Search Results

Search found 6 results on 1 pages for 'maxs'.

Page 1/1 | 1 

  • supermicro server ipmi problem - problem with keyboard layout

    - by maxs
    hi, we hava a supermicro server (x8dtl-if-O with suse 11): if i connect from my workstation (xppro-german)with the remote console i can not type any öä<... (on the server local - we have no problems - only remote). the keyboard layout of the workstation is german - if i switch the keyboard layout to english i can type öäü.... - but i don't can type <| ?? thx

    Read the article

  • Dimension Mismatch MatLab; cant figure out why it is mismatching

    - by Abid
    I think it may be a syntax issue, here is the code. load ([ 'C:\Users\Abid\Desktop\Inquiry Runs\dtS' ]) dtS((dtS==0))=nan; for j=2:9; maxS=max(dtS(j,:)); minS=min(dtS(j,:)); maxval(j,:)=dtS((dtS>(maxS-.1*maxS))); minval(j,:)=dtS((dtS<(minS+.1*minS))); avmax(j)=mean(maxval(j,:)); avmin(j)=mean(minval(j,:)); avs(j,:)=[avmax(j) avmin(j)] end So I know the the row matrices are different sizes every loop. For example maxval(j,:) will change depending one row it is looking through for certain values. I did this manually and I see that on the first loop the matrices are size (1,1), however, if I set the loop to run for only j=2, the row length is 13. Usually if a matrix is changing size on the loop, I only get a warning, but this time I think it is due to a reason I don't understand.

    Read the article

  • running multi threads in Java

    - by owca
    My task is to simulate activity of couple of persons. Each of them has few activities to perform in some random time: fast (0-5s), medium(5-10s), slow(10-20s) and very slow(20-30s). Each person performs its task independently in the same time. At the beginning of new task I should print it's random time, start the task and then after time passes show next task's time and start it. I've written run() function that counts time, but now it looks like threads are done one after another and not in the same time or maybe they're just printed in this way. public class People{ public static void main(String[] args){ Task tasksA[]={new Task("washing","fast"), new Task("reading","slow"), new Task("shopping","medium")}; Task tasksM[]={new Task("sleeping zzzzzzzzzz","very slow"), new Task("learning","slow"), new Task(" :** ","slow"), new Task("passing an exam","slow") }; Task tasksJ[]={new Task("listening music","medium"), new Task("doing nothing","slow"), new Task("walking","medium") }; BusyPerson friends[]={ new BusyPerson("Alice",tasksA), new BusyPerson("Mark",tasksM), new BusyPerson("John",tasksJ)}; System.out.println("STARTING....................."); for(BusyPerson f: friends) (new Thread(f)).start(); System.out.println("DONE........................."); } } class Task { private String task; private int time; private Task[]tasks; public Task(String t, String s){ task = t; Speed speed = new Speed(); time = speed.getSpeed(s); } public Task(Task[]tab){ Task[]table=new Task[tab.length]; for(int i=0; i < tab.length; i++){ table[i] = tab[i]; } this.tasks = table; } } class Speed { private static String[]hows = {"fast","medium","slow","very slow"}; private static int[]maxs = {5000, 10000, 20000, 30000}; public Speed(){ } public static int getSpeed( String speedString){ String s = speedString; int up_limit=0; int down_limit=0; int time=0; //get limits of time for(int i=0; i<hows.length; i++){ if(s.equals(hows[i])){ up_limit = maxs[i]; if(i>0){ down_limit = maxs[i-1]; } else{ down_limit = 0; } } } //get random time within the limits Random rand = new Random(); time = rand.nextInt(up_limit) + down_limit; return time; } } class BusyPerson implements Runnable { private String name; private Task[] person_tasks; private BusyPerson[]persons; public BusyPerson(String s, Task[]t){ name = s; person_tasks = t; } public BusyPerson(BusyPerson[]tab){ BusyPerson[]table=new BusyPerson[tab.length]; for(int i=0; i < tab.length; i++){ table[i] = tab[i]; } this.persons = table; } public void run() { int time = 0; double t1=0; for(Task t: person_tasks){ t1 = (double)t.time/1000; System.out.println(name+" is... "+t.task+" "+t.speed+ " ("+t1+" sec)"); while (time == t.time) { try { Thread.sleep(10); } catch(InterruptedException exc) { System.out.println("End of thread."); return; } time = time + 100; } } } } And my output : STARTING..................... DONE......................... Mark is... sleeping zzzzzzzzzz very slow (36.715 sec) Mark is... learning slow (10.117 sec) Mark is... :** slow (29.543 sec) Mark is... passing an exam slow (23.429 sec) Alice is... washing fast (1.209 sec) Alice is... reading slow (23.21 sec) Alice is... shopping medium (11.237 sec) John is... listening music medium (8.263 sec) John is... doing nothing slow (13.576 sec) John is... walking medium (11.322 sec) Whilst it should be like this : STARTING..................... DONE......................... John is... listening music medium (7.05 sec) Alice is... washing fast (3.268 sec) Mark is... sleeping zzzzzzzzzz very slow (23.71 sec) Alice is... reading slow (15.516 sec) John is... doing nothing slow (13.692 sec) Alice is... shopping medium (8.371 sec) Mark is... learning slow (13.904 sec) John is... walking medium (5.172 sec) Mark is... :** slow (12.322 sec) Mark is... passing an exam very slow (27.1 sec)

    Read the article

  • initializing a vector of custom class in c++

    - by Flamewires
    Hey basically Im trying to store a "solution" and create a vector of these. The problem I'm having is with initialization. Heres my class for reference class Solution { private: // boost::thread m_Thread; int itt_found; int dim; pfn_fitness f; double value; std::vector<double> x; public: Solution(size_t size, int funcNo) : itt_found(0), x(size, 0.0), value(0.0), dim(30), f(Eval_Functions[funcNo]) { for (int i = 1; i < (int) size; i++) { x[i] = ((double)rand()/((double)RAND_MAX))*maxs[funcNo]; } } Solution() : itt_found(0), x(31, 0.0), value(0.0), dim(30), f(Eval_Functions[1]) { for (int i = 1; i < 31; i++) { x[i] = ((double)rand()/((double)RAND_MAX))*maxs[1]; } } Solution operator= (Solution S) { x = S.GetX(); itt_found = S.GetIttFound(); dim = S.GetDim(); f = S.GetFunc(); value = S.GetValue(); return *this; } void start() { value = f (dim, x); } /* plus additional getter/setter methods*/ } Solution S(30, 1) or Solution(2, 5) work and initalizes everything, but I need X of these solution objects. std::vector<Solution> Parents(X) will create X solutions with the default constructor and i want to construct using the (int, int) constructor. Is there any easy(one liner?) way to do this? Or would i have to do something like: size_t numparents = 10; vector<Solution> Parents; Parents.reserve(numparents); for (int i = 0; i<(int)numparents; i++) { Solution S(31, 0); Parents.push_back(S); }

    Read the article

  • Window Size when SizeToContent is not specified

    - by moogs
    When the following XAML used, the window size is not 5000x5000, but some small window where the button is cropped. <Window x:Class="WpfApplication1.Window1" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="Window1" > <Button Width="5000" Height="5000">XXX</Button> </Window> From what I can tell, size I did not specify the SizeToContent attribute, the default is "Manual", so it will use *size of a window is determined by other properties, including Width, Height, MaxWidth, MaxHeight, MinWidth, and MinHeight. * From the WPF Windows Overview, it seems those other properties are FrameworkElement::MinHeight/Width, and FrameworkElement::MaxHeight. But since the default for the Mins are 0, the Maxs are Infinity and the Width/Height is Nan....what's going on? Where is WPF getting the window size? Any pointers to the right direction would be appreciated.

    Read the article

  • Movement and Collision with AABB

    - by Jeremy Giberson
    I'm having a little difficulty figuring out the following scenarios. http://i.stack.imgur.com/8lM6i.png In scenario A, the moving entity has fallen to (and slightly into the floor). The current position represents the projected position that will occur if I apply the acceleration & velocity as usual without worrying about collision. The Next position, represents the corrected projection position after collision check. The resulting end position is the falling entity now rests ON the floor--that is, in a consistent state of collision by sharing it's bottom X axis with the floor's top X axis. My current update loop looks like the following: // figure out forces & accelerations and project an objects next position // check collision occurrence from current position -> projected position // if a collision occurs, adjust projection position Which seems to be working for the scenario of my object falling to the floor. However, the situation becomes sticky when trying to figure out scenario's B & C. In scenario B, I'm attempt to move along the floor on the X axis (player is pressing right direction button) additionally, gravity is pulling the object into the floor. The problem is, when the object attempts to move the collision detection code is going to recognize that the object is already colliding with the floor to begin with, and auto correct any movement back to where it was before. In scenario C, I'm attempting to jump off the floor. Again, because the object is already in a constant collision with the floor, when the collision routine checks to make sure moving from current position to projected position doesn't result in a collision, it will fail because at the beginning of the motion, the object is already colliding. How do you allow movement along the edge of an object? How do you allow movement away from an object you are already colliding with. Extra Info My collision routine is based on AABB sweeping test from an old gamasutra article, http://www.gamasutra.com/view/feature/3383/simple_intersection_tests_for_games.php?page=3 My bounding box implementation is based on top left/bottom right instead of midpoint/extents, so my min/max functions are adjusted. Otherwise, here is my bounding box class with collision routines: public class BoundingBox { public XYZ topLeft; public XYZ bottomRight; public BoundingBox(float x, float y, float z, float w, float h, float d) { topLeft = new XYZ(); bottomRight = new XYZ(); topLeft.x = x; topLeft.y = y; topLeft.z = z; bottomRight.x = x+w; bottomRight.y = y+h; bottomRight.z = z+d; } public BoundingBox(XYZ position, XYZ dimensions, boolean centered) { topLeft = new XYZ(); bottomRight = new XYZ(); topLeft.x = position.x; topLeft.y = position.y; topLeft.z = position.z; bottomRight.x = position.x + (centered ? dimensions.x/2 : dimensions.x); bottomRight.y = position.y + (centered ? dimensions.y/2 : dimensions.y); bottomRight.z = position.z + (centered ? dimensions.z/2 : dimensions.z); } /** * Check if a point lies inside a bounding box * @param box * @param point * @return */ public static boolean isPointInside(BoundingBox box, XYZ point) { if(box.topLeft.x <= point.x && point.x <= box.bottomRight.x && box.topLeft.y <= point.y && point.y <= box.bottomRight.y && box.topLeft.z <= point.z && point.z <= box.bottomRight.z) return true; return false; } /** * Check for overlap between two bounding boxes using separating axis theorem * if two boxes are separated on any axis, they cannot be overlapping * @param a * @param b * @return */ public static boolean isOverlapping(BoundingBox a, BoundingBox b) { XYZ dxyz = new XYZ(b.topLeft.x - a.topLeft.x, b.topLeft.y - a.topLeft.y, b.topLeft.z - a.topLeft.z); // if b - a is positive, a is first on the axis and we should use its extent // if b -a is negative, b is first on the axis and we should use its extent // check for x axis separation if ((dxyz.x >= 0 && a.bottomRight.x-a.topLeft.x < dxyz.x) // negative scale, reverse extent sum, flip equality ||(dxyz.x < 0 && b.topLeft.x-b.bottomRight.x > dxyz.x)) return false; // check for y axis separation if ((dxyz.y >= 0 && a.bottomRight.y-a.topLeft.y < dxyz.y) // negative scale, reverse extent sum, flip equality ||(dxyz.y < 0 && b.topLeft.y-b.bottomRight.y > dxyz.y)) return false; // check for z axis separation if ((dxyz.z >= 0 && a.bottomRight.z-a.topLeft.z < dxyz.z) // negative scale, reverse extent sum, flip equality ||(dxyz.z < 0 && b.topLeft.z-b.bottomRight.z > dxyz.z)) return false; // not separated on any axis, overlapping return true; } public static boolean isContactEdge(int xyzAxis, BoundingBox a, BoundingBox b) { switch(xyzAxis) { case XYZ.XCOORD: if(a.topLeft.x == b.bottomRight.x || a.bottomRight.x == b.topLeft.x) return true; return false; case XYZ.YCOORD: if(a.topLeft.y == b.bottomRight.y || a.bottomRight.y == b.topLeft.y) return true; return false; case XYZ.ZCOORD: if(a.topLeft.z == b.bottomRight.z || a.bottomRight.z == b.topLeft.z) return true; return false; } return false; } /** * Sweep test min extent value * @param box * @param xyzCoord * @return */ public static float min(BoundingBox box, int xyzCoord) { switch(xyzCoord) { case XYZ.XCOORD: return box.topLeft.x; case XYZ.YCOORD: return box.topLeft.y; case XYZ.ZCOORD: return box.topLeft.z; default: return 0f; } } /** * Sweep test max extent value * @param box * @param xyzCoord * @return */ public static float max(BoundingBox box, int xyzCoord) { switch(xyzCoord) { case XYZ.XCOORD: return box.bottomRight.x; case XYZ.YCOORD: return box.bottomRight.y; case XYZ.ZCOORD: return box.bottomRight.z; default: return 0f; } } /** * Test if bounding box A will overlap bounding box B at any point * when box A moves from position 0 to position 1 and box B moves from position 0 to position 1 * Note, sweep test assumes bounding boxes A and B's dimensions do not change * * @param a0 box a starting position * @param a1 box a ending position * @param b0 box b starting position * @param b1 box b ending position * @param aCollisionOut xyz of box a's position when/if a collision occurs * @param bCollisionOut xyz of box b's position when/if a collision occurs * @return */ public static boolean sweepTest(BoundingBox a0, BoundingBox a1, BoundingBox b0, BoundingBox b1, XYZ aCollisionOut, XYZ bCollisionOut) { // solve in reference to A XYZ va = new XYZ(a1.topLeft.x-a0.topLeft.x, a1.topLeft.y-a0.topLeft.y, a1.topLeft.z-a0.topLeft.z); XYZ vb = new XYZ(b1.topLeft.x-b0.topLeft.x, b1.topLeft.y-b0.topLeft.y, b1.topLeft.z-b0.topLeft.z); XYZ v = new XYZ(vb.x-va.x, vb.y-va.y, vb.z-va.z); // check for initial overlap if(BoundingBox.isOverlapping(a0, b0)) { // java pass by ref/value gotcha, have to modify value can't reassign it aCollisionOut.x = a0.topLeft.x; aCollisionOut.y = a0.topLeft.y; aCollisionOut.z = a0.topLeft.z; bCollisionOut.x = b0.topLeft.x; bCollisionOut.y = b0.topLeft.y; bCollisionOut.z = b0.topLeft.z; return true; } // overlap min/maxs XYZ u0 = new XYZ(); XYZ u1 = new XYZ(1,1,1); float t0, t1; // iterate axis and find overlaps times (x=0, y=1, z=2) for(int i = 0; i < 3; i++) { float aMax = max(a0, i); float aMin = min(a0, i); float bMax = max(b0, i); float bMin = min(b0, i); float vi = XYZ.getCoord(v, i); if(aMax < bMax && vi < 0) XYZ.setCoord(u0, i, (aMax-bMin)/vi); else if(bMax < aMin && vi > 0) XYZ.setCoord(u0, i, (aMin-bMax)/vi); if(bMax > aMin && vi < 0) XYZ.setCoord(u1, i, (aMin-bMax)/vi); else if(aMax > bMin && vi > 0) XYZ.setCoord(u1, i, (aMax-bMin)/vi); } // get times of collision t0 = Math.max(u0.x, Math.max(u0.y, u0.z)); t1 = Math.min(u1.x, Math.min(u1.y, u1.z)); // collision only occurs if t0 < t1 if(t0 <= t1 && t0 != 0) // not t0 because we already tested it! { // t0 is the normalized time of the collision // then the position of the bounding boxes would // be their original position + velocity*time aCollisionOut.x = a0.topLeft.x + va.x*t0; aCollisionOut.y = a0.topLeft.y + va.y*t0; aCollisionOut.z = a0.topLeft.z + va.z*t0; bCollisionOut.x = b0.topLeft.x + vb.x*t0; bCollisionOut.y = b0.topLeft.y + vb.y*t0; bCollisionOut.z = b0.topLeft.z + vb.z*t0; return true; } else return false; } }

    Read the article

1