Search Results

Search found 20447 results on 818 pages for 'f5 big ip'.

Page 101/818 | < Previous Page | 97 98 99 100 101 102 103 104 105 106 107 108  | Next Page >

  • Are there any worse sorting algorithms than Bogosort (a.k.a Monkey Sort)?

    - by womp
    My co-workers took me back in time to my University days with a discussion of sorting algorithms this morning. We reminisced about our favorites like StupidSort, and one of us was sure we had seen a sort algorithm that was O(n!). That got me started looking around for the "worst" sorting algorithms I could find. We postulated that a completely random sort would be pretty bad (i.e. randomize the elements - is it in order? no? randomize again), and I looked around and found out that it's apparently called BogoSort, or Monkey Sort, or sometimes just Random Sort. Monkey Sort appears to have a worst case performance of O(∞), a best case performance of O(n), and an average performance of O(n * n!). Are there any named algorithms that have worse average performance than O(n * n!)? Or are just sillier than Monkey Sort in general?

    Read the article

  • Linear complexity and quadratic complexity

    - by jasonline
    I'm just not sure... If you have a code that can be executed in either of the following complexities: A sequence of O(n), like for example: two O(n) in sequence O(n²) The preferred version would be the one that can be executed in linear time. Would there be a time such that the sequence of O(n) would be too much and that O(n²) would be preferred? In other words, is the statement C x O(n) < O(n²) always true for any constant C? Why or why not? What are the factors that would affect the condition such that it would be better to choose the O(n²) complexity?

    Read the article

  • IP Blocking on error logs PHP

    - by Lee
    Is there a way to block error logging from a specific set of IP's ? Basically macafee carry out a range of testing on the server nightly and we don't want to record these in our error logs. Is there a good way to avoid this from happening ? Hope you can advice!

    Read the article

  • How to analyze the efficiency of this algorithm Part 2

    - by Leonardo Lopez
    I found an error in the way I explained this question before, so here it goes again: FUNCTION SEEK(A,X) 1. FOUND = FALSE 2. K = 1 3. WHILE (NOT FOUND) AND (K < N) a. IF (A[K] = X THEN 1. FOUND = TRUE b. ELSE 1. K = K + 1 4. RETURN Analyzing this algorithm (pseudocode), I can count the number of steps it takes to finish, and analyze its efficiency in theta notation, T(n), a linear algorithm. OK. This following code depends on the inner formulas inside the loop in order to finish, the deal is that there is no variable N in the code, therefore the efficiency of this algorithm will always be the same since we're assigning the value of 1 to both A & B variables: 1. A = 1 2. B = 1 3. UNTIL (B > 100) a. B = 2A - 2 b. A = A + 3 Now I believe this algorithm performs in constant time, always. But how can I use Algebra in order to find out how many steps it takes to finish?

    Read the article

  • Best way to do powerOf(int x, int n)?

    - by Mike
    So given x, and power, n, solve for X^n. There's the easy way that's O(n)... I can get it down to O(n/2), by doing numSquares = n/2; numOnes = n%2; return (numSquares * x * x + numOnes * x); Now there's a log(n) solution, does anyone know how to do it? It can be done recursively.

    Read the article

  • How is schoolbook long division an O(n^2) algorithm?

    - by eSKay
    Premise: This Wikipedia page suggests that the computational complexity of Schoolbook long division is O(n^2). Deduction: Instead of taking "Two n-digit numbers", if I take one n-digit number and one m-digit number, then the complexity would be O(n*m). Contradiction: Suppose you divide 100000000 (n digits) by 1000 (m digits), you get 100000, which takes six steps to arrive at. Now, if you divide 100000000 (n digits) by 10000 (m digits), you get 10000 . Now this takes only five steps. Conclusion: So, it seems that the order of computation should be something like O(n/m). Question: Who is wrong, me or Wikipedia, and where?

    Read the article

  • Where to find great proxy servers for testing GeoIP services?

    - by Andreas
    We would like to test a GeoIP-Service. Therefore we need to go to the site with an IP from another country. There are a lot of free proxy lists like http://nntime.com/proxy-country/ The problem with them is, that only the CoDeen-Proxies are working. But with CoDeen you can't select your country of origin (the same as with TOR). You get redirected to a random proxy in the network. Where to find good proxy server for testing the GeoIP Services? Free proxy servers would be great, but if they cost something small that doesn't matter.

    Read the article

  • snmp, how to retrieve ip connected to the router with MIB-II

    - by dany
    Hi all, I want to create a program that acts as manager and that queries the router (or sets a trap) to obtain the list of ip connected to it. My router has these functionalities: SNMP v1, v2c, built-in MIB-I, MIB-II agent. Is it possible to retrieve these informations quering the MIB-II agent of the router in a standard way (not vendor dependent)? Bye

    Read the article

  • arp protocol, mac and ip

    - by lolalola
    Hello, interested in ARP and wanted to check. ARP protocol is used found MAC and IP addresses, yes? How is it different from this: IPHostEntry iphostentry = Dns.GetHostByName(strHostName);

    Read the article

  • Asymptotic runtime of list-to-tree function

    - by Deestan
    I have a merge function which takes time O(log n) to combine two trees into one, and a listToTree function which converts an initial list of elements to singleton trees and repeatedly calls merge on each successive pair of trees until only one tree remains. Function signatures and relevant implementations are as follows: merge :: Tree a -> Tree a -> Tree a --// O(log n) where n is size of input trees singleton :: a -> Tree a --// O(1) empty :: Tree a --// O(1) listToTree :: [a] -> Tree a --// Supposedly O(n) listToTree = listToTreeR . (map singleton) listToTreeR :: [Tree a] -> Tree a listToTreeR [] = empty listToTreeR (x:[]) = x listToTreeR xs = listToTreeR (mergePairs xs) mergePairs :: [Tree a] -> [Tree a] mergePairs [] = [] mergePairs (x:[]) = [x] mergePairs (x:y:xs) = merge x y : mergePairs xs This is a slightly simplified version of exercise 3.3 in Purely Functional Data Structures by Chris Okasaki. According to the exercise, I shall now show that listToTree takes O(n) time. Which I can't. :-( There are trivially ceil(log n) recursive calls to listToTreeR, meaning ceil(log n) calls to mergePairs. The running time of mergePairs is dependent on the length of the list, and the sizes of the trees. The length of the list is 2^h-1, and the sizes of the trees are log(n/(2^h)), where h=log n is the first recursive step, and h=1 is the last recursive step. Each call to mergePairs thus takes time (2^h-1) * log(n/(2^h)) I'm having trouble taking this analysis any further. Can anyone give me a hint in the right direction?

    Read the article

  • Calculate broadcast address given IP address and subnet in PowerShell

    - by halr9000
    My goal is to calculate the broadcast address when given the IP and subnet mask of a host node. I know, sounds like homework. Once I reasoned through my task and boiled it down to this, I was amused with myself. Anyway, the solution will look something like the one in this question I suppose, but I'm not a math major and my C sucks. I could do with a PowerShell (preferred) or C# example to get me going. thanks!

    Read the article

  • php: geting ip addres

    - by Syom
    i want to get an ip addres of visitors. could you tell me what element of $_SERVER[] i should use? $_SERVER['HTTP_CLIENT_IP']; $_SERVER['HTTP_X_FORWARDED_FOR']; or $_SERVER['REMOTE_ADDR']; thanks

    Read the article

  • Unix: millionth number in the serie 2 3 4 6 9 13 19 28 42 63 ... ?

    - by HH
    It takes about minute to achieve 3000 in my comp but I need to know the millionth number in the serie. The definition is recursive so I cannot see any shortcuts except to calculate everything before the millionth number. How can you fast calculate millionth number in the serie? Serie Def n_{i+1} = \floor{ 3/2 * n_{i} } and n_{0}=2. Interestingly, only one site list the serie according to Goolge: this one. Too slow Bash code #!/bin/bash function serie { n=$( echo "3/2*$n" | bc -l | tr '\n' ' ' | sed -e 's@\\@@g' -e 's@ @@g' ); # bc gives \ at very large numbers, sed-tr for it n=$( echo $n/1 | bc ) #DUMMY FLOOR func } n=2 nth=1 while [ true ]; #$nth -lt 500 ]; do serie $n # n gets new value in the function throught global value echo $nth $n nth=$( echo $nth + 1 | bc ) #n++ done

    Read the article

< Previous Page | 97 98 99 100 101 102 103 104 105 106 107 108  | Next Page >