others. The problem is, at the point where the Window is constructed, there is no active SynchronizationContext.  This is unlikely to be a problem in most cases, but is an absolute requirement if there is code within the constructor of Window1 which relies on a context being in place. While this sounds like an edge case, it’s fairly common.  For example, if a BackgroundWorker is started within the constructor, or a TaskScheduler is built using TaskScheduler.FromCurrentSynchronizationContext() with the expectation of synchronizing work to the UI thread, an exception will be raised at some point.  Both of these classes rely on the existence of a proper context being installed to SynchronizationContext.Current, which happens automatically, but not until Dispatcher.Run is called.  In the above case, SynchronizationContext.Current will return null during the Window’s construction, which can cause exceptions to occur or unexpected behavior. Luckily, this is fairly easy to correct.  We need to do three things, in order, prior to creating our Window: Create and initialize the Dispatcher for the new thread manually Create a synchronization context for the thread which uses the Dispatcher Install the synchronization context Creating the Dispatcher is quite simple – The Dispatcher.CurrentDispatcher property gets the current thread’s Dispatcher and “creates a new Dispatcher if one is not already associated with the thread.”  Once we have the correct Dispatcher, we can create a SynchronizationContext which uses the dispatcher by creating a DispatcherSynchronizationContext.  Finally, this synchronization context can be installed as the current thread’s context via SynchronizationContext.SetSynchronizationContext.  These three steps can easily be added to the above via a single line of code: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { // Create our context, and install it: SynchronizationContext.SetSynchronizationContext( new DispatcherSynchronizationContext( Dispatcher.CurrentDispatcher)); Window1 tempWindow = new Window1(); // When the window closes, shut down the dispatcher tempWindow.Closed += (s,e) => Dispatcher.CurrentDispatcher.BeginInvokeShutdown(DispatcherPriority.Background); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Setup and start thread as before This now forces the synchronization context to be in place before the Window is created and correctly shuts down the Dispatcher when the window closes. However, there are quite a few steps.  In my next post, I’ll show how to make this operation more reusable by creating a class with a far simpler API…

    Read the article

  • Microsoft Press Deal of the Day - 4/April/2012 - Accessing Data with Microsoft® .NET Framework 4

    - by TATWORTH
    The Microsoft Press half price deal of the day at http://shop.oreilly.com/product/9780735627390.do is the training material for the MCTS Self-Paced Training Kit (Exam 70-516)  "Accessing Data with Microsoft® .NET Framework 4""EXAM PREP GUIDE Ace your preparation for the skills measured by MCTS Exam 70-516—and on the job—with this official Microsoft study guide. Work at your own pace through a series of lessons and reviews that fully cover each exam objective. Then, reinforce and apply what you’ve learned through real-world case scenarios and practice exercises. Maximize your performance on the exam by mastering the skills and experience measured by these objectives: Modeling dataManaging connections and contextQuerying dataManipulating dataDeveloping and deploying reliable applications"

    Read the article

  • Some New .NET Toys (Repost)

    - by Kevin Grossnicklaus
    Last week I was fortunate enough to spend time in Redmond on Microsoft’s campus for the 2011 Microsoft MVP Summit. It was great to hang out with a number of old friends and get the opportunity to talk tech with the various product teams up at Microsoft. The weather wasn’t exactly sunny but Microsoft always does a great job with the Summit and everyone had a blast (heck, I even got to run the bases at SafeCo field) While much of what we saw is covered under NDA, there a ton of great things in the pipeline from Microsoft and many things that are already available (or just became so) that I wasn’t necessarily aware of. The purpose of this post is to share some of the info I learned on resources and tools available to .NET developers today. Please let me know if you have any questions (or if you know of something else cool which might benefit others). Enjoy! Visual Studio 2010 SP1 Microsoft has issued the RTM release of Visual Studio 2010 SP1. You can download the full SP1 on MSDN as of today (March 10th to the general public) and take advantage of such things as: Silverlight 4 is included in the box (as opposed to a separate install) Silverlight 4 Profiling WCF RIA Services SP1 Intellitrace for 64-bit and SharePoint ASP.NET now easily supports IIS Express and SQL CE Want a description of all that’s new beyond the above biased list (which arguably only contains items I think are important)? Check out this KB article. Portable Library Tools CTP Without much fanfare Microsoft has released a CTP of a new add-in to Visual Studio 2010 which simplifies code sharing between projects targeting different runtimes (i.e. Silverlight, WPF, Win7 Phone, XBox). With this Add-In installed you can add a new project of type “Portable Library” and specify which platforms you wish to target. Once that is done, any code added to this library will be limited to use only features which are common to all selected frameworks. Other projects can now reference this portable library and be provided assemblies custom built to their environment. This greatly simplifies the current process of sharing linked files between platforms like WPF and Silverlight. You can find out more about this CTP and how it works on this great blog post. Visual Studio Async CTP Microsoft has also released a CTP of a set of language and framework enhancements to provide a much more powerful asynchronous programming model. Due to the focus on async programming in all types of platforms (and it being the ONLY option in Silverlight and Win7 phone) a move towards a simpler and more understandable model is always a good thing. This CTP (called Visual Studio Async CTP) can be downloaded here. You can read more about this CTP on this blog post. MSDN Code Samples Gallery Microsoft has also launched new code samples gallery on their MSDN site: http://code.msdn.microsoft.com/. This site allows you to easily search for small samples of code related to a particular technology or platform. If a sample of code you are looking for is not found, you can request one via the site and other developers can see your request and provide a sample to the site to suit your needs. You can also peruse requested samples and, if you find a scenario where you can provide value, upload your own sample for the benefit of others. Samples are packaged into the VS .vsix format and include any necessary references/dependencies. By using .vsix as the deployment mechanism, as samples are installed from the site they are kept in your Visual Studio 2010 Samples Gallery and kept for your future reference. If you get a chance, check out the site and see how it is done. Although a somewhat simple concept, I was very impressed with their implementation and the way they went about trying to suit a need. I’ll definitely be looking there in the future as need something or want to share something. MSDN Search Capabilities Another item I learned recently and was not aware of (that might seem trivial to some) is the power of the MSDN site’s search capabilities. Between the Code Samples Gallery described above and the search enhancements on MSDN, Microsoft is definitely investing in their platform to help provide developers of all skill levels the tools and resources they need to be successful. What do I mean by the MSDN search capability and why should you care? If you go to the MSDN home page (http://msdn.microsoft.com) and use the “Search MSDN with Big” box at the very top of the page you will see some very interesting results. First, the search actually doesn’t just search the MSDN library it searches: MSDN Library All Microsoft Blogs CodePlex StackOverflow Downloads MSDN Magazine Support Knowledgebase (I’m not sure it even ends there but the above are all I know of) Beyond just searching all the above locations, the results are formatted very nicely to give some contextual information based on where the result came from. For example, if a keyword search returned results from CodePlex, each row in the search results screen would include a large amount of information specific to CodePlex such as: Looking at the above results immediately tells you everything from the page views to the CodePlex ratings. All in all, knowing that this much information is indexed and available from a single search location will lead me to utilize this as one of my initial searches for development information.

    Read the article

  • La RC2 de ASP.NET MVC3 disponible : encore plus performante, elle est compatible avec la beta du SP 1 de Visual Studio 2010

    La RC2 de ASP.NET MVC3 disponible Encore plus performante, elle est compatible avec la beta du SP 1 de Visual Studio 2010 Mise à jour du 13/12/10 Microsoft, par le billet de son vice-président de la division de développement Scott Guthrie, vient d'annoncer la sortie de la Release Candidate 2 d'ASP.NET MVC 3. Au menu de cette nouvelle version : La correction de plusieurs bugs et l'optimisation des performances. Les tests de performance sur cette version, selon Guthrie, permettent de constater qu'ASP.NET MVC 3 est nettement plus rapide que la version 2 et que les applications ASP.net MVC existantes, après une mise à...

    Read the article

  • Discount for Staying in Town During St. Louis Day of .NET 2011

    - by Scott Spradlin
    Traveling in from out of town? (Or just interested in a night away from home with your spouse in a beautiful suite?) You can call the Ameristar at 636-940-4301 and ask for the St. Louis Day of .NET 2011 group rate. You can also make reservations online using the conference code GDNET11. We encourage you take the opportunity to hang around, spend the night, and enjoy the social events and networking opportunities that we have planned. Friday and Saturday sessions start promptly in the mornings. There are great social events planned for both Thursday and Friday nights that you’ll enjoy if you stay on-site!

    Read the article

  • WCF/ADO.NET Data Services - Could not load type 'System.Data.Services.Providers.IDataServiceUpdatePr

    - by Sahil Malik
    Ad:: SharePoint 2007 Training in .NET 3.5 technologies (more information). When you try accessing ListData.svc, do you get the following error? Could not load type 'System.Data.Services.Providers.IDataServiceUpdateProvider' from assembly 'System.Data.Services, Version=3.5.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089'. Well, if you followed the instructions in Chapter 1 of my book to build your VM, you wouldn’t run into the above issue. But if you do, you need to install  -   For Windows Vista and Windows 2008 - http://www.microsoft.com/downloads/details.aspx?familyid=4B710B89-8576-46CF-A4BF-331A9306D555&displaylang=en For Windows 7 and Windows 2008 R2 - http://www.microsoft.com/downloads/details.aspx?familyid=79d7f6f8-d6e9-4b8c-8640-17f89452148e&displaylang=en Remember to: a) Install the x64 version, and b) Do an IISReset before trying again. Comment on the article ....

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Guest Post: Using IronRuby and .NET to produce the &lsquo;Hello World of WPF&rsquo;

    - by Eric Nelson
    [You might want to also read other GuestPosts on my blog – or contribute one?] On the 26th and 27th of March (2010) myself and Edd Morgan of Microsoft will be popping along to the Scottish Ruby Conference. I dabble with Ruby and I am a huge fan whilst Edd is a “proper Ruby developer”. Hence I asked Edd if he was interested in creating a guest post or two for my blog on IronRuby. This is the second of those posts. If you should stumble across this post and happen to be attending the Scottish Ruby Conference, then please do keep a look out for myself and Edd. We would both love to chat about all things Ruby and IronRuby. And… we should have (if Amazon is kind) a few books on IronRuby with us at the conference which will need to find a good home. This is me and Edd and … the book: Order on Amazon: http://bit.ly/ironrubyunleashed Using IronRuby and .NET to produce the ‘Hello World of WPF’ In my previous post I introduced, to a minor extent, IronRuby. I expanded a little on the basics of by getting a Rails app up-and-running on this .NET implementation of the Ruby language — but there wasn't much to it! So now I would like to go from simply running a pre-existing project under IronRuby to developing a whole new application demonstrating the seamless interoperability between IronRuby and .NET. In particular, we'll be using WPF (Windows Presentation Foundation) — the component of the .NET Framework stack used to create rich media and graphical interfaces. Foundations of WPF To reiterate, WPF is the engine in the .NET Framework responsible for rendering rich user interfaces and other media. It's not the only collection of libraries in the framework with the power to do this — Windows Forms does the trick, too — but it is the most powerful and flexible. Put simply, WPF really excels when you need to employ eye candy. It's all about creating impact. Whether you're presenting a document, video, a data entry form, some kind of data visualisation (which I am most hopeful for, especially in terms of IronRuby - more on that later) or chaining all of the above with some flashy animations, you're likely to find that WPF gives you the most power when developing any of these for a Windows target. Let's demonstrate this with an example. I give you what I like to consider the 'hello, world' of WPF applications: the analogue clock. Today, over my lunch break, I created a WPF-based analogue clock using IronRuby... Any normal person would have just looked at their watch. - Twitter The Sample Application: Click here to see this sample in full on GitHub. Using Windows Presentation Foundation from IronRuby to create a Clock class Invoking the Clock class   Gives you The above is by no means perfect (it was a lunch break), but I think it does the job of illustrating IronRuby's interoperability with WPF using a familiar data visualisation. I'm sure you'll want to dissect the code yourself, but allow me to step through the important bits. (By the way, feel free to run this through ir first to see what actually happens). Now we're using IronRuby - unlike my previous post where we took pure Ruby code and ran it through ir, the IronRuby interpreter, to demonstrate compatibility. The main thing of note is the very distinct parallels between .NET namespaces and Ruby modules, .NET classes and Ruby classes. I guess there's not much to say about it other than at this point, you may as well be working with a purely Ruby graphics-drawing library. You're instantiating .NET objects, but you're doing it with the standard Ruby .new method you know from Ruby as Object#new — although, the root object of all your IronRuby objects isn't actually Object, it's System.Object. You're calling methods on these objects (and classes, for example in the call to System.Windows.Controls.Canvas.SetZIndex()) using the underscored, lowercase convention established for the Ruby language. The integration is so seamless. The fact that you're using a dynamic language on top of .NET's CLR is completely abstracted from you, allowing you to just build your software. A Brief Note on Events Events are a big part of developing client applications in .NET as well as under every other environment I can think of. In case you aren't aware, event-driven programming is essentially the practice of telling your code to call a particular method, or other chunk of code (a delegate) when something happens at an unpredictable time. You can never predict when a user is going to click a button, move their mouse or perform any other kind of input, so the advent of the GUI is what necessitated event-driven programming. This is where one of my favourite aspects of the Ruby language, blocks, can really help us. In traditional C#, for instance, you may subscribe to an event (assign a block of code to execute when an event occurs) in one of two ways: by passing a reference to a named method, or by providing an anonymous code block. You'd be right for seeing the parallel here with Ruby's concept of blocks, Procs and lambdas. As demonstrated at the very end of this rather basic script, we are using .NET's System.Timers.Timer to (attempt to) update the clock every second (I know it's probably not the best way of doing this, but for example's sake). Note: Diverting a little from what I said above, the ticking of a clock is very predictable, yet we still use the event our Timer throws to do this updating as one of many ways to perform that task outside of the main thread. You'll see that all that's needed to assign a block of code to be triggered on an event is to provide that block to the method of the name of the event as it is known to the CLR. This drawback to this is that it only allows the delegation of one code block to each event. You may use the add method to subscribe multiple handlers to that event - pushing that to the end of a queue. Like so: def tick puts "tick tock" end timer.elapsed.add method(:tick) timer.elapsed.add proc { puts "tick tock" } tick_handler = lambda { puts "tick tock" } timer.elapsed.add(tick_handler)   The ability to just provide a block of code as an event handler helps IronRuby towards that very important term I keep throwing around; low ceremony. Anonymous methods are, of course, available in other more conventional .NET languages such as C# and VB but, as usual, feel ever so much more elegant and natural in IronRuby. Note: Whether it's a named method or an anonymous chunk o' code, the block you delegate to the handling of an event can take arguments - commonly, a sender object and some args. Another Brief Note on Verbosity Personally, I don't mind verbose chaining of references in my code as long as it doesn't interfere with performance - as evidenced in the example above. While I love clean code, there's a certain feeling of safety that comes with the terse explicitness of long-winded addressing and the describing of objects as opposed to ambiguity (not unlike this sentence). However, when working with IronRuby, even I grow tired of typing System::Whatever::Something. Some people enjoy simply assuming namespaces and forgetting about them, regardless of the language they're using. Don't worry, IronRuby has you covered. It is completely possible to, with a call to include, bring the contents of a .NET-converted module into context of your IronRuby code - just as you would if you wanted to bring in an 'organic' Ruby module. To refactor the style of the above example, I could place the following at the top of my Clock class: class Clock include System::Windows::Shape include System::Windows::Media include System::Windows::Threading # and so on...   And by doing so, reduce calls to System::Windows::Shapes::Ellipse.new to simply Ellipse.new or references to System::Windows::Threading::DispatcherPriority.Render to a friendlier DispatcherPriority.Render. Conclusion I hope by now you can understand better how IronRuby interoperates with .NET and how you can harness the power of the .NET framework with the dynamic nature and elegant idioms of the Ruby language. The manner and parlance of Ruby that makes it a joy to work with sets of data is, of course, present in IronRuby — couple that with WPF's capability to produce great graphics quickly and easily, and I hope you can visualise the possibilities of data visualisation using these two things. Using IronRuby and WPF together to create visual representations of data and infographics is very exciting to me. Although today, with this project, we're only presenting one simple piece of information - the time - the potential is much grander. My day-to-day job is centred around software development and UI design, specifically in the realm of healthcare, and if you were to pay a visit to our office you would behold, directly above my desk, a large plasma TV with a constantly rotating, animated slideshow of charts and infographics to help members of our team do their jobs. It's an app powered by WPF which never fails to spark some conversation with visitors whose gaze has been hooked. If only it was written in IronRuby, the pleasantly low ceremony and reduced pre-processing time for my brain would have helped greatly. Edd Morgan blog Related Links: Getting PhP and Ruby working on Windows Azure and SQL Azure

    Read the article

  • Hyper-V for Developers - presentation from London .NET Users and VBUG Bracknell

    - by Liam Westley
    Thanks to both London .NET User group and VBUG Bracknell for allowing me to present my Hyper-V for Developers talk last week.  A weekend at DDD Scotland followed by two user group presentations means I'm a bit late getting the presentations uploaded to the blog, so many apologies if you've been waiting.   LDNUG - www.tigernews.co.uk/blog-twickers/LDNUG-HyperV4Devs.zip   VBUG - www.tigernews.co.uk/blog-twickers/VBUG-HyperV4Devs.zip Also, at VBUG Bracknell I was asked if you could configure a Hyper-V server to user wireless networking (which might be useful if you have a laptop for demonstrations).  Well here's the post from Ben Armstrong (Virtual PC Guy) which details how that can be configured,   http://blogs.msdn.com/virtual_pc_guy/archive/2008/01/09/using-hyper-v-with-a-wireless-network-adapter.aspx ... and it's also detailed on the TechNet wiki as part of running Hyper-V on a laptop,   social.technet.microsoft.com/wiki/contents/articles/hyper-v-how-to-run-hyper-v-on-a-laptop.aspx

    Read the article

< Previous Page | 705 706 707 708 709 710 711 712 713 714 715 716  | Next Page >