Search Results

Search found 21759 results on 871 pages for 'int'.

Page 1/871 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • The code works but when using printf it gives me a weird answer. Help please [closed]

    - by user71458
    //Programmer-William Chen //Seventh Period Computer Science II //Problem Statement - First get the elapsed times and the program will find the //split times for the user to see. // //Algorithm- First the programmer makes the prototype and calls them in the //main function. The programmer then asks the user to input lap time data. //Secondly, you convert the splits into seconds and subtract them so you can //find the splits. Then the average is all the lap time's in seconds. Finally, //the programmer printf all the results for the user to see. #include <iostream> #include <stdlib.h> #include <math.h> #include <conio.h> #include <stdio.h> using namespace std; void thisgetsElapsedTimes( int &m1, int &m2, int &m3, int &m4, int &m5, int &s1, int &s2, int &s3, int &s4, int &s5); //this is prototype void thisconvertstoseconds ( int &m1, int &m2, int &m3, int &m4, int &m5, int &s1, int &s2, int &s3, int &s4, int &s5, int &split1, int &split2, int &split3, int &split4, int &split5);//this too void thisfindsSplits(int &m1, int &m2, int &m3, int &m4, int &m5, int &split1, int &split2, int &split3, int &split4, int &split5, int &split6, int &split7, int &split8, int &split9, int &split10);// this is part of prototype void thisisthesecondconversation (int &split1M, int &split2M, int &split3M, int &split4M, int &split5M, int &split1S,int &split2S, int &split3S, int &split4S, int &split5S, int &split1, int &split2, int &split3, int &split4, int &split5);//this gets a value void thisfindstheaverage(double &average, int &split1, int &split2, int &split3, int &split4, int &split5);//and this void thisprintsstuff( int &split1M, int &split2M, int &split3M, int &split4M, int &split5M, int &split1S, int &split2S, int &split3S, int &split4S, int &split5S, double &average); //this prints int main(int argc, char *argv[]) { int m1, m2, m3, m4, m5, s1, s2, s3, s4, s5, split1, split2, split3, split4, split5, split1M, split2M, split3M, split4M, split5M, split1S, split2S, split3S, split4S, split5S; int split6, split7, split8, split9, split10; double average; char thistakescolon; thisgetsElapsedTimes ( m1, m2, m3, m4, m5, s1, s2, s3, s4, s5); thisconvertstoseconds ( m1, m2, m3, m4, m5, s1, s2, s3, s4, s5, split1, split2, split3, split4, split5); thisfindsSplits ( m1, m2, m3, m4, m5, split1, split2, split3, split4, split5, split6, split7, split8, split9, split10); thisisthesecondconversation ( split1M, split2M, split3M, split4M, split5M, split1S, split2S, split3S, split4S, split5S, split1, split2, split3, split4, split5); thisfindstheaverage ( average, split1, split2, split3, split4, split5); thisprintsstuff ( split1M, split2M, split3M, split4M, split5M, split1S, split2S, split3S, split4S, split5S, average); // these are calling statements and they call from the main function to the other functions. system("PAUSE"); return 0; } void thisgetsElapsedTimes(int &m1, int &m2, int &m3, int &m4, int &m5, int &s1, int &s2, int &s3, int &s4, int &s5) { char thistakescolon; cout << "Enter the elapsed time:" << endl; cout << " Kilometer 1 "; cin m1 thistakescolon s1; cout << " Kilometer 2 "; cin m2 thistakescolon s2; cout << " Kilometer 3 " ; cin m3 thistakescolon s3; cout << " Kilometer 4 "; cin m4 thistakescolon s4; cout << " Kilometer 5 "; cin m5 thistakescolon s5; // this gets the data required to get the results needed for the user to see // . } void thisconvertstoseconds (int &m1, int &m2, int &m3, int &m4, int &m5, int &s1, int &s2, int &s3, int &s4, int &s5, int &split1, int &split2, int &split3, int &split4, int &split5) { split1 = (m1 * 60) + s1;//this converts for minutes to seconds for m1 split2 = (m2 * 60) + s2;//this converts for minutes to seconds for m2 split3 = (m3 * 60) + s3;//this converts for minutes to seconds for m3 split4 = (m4 * 60) + s4;//this converts for minutes to seconds for m4 split5 = (m5 * 60) + s5;//this converts for minutes to seconds for m5 } void thisfindsSplits (int &m1, int &m2, int &m3, int &m4, int &m5,int &split1, int &split2, int &split3, int &split4, int &split5, int &split6, int &split7, int &split8, int &split9, int &split10)//this is function heading { split6 = split1; //this is split for the first lap. split7 = split2 - split1;//this is split for the second lap. split8 = split3 - split2;//this is split for the third lap. split9 = split4 - split3;//this is split for the fourth lap. split10 = split5 - split4;//this is split for the fifth lap. } void thisfindstheaverage(double &average, int &split1, int &split2, int &split3, int &split4, int &split5) { average = (split1 + split2 + split3 + split4 + split5)/5; // this finds the average from all the splits in seconds } void thisisthesecondconversation (int &split1M, int &split2M, int &split3M, int &split4M, int &split5M, int &split1S,int &split2S, int &split3S, int &split4S, int &split5S, int &split1, int &split2, int &split3, int &split4, int &split5) { split1M = split1 * 60; //this finds the split times split1S = split1M - split1 * 60; //then this finds split2M = split2 * 60; //and all of this split2S = split2M - split2 * 60; //does basically split3M = split3 * 60; //the same thing split3S = split3M - split3 * 60; //all of it split4M = split4 * 60; //it's also a split4S = split4M - split4 * 60; //function split5M = split5 * 60; //and it finds the splits split5S = split5M - split5 * 60; //for each lap. } void thisprintsstuff (int &split1M, int &split2M, int &split3M, int &split4M, int &split5M, int &split1S, int &split2S, int &split3S, int &split4S, int &split5S, double &average)// this is function heading { printf("\n kilometer 1 %d" , ":02%d",'split1M','split1S'); printf("\n kilometer 2 %d" , ":02%d",'split2M','split2S'); printf("\n kilometer 3 %d" , ":02%d",'split3M','split3S'); printf("\n kilometer 4 %d" , ":02%d",'split4M','split4S'); printf("\n kilometer 5 %d" , ":02%d",'split5M','split5S'); printf("\n your average pace is ",'average',"per kilometer \n", "William Chen\n"); // this printf so the programmer // can allow the user to see // the results from the data gathered. }

    Read the article

  • (int) Math.floor(x / TILESIZE) or just (int) (x / TILESIZE)

    - by Aidan Mueller
    I have a Array that stores my map data and my Tiles are 64X64. Sometimes I need to convert from pixels to units of tiles. So I was doing: int x int y public void myFunction() { getTile((int) Math.floor(x / 64), (int) Math.floor(y / 64)).doOperation(); } But I discovered by using (I'm using java BTW) System.out.println((int) (1 / 1.5)) that converting to an int automatically rounds down. This means that I can replace the (int) Math.floor with just x / 64. But if I run this on a different OS do you think it might give a different result? I'm just afraid there might be some case where this would round up and not down. Should I keep doing it the way I was and maybe make a function like convert(int i) to make it easier? Or is it OK to just do x / 64?

    Read the article

  • C# acting weird when reading in values from a file to an array

    - by Whitey
    This is the structure of my file: 1111111111111111111111111 2222222222222222222222222 3333333333333333333333333 4444444444444444444444444 5555555555555555555555555 6666666666666666666666666 7777777777777777777777777 8888888888888888888888888 9999999999999999999999999 0000000000000000000000000 0000000000000000000000000 0000000000000000000000000 0000000000000000000000000 0000000000000000000000000 And this is the code I'm using to read it into an array: using (StreamReader reader = new StreamReader(mapPath)) { string line; for (int i = 0; i < iMapHeight; i++) { if ((line = reader.ReadLine()) != null) { for (int j = 0; j < iMapWidth; j++) { iMap[i, j] = line[j]; } } } } I have done some debugging, and line[j] correctly iterates through each character in the currently read line. The problem lies with iMap[i, j]. After this block of code executes, this is the contents of iMap: - iMap {int[14, 25]} int[,] [0, 0] 49 int [0, 1] 49 int [0, 2] 49 int [0, 3] 49 int [0, 4] 49 int [0, 5] 49 int [0, 6] 49 int [0, 7] 49 int [0, 8] 49 int [0, 9] 49 int [0, 10] 49 int [0, 11] 49 int [0, 12] 49 int [0, 13] 49 int [0, 14] 49 int [0, 15] 49 int [0, 16] 49 int [0, 17] 49 int [0, 18] 49 int [0, 19] 49 int [0, 20] 49 int [0, 21] 49 int [0, 22] 49 int [0, 23] 49 int [0, 24] 49 int [1, 0] 50 int [1, 1] 50 int [1, 2] 50 int [1, 3] 50 int [1, 4] 50 int [1, 5] 50 int [1, 6] 50 int [1, 7] 50 int [1, 8] 50 int [1, 9] 50 int [1, 10] 50 int [1, 11] 50 int [1, 12] 50 int [1, 13] 50 int [1, 14] 50 int [1, 15] 50 int [1, 16] 50 int [1, 17] 50 int [1, 18] 50 int [1, 19] 50 int [1, 20] 50 int [1, 21] 50 int [1, 22] 50 int [1, 23] 50 int [1, 24] 50 int [2, 0] 51 int [2, 1] 51 int [2, 2] 51 int [2, 3] 51 int [2, 4] 51 int [2, 5] 51 int [2, 6] 51 int [2, 7] 51 int [2, 8] 51 int [2, 9] 51 int [2, 10] 51 int [2, 11] 51 int [2, 12] 51 int [2, 13] 51 int [2, 14] 51 int [2, 15] 51 int [2, 16] 51 int [2, 17] 51 int [2, 18] 51 int [2, 19] 51 int [2, 20] 51 int [2, 21] 51 int [2, 22] 51 int [2, 23] 51 int [2, 24] 51 int [3, 0] 52 int [3, 1] 52 int [3, 2] 52 int [3, 3] 52 int [3, 4] 52 int [3, 5] 52 int [3, 6] 52 int [3, 7] 52 int [3, 8] 52 int [3, 9] 52 int [3, 10] 52 int [3, 11] 52 int [3, 12] 52 int [3, 13] 52 int [3, 14] 52 int [3, 15] 52 int [3, 16] 52 int [3, 17] 52 int [3, 18] 52 int [3, 19] 52 int [3, 20] 52 int [3, 21] 52 int [3, 22] 52 int [3, 23] 52 int [3, 24] 52 int [4, 0] 53 int [4, 1] 53 int [4, 2] 53 int [4, 3] 53 int [4, 4] 53 int [4, 5] 53 int [4, 6] 53 int [4, 7] 53 int [4, 8] 53 int [4, 9] 53 int [4, 10] 53 int [4, 11] 53 int [4, 12] 53 int [4, 13] 53 int [4, 14] 53 int [4, 15] 53 int [4, 16] 53 int [4, 17] 53 int [4, 18] 53 int [4, 19] 53 int [4, 20] 53 int [4, 21] 53 int [4, 22] 53 int [4, 23] 53 int [4, 24] 53 int [5, 0] 54 int [5, 1] 54 int [5, 2] 54 int [5, 3] 54 int [5, 4] 54 int [5, 5] 54 int [5, 6] 54 int [5, 7] 54 int [5, 8] 54 int [5, 9] 54 int [5, 10] 54 int [5, 11] 54 int [5, 12] 54 int [5, 13] 54 int [5, 14] 54 int [5, 15] 54 int [5, 16] 54 int [5, 17] 54 int [5, 18] 54 int [5, 19] 54 int [5, 20] 54 int [5, 21] 54 int [5, 22] 54 int [5, 23] 54 int [5, 24] 54 int [6, 0] 55 int [6, 1] 55 int [6, 2] 55 int [6, 3] 55 int [6, 4] 55 int [6, 5] 55 int [6, 6] 55 int [6, 7] 55 int [6, 8] 55 int [6, 9] 55 int [6, 10] 55 int [6, 11] 55 int [6, 12] 55 int [6, 13] 55 int [6, 14] 55 int [6, 15] 55 int [6, 16] 55 int [6, 17] 55 int [6, 18] 55 int [6, 19] 55 int [6, 20] 55 int [6, 21] 55 int [6, 22] 55 int [6, 23] 55 int [6, 24] 55 int [7, 0] 56 int [7, 1] 56 int [7, 2] 56 int [7, 3] 56 int [7, 4] 56 int [7, 5] 56 int [7, 6] 56 int [7, 7] 56 int [7, 8] 56 int [7, 9] 56 int [7, 10] 56 int [7, 11] 56 int [7, 12] 56 int [7, 13] 56 int [7, 14] 56 int [7, 15] 56 int [7, 16] 56 int [7, 17] 56 int [7, 18] 56 int [7, 19] 56 int [7, 20] 56 int [7, 21] 56 int [7, 22] 56 int [7, 23] 56 int [7, 24] 56 int [8, 0] 57 int [8, 1] 57 int [8, 2] 57 int [8, 3] 57 int [8, 4] 57 int [8, 5] 57 int [8, 6] 57 int [8, 7] 57 int [8, 8] 57 int [8, 9] 57 int [8, 10] 57 int [8, 11] 57 int [8, 12] 57 int [8, 13] 57 int [8, 14] 57 int [8, 15] 57 int [8, 16] 57 int [8, 17] 57 int [8, 18] 57 int [8, 19] 57 int [8, 20] 57 int [8, 21] 57 int [8, 22] 57 int [8, 23] 57 int [8, 24] 57 int [9, 0] 48 int [9, 1] 48 int [9, 2] 48 int [9, 3] 48 int [9, 4] 48 int [9, 5] 48 int [9, 6] 48 int [9, 7] 48 int [9, 8] 48 int [9, 9] 48 int [9, 10] 48 int [9, 11] 48 int [9, 12] 48 int [9, 13] 48 int [9, 14] 48 int [9, 15] 48 int [9, 16] 48 int [9, 17] 48 int [9, 18] 48 int [9, 19] 48 int [9, 20] 48 int [9, 21] 48 int [9, 22] 48 int [9, 23] 48 int [9, 24] 48 int [10, 0] 48 int [10, 1] 48 int [10, 2] 48 int [10, 3] 48 int [10, 4] 48 int [10, 5] 48 int [10, 6] 48 int [10, 7] 48 int [10, 8] 48 int [10, 9] 48 int [10, 10] 48 int [10, 11] 48 int [10, 12] 48 int [10, 13] 48 int [10, 14] 48 int [10, 15] 48 int [10, 16] 48 int [10, 17] 48 int [10, 18] 48 int [10, 19] 48 int [10, 20] 48 int [10, 21] 48 int [10, 22] 48 int [10, 23] 48 int [10, 24] 48 int [11, 0] 48 int [11, 1] 48 int [11, 2] 48 int [11, 3] 48 int [11, 4] 48 int [11, 5] 48 int [11, 6] 48 int [11, 7] 48 int [11, 8] 48 int [11, 9] 48 int [11, 10] 48 int [11, 11] 48 int [11, 12] 48 int [11, 13] 48 int [11, 14] 48 int [11, 15] 48 int [11, 16] 48 int [11, 17] 48 int [11, 18] 48 int [11, 19] 48 int [11, 20] 48 int [11, 21] 48 int [11, 22] 48 int [11, 23] 48 int [11, 24] 48 int [12, 0] 48 int [12, 1] 48 int [12, 2] 48 int [12, 3] 48 int [12, 4] 48 int [12, 5] 48 int [12, 6] 48 int [12, 7] 48 int [12, 8] 48 int [12, 9] 48 int [12, 10] 48 int [12, 11] 48 int [12, 12] 48 int [12, 13] 48 int [12, 14] 48 int [12, 15] 48 int [12, 16] 48 int [12, 17] 48 int [12, 18] 48 int [12, 19] 48 int [12, 20] 48 int [12, 21] 48 int [12, 22] 48 int [12, 23] 48 int [12, 24] 48 int [13, 0] 48 int [13, 1] 48 int [13, 2] 48 int [13, 3] 48 int [13, 4] 48 int [13, 5] 48 int [13, 6] 48 int [13, 7] 48 int [13, 8] 48 int [13, 9] 48 int [13, 10] 48 int [13, 11] 48 int [13, 12] 48 int [13, 13] 48 int [13, 14] 48 int [13, 15] 48 int [13, 16] 48 int [13, 17] 48 int [13, 18] 48 int [13, 19] 48 int [13, 20] 48 int [13, 21] 48 int [13, 22] 48 int [13, 23] 48 int [13, 24] 48 int Sorry for the lame formatting, but it's huge :P I have no idea where it's getting these values from, does anyone have an explanation? Thanks :)

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Should I redesign my code when collegues says so?

    - by Kirill V. Lyadvinsky
    I wrote a function recently that finds maximum of two ints. Here is a code: int get_max (int(*a)(int(*)(int(*)()),int(*)(int(*)(int**))), int(*b)(int(*) (int(*)()),int*,int(*)(int(*)()))){return (int)((((int(*)(int(*)(int(*)()),int( *)(int(*)())))a)> ((int(*)(int(*)(int(*)()),int(*)(int(*)())))b))?((int(*)( int(*)(int(*)()),int(*)(int(*)())))a):((int(*)(int(*)(int(*)()),int(*)(int(*)( ))))b));} int main() { int x = get_max( (int(*)(int(*)(int(*)()),int(*)(int(*)(int**)))) 500, (int(*)(int(*)(int(*)()),int*,int(*)(int(*)()))) 100 ); cout << x << endl; // prints 500 as expected return 0; } It works fine, but my collegue says that I shouldn't use C style casts. But I think that all that modern static_cast's and reinterpret_cast's will make my code too cumbersome. Who's right? Should I redesign my code using C++ style casts or original code is OK?

    Read the article

  • Invalid conversion from int to int

    - by FOXMULDERIZE
    #include <iostream> #include<fstream> using namespace std; void showvalues(int,int,int []); void showvalues2(int,int); void sumtotal(int,int); int main() { const int SIZE_A= 9; int arreglo[SIZE_A]; ifstream archivo_de_entrada; archivo_de_entrada.open("numeros.txt"); int count,suma,total,a,b,c,d,e,f; int total1=0; int total2=0; //lee/// for(count =0 ;count < SIZE_A;count++) archivo_de_entrada>>arreglo[count] ; archivo_de_entrada.close(); showvalues(0,3,9); HERE IS THE PROBLEM showvalues2(5,8); sumtotal(total1,total2); system("pause"); return 0; } void showvalues(int a,int b,int v) { //muestra//////////////////////// cout<< "los num son "; for(count = a ;count <= b;count++) total1 = total1 + arreglo[count]; cout <<total1<<" "; cout <<endl; } void showvalues2(int c,int d) { ////////////////////////////// cout<< "los num 2 son "; for(count =5 ;count <=8;count++) total2 = total2 + arreglo[count]; cout <<total2<<" "; cout <<endl; } void sumtotal(int e,int f) { ///////////////////////////////// cout<<"la suma de t1 y t2 es "; total= total1 + total2; cout<<total; cout <<endl; }

    Read the article

  • Given year, month and day, all in int, how would I generate an NSDate

    - by BU
    I think the solution is really simple, I just haven't come across it online. Suppose I am given int year, int month, int day, int hour, int min, int sec.. how do I generate NSDate out of it? I know we can use [NSDate initWithString:] but I think it gets complicated if month/day/hour/min/sec are one digit numbers. Thanks in advance for your help.

    Read the article

  • error: no matching function for call to ‘BSTreeNode<int, int>::BSTreeNode(int, int, NULL, NULL)’ - what's wrong?

    - by Alexander Suraphel
    error: no matching function for call to ‘BSTreeNode::BSTreeNode(int, int, NULL, NULL)’ candidates are: BSTreeNode::BSTreeNode(KF, DT&, BSTreeNode*, BSTreeNode*) [with KF = int, DT = int] here is how I used it: BSTreeNode<int, int> newNode(5,9, NULL, NULL) ; I defined it as follows: BSTreeNode(KF sKey, DT &data, BSTreeNode *lt, BSTreeNode *rt):key(sKey),dataItem(data), left(lt), right(rt){} what's wrong with using my constructor this way? i've been pulling out my hair all night please help me ASAP!!

    Read the article

  • How do I convert int? into int

    - by Richard77
    Hello, I've create a SPROC that saves an object and returns the id of the new object saved. Now, I'd like to return an int not an int? public int Save(Contact contact) { int? id; context.Save_And_SendBackID(contact.FirstName, contact.LastName, ref id); //How do I return an int instead of an int? } Thanks for helping

    Read the article

  • Invalid conversion from int to int** C++

    - by user69514
    Not sure why I'm getting this error. I have the following: int* arr = new int[25]; int* foo(){ int* i; cout << "Enter an integer:"; cin >> *i; return i; } void test(int** myInt){ *myInt = foo(); } This call here is where I get the error: test(arr[0]); //here i get invalid conversion from int to int**

    Read the article

  • Another warning question: "Incompatible intiger to pointer conversion assigning to 'int *' from 'int'"

    - by Preston
    I have yet another pesky warning I would like gone. Basically, I have an int declared like this: @property (nonatomic, assign) int *myInt; and set like this: myInt = 0;. It is also synthesized in the implementation file. I am getting a warning on the line where I set the int's value and it says "Incompatible intiger to pointer conversion assigning to 'int *' from 'int'." What should I do to fix this?

    Read the article

  • Sublime text 2 syntax highlighter?

    - by BigSack
    I have coded my first custom syntax highlighter for sublime text 2, but i don't know how to install it. It is based on notepad++ highlighter found here https://70995658-a-62cb3a1a-s-sites.googlegroups.com/site/lohanplus/files/smali_npp.xml?attachauth=ANoY7criVTO9bDmIGrXwhZLQ_oagJzKKJTlbNDGRzMDVpFkO5i0N6hk_rWptvoQC1tBlNqcqFDD5NutD_2vHZx1J7hcRLyg1jruSjebHIeKdS9x0JCNrsRivgs6DWNhDSXSohkP1ZApXw0iQ0MgqcXjdp7CkJJ6pY_k5Orny9TfK8UWn_HKFsmPcpp967NMPtUnd--ad-BImtkEi-fox2tjs7zc5LabkDQ%3D%3D&attredirects=0&d=1 <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> <plist version="1.0"> <dict> <key>fileTypes</key> <array> <string>smali</string> </array> <dict> <key>Word1</key> <string>add-double add-double/2addr add-float add-float/2addr add-int add-int/2addr add-int/lit16 add-int/lit8 add-long add-long/2addr aget aget-boolean aget-byte aget-char aget-object aget-short aget-wide and-int and-int/2addr and-int/lit16 and-int/lit8 and-long and-long/2addr aput aput-boolean aput-byte aput-char aput-object aput-short aput-wide array-length check-cast cmp-long cmpg-double cmpg-float cmpl-double cmpl-float const const-class const-string const-string-jumbo const-wide const-wide/16 const-wide/32 const-wide/high16 const/16 const/4 const/high16 div-double div-double/2addr div-float div-float/2addr div-int div-int/2addr div-int/lit16 div-int/lit8 div-long div-long/2addr double-to-float double-to-int double-to-long execute-inline fill-array-data filled-new-array filled-new-array/range float-to-double float-to-int float-to-long goto goto/16 goto/32 if-eq if-eqz if-ge if-gez if-gt if-gtz if-le if-lez if-lt if-ltz if-ne if-nez iget iget-boolean iget-byte iget-char iget-object iget-object-quick iget-quick iget-short iget-wide iget-wide-quick instance-of int-to-byte int-to-char int-to-double int-to-float int-to-long int-to-short invoke-direct invoke-direct-empty invoke-direct/range invoke-interface invoke-interface/range invoke-static invoke-static/range invoke-super invoke-super-quick invoke-super-quick/range invoke-super/range invoke-virtual invoke-virtual-quick invoke-virtual-quick/range invoke-virtual/range iput iput-boolean iput-byte iput-char iput-object iput-object-quick iput-quick iput-short iput-wide iput-wide-quick long-to-double long-to-float long-to-int monitor-enter monitor-exit move move-exception move-object move-object/16 move-object/from16 move-result move-result-object move-result-wide move-wide move-wide/16 move-wide/from16 move/16 move/from16 mul-double mul-double/2addr mul-float mul-float/2addr mul-int mul-int/2addr mul-int/lit8 mul-int/lit16 mul-long mul-long/2addr neg-double neg-float neg-int neg-long new-array new-instance nop not-int not-long or-int or-int/2addr or-int/lit16 or-int/lit8 or-long or-long/2addr rem-double rem-double/2addr rem-float rem-float/2addr rem-int rem-int/2addr rem-int/lit16 rem-int/lit8 rem-long rem-long/2addr return return-object return-void return-wide rsub-int rsub-int/lit8 sget sget-boolean sget-byte sget-char sget-object sget-short sget-wide shl-int shl-int/2addr shl-int/lit8 shl-long shl-long/2addr shr-int shr-int/2addr shr-int/lit8 shr-long shr-long/2addr sparse-switch sput sput-boolean sput-byte sput-char sput-object sput-short sput-wide sub-double sub-double/2addr sub-float sub-float/2addr sub-int sub-int/2addr sub-int/lit16 sub-int/lit8 sub-long sub-long/2addr throw throw-verification-error ushr-int ushr-int/2addr ushr-int/lit8 ushr-long ushr-long/2addr xor-int xor-int/2addr xor-int/lit16 xor-int/lit8 xor-long xor-long/2addr</string> </dict> <dict> <key>Word2</key> <string>v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35 v36 v37 v38 v39 v40 v41 v42 v43 v44 v45 v46 v47 v48 v49 v50 p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30</string> </dict> <dict> <key>Word3</key> <string>array-data .catch .catchall .class .end .end\ local .enum .epilogue .field .implements .line .local .locals .parameter .prologue .registers .restart .restart\ local .source .subannotation .super</string> </dict> <dict> <key>Word4</key> <string>abstract bridge constructor declared-synchronized enum final interface native private protected public static strictfp synchronized synthetic system transient varargs volatile</string> </dict> <dict> <key>Word4</key> <string>(&quot;0)&quot;0</string> </dict> <dict> <key>Word5</key> <string>.method .annotation .sparse-switch .packed-switch</string> </dict> <dict> <key>word6</key> <string>.end\ method .end\ annotation .end\ sparse-switch .end\ packed-switch</string> </dict> <dict> <key>word7</key> <string>&quot; ( ) , ; { } &gt;</string> </dict> <key>uuid</key> <string>27798CC6-6B1D-11D9-B8FA-000D93589AF6</string> </dict> </plist>

    Read the article

  • Why unsigned int contained negative number

    - by Daziplqa
    Hi All, I am new to C, What I know about unsigned numerics (unsigned short, int and longs), that It contains positive numbers only, but the following simple program successfully assigned a negative number to an unsigned int: 1 /* 2 * ===================================================================================== 3 * 4 * Filename: prog4.c 5 * 6 * ===================================================================================== 7 */ 8 9 #include <stdio.h> 10 11 int main(void){ 12 13 int v1 =0, v2=0; 14 unsigned int sum; 15 16 v1 = 10; 17 v2 = 20; 18 19 sum = v1 - v2; 20 21 printf("The subtraction of %i from %i is %i \n" , v1, v2, sum); 22 23 return 0; 24 } The output is : The subtraction of 10 from 20 is -10

    Read the article

  • Hashtable with int array as key in java

    - by Niels Hansen
    Hey! I'm trying to make a hashtable in java where the keys are int[], but it dosen't work. I have made a little test program to show my problem: public class test{ public static void main(String[] args){ int[] test0 = {1,1}; int[] test1 = {1,1}; Hashtable<int[], String> ht = new Hashtable<int[], String>(); String s0 = "foo"; ht.put(test0, s0); System.out.println("the result from ht.get(test1)"); System.out.println(ht.get(test1)); System.out.println("the result from ht.get(test0)"); System.out.println(ht.get(test0)); } } My intention is that both ht.get calles should return the same result, since the two arrays are equal, but they dont. Here is the result from running the code: the result from ht.get(test1) null the result from ht.get(test0) foo Am I missing something here or is it just impossible to use int[] as keys in a hastable?

    Read the article

  • C# convert an IOrderedEnumerable<KeyValuePair<string, int>> into a Dictionary<string, int>

    - by Kache4
    I was following the answer to another question, and I got: // itemCounter is a Dictionary<string, int>, and I only want to keep // key/value pairs with the top maxAllowed values if (itemCounter.Count > maxAllowed) { IEnumerable<KeyValuePair<string, int>> sortedDict = from entry in itemCounter orderby entry.Value descending select entry; sortedDict = sortedDict.Take(maxAllowed); itemCounter = sortedDict.ToDictionary<string, int>(/* what do I do here? */); } Visual Studio's asking for a parameter Func<string, int> keySelector. I tried following a few semi-relevant examples I've found online and put in k => k.Key, but that gives a compiler error: 'System.Collections.Generic.IEnumerable<System.Collections.Generic.KeyValuePair<string,int>>' does not contain a definition for 'ToDictionary' and the best extension method overload 'System.Linq.Enumerable.ToDictionary<TSource,TKey>(System.Collections.Generic.IEnumerable<TSource>, System.Func<TSource,TKey>)' has some invalid arguments

    Read the article

  • java converting int to short

    - by changed
    Hi I am calculating 16 bit checksum on my data which i need to send to server where it has to recalculate and match with the provided checksum. Checksum value that i am getting is in int but i have only 2 bytes for sending the value.So i am casting int to short while calling shortToBytes method. This works fine till checksum value is less than 32767 thereafter i am getting negative values. Thing is java does not have unsigned primitives, so i am not able to send values greater than max value of signed short allowed. How can i do this, converting int to short and send over the network without worrying about truncation and signed & unsigned int. Also on both the side i have java program running. private byte[] shortToBytes(short sh) { byte[] baValue = new byte[2]; ByteBuffer buf = ByteBuffer.wrap(baValue); return buf.putShort(sh).array(); } private short bytesToShort(byte[] buf, int offset) { byte[] baValue = new byte[2]; System.arraycopy(buf, offset, baValue, 0, 2); return ByteBuffer.wrap(baValue).getShort(); }

    Read the article

  • Java HashSet<Integer> to int array

    - by jackweeden
    I've got a HashSet with a bunch of (you guessed it) integers in it. I want to turn it into an array, but calling hashset.toArray(); returns an array of Object type. This is fine, but is there a better way to cast it to an array of int, other than iterating through every element manually? A method I want to pass it to void doSomething(int[] arr) Won't accept the Object[] array, even if I try casting it like doSomething((int[]) hashSet.toArray());

    Read the article

  • converting char array into one int

    - by user1762517
    I can't use atoi, need to do it digit by digit.. How do I save it in a int.. given a char* temp put it all in one int.. #include <stdio.h> #include <string.h> #include <stdlib.h> #include <math.h> int main () { char* temp = "798654564654564654"; int i = 0; for (i = 0; i < strlen(temp); i++) { printf("%d", temp[i] - 48); } printf("\n"); }

    Read the article

  • Problems Allocating Objects of Derived Class Where Base Class has Abstract Virtual Functions

    - by user1743901
    I am trying to get this Zombie/Human agent based simulation running, but I am having problems with these derived classes (Human and Zombie) who have parent class "Creature". I have 3 virtual functions declared in "Creature" and all three of these are re-declared AND DEFINED in both "Human" and "Zombie". But for some reason when I have my program call "new" to allocate memory for objects of type Human or Zombie, it complains about the virtual functions being abstract. Here's the code: definitions.h #ifndef definitions_h #define definitions_h class Creature; class Item; class Coords; class Grid { public: Creature*** cboard; Item*** iboard; int WIDTH; int HEIGHT; Grid(int WIDTHVALUE, int HEIGHTVALUE); void FillGrid(); //initializes grid object with humans and zombies void Refresh(); //calls Creature::Die(),Move(),Attack(),Breed() on every square void UpdateBuffer(char** buffer); bool isEmpty(int startx, int starty, int dir); char CreatureType(int xcoord, int ycoord); char CreatureType(int startx, int starty, int dir); }; class Random { public: int* rptr; void Print(); Random(int MIN, int MAX, int LEN); ~Random(); private: bool alreadyused(int checkthis, int len, int* rptr); bool isClean(); int len; }; class Coords { public: int x; int y; int MaxX; int MaxY; Coords() {x=0; y=0; MaxX=0; MaxY=0;} Coords(int X, int Y, int WIDTH, int HEIGHT) {x=X; y=Y; MaxX=WIDTH; MaxY=HEIGHT; } void MoveRight(); void MoveLeft(); void MoveUp(); void MoveDown(); void MoveUpRight(); void MoveUpLeft(); void MoveDownRight(); void MoveDownLeft(); void MoveDir(int dir); void setx(int X) {x=X;} void sety(int Y) {y=Y;} }; class Creature { public: bool alive; Coords Location; char displayletter; Creature() {Location.x=0; Location.y=0;} Creature(int i, int j) {Location.setx(i); Location.sety(j);} virtual void Attack() =0; virtual void AttackCreature(Grid G, int attackdirection) =0; virtual void Breed() =0; void Die(); void Move(Grid G); int DecideSquare(Grid G); void MoveTo(Grid G, int dir); }; class Human : public Creature { public: bool armed; //if armed, chances of winning fight increased for next fight bool vaccinated; //if vaccinated, no chance of getting infected int bitecount; //if a human is bitten, bite count is set to a random number int breedcount; //if a human goes x steps without combat, will breed if next to a human int starvecount; //if a human does not eat in x steps, will die Human() {displayletter='H';} Human(int i, int j) {displayletter='H';} void Attack(Grid G); void AttackCreature(Grid G, int attackdirection); void Breed(Grid G); //will breed after x steps and next to human int DecideAttack(Grid G); }; class Zombie : public Creature { public: Zombie() {displayletter='Z';} Zombie(int i, int j) {displayletter='Z';} void Attack(Grid G); void AttackCreature(Grid G, int attackdirection); void Breed() {} //does nothing int DecideAttack(Grid G); void AttackCreature(Grid G, int attackdirection); }; class Item { }; #endif definitions.cpp #include <cstdlib> #include "definitions.h" Random::Random(int MIN, int MAX, int LEN) //constructor { len=LEN; rptr=new int[LEN]; //allocate array of given length for (int i=0; i<LEN; i++) { int random; do { random = rand() % (MAX-MIN+1) + MIN; } while (alreadyused(random,LEN,rptr)); rptr[i]=random; } } bool Random::alreadyused(int checkthis, int len, int* rptr) { for (int i=0; i<len; i++) { if (rptr[i]==checkthis) return 1; } return 0; } Random::~Random() { delete rptr; } Grid::Grid(int WIDTHVALUE, int HEIGHTVALUE) { WIDTH = WIDTHVALUE; HEIGHT = HEIGHTVALUE; //builds 2d array of creature pointers cboard = new Creature**[WIDTH]; for(int i=0; i<WIDTH; i++) { cboard[i] = new Creature*[HEIGHT]; } //builds 2d array of item pointers iboard = new Item**[WIDTH]; for (int i=0; i<WIDTH; i++) { iboard[i] = new Item*[HEIGHT]; } } void Grid::FillGrid() { /* For each creature pointer in grid, randomly selects whether to initalize as zombie, human, or empty square. This methodology can be changed to initialize different creature types with different probabilities */ int random; for (int i=0; i<WIDTH; i++) { for (int j=0; j<HEIGHT; j++) { Random X(1,100,1); //create a single random integer from [1,100] at X.rptr random=*(X.rptr); if (random < 20) cboard[i][j] = new Human(i,j); else if (random < 40) cboard[i][j] = new Zombie(i,j); else cboard[i][j] = NULL; } } //at this point every creature pointer should be pointing to either //a zombie, human, or NULL with varying probabilities } void Grid::UpdateBuffer(char** buffer) { for (int i=0; i<WIDTH; i++) { for (int j=0; j<HEIGHT; j++) { if (cboard[i][j]) buffer[i][j]=cboard[i][j]->displayletter; else buffer[i][j]=' '; } } } bool Grid::isEmpty(int startx, int starty, int dir) { Coords StartLocation(startx,starty,WIDTH,HEIGHT); switch(dir) { case 1: StartLocation.MoveUp(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 2: StartLocation.MoveUpRight(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 3: StartLocation.MoveRight(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 4: StartLocation.MoveDownRight(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 5: StartLocation.MoveDown(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 6: StartLocation.MoveDownLeft(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 7: StartLocation.MoveLeft(); if (cboard[StartLocation.x][StartLocation.y]) return 0; case 8: StartLocation.MoveUpLeft(); if (cboard[StartLocation.x][StartLocation.y]) return 0; } return 1; } char Grid::CreatureType(int xcoord, int ycoord) { if (cboard[xcoord][ycoord]) //if there is a creature at location xcoord,ycoord return (cboard[xcoord][ycoord]->displayletter); else //if pointer at location xcoord,ycoord is null, return null char return '\0'; } char Grid::CreatureType(int startx, int starty, int dir) { Coords StartLocation(startx,starty,WIDTH,HEIGHT); switch(dir) { case 1: StartLocation.MoveUp(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 2: StartLocation.MoveUpRight(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 3: StartLocation.MoveRight(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 4: StartLocation.MoveDownRight(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 5: StartLocation.MoveDown(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 6: StartLocation.MoveDownLeft(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 7: StartLocation.MoveLeft(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); case 8: StartLocation.MoveUpLeft(); if (cboard[StartLocation.x][StartLocation.y]) return (cboard[StartLocation.x][StartLocation.y]->displayletter); } //if function hasn't returned by now, square being looked at is pointer to null return '\0'; //return null char } void Coords::MoveRight() {(x==MaxX)? (x=0):(x++);} void Coords::MoveLeft() {(x==0)? (x=MaxX):(x--);} void Coords::MoveUp() {(y==0)? (y=MaxY):(y--);} void Coords::MoveDown() {(y==MaxY)? (y=0):(y++);} void Coords::MoveUpRight() {MoveUp(); MoveRight();} void Coords::MoveUpLeft() {MoveUp(); MoveLeft();} void Coords::MoveDownRight() {MoveDown(); MoveRight();} void Coords::MoveDownLeft() {MoveDown(); MoveLeft();} void Coords::MoveDir(int dir) { switch(dir) { case 1: MoveUp(); break; case 2: MoveUpRight(); break; case 3: MoveRight(); break; case 4: MoveDownRight(); break; case 5: MoveDown(); break; case 6: MoveDownLeft(); break; case 7: MoveLeft(); break; case 8: MoveUpLeft(); break; case 0: break; } } void Creature::Move(Grid G) { int movedir=DecideSquare(G); MoveTo(G,movedir); } int Creature::DecideSquare(Grid G) { Random X(1,8,8); //X.rptr now points to 8 unique random integers from [1,8] for (int i=0; i<8; i++) { int dir=X.rptr[i]; if (G.isEmpty(Location.x,Location.y,dir)) return dir; } return 0; } void Creature::MoveTo(Grid G, int dir) { Coords OldLocation=Location; Location.MoveDir(dir); G.cboard[Location.x][Location.y]=this; //point new location to this creature G.cboard[OldLocation.x][OldLocation.y]=NULL; //point old location to NULL } void Creature::Die() { if (!alive) { delete this; this=NULL; } } void Human::Breed(Grid G) { if (!breedcount) { Coords BreedLocation=Location; Random X(1,8,8); for (int i=0; i<8; i++) { BreedLocation.MoveDir(X.rptr[i]); if (!G.cboard[BreedLocation.x][BreedLocation.y]) { G.cboard[BreedLocation.x][BreedLocation.y])=new Human(BreedLocation.x,BreedLocation.y); return; } } } } int Human::DecideAttack(Grid G) { Coords AttackLocation=Location; Random X(1,8,8); int attackdir; for (int i=0; i<8; i++) { attackdir=X.rptr[i]; switch(G.CreatureType(Location.x,Location.y,attackdir)) { case 'H': break; case 'Z': return attackdir; case '\0': break; default: break; } } return 0; //no zombies! } int AttackRoll(int para1, int para2) { //outcome 1: Zombie wins, human dies //outcome 2: Human wins, zombie dies //outcome 3: Human wins, zombie dies, but human is bitten Random X(1,100,1); int roll= *(X.rptr); if (roll < para1) return 1; else if (roll < para2) return 2; else return 3; } void Human::AttackCreature(Grid G, int attackdirection) { Coords AttackLocation=Location; AttackLocation.MoveDir(attackdirection); int para1=33; int para2=33; if (vaccinated) para2=101; //makes attackroll > para 2 impossible, never gets infected if (armed) para1-=16; //reduces chance of zombie winning fight int roll=AttackRoll(para1,para2); //outcome 1: Zombie wins, human dies //outcome 2: Human wins, zombie dies //outcome 3: Human wins, zombie dies, but human is bitten switch(roll) { case 1: alive=0; //human (this) dies return; case 2: G.cboard[AttackLocation.x][AttackLocation.y]->alive=0; return; //zombie dies case 3: G.cboard[AttackLocation.x][AttackLocation.y]->alive=0; //zombie dies Random X(3,7,1); //human is bitten bitecount=*(X.rptr); return; } } int Zombie::DecideAttack(Grid G) { Coords AttackLocation=Location; Random X(1,8,8); int attackdir; for (int i=0; i<8; i++) { attackdir=X.rptr[i]; switch(G.CreatureType(Location.x,Location.y,attackdir)) { case 'H': return attackdir; case 'Z': break; case '\0': break; default: break; } } return 0; //no zombies! } void Zombie::AttackCreature(Grid G, int attackdirection) { int reversedirection; if (attackdirection < 9 && attackdirection>0) { (attackdirection<5)? (reversedirection=attackdirection+4):(reversedirection=attackdirection-4); } else reversedirection=0; //this should never happen //when a zombie attacks a human, the Human::AttackZombie() function is called //in the "reverse" direction, utilizing that function that has already been written Coords ZombieLocation=Location; Coords HumanLocation=Location; HumanLocation.MoveDir(attackdirection); if (G.cboard[HumanLocation.x][HumanLocation.y]) //if there is a human there, which there should be G.cboard[HumanLocation.x][HumanLocation.y]->AttackCreature(G,reversedirection); } void Zombie::Attack(Grid G) { int attackdirection=DecideAttack(G); AttackCreature(G,attackdirection); } main.cpp #include <cstdlib> #include <iostream> #include "definitions.h" using namespace std; int main(int argc, char *argv[]) { Grid G(500,500); system("PAUSE"); return EXIT_SUCCESS; }

    Read the article

  • Memory efficient int-int dict in Python

    - by Bolo
    Hi, I need a memory efficient int-int dict in Python that would support the following operations in O(log n) time: d[k] = v # replace if present v = d[k] # None or a negative number if not present I need to hold ~250M pairs, so it really has to be tight. Do you happen to know a suitable implementation (Python 2.7)? EDIT Removed impossible requirement and other nonsense. Thanks, Craig and Kylotan! To rephrase. Here's a trivial int-int dictionary with 1M pairs: >>> import random, sys >>> from guppy import hpy >>> h = hpy() >>> h.setrelheap() >>> d = {} >>> for _ in xrange(1000000): ... d[random.randint(0, sys.maxint)] = random.randint(0, sys.maxint) ... >>> h.heap() Partition of a set of 1999530 objects. Total size = 49161112 bytes. Index Count % Size % Cumulative % Kind (class / dict of class) 0 1 0 25165960 51 25165960 51 dict (no owner) 1 1999521 100 23994252 49 49160212 100 int On average, a pair of integers uses 49 bytes. Here's an array of 2M integers: >>> import array, random, sys >>> from guppy import hpy >>> h = hpy() >>> h.setrelheap() >>> a = array.array('i') >>> for _ in xrange(2000000): ... a.append(random.randint(0, sys.maxint)) ... >>> h.heap() Partition of a set of 14 objects. Total size = 8001108 bytes. Index Count % Size % Cumulative % Kind (class / dict of class) 0 1 7 8000028 100 8000028 100 array.array On average, a pair of integers uses 8 bytes. I accept that 8 bytes/pair in a dictionary is rather hard to achieve in general. Rephrased question: is there a memory-efficient implementation of int-int dictionary that uses considerably less than 49 bytes/pair?

    Read the article

  • Does pointing *.[int].mydomain.com to 192.168.1.[int] constitute a security threat

    - by Dave
    For testing purposes, I've found it's really useful to point whatever.machineIP.mydomain.com to 192.168.1.machineIP : that way we can test each other's code without fidgetting with hosts files. I'm aware that this identifies our local IP addresses to the outside world, but if someone could access the network, it'd be trivial to sniff which of the local IP addresses respond to port 80 anyway. Is there anything I'm not seeing? Credit for the idea: http://news.ycombinator.com/item?id=1168896

    Read the article

  • Cannot convert parameter 1 from 'short *' to 'int *' [closed]

    - by Torben Carrington
    I'm trying to learn pointers and since I recently learned that short int takes up less memory [2 bytes as apposed to the long int's memory usage of 4 which is the default for int] I wanted to create a pointer that uses the memory address of a short integer. I'm following a tutorial in my book about Pointers and it's using the Swap function. The problem is I receive this error the moment I change everything from int to short int: error C2664: 'Swap' : cannot convert parameter 1 from 'short *' to 'int *' 1 Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast Since my code is so small here is the whole thing: void Swap(short int *sipX, short int *sipY) { short int siTemp = *sipX; *sipX = *sipY; *sipY = siTemp; } int main() { short int siBig = 100; short int siSmall = 1; std::cout << "Pre-Swap: " << siBig << " " << siSmall << std::endl; Swap(&siBig, &siSmall); std::cout << "Post-Swap: " << siBig << " " << siSmall << std::endl; return 0; }

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >