Finding the shortest path through a digraph that visits all nodes

Posted by Boluc Papuccuoglu on Programmers See other posts from Programmers or by Boluc Papuccuoglu
Published on 2014-08-21T12:24:39Z Indexed on 2014/08/23 10:34 UTC
Read the original article Hit count: 227

Filed under:
|
|

I am trying to find the shortest possible path that visits every node through a graph (a node may be visited more than once, the solution may pick any node as the starting node.). The graph is directed, meaning that being able to travel from node A to node B does not mean one can travel from node B to node A. All distances between nodes are equal. I was able to code a brute force search that found a path of only 27 nodes when I had 27 nodes and each node had a connection to 2 or 1 other node. However, the actual problem that I am trying to solve consists of 256 nodes, with each node connecting to either 4 or 3 other nodes. The brute force algorithm that solved the 27 node graph can produce a 415 node solution (not optimal) within a few seconds, but using the processing power I have at my disposal takes about 6 hours to arrive at a 402 node solution.

What approach should I use to arrive at a solution that I can be certain is the optimal one? For example, use an optimizer algorithm to shorten a non-optimal solution? Or somehow adopt a brute force search that discards paths that are not optimal?

EDIT: (Copying a comment to an answer here to better clarify the question) To clarify, I am not saying that there is a Hamiltonian path and I need to find it, I am trying to find the shortest path in the 256 node graph that visits each node AT LEAST once. With the 27 node run, I was able to find a Hamiltonian path, which assured me that it was an optimal solution. I want to find a solution for the 256 node graph which is the shortest.

© Programmers or respective owner

Related posts about algorithms

Related posts about graph