Search Results

Search found 6 results on 1 pages for 'dvl'.

Page 1/1 | 1 

  • ASM x86 relative JMP

    - by benlaug
    Hi, I'm doing some ASM code in a C code with the asm function. My environment is DVL with gcc version 3. Hi need to make a JMP to a relative address like %eip+0x1f. How can I do this ? Thanks

    Read the article

  • How to compile FFmpeg with x265 support?

    - by Levan
    Today I found out that x265 is already present in ffmpeg so I compiled ffmpeg with this guide Sadly libx265 did not work on ubuntu, however on windows I tried the same thing with zeranoe ffmpeg build and it worked without a problem. So do you think i did something wrong or it is not yet implemented in linux build (using that guide)? The results of the command ffmpeg -codecs | grep -i hevc show: ffmpeg version 2.1.git Copyright (c) 2000-2014 the FFmpeg developers built on Feb 19 2014 19:00:17 with gcc 4.8 (Ubuntu/Linaro 4.8.1-10ubuntu9) configuration: --prefix=/home/levan/ffmpeg_build --extra-cflags=-I/home/levan/ffmpeg_build/include --extra-ldflags=-L/home/levan/ffmpeg_build/lib --bindir=/home/levan/bin --extra-libs=-ldl --enable-gpl --enable-libass --enable-libfdk-aac --enable-libmp3lame --enable-libopus --enable-libtheora --enable-libvorbis --enable-libvpx --enable-libx264 --enable-nonfree --enable-x11grab libavutil 52. 64.100 / 52. 64.100 libavcodec 55. 52.102 / 55. 52.102 libavformat 55. 33.100 / 55. 33.100 libavdevice 55. 10.100 / 55. 10.100 libavfilter 4. 1.102 / 4. 1.102 libswscale 2. 5.101 / 2. 5.101 libswresample 0. 17.104 / 0. 17.104 libpostproc 52. 3.100 / 52. 3.100 D.V.L. hevc H.265 / HEVC (High Efficiency Video Coding) Thank you for your time

    Read the article

  • x.265 in ffmpeg

    - by Levan
    Today I found out that x265 is already present in ffmpeg so I compiled ffmpeg with this guide Sadly libx265 did not work on ubuntu, however on windows I tried the same thing with zeranoe ffmpeg build and it worked without a problem. So do you think i did something wrong or it is not yet implemented in linux build (using that guide)? The results of the command ffmpeg -codecs | grep -i hevc show: ffmpeg version 2.1.git Copyright (c) 2000-2014 the FFmpeg developers built on Feb 19 2014 19:00:17 with gcc 4.8 (Ubuntu/Linaro 4.8.1-10ubuntu9) configuration: --prefix=/home/levan/ffmpeg_build --extra-cflags=-I/home/levan/ffmpeg_build/include --extra-ldflags=-L/home/levan/ffmpeg_build/lib --bindir=/home/levan/bin --extra-libs=-ldl --enable-gpl --enable-libass --enable-libfdk-aac --enable-libmp3lame --enable-libopus --enable-libtheora --enable-libvorbis --enable-libvpx --enable-libx264 --enable-nonfree --enable-x11grab libavutil 52. 64.100 / 52. 64.100 libavcodec 55. 52.102 / 55. 52.102 libavformat 55. 33.100 / 55. 33.100 libavdevice 55. 10.100 / 55. 10.100 libavfilter 4. 1.102 / 4. 1.102 libswscale 2. 5.101 / 2. 5.101 libswresample 0. 17.104 / 0. 17.104 libpostproc 52. 3.100 / 52. 3.100 D.V.L. hevc H.265 / HEVC (High Efficiency Video Coding) Thank you for your time

    Read the article

  • std::basic_stringstream<unsigned char> won't compile with MSVC 10

    - by Michael J
    I'm trying to get UTF-8 chars to co-exist with ANSI 8-bit chars. My strategy has been to represent utf-8 chars as unsigned char so that appropriate overloads of functions can be used for the two character types. e.g. namespace MyStuff { typedef uchar utf8_t; typedef std::basic_string<utf8_t> U8string; } void SomeFunc(std::string &s); void SomeFunc(std::wstring &s); void SomeFunc(MyStuff::U8string &s); This all works pretty well until I try to use a stringstream. std::basic_ostringstream<MyStuff::utf8_t> ostr; ostr << 1; MSVC Visual C++ Express V10 won't compile this: c:\program files\microsoft visual studio 10.0\vc\include\xlocmon(213): warning C4273: 'id' : inconsistent dll linkage c:\program files\microsoft visual studio 10.0\vc\include\xlocnum(65) : see previous definition of 'public: static std::locale::id std::numpunct<unsigned char>::id' c:\program files\microsoft visual studio 10.0\vc\include\xlocnum(65) : while compiling class template static data member 'std::locale::id std::numpunct<_Elem>::id' with [ _Elem=Tk::utf8_t ] c:\program files\microsoft visual studio 10.0\vc\include\xlocnum(1149) : see reference to function template instantiation 'const _Facet &std::use_facet<std::numpunct<_Elem>>(const std::locale &)' being compiled with [ _Facet=std::numpunct<Tk::utf8_t>, _Elem=Tk::utf8_t ] c:\program files\microsoft visual studio 10.0\vc\include\xlocnum(1143) : while compiling class template member function 'std::ostreambuf_iterator<_Elem,_Traits> std::num_put<_Elem,_OutIt>:: do_put(_OutIt,std::ios_base &,_Elem,std::_Bool) const' with [ _Elem=Tk::utf8_t, _Traits=std::char_traits<Tk::utf8_t>, _OutIt=std::ostreambuf_iterator<Tk::utf8_t,std::char_traits<Tk::utf8_t>> ] c:\program files\microsoft visual studio 10.0\vc\include\ostream(295) : see reference to class template instantiation 'std::num_put<_Elem,_OutIt>' being compiled with [ _Elem=Tk::utf8_t, _OutIt=std::ostreambuf_iterator<Tk::utf8_t,std::char_traits<Tk::utf8_t>> ] c:\program files\microsoft visual studio 10.0\vc\include\ostream(281) : while compiling class template member function 'std::basic_ostream<_Elem,_Traits> & std::basic_ostream<_Elem,_Traits>::operator <<(int)' with [ _Elem=Tk::utf8_t, _Traits=std::char_traits<Tk::utf8_t> ] c:\program files\microsoft visual studio 10.0\vc\include\sstream(526) : see reference to class template instantiation 'std::basic_ostream<_Elem,_Traits>' being compiled with [ _Elem=Tk::utf8_t, _Traits=std::char_traits<Tk::utf8_t> ] c:\users\michael\dvl\tmp\console\console.cpp(23) : see reference to class template instantiation 'std::basic_ostringstream<_Elem,_Traits,_Alloc>' being compiled with [ _Elem=Tk::utf8_t, _Traits=std::char_traits<Tk::utf8_t>, _Alloc=std::allocator<uchar> ] . c:\program files\microsoft visual studio 10.0\vc\include\xlocmon(213): error C2491: 'std::numpunct<_Elem>::id' : definition of dllimport static data member not allowed with [ _Elem=Tk::utf8_t ] Any ideas? ** Edited 19 June 2012 ** OK, I've gotten closer to understanding this, but not how to solve it. As we all know, static class variables get defined twice: once in the class definition and once outside the class definition which establishes storage space. e.g. // in .h file class CFoo { // ... static int x; }; // in .cpp file int CFoo::x = 42; Now in the VC10 headers we get something like this: template<class _Elem> class numpunct : public locale::facet { // ... _CRTIMP2_PURE static locale::id id; // ... } When the header is included in an application, _CRTIMP2_PURE is defined as __declspec(dllimport), which means that the variable is imported from a dll. Now the header also contains the following template<class _Elem> locale::id numpunct<_Elem>::id; Note the absence of the __declspec(dllimport) qualifier. i.e. The class declaration says that the static linkage of the id variable is in the dll, but for the general case, it gets declared outside the dll. For the known cases, there are specialisations. template locale::id numpunct<char>::id; template locale::id numpunct<wchar_t>::id; These are protected by #ifs so that they are only included when building the DLL. They are excluded otherwise. i.e. the char and wchar_t versions of numpunct ARE inside the dll So we have the class definition saying that id's storage is in the DLL, but that is only true for the char and wchar_t specialisations, meaning that my unsigned char version is doomed. :-( The only way forward that I can think of is to create my own specialisation: basically copying it from the header file and fixing it. This raises many issues. Anybody have a better idea?

    Read the article

1