Search Results

Search found 9916 results on 397 pages for 'entity component'.

Page 1/397 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Executing Components in an Entity Component System

    - by John
    Ok so I am just starting to grasp the whole ECS paradigm right now and I need clarification on a few things. For the record, I am trying to develop a game using C++ and OpenGL and I'm relatively new to game programming. First of all, lets say I have an Entity class which may have several components such as a MeshRenderer,Collider etc. From what I have read, I understand that each "system" carries out a specific task such as calculating physics and rendering and may use more that one component if needed. So for example, I would have a MeshRendererSystem act on all entities with a MeshRenderer component. Looking at Unity, I see that each Gameobject has, by default, got components such as a renderer, camera, collider and rigidbody etc. From what I understand, an entity should start out as an empty "container" and should be filled with components to create a certain type of game object. So what I dont understand is how the "system" works in an entity component system. http://docs.unity3d.com/ScriptReference/GameObject.html So I have a GameObject(The Entity) class like class GameObject { public: GameObject(std::string objectName); ~GameObject(void); Component AddComponent(std::string name); Component AddComponent(Component componentType); }; So if I had a GameObject to model a warship and I wanted to add a MeshRenderer component, I would do the following: warship->AddComponent(new MeshRenderer()); In the MeshRenderers constructor, should I call on the MeshRendererSystem and "subscribe" the warship object to this system? In that case, the MeshRendererSystem should probably be a Singleton("shudder"). From looking at unity's GameObject, if each object potentially has a renderer or any of the components in the default GameObject class, then Unity would iterate over all objects available. To me, this seems kind of unnecessary since some objects might not need to be rendered for example. How, in practice, should these systems be implemented?

    Read the article

  • How can I resolve component types in a way that supports adding new types relatively easily?

    - by John
    I am trying to build an Entity Component System for an interactive application developed using C++ and OpenGL. My question is quite simple. In my GameObject class I have a collection of Components. I can add and retrieve components. class GameObject: public Object { public: GameObject(std::string objectName); ~GameObject(void); Component * AddComponent(std::string name); Component * AddComponent(Component componentType); Component * GetComponent (std::string TypeName); Component * GetComponent (<Component Type Here>); private: std::map<std::string,Component*> m_components; }; I will have a collection of components that inherit from the base Components class. So if I have a meshRenderer component and would like to do the following GameObject * warship = new GameObject("myLovelyWarship"); MeshRenderer * meshRenderer = warship->AddComponent(MeshRenderer); or possibly MeshRenderer * meshRenderer = warship->AddComponent("MeshRenderer"); I could be make a Component Factory like this: class ComponentFactory { public: static Component * CreateComponent(const std::string &compTyp) { if(compTyp == "MeshRenderer") return new MeshRenderer; if(compTyp == "Collider") return new Collider; return NULL; } }; However, I feel like I should not have to keep updating the Component Factory every time I want to create a new custom Component but it is an option. Is there a more proper way to add and retrieve these components? Is standard templates another solution?

    Read the article

  • Box2D Joints in entity components system

    - by Johnmph
    I search a way to have Box2D joints in an entity component system, here is what i found : 1) Having the joints in Box2D/Body component as parameters, we have a joint array with an ID by joint and having in the other body component the same joint ID, like in this example : Entity1 - Box2D/Body component { Body => (body parameters), Joints => { Joint1 => (joint parameters), others joints... } } // Joint ID = Joint1 Entity2 - Box2D/Body component { Body => (body parameters), Joints => { Joint1 => (joint parameters), others joints... } } // Same joint ID than in Entity1 There are 3 problems with this solution : The first problem is the implementation of this solution, we must manage the joints ID to create joints and to know between which bodies they are connected. The second problem is the parameters of joint, where are they got ? on the Entity1 or Entity2 ? If they are the same parameters for the joint, there is no problem but if they are differents ? The third problem is that we can't limit number of bodies to 2 by joint (which is mandatory), a joint can only link 2 bodies, in this solution, nothing prevents to create more than 2 entities with for each a body component with the same joint ID, in this case, how we know the 2 bodies to joint and what to do with others bodies ? 2) Same solution than the first solution but by having entities ID instead of Joint ID, like in this example : Entity1 - Box2D/Body component { Body => (body parameters), Joints => { Entity2 => (joint parameters), others joints... } } Entity2 - Box2D/Body component { Body => (body parameters), Joints => { Entity1 => (joint parameters), others joints... } } With this solution, we fix the first problem of the first solution but we have always the two others problems. 3) Having a Box2D/Joint component which is inserted in the entities which contains the bodies to joint (we share the same joint component between entities with bodies to joint), like in this example : Entity1 - Box2D/Body component { Body => (body parameters) } - Box2D/Joint component { Joint => (Joint parameters) } // Shared, same as in Entity2 Entity2 - Box2D/Body component { Body => (body parameters) } - Box2D/Joint component { Joint => (joint parameters) } // Shared, same as in Entity1 There are 2 problems with this solution : The first problem is the same problem than in solution 1 and 2 : We can't limit number of bodies to 2 by joint (which is mandatory), a joint can only link 2 bodies, in this solution, nothing prevents to create more than 2 entities with for each a body component and the shared joint component, in this case, how we know the 2 bodies to joint and what to do with others bodies ? The second problem is that we can have only one joint by body because entity components system allows to have only one component of same type in an entity. So we can't put two Joint components in the same entity. 4) Having a Box2D/Joint component which is inserted in the entity which contains the first body component to joint and which has an entity ID parameter (this entity contains the second body to joint), like in this example : Entity1 - Box2D/Body component { Body => (body parameters) } - Box2D/Joint component { Entity2 => (Joint parameters) } // Entity2 is the entity ID which contains the other body to joint, the first body being in this entity Entity2 - Box2D/Body component { Body => (body parameters) } There are exactly the same problems that in the third solution, the only difference is that we can have two differents joints by entity instead of one (by putting one joint component in an entity and another joint component in another entity, each joint referencing to the other entity). 5) Having a Box2D/Joint component which take in parameter the two entities ID which contains the bodies to joint, this component can be inserted in any entity, like in this example : Entity1 - Box2D/Body component { Body => (body parameters) } Entity2 - Box2D/Body component { Body => (body parameters) } Entity3 - Box2D/Joint component { Joint => (Body1 => Entity1, Body2 => Entity2, others parameters of joint) } // Entity1 is the ID of the entity which have the first body to joint and Entity2 is the ID of the entity which have the second body to joint (This component can be in any entity, that doesn't matter) With this solution, we fix the problem of the body limitation by joint, we can only have two bodies per joint, which is correct. And we are not limited by number of joints per body, because we can create an another Box2D/Joint component, referencing to Entity1 and Entity2 and put this component in a new entity. The problem of this solution is : What happens if we change the Body1 or Body2 parameter of Joint component at runtime ? We need to add code to sync the Body1/Body2 parameters changes with the real joint object. 6) Same as solution 3 but in a better way : Having a Box2D/Joint component Box2D/Joint which is inserted in the entities which contains the bodies to joint, we share the same joint component between these entities BUT the difference is that we create a new entity to link the body component with the joint component, like in this example : Entity1 - Box2D/Body component { Body => (body parameters) } // Shared, same as in Entity3 Entity2 - Box2D/Body component { Body => (body parameters) } // Shared, same as in Entity4 Entity3 - Box2D/Body component { Body => (body parameters) } // Shared, same as in Entity1 - Box2D/Joint component { Joint => (joint parameters) } // Shared, same as in Entity4 Entity4 - Box2D/Body component { Body => (body parameters) } // Shared, same as in Entity2 - Box2D/Joint component { Joint => (joint parameters) } // Shared, same as in Entity3 With this solution, we fix the second problem of the solution 3, because we can create an Entity5 which will have the shared body component of Entity1 and an another joint component so we are no longer limited in the joint number per body. But the first problem of solution 3 remains, because we can't limit the number of entities which have the shared joint component. To resolve this problem, we can add a way to limit the number of share of a component, so for the Joint component, we limit the number of share to 2, because we can only joint 2 bodies per joint. This solution would be perfect because there is no need to add code to sync changes like in the solution 5 because we are notified by the entity components system when components / entities are added to/removed from the system. But there is a conception problem : How to know easily and quickly between which bodies the joint operates ? Because, there is no way to find easily an entity with a component instance. My question is : Which solution is the best ? Is there any other better solutions ? Sorry for the long text and my bad english.

    Read the article

  • component Initialization in component-based game architectures

    - by liortal
    I'm develping a 2d game (in XNA) and i've gone slightly towards a component-based approach, where i have a main game object (container) that holds different components. When implementing the needed functionality as components, i'm now faced with an issue -- who should initialize components? Are components usually passed in initialized into an entity, or some other entity initialized them? In my current design, i have an issue where the component, when created, requires knowledge regarding an attached entity, however these 2 events may not happen at the same time (component construction, attaching to a game entity). I am looking for a standard approach or examples of implementations that work, that overcome this issue or present a clear way to resolve it

    Read the article

  • Pluggable Rules for Entity Framework Code First

    - by Ricardo Peres
    Suppose you want a system that lets you plug custom validation rules on your Entity Framework context. The rules would control whether an entity can be saved, updated or deleted, and would be implemented in plain .NET. Yes, I know I already talked about plugable validation in Entity Framework Code First, but this is a different approach. An example API is in order, first, a ruleset, which will hold the collection of rules: 1: public interface IRuleset : IDisposable 2: { 3: void AddRule<T>(IRule<T> rule); 4: IEnumerable<IRule<T>> GetRules<T>(); 5: } Next, a rule: 1: public interface IRule<T> 2: { 3: Boolean CanSave(T entity, DbContext ctx); 4: Boolean CanUpdate(T entity, DbContext ctx); 5: Boolean CanDelete(T entity, DbContext ctx); 6: String Name 7: { 8: get; 9: } 10: } Let’s analyze what we have, starting with the ruleset: Only has methods for adding a rule, specific to an entity type, and to list all rules of this entity type; By implementing IDisposable, we allow it to be cancelled, by disposing of it when we no longer want its rules to be applied. A rule, on the other hand: Has discrete methods for checking if a given entity can be saved, updated or deleted, which receive as parameters the entity itself and a pointer to the DbContext to which the ruleset was applied; Has a name property for helping us identifying what failed. A ruleset really doesn’t need a public implementation, all we need is its interface. The private (internal) implementation might look like this: 1: sealed class Ruleset : IRuleset 2: { 3: private readonly IDictionary<Type, HashSet<Object>> rules = new Dictionary<Type, HashSet<Object>>(); 4: private ObjectContext octx = null; 5:  6: internal Ruleset(ObjectContext octx) 7: { 8: this.octx = octx; 9: } 10:  11: public void AddRule<T>(IRule<T> rule) 12: { 13: if (this.rules.ContainsKey(typeof(T)) == false) 14: { 15: this.rules[typeof(T)] = new HashSet<Object>(); 16: } 17:  18: this.rules[typeof(T)].Add(rule); 19: } 20:  21: public IEnumerable<IRule<T>> GetRules<T>() 22: { 23: if (this.rules.ContainsKey(typeof(T)) == true) 24: { 25: foreach (IRule<T> rule in this.rules[typeof(T)]) 26: { 27: yield return (rule); 28: } 29: } 30: } 31:  32: public void Dispose() 33: { 34: this.octx.SavingChanges -= RulesExtensions.OnSaving; 35: RulesExtensions.rulesets.Remove(this.octx); 36: this.octx = null; 37:  38: this.rules.Clear(); 39: } 40: } Basically, this implementation: Stores the ObjectContext of the DbContext to which it was created for, this is so that later we can remove the association; Has a collection - a set, actually, which does not allow duplication - of rules indexed by the real Type of an entity (because of proxying, an entity may be of a type that inherits from the class that we declared); Has generic methods for adding and enumerating rules of a given type; Has a Dispose method for cancelling the enforcement of the rules. A (really dumb) rule applied to Product might look like this: 1: class ProductRule : IRule<Product> 2: { 3: #region IRule<Product> Members 4:  5: public String Name 6: { 7: get 8: { 9: return ("Rule 1"); 10: } 11: } 12:  13: public Boolean CanSave(Product entity, DbContext ctx) 14: { 15: return (entity.Price > 10000); 16: } 17:  18: public Boolean CanUpdate(Product entity, DbContext ctx) 19: { 20: return (true); 21: } 22:  23: public Boolean CanDelete(Product entity, DbContext ctx) 24: { 25: return (true); 26: } 27:  28: #endregion 29: } The DbContext is there because we may need to check something else in the database before deciding whether to allow an operation or not. And here’s how to apply this mechanism to any DbContext, without requiring the usage of a subclass, by means of an extension method: 1: public static class RulesExtensions 2: { 3: private static readonly MethodInfo getRulesMethod = typeof(IRuleset).GetMethod("GetRules"); 4: internal static readonly IDictionary<ObjectContext, Tuple<IRuleset, DbContext>> rulesets = new Dictionary<ObjectContext, Tuple<IRuleset, DbContext>>(); 5:  6: private static Type GetRealType(Object entity) 7: { 8: return (entity.GetType().Assembly.IsDynamic == true ? entity.GetType().BaseType : entity.GetType()); 9: } 10:  11: internal static void OnSaving(Object sender, EventArgs e) 12: { 13: ObjectContext octx = sender as ObjectContext; 14: IRuleset ruleset = rulesets[octx].Item1; 15: DbContext ctx = rulesets[octx].Item2; 16:  17: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Added)) 18: { 19: Object entity = entry.Entity; 20: Type realType = GetRealType(entity); 21:  22: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 23: { 24: if (rule.CanSave(entity, ctx) == false) 25: { 26: throw (new Exception(String.Format("Cannot save entity {0} due to rule {1}", entity, rule.Name))); 27: } 28: } 29: } 30:  31: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Deleted)) 32: { 33: Object entity = entry.Entity; 34: Type realType = GetRealType(entity); 35:  36: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 37: { 38: if (rule.CanDelete(entity, ctx) == false) 39: { 40: throw (new Exception(String.Format("Cannot delete entity {0} due to rule {1}", entity, rule.Name))); 41: } 42: } 43: } 44:  45: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Modified)) 46: { 47: Object entity = entry.Entity; 48: Type realType = GetRealType(entity); 49:  50: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 51: { 52: if (rule.CanUpdate(entity, ctx) == false) 53: { 54: throw (new Exception(String.Format("Cannot update entity {0} due to rule {1}", entity, rule.Name))); 55: } 56: } 57: } 58: } 59:  60: public static IRuleset CreateRuleset(this DbContext context) 61: { 62: Tuple<IRuleset, DbContext> ruleset = null; 63: ObjectContext octx = (context as IObjectContextAdapter).ObjectContext; 64:  65: if (rulesets.TryGetValue(octx, out ruleset) == false) 66: { 67: ruleset = rulesets[octx] = new Tuple<IRuleset, DbContext>(new Ruleset(octx), context); 68: 69: octx.SavingChanges += OnSaving; 70: } 71:  72: return (ruleset.Item1); 73: } 74: } It relies on the SavingChanges event of the ObjectContext to intercept the saving operations before they are actually issued. Yes, it uses a bit of dynamic magic! Very handy, by the way! So, let’s put it all together: 1: using (MyContext ctx = new MyContext()) 2: { 3: IRuleset rules = ctx.CreateRuleset(); 4: rules.AddRule(new ProductRule()); 5:  6: ctx.Products.Add(new Product() { Name = "xyz", Price = 50000 }); 7:  8: ctx.SaveChanges(); //an exception is fired here 9:  10: //when we no longer need to apply the rules 11: rules.Dispose(); 12: } Feel free to use it and extend it any way you like, and do give me your feedback! As a final note, this can be easily changed to support plain old Entity Framework (not Code First, that is), if that is what you are using.

    Read the article

  • Designing generic render/graphics component in C++?

    - by s73v3r
    I'm trying to learn more about Component Entity systems. So I decided to write a Tetris clone. I'm using the "style" of component-entity system where the Entity is just a bag of Components, the Components are just data, a Node is a set of Components needed to accomplish something, and a System is a set of methods that operates on a Node. All of my components inherit from a basic IComponent interface. I'm trying to figure out how to design the Render/Graphics/Drawable Components. Originally, I was going to use SFML, and everything was going to be good. However, as this is an experimental system, I got the idea of being able to change out the render library at will. I thought that since the Rendering would be fairly componentized, this should be doable. However, I'm having problems figuring out how I would design a common Interface for the different types of Render Components. Should I be using C++ Template types? It seems that having the RenderComponent somehow return it's own mesh/sprite/whatever to the RenderSystem would be the simplest, but would be difficult to generalize. However, letting the RenderComponent just hold on to data about what it would render would make it hard to re-use this component for different renderable objects (background, falling piece, field of already fallen blocks, etc). I realize this is fairly over-engineered for a regular Tetris clone, but I'm trying to learn about component entity systems and making interchangeable components. It's just that rendering seems to be the hardest to split out for me.

    Read the article

  • Entity Type specific updates in entity component system

    - by Nathan
    I am currently familiarizing myself with the entity component paradigm. For an example, take a collision system, that detects if entities collide and if they do let them explode. So the collision system has to test collision based on the position component and then set the state of those entities to exploding. But what if the "effect" (setting the state to exploding) is different for different entities? For example, a ship fades out while for an asteroid a particle system must be created. Since entities and components are only data, this must happen in some system. The collision system could do it, but then it must switch over the entity type, which in my opinion is a cumbersome and difficult to extend solution. So how do I trigger "entity type dependend" updates on an entity?

    Read the article

  • Entity component system -> handling components that depend on one another

    - by jtedit
    I really like the idea of an entity component system and feel it has great flexibility, but have a question. How should dependent components be handled? I'm not talking about how components should communicate with other components they depend on, I have that sorted, but rather how to ensure components are present. For example, an entity cannot have a "velocity" component if it doesn't have a "position" component, in the same way it cant have an "acceleration" component if it doesn't have a "velocity" component. My first idea was every component class overrides an "onAddedToEntity(Entity ent)" function. Then in that function it checks that prerequisite components are also added to the entity, eg: struct EntCompVelocity() : public EntityComponent{ //member variables here void onAddedToEntity(Entity ent){ if(!ent.hasComponent(EntCompPosition::Id)){ ent.addComponent(new EntCompPosition()); } } } This has the nice property that if the acceleration component adds the velocity component, the velocity component will itself add the position component to the entity so dependency "trees" will sort themselves out. However my concern is if I do this components will silently be added with default values and, in the example of adding position, many entities will appear at the origin. Another idea was to simple have the "Entity.addComponent();" function return false if the component's prerequisite components aren't already on the entity, this would force you to manually add the position component and set its value before adding the velocity component. Finally I could simply not ensure a components prerequisite components are added, the "UpdatePosition" system only deals with entities with both a position and velocity component, so therefore adding a velocity component without having a position component wont be a problem (it wont cause crashes due to null pointer/etc), but it does mean entities will carry useless unused data if you add components but not their prerequisite components. Does anyone have experience with this problem and/or any of these methods to solve it? How did you solve the problem?

    Read the article

  • In an Entity/Component system, can component data be implemented as a simple array of key-value pairs? [on hold]

    - by 010110110101
    I'm trying to wrap my head around how to organize components in an Entity Component Systems once everything in the current scene/level is loaded in memory. (I'm a hobbyist BTW) Some people seem to implement the Entity as an object that contains a list of of "Component" objects. Components contain data organized as an array of key-value pairs. Where the value is serialized "somehow". (pseudocode is loosely in C# for brevity) class Entity { Guid _id; List<Component> _components; } class Component { List<ComponentAttributeValue> _attributes; } class ComponentAttributeValue { string AttributeName; object AttributeValue; } Others describe Components as an in-memory "table". An entity acquires the component by having its key placed in a table. The attributes of the component-entity instance are like the columns in a table class Renderable_Component { List<RenderableComponentAttributeValue> _entities; } class RenderableComponentAttributeValue { Guid entityId; matrix4 transformation; // other stuff for rendering // everything is strongly typed } Others describe this actually as a table. (and such tables sound like an EAV database schema BTW) (and the value is serialized "somehow") Render_Component_Table ---------------- Entity Id Attribute Name Attribute Value and when brought into running code: class Entity { Guid _id; Dictionary<string, object> _attributes; } My specific question is: Given various components, (Renderable, Positionable, Explodeable, Hideable, etc) and given that each component has an attribute with a particular name, (TRANSLATION_MATRIX, PARTICLE_EMISSION_VELOCITY, CAN_HIDE, FAVORITE_COLOR, etc) should: an entity contain a list of components where each component, in turn, has their own array of named attributes with values serialized somehow or should components exist as in-memory tables of entity references and associated with each "row" there are "columns" representing the attribute with values that are specific to each entity instance and are strongly typed or all attributes be stored in an entity as a singular array of named attributes with values serialized somehow (could have name collisions) or something else???

    Read the article

  • Overriding component behavior

    - by deft_code
    I was thinking of how to implement overriding of behaviors in a component based entity system. A concrete example, an entity has a heath component that can be damaged, healed, killed etc. The entity also has an armor component that limits the amount of damage a character receives. Has anyone implemented behaviors like this in a component based system before? How did you do it? If no one has ever done this before why do you think that is. Is there anything particularly wrong headed about overriding component behaviors? Below is rough sketch up of how I imagine it would work. Components in an entity are ordered. Those at the front get a chance to service an interface first. I don't detail how that is done, just assume it uses evil dynamic_casts (it doesn't but the end effect is the same without the need for RTTI). class IHealth { public: float get_health( void ) const = 0; void do_damage( float amount ) = 0; }; class Health : public Component, public IHealth { public: void do_damage( float amount ) { m_damage -= amount; } private: float m_health; }; class Armor : public Component, public IHealth { public: float get_health( void ) const { return next<IHealth>().get_health(); } void do_damage( float amount ) { next<IHealth>().do_damage( amount / 2 ); } }; entity.add( new Health( 100 ) ); entity.add( new Armor() ); assert( entity.get<IHealth>().get_health() == 100 ); entity.get<IHealth>().do_damage( 10 ); assert( entity.get<IHealth>().get_health() == 95 ); Is there anything particularly naive about the way I'm proposing to do this?

    Read the article

  • Using unordered_multimap as entity and component storage

    - by natebot13
    The Setup I've made a few games (more like animations) using the Object Oriented method with base classes for objects that extend them, and objects that extend those, and found I couldn't wrap my head around expanding that system to larger game ideas. So I did some research and discovered the Entity-Component system of designing games. I really like the idea, and thoroughly understood the usefulness of it after reading Byte54's perfect answer here: Role of systems in entity systems architecture. With that said, I have decided to create my current game idea using the described Entity-Component system. Having basic knowledge of C++, and SFML, I would like to implement the backbone of this entity component system using an unordered_multimap without classes for the entities themselves. Here's the idea: An unordered_mulitmap stores entity IDs as the lookup term, while the value is an inherited Component object. Examlpe: ____________________________ |ID |Component | ---------------------------- |0 |Movable | |0 |Accelable | |0 |Renderable | |1 |Movable | |1 |Renderable | |2 |Renderable | ---------------------------- So, according to this map of objects, the entity with ID 0 has three components: Movable, Accelable, and Renderable. These component objects store the entity specific data, such as the location, the acceleration, and render flags. The entity is simply and ID, with the components attached to that ID describing its attributes. Problem I want to store the component objects within the map, allowing the map have full ownership of the components. The problem I'm having, is I don't quite understand enough about pointers, shared pointers, and references in order to get that set up. How can I go about initializing these components, with their various member variables, within the unordered_multimap? Can the base component class take on the member variables of its child classes, when defining the map as unordered_multimap<int, component>? Requirements I need a system to be able to grab an entity, with all of its' attached components, and access members from the components in order to do the necessary calculations and reassignments for position, velocity, etc. Need a clarification? Post a comment with your concerns and I will gladly edit or comment back! Thanks in advance! natebot13

    Read the article

  • Organizing an entity system with external component managers?

    - by Gustav
    I'm designing a game engine for a top-down multiplayer 2D shooter game, which I want to be reasonably reuseable for other top-down shooter games. At the moment I'm thinking about how something like an entity system in it should be designed. First I thought about this: I have a class called EntityManager. It should implement a method called Update and another one called Draw. The reason for me separating Logic and Rendering is because then I can omit the Draw method if running a standalone server. EntityManager owns a list of objects of type BaseEntity. Each entity owns a list of components such as EntityModel (the drawable representation of an entity), EntityNetworkInterface, and EntityPhysicalBody. EntityManager also owns a list of component managers like EntityRenderManager, EntityNetworkManager and EntityPhysicsManager. Each component manager keeps references to the entity components. There are various reasons for moving this code out of the entity's own class and do it collectively instead. For example, I'm using an external physics library, Box2D, for the game. In Box2D, you first add the bodies and shapes to a world (owned by the EntityPhysicsManager in this case) and add collision callbacks (which would be dispatched to the entity object itself in my system). Then you run a function which simulates everything in the system. I find it hard to find a better solution to do this than doing it in an external component manager like this. Entity creation is done like this: EntityManager implements the method RegisterEntity(entityClass, factory) which registers how to create an entity if that class. It also implements the method CreateEntity(entityClass) which would return an object of type BaseEntity. Well now comes my problem: How would the reference to a component be registered to the component managers? I have no idea how I would reference the component managers from a factory/closure.

    Read the article

  • Doing powerups in a component-based system

    - by deft_code
    I'm just starting really getting my head around component based design. I don't know what the "right" way to do this is. Here's the scenario. The player can equip a shield. The the shield is drawn as bubble around the player, it has a separate collision shape, and reduces the damage the player receives from area effects. How is such a shield architected in a component based game? Where I get confused is that the shield obviously has three components associated with it. Damage reduction / filtering A sprite A collider. To make it worse different shield variations could have even more behaviors, all of which could be components: boost player maximum health health regen projectile deflection etc Am I overthinking this? Should the shield just be a super component? I really think this is wrong answer. So if you think this is the way to go please explain. Should the shield be its own entity that tracks the location of the player? That might make it hard to implement the damage filtering. It also kinda blurs the lines between attached components and entities. Should the shield be a component that houses other components? I've never seen or heard of anything like this, but maybe it's common and I'm just not deep enough yet. Should the shield just be a set of components that get added to the player? Possibly with an extra component to manage the others, e.g. so they can all be removed as a group. (accidentally leave behind the damage reduction component, now that would be fun). Something else that's obvious to someone with more component experience?

    Read the article

  • Doing powerups in a component-based system

    - by deft_code
    I'm just starting really getting my head around component based design. I don't know what the "right" way to do this is. Here's the scenario. The player can equip a shield. The the shield is drawn as bubble around the player, it has a separate collision shape, and reduces the damage the player receives from area effects. How is such a shield architected in a component based game? Where I get confused is that the shield obviously has three components associated with it. Damage reduction / filtering A sprite A collider. To make it worse different shield variations could have even more behaviors, all of which could be components: boost player maximum health health regen projectile deflection etc Am I overthinking this? Should the shield just be a super component? I really think this is wrong answer. So if you think this is the way to go please explain. Should the shield be its own entity that tracks the location of the player? That might make it hard to implement the damage filtering. It also kinda blurs the lines between attached components and entities. Should the shield be a component that houses other components? I've never seen or heard of anything like this, but maybe it's common and I'm just not deep enough yet. Should the shield just be a set of components that get added to the player? Possibly with an extra component to manage the others, e.g. so they can all be removed as a group. (accidentally leave behind the damage reduction component, now that would be fun). Something else that's obvious to someone with more component experience?

    Read the article

  • Many sources of movement in an entity system

    - by Sticky
    I'm fairly new to the idea of entity systems, having read a bunch of stuff (most usefully, this great blog and this answer). Though I'm having a little trouble understanding how something as simple as being able to manipualate the position of an object by an undefined number of sources. That is, I have my entity, which has a position component. I then have some event in the game which tells this entity to move a given distance, in a given time. These events can happen at any time, and will have different values for position and time. The result is that they'd be compounded together. In a traditional OO solution, I'd have some sort of MoveBy class, that contains the distance/time, and an array of those inside my game object class. Each frame, I'd iterate through all the MoveBy, and apply it to the position. If a MoveBy has reached its finish time, remove it from the array. With the entity system, I'm a little confused as how I should replicate this sort of behavior. If there were just one of these at a time, instead of being able to compound them together, it'd be fairly straightforward (I believe) and look something like this: PositionComponent containing x, y MoveByComponent containing x, y, time Entity which has both a PositionComponent and a MoveByComponent MoveBySystem that looks for an entity with both these components, and adds the value of MoveByComponent to the PositionComponent. When the time is reached, it removes the component from that entity. I'm a bit confused as to how I'd do the same thing with many move by's. My initial thoughts are that I would have: PositionComponent, MoveByComponent the same as above MoveByCollectionComponent which contains an array of MoveByComponents MoveByCollectionSystem that looks for an entity with a PositionComponent and a MoveByCollectionComponent, iterating through the MoveByComponents inside it, applying/removing as necessary. I guess this is a more general problem, of having many of the same component, and wanting a corresponding system to act on each one. My entities contain their components inside a hash of component type - component, so strictly have only 1 component of a particular type per entity. Is this the right way to be looking at this? Should an entity only ever have one component of a given type at all times?

    Read the article

  • Appropriate level of granularity for component-based architecture

    - by Jon Purdy
    I'm working on a game with a component-based architecture. An Entity owns a set of Component instances, each of which has a set of Slot instances with which to store, send, and receive values. Factory functions such as Player produce entities with the required components and slot connections. I'm trying to determine the best level of granularity for components. For example, right now Position, Velocity, and Acceleration are all separate components, connected in series. Velocity and Acceleration could easily be rewritten into a uniform Delta component, or Position, Velocity, and Acceleration could be combined alongside such components as Friction and Gravity into a monolithic Physics component. Should a component have the smallest responsibility possible (at the cost of lots of interconnectivity) or should related components be combined into monolithic ones (at the cost of flexibility)? I'm leaning toward the former, but I could use a second opinion.

    Read the article

  • Processing component pools problem - Entity Subsystem

    - by mani3xis
    Architecture description I'm creating (designing) an entity system and I ran into many problems. I'm trying to keep it Data-Oriented and efficient as much as possible. My components are POD structures (array of bytes to be precise) allocated in homogeneous pools. Each pool has a ComponentDescriptor - it just contains component name, field types and field names. Entity is just a pointer to array of components (where address acts like an entity ID). EntityPrototype contains entity name and array of component names. Finally Subsystem (System or Processor) which works on component pools. Actual problem The problem is that some components dependents on others (Model, Sprite, PhysicalBody, Animation depends on Transform component) which makes a lot of problems when it comes to processing them. For example, lets define some entities using [S]prite, [P]hysicalBody and [H]ealth: Tank: Transform, Sprite, PhysicalBody BgTree: Transform, Sprite House: Transform, Sprite, Health and create 4 Tanks, 5 BgTrees and 2 Houses and my pools will look like: TTTTTTTTTTT // Transform pool SSSSSSSSSSS // Sprite pool PPPP // PhysicalBody pool HH // Health component There is no way to process them using indices. I spend 3 days working on it and I still don't have any ideas. In previous designs TransformComponent was bound to the entity - but it wasn't a good idea. Can you give me some advices how to process them? Or maybe I should change the overall design? Maybe I should create pools of entites (pools of component pools) - but I guess it will be a nightmare for CPU caches. Thanks

    Read the article

  • Entity framework entity class mapping with plain .net class

    - by Elan
    I have following in entity framework Table - Country Fields List item Country_ID Dialing_Code ISO_Alpha2 ISO_Alpha3 ISO_Full I would like to map only selected fields from this entity model to my domain class. My domain model class is public class DomainCountry { public int Country_ID { get; set; } public string Dialing_Code { get; set; } public string ISO_3166_1_Alpha_2 { get; set; } } The following will work however insert or update is not possible. In order to get insert or update we need to use ObjectSet< but it will not support in my case. IQueryable<DomainCountry> countries = context.Countries.Select( c => new DomainCountry { Country_ID = c.Country_Id, Dialing_Code = c.Dialing_Code, ISO_3166_1_Alpha_2 = c.ISO_3166_1_Alpha_2 }); It will be really fantastic could someone provide a nice solution for this. Ideally it will be kind of proxy class which will support all the futures however highly customizable i.e. only the columns we want to expose to the outer world

    Read the article

  • How to update entity states and animations in a component-based game

    - by mivic
    I'm trying to design a component-based entity system for learning purposes (and later use on some games) and I'm having some troubles when it comes to updating entity states. I don't want to have an update() method inside the Component to prevent dependencies between Components. What I currently have in mind is that components hold data and systems update components. So, if I have a simple 2D game with some entities (e.g. player, enemy1, enemy 2) that have Transform, Movement, State, Animation and Rendering components I think I should have: A MovementSystem that moves all the Movement components and updates the State components And a RenderSystem that updates the Animation components (the animation component should have one animation (i.e. a set of frames/textures) for each state and updating it means selecting the animation corresponding to the current state (e.g. jumping, moving_left, etc), and updating the frame index). Then, the RenderSystem updates the Render components with the texture corresponding to the current frame of each entity's Animation and renders everything on screen. I've seen some implementations like Artemis framework, but I don't know how to solve this situation: Let's say that my game has the following entities. Each entity have a set of states and one animation for each state: player: "idle", "moving_right", "jumping" enemy1: "moving_up", "moving_down" enemy2: "moving_left", "moving_right" What are the most accepted approaches in order to update the current state of each entity? The only thing that I can think of is having separate systems for each group of entities and separate State and Animation components so I would have PlayerState, PlayerAnimation, Enemy1State, Enemy1Animation... PlayerMovementSystem, PlayerRenderingSystem... but I think this is a bad solution and breaks the purpose of having a component-based system. As you can see, I'm quite lost here, so I'd very much appreciate any help.

    Read the article

  • Entity system and rendering types

    - by Papi75
    I would like to implement entity system in my game and I've got some question about entity system and rendering. Currently, my renderer got two types of elements: Current design Mesh : A default renderable with a Material, a Geometry and a Transformable Sprite : A type of mesh with some methods like "flip" and "setRect" methods and a rect member (With an imposed geometry, a quad) This objects inherit from "Spacial" class. Questions: How can I handle this two types in an entity system? I'm thinking about using "MeshComponent" and "SpriteComponent", but if I do that, an entity could have a Mesh and a Sprite at the same type, it's look stupid, right? I thought the idea to have a parent "rendering" component : "RenderableComponent" for "MeshComponent" and "SpriteComponent" but it will be difficult to handle "cast" in the game (ex: did I need to ask entity-getComponent or SpineComponent, …) Thanks a lot for reading me! My entity system work like that: --------------------------------------------------------------------------- Entity* entity = world->createEntity(); MeshComponent* mesh = entity->addComponent<MeshComponent>(material); mesh->loadFromFile("monkey.obj"); PhysicComponent* physic = entity->addComponent<PhysicComponent>(); physic->setMass(5.4f); physic->setVelocity( 0.5f, 2.f ); --------------------------------------------------------------------------- class RenderingSystem { private: Scene scene; public: void onEntityAdded( Entity* entity ) { scene.addMesh( entity->getComponent<MeshComponent>() ); } } class PhysicSystem { private: World world; public: void onEntityAdded( Entity* entity ) { world.addBody( entity->getComponent<PhysicComponent>()->getBody() ); } void process( Entity* entity ) { PhysicComponent* physic = entity->getComponent<PhysicComponent>(); } } ---------------------------------------------------------------------------

    Read the article

  • Role of systems in entity systems architecture

    - by bio595
    I've been reading a lot about entity components and systems and have thought that the idea of an entity just being an ID is quite interesting. However I don't know how this completely works with the components aspect or the systems aspect. A component is just a data object managed by some relevant system. A collision system uses some BoundsComponent together with a spatial data structure to determine if collisions have happened. All good so far, but what if multiple systems need access to the same component? Where should the data live? An input system could modify an entities BoundsComponent, but the physics system(s) need access to the same component as does some rendering system. Also, how are entities constructed? One of the advantages I've read so much about is flexibility in entity construction. Are systems intrinsically tied to a component? If I want to introduce some new component, do I also have to introduce a new system or modify an existing one? Another thing that I've read often is that the 'type' of an entity is inferred by what components it has. If my entity is just an id how can I know that my robot entity needs to be moved or rendered and thus modified by some system? Sorry for the long post (or at least it seems so from my phone screen)!

    Read the article

  • Implementing features in an Entity System

    - by Bane
    After asking two questions on Entity Systems (1, 2), and reading some articles on them, I think that I understand them much better than before. But, I still have some uncertainties, and mainly they are about building a Particle Emitter, an Input system, and a Camera. I obviously still have some problems understanding Entity Systems, and they might apply to a whole other range of objects, but I chose these three because they are very different concepts and should cover a pretty big ground, and help me understand Entity Systems and how to handle problems like these myself, as they come along. I am building an engine in Javascript, and I've implemented most of the core features, which include: input handling, flexible animation system, particle emitter, math classes and functions, scene handling, a camera and a render, and a whole bunch of other things that engines usually support. Then, I read Byte56's answer that got me interested into making the engine into an Entity System one. It would still remain an HTML5 game engine with the basic Scene philosophy, but it should support dynamic creation of entities from components. These are some of the definitions from the previous questions, updated: An Entity is an identifier. It doesn't have any data, it's not an object, it's a simple id that represents an index in the Scene's list of all entities (which I actually plan to implement as a component matrix). A Component is a data holder, but with methods that can operate on that data. The best example is a Vector2D, or a "Position" component. It has data: x and y, but also some methods that make operating on the data a bit easier: add(), normalize(), and so on. A System is something that can operate on a set of entities that meet the certain requirements, usually they (the entities) need to have a specified (by the system itself) set of components to be operated upon. The system is the "logic" part, the "algorithm" part, all the functionality supplied by components is purely for easier data management. The problem that I have now is fitting my old engine concept into this new programming paradigm. Lets start with the simplest one, a Camera. The camera has a position property (Vector2D), a rotation property and some methods for centering it around a point. Each frame, it is fed to a renderer, along with a scene, and all the objects are translated according to it's position. Then the scene is rendered. How could I represent this kind of an object in an Entity System? Would the camera be an entity or simply a component? A combination (see my answer)? Another issues that is bothering me is implementing a Particle Emitter. For what exactly I mean by that, you can check out my video of it: http://youtu.be/BObargIMQsE. The problem I have with this is, again, what should be what. I'm pretty sure that particles themselves shouldn't be entities, as I want to support 10k+ of them, and creating that much entities would be a heavy blow on my performance, I believe. Or maybe not? Depends on the implementation, but anyone with experience: please, do answer. The last bit I wan't to talk about, which is also bugging me the most, is how input should be handled. In my current version of the engine, there is a class called Input. It's a handler that subscribes to browser's events, such as keypresses, and mouse position changes, and also it maintains an internal state. Then, the player class has a react() method, which accepts an input object as an argument. The advantage of this is that the input object could be serialized into JSON and then shared over the network, allowing for smooth multiplayer simulations. But how does this translate into an Entity System?

    Read the article

  • How to include a child object's child object in Entity Framework 5

    - by Brendan Vogt
    I am using Entity Framework 5 code first and ASP.NET MVC 3. I am struggling to get a child object's child object to populate. Below are my classes.. Application class; public class Application { // Partial list of properties public virtual ICollection<Child> Children { get; set; } } Child class: public class Child { // Partial list of properties public int ChildRelationshipTypeId { get; set; } public virtual ChildRelationshipType ChildRelationshipType { get; set; } } ChildRelationshipType class: public class ChildRelationshipType { public int Id { get; set; } public string Name { get; set; } } Part of GetAll method in the repository to return all the applications: return DatabaseContext.Applications .Include("Children"); The Child class contains a reference to the ChildRelationshipType class. To work with an application's children I would have something like this: foreach (Child child in application.Children) { string childName = child.ChildRelationshipType.Name; } I get an error here that the object context is already closed. How do I specify that each child object must include the ChildRelationshipType object like what I did above?

    Read the article

  • Any good C++ Component/Entity frameworks?

    - by Pat
    (Skip to the bold if you want to get straight to my question :) ) I've been dabbling in the different technologies available out there to use. I tried Unity and component based design, managing to get a little guy up and running around a map with basic pathfinding. I really loved how easy it was to program using components, but I wanted a bit more control and something more 2D friendly, so I went with LibGDX. I looked around and found 2 good frameworks for Java, which are Artemis and Apollo. I didn't like Artemis much, so I went with Apollo, which I loved. I managed to integrate it with Box2D and get a little guy running around bouncing balls. Great! But since I want to try out most of the options, there is still C++/SFML that I haven't tried yet. Coming from a Java/C# background, I've always wanted to get my hands dirty with C++. But then, after some looking around, I noticed there aren't any Component-Based frameworks for me to use. There's a somewhat done porting of Artemis, but, aside from not being completely finished, I didn't quite like Artemis even in Java. I found Apollo's approach much more.. logical. So, my question is, are there any good Component/Entity frameworks for C++ that I can use that are similar to Artemis, or preferably, Apollo?

    Read the article

  • Entity Component System for HUD and GUI

    - by Jason L.
    This is a very rough sketch of how I currently have things designed. It should, at least, give an idea of how my ECS is currently designed. If you notice in that diagram, I have basically split the HUD out of the ECS. They have their own set of things (HudLayer, HudComponent, etc) and are handled differently. This is where I'm struggling, though. There are many different instances in which the HUD will need to know about entities. Not just data changing (I have an event dispatcher for that), but the actual entity and all it encompasses. There are also situations where entities will need to be able to query the HUD for data. Let's take a couple examples: First, my equipment screen. On here I can change the equipment on a character (Entity). In order for this to happen, I need to know about the entity. At least I think I do? How can I handle this? The second scenario involves my Systems needing to query a HudComponent for data. A specific example would be my battle system. Each "team" is given a 3x3 grid they can move around in. See here: Skills target these cells, and not the player, so I would need a way for my systems to determine which cells are occupied and which are not. Basically I need a way for two way communication between Systems and my HUD. I know it's recommended (by some people, anyways) to take your HUD out of the ECS. Is that appropriate in my case?

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >