Search Results

Search found 9215 results on 369 pages for 'double pointers'.

Page 105/369 | < Previous Page | 101 102 103 104 105 106 107 108 109 110 111 112  | Next Page >

  • Avoiding instanceof in Java

    - by Mark Lutton
    Having a chain of "instanceof" operations is considered a "code smell". The standard answer is "use polymorphism". How would I do it in this case? There are a number of subclasses of a base class; none of them are under my control. An analogous situation would be with the Java classes Integer, Double, BigDecimal etc. if (obj instanceof Integer) {NumberStuff.handle((Integer)obj);} else if (obj instanceof BigDecimal) {BigDecimalStuff.handle((BigDecimal)obj);} else if (obj instanceof Double) {DoubleStuff.handle((Double)obj);} I do have control over NumberStuff and so on. I don't want to use many lines of code where a few lines would do. (Sometimes I make a HashMap mapping Integer.class to an instance of IntegerStuff, BigDecimal.class to an instance of BigDecimalStuff etc. But today I want something simpler.) I'd like something as simple as this: public static handle(Integer num) { ... } public static handle(BigDecimal num) { ... } But Java just doesn't work that way. I'd like to use static methods when formatting. The things I'm formatting are composite, where a Thing1 can contain an array Thing2s and a Thing2 can contain an array of Thing1s. I had a problem when I implemented my formatters like this: class Thing1Formatter { private static Thing2Formatter thing2Formatter = new Thing2Formatter(); public format(Thing thing) { thing2Formatter.format(thing.innerThing2); } } class Thing2Formatter { private static Thing1Formatter thing1Formatter = new Thing1Formatter(); public format(Thing2 thing) { thing1Formatter.format(thing.innerThing1); } } Yes, I know the HashMap and a bit more code can fix that too. But the "instanceof" seems so readable and maintainable by comparison. Is there anything simple but not smelly?

    Read the article

  • correct method "get next value"

    - by kapec
    Hello!! i need your help! this is my code, it not so good as i wander - it is not working. i have not idea anymore. </code>// need to get next parameter static double getParametr(){ Scanner scanner = new Scanner(System.in); param = scanner.nextDouble(); return param; } .......... ................ if (i==1){ System.out.println("vvedite storoni pryamougolnika: "); Shape parA = new Rectangle(); parA.a = Shape.getParametr(); --- this is ok double aa = parA.a; Shape parB = new Rectangle(); parB.b = Shape.getParametr(); ------ this is no work!!! double bb = parB.b; Rectangle rec = new Rectangle(aa, bb); arrayFigur[i] = rec.area(); } how fix mistake?

    Read the article

  • Help with Collision Resolution?

    - by Milo
    I'm trying to learn about physics by trying to make a simplified GTA 2 clone. My only problem is collision resolution. Everything else works great. I have a rigid body class and from there cars and a wheel class: class RigidBody extends Entity { //linear private Vector2D velocity = new Vector2D(); private Vector2D forces = new Vector2D(); private OBB2D predictionRect = new OBB2D(new Vector2D(), 1.0f, 1.0f, 0.0f); private float mass; private Vector2D deltaVec = new Vector2D(); private Vector2D v = new Vector2D(); //angular private float angularVelocity; private float torque; private float inertia; //graphical private Vector2D halfSize = new Vector2D(); private Bitmap image; private Matrix mat = new Matrix(); private float[] Vector2Ds = new float[2]; private Vector2D tangent = new Vector2D(); private static Vector2D worldRelVec = new Vector2D(); private static Vector2D relWorldVec = new Vector2D(); private static Vector2D pointVelVec = new Vector2D(); public RigidBody() { //set these defaults so we don't get divide by zeros mass = 1.0f; inertia = 1.0f; setLayer(LAYER_OBJECTS); } protected void rectChanged() { if(getWorld() != null) { getWorld().updateDynamic(this); } } //intialize out parameters public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //store physical parameters this.halfSize = halfSize; this.mass = mass; image = bitmap; inertia = (1.0f / 20.0f) * (halfSize.x * halfSize.x) * (halfSize.y * halfSize.y) * mass; RectF rect = new RectF(); float scalar = 10.0f; rect.left = (int)-halfSize.x * scalar; rect.top = (int)-halfSize.y * scalar; rect.right = rect.left + (int)(halfSize.x * 2.0f * scalar); rect.bottom = rect.top + (int)(halfSize.y * 2.0f * scalar); setRect(rect); predictionRect.set(rect); } public void setLocation(Vector2D position, float angle) { getRect().set(position, getWidth(), getHeight(), angle); rectChanged(); } public void setPredictionLocation(Vector2D position, float angle) { getPredictionRect().set(position, getWidth(), getHeight(), angle); } public void setPredictionCenter(Vector2D center) { getPredictionRect().moveTo(center); } public void setPredictionAngle(float angle) { predictionRect.setAngle(angle); } public Vector2D getPosition() { return getRect().getCenter(); } public OBB2D getPredictionRect() { return predictionRect; } @Override public void update(float timeStep) { doUpdate(false,timeStep); } public void doUpdate(boolean prediction, float timeStep) { //integrate physics //linear Vector2D acceleration = Vector2D.scalarDivide(forces, mass); if(prediction) { Vector2D velocity = Vector2D.add(this.velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); c = Vector2D.add(getRect().getCenter(), Vector2D.scalarMultiply(velocity , timeStep)); setPredictionCenter(c); //forces = new Vector2D(0,0); //clear forces } else { velocity.x += (acceleration.x * timeStep); velocity.y += (acceleration.y * timeStep); //velocity = Vector2D.add(velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); v.x = getRect().getCenter().getX() + (velocity.x * timeStep); v.y = getRect().getCenter().getY() + (velocity.y * timeStep); deltaVec.x = v.x - c.x; deltaVec.y = v.y - c.y; deltaVec.normalize(); setCenter(v.x, v.y); forces.x = 0; //clear forces forces.y = 0; } //angular float angAcc = torque / inertia; if(prediction) { float angularVelocity = this.angularVelocity + angAcc * timeStep; setPredictionAngle(getAngle() + angularVelocity * timeStep); //torque = 0; //clear torque } else { angularVelocity += angAcc * timeStep; setAngle(getAngle() + angularVelocity * timeStep); torque = 0; //clear torque } } public void updatePrediction(float timeStep) { doUpdate(true, timeStep); } //take a relative Vector2D and make it a world Vector2D public Vector2D relativeToWorld(Vector2D relative) { mat.reset(); Vector2Ds[0] = relative.x; Vector2Ds[1] = relative.y; mat.postRotate(JMath.radToDeg(getAngle())); mat.mapVectors(Vector2Ds); relWorldVec.x = Vector2Ds[0]; relWorldVec.y = Vector2Ds[1]; return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //take a world Vector2D and make it a relative Vector2D public Vector2D worldToRelative(Vector2D world) { mat.reset(); Vector2Ds[0] = world.x; Vector2Ds[1] = world.y; mat.postRotate(JMath.radToDeg(-getAngle())); mat.mapVectors(Vector2Ds); return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //velocity of a point on body public Vector2D pointVelocity(Vector2D worldOffset) { tangent.x = -worldOffset.y; tangent.y = worldOffset.x; return Vector2D.add( Vector2D.scalarMultiply(tangent, angularVelocity) , velocity); } public void applyForce(Vector2D worldForce, Vector2D worldOffset) { //add linear force forces.x += worldForce.x; forces.y += worldForce.y; //add associated torque torque += Vector2D.cross(worldOffset, worldForce); } @Override public void draw( GraphicsContext c) { c.drawRotatedScaledBitmap(image, getPosition().x, getPosition().y, getWidth(), getHeight(), getAngle()); } public Vector2D getVelocity() { return velocity; } public void setVelocity(Vector2D velocity) { this.velocity = velocity; } public Vector2D getDeltaVec() { return deltaVec; } } Vehicle public class Wheel { private Vector2D forwardVec; private Vector2D sideVec; private float wheelTorque; private float wheelSpeed; private float wheelInertia; private float wheelRadius; private Vector2D position = new Vector2D(); public Wheel(Vector2D position, float radius) { this.position = position; setSteeringAngle(0); wheelSpeed = 0; wheelRadius = radius; wheelInertia = (radius * radius) * 1.1f; } public void setSteeringAngle(float newAngle) { Matrix mat = new Matrix(); float []vecArray = new float[4]; //forward Vector vecArray[0] = 0; vecArray[1] = 1; //side Vector vecArray[2] = -1; vecArray[3] = 0; mat.postRotate(newAngle / (float)Math.PI * 180.0f); mat.mapVectors(vecArray); forwardVec = new Vector2D(vecArray[0], vecArray[1]); sideVec = new Vector2D(vecArray[2], vecArray[3]); } public void addTransmissionTorque(float newValue) { wheelTorque += newValue; } public float getWheelSpeed() { return wheelSpeed; } public Vector2D getAnchorPoint() { return position; } public Vector2D calculateForce(Vector2D relativeGroundSpeed, float timeStep, boolean prediction) { //calculate speed of tire patch at ground Vector2D patchSpeed = Vector2D.scalarMultiply(Vector2D.scalarMultiply( Vector2D.negative(forwardVec), wheelSpeed), wheelRadius); //get velocity difference between ground and patch Vector2D velDifference = Vector2D.add(relativeGroundSpeed , patchSpeed); //project ground speed onto side axis Float forwardMag = new Float(0.0f); Vector2D sideVel = velDifference.project(sideVec); Vector2D forwardVel = velDifference.project(forwardVec, forwardMag); //calculate super fake friction forces //calculate response force Vector2D responseForce = Vector2D.scalarMultiply(Vector2D.negative(sideVel), 2.0f); responseForce = Vector2D.subtract(responseForce, forwardVel); float topSpeed = 500.0f; //calculate torque on wheel wheelTorque += forwardMag * wheelRadius; //integrate total torque into wheel wheelSpeed += wheelTorque / wheelInertia * timeStep; //top speed limit (kind of a hack) if(wheelSpeed > topSpeed) { wheelSpeed = topSpeed; } //clear our transmission torque accumulator wheelTorque = 0; //return force acting on body return responseForce; } public void setTransmissionTorque(float newValue) { wheelTorque = newValue; } public float getTransmissionTourque() { return wheelTorque; } public void setWheelSpeed(float speed) { wheelSpeed = speed; } } //our vehicle object public class Vehicle extends RigidBody { private Wheel [] wheels = new Wheel[4]; private boolean throttled = false; public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //front wheels wheels[0] = new Wheel(new Vector2D(halfSize.x, halfSize.y), 0.45f); wheels[1] = new Wheel(new Vector2D(-halfSize.x, halfSize.y), 0.45f); //rear wheels wheels[2] = new Wheel(new Vector2D(halfSize.x, -halfSize.y), 0.75f); wheels[3] = new Wheel(new Vector2D(-halfSize.x, -halfSize.y), 0.75f); super.initialize(halfSize, mass, bitmap); } public void setSteering(float steering) { float steeringLock = 0.13f; //apply steering angle to front wheels wheels[0].setSteeringAngle(steering * steeringLock); wheels[1].setSteeringAngle(steering * steeringLock); } public void setThrottle(float throttle, boolean allWheel) { float torque = 85.0f; throttled = true; //apply transmission torque to back wheels if (allWheel) { wheels[0].addTransmissionTorque(throttle * torque); wheels[1].addTransmissionTorque(throttle * torque); } wheels[2].addTransmissionTorque(throttle * torque); wheels[3].addTransmissionTorque(throttle * torque); } public void setBrakes(float brakes) { float brakeTorque = 15.0f; //apply brake torque opposing wheel vel for (Wheel wheel : wheels) { float wheelVel = wheel.getWheelSpeed(); wheel.addTransmissionTorque(-wheelVel * brakeTorque * brakes); } } public void doUpdate(float timeStep, boolean prediction) { for (Wheel wheel : wheels) { float wheelVel = wheel.getWheelSpeed(); //apply negative force to naturally slow down car if(!throttled && !prediction) wheel.addTransmissionTorque(-wheelVel * 0.11f); Vector2D worldWheelOffset = relativeToWorld(wheel.getAnchorPoint()); Vector2D worldGroundVel = pointVelocity(worldWheelOffset); Vector2D relativeGroundSpeed = worldToRelative(worldGroundVel); Vector2D relativeResponseForce = wheel.calculateForce(relativeGroundSpeed, timeStep,prediction); Vector2D worldResponseForce = relativeToWorld(relativeResponseForce); applyForce(worldResponseForce, worldWheelOffset); } //no throttling yet this frame throttled = false; if(prediction) { super.updatePrediction(timeStep); } else { super.update(timeStep); } } @Override public void update(float timeStep) { doUpdate(timeStep,false); } public void updatePrediction(float timeStep) { doUpdate(timeStep,true); } public void inverseThrottle() { float scalar = 0.2f; for(Wheel wheel : wheels) { wheel.setTransmissionTorque(-wheel.getTransmissionTourque() * scalar); wheel.setWheelSpeed(-wheel.getWheelSpeed() * 0.1f); } } } And my big hack collision resolution: private void update() { camera.setPosition((vehicle.getPosition().x * camera.getScale()) - ((getWidth() ) / 2.0f), (vehicle.getPosition().y * camera.getScale()) - ((getHeight() ) / 2.0f)); //camera.move(input.getAnalogStick().getStickValueX() * 15.0f, input.getAnalogStick().getStickValueY() * 15.0f); if(input.isPressed(ControlButton.BUTTON_GAS)) { vehicle.setThrottle(1.0f, false); } if(input.isPressed(ControlButton.BUTTON_STEAL_CAR)) { vehicle.setThrottle(-1.0f, false); } if(input.isPressed(ControlButton.BUTTON_BRAKE)) { vehicle.setBrakes(1.0f); } vehicle.setSteering(input.getAnalogStick().getStickValueX()); //vehicle.update(16.6666666f / 1000.0f); boolean colided = false; vehicle.updatePrediction(16.66666f / 1000.0f); List<Entity> buildings = world.queryStaticSolid(vehicle,vehicle.getPredictionRect()); if(buildings.size() > 0) { colided = true; } if(!colided) { vehicle.update(16.66f / 1000.0f); } else { Vector2D delta = vehicle.getDeltaVec(); vehicle.setVelocity(Vector2D.negative(vehicle.getVelocity().multiply(0.2f)). add(delta.multiply(-1.0f))); vehicle.inverseThrottle(); } } Here is OBB public class OBB2D { // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(Vector2D center, float w, float h, float angle) { set(center,w,h,angle); } public OBB2D(float left, float top, float width, float height) { set(new Vector2D(left + (width / 2), top + (height / 2)),width,height,0.0f); } public void set(Vector2D center,float w, float h,float angle) { Vector2D X = new Vector2D( (float)Math.cos(angle), (float)Math.sin(angle)); Vector2D Y = new Vector2D((float)-Math.sin(angle), (float)Math.cos(angle)); X = X.multiply( w / 2); Y = Y.multiply( h / 2); corner[0] = center.subtract(X).subtract(Y); corner[1] = center.add(X).subtract(Y); corner[2] = center.add(X).add(Y); corner[3] = center.subtract(X).add(Y); computeAxes(); extents.x = w / 2; extents.y = h / 2; computeDimensions(center,angle); } private void computeDimensions(Vector2D center,float angle) { this.center.x = center.x; this.center.y = center.y; this.angle = angle; boundingRect.left = Math.min(Math.min(corner[0].x, corner[3].x), Math.min(corner[1].x, corner[2].x)); boundingRect.top = Math.min(Math.min(corner[0].y, corner[1].y),Math.min(corner[2].y, corner[3].y)); boundingRect.right = Math.max(Math.max(corner[1].x, corner[2].x), Math.max(corner[0].x, corner[3].x)); boundingRect.bottom = Math.max(Math.max(corner[2].y, corner[3].y),Math.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(new Vector2D(rect.centerX(),rect.centerY()),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0] = corner[1].subtract(corner[0]); axis[1] = corner[3].subtract(corner[0]); // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { axis[a] = axis[a].divide((axis[a].length() * axis[a].length())); origin[a] = corner[0].dot(axis[a]); } } public void moveTo(Vector2D center) { Vector2D centroid = (corner[0].add(corner[1]).add(corner[2]).add(corner[3])).divide(4.0f); Vector2D translation = center.subtract(centroid); for (int c = 0; c < 4; ++c) { corner[c] = corner[c].add(translation); } computeAxes(); computeDimensions(center,angle); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } }; What I do is when I predict a hit on the car, I force it back. It does not work that well and seems like a bad idea. What could I do to have more proper collision resolution. Such that if I hit a wall I will never get stuck in it and if I hit the side of a wall I can steer my way out of it. Thanks I found this nice ppt. It talks about pulling objects apart and calculating new velocities. How could I calc new velocities in my case? http://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CC8QFjAB&url=http%3A%2F%2Fcoitweb.uncc.edu%2F~tbarnes2%2FGameDesignFall05%2FSlides%2FCh4.2-CollDet.ppt&ei=x4ucULy5M6-N0QGRy4D4Cg&usg=AFQjCNG7FVDXWRdLv8_-T5qnFyYld53cTQ&cad=rja

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Lock application window movement on Mac

    - by Martin Tóth
    Sometimes, when I use touchpad to control cursor and I'm clicking or double clicking, I move the application window a few pixels because my finger does not tap the touchpad on one place. Is there a way (Mac OS X) to lock application window, so that it can't be moved with cursor unless unlocked again? Is there another way to solve this? (Besides me being more careful when double clicking...) Edit: Is there even an attribute of "window object" that can lock it's position? I can try to write an App that handles just that (or a script run every time I run Application which I want to lock windows for). If there isn't would an OS X Application that "watches" windows movements and counters them (moves back) be hard to code?

    Read the article

  • OpenGL/SharpGL - Points only on -near surface of Ortho projection?

    - by FTLPhysicsGuy
    When you create points using three dimensions for each point and you use an Ortho projection to view the points, would there be a reason that only the points on the -near surface would appear? For example, if you use (the SharpGL method) gl.Ortho(0, width, height, 0, -10, 10), only the points at z=10 (because the near surface is at -10) actually show up. I'm currently using SharpGL - but I'm hoping the issue I'm having isn't with that particular implementation/library. EDIT: I'm adding the code below that demonstrates the issue. Note that this example requires SharpGL and is in fact a modification of a WPF sample project that comes with the current SharpGL source code (the original sample project is called TwoDSample). The project requires a MainWindow.xaml and a MainWindow.xaml.cs. Here's the xaml: <Window x:Class="TwoDSample.MainWindow" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="MainWindow" Height="350" Width="525" xmlns:my="clr-namespace:SharpGL.WPF;assembly=SharpGL.WPF"> <Grid> <my:OpenGLControl Name="openGLControl1" OpenGLDraw="openGLControl1_OpenGLDraw" OpenGLInitialized="openGLControl1_OpenGLInitialized" Resized="openGLControl1_Resized"/> </Grid> </Window> Here is the code behind: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Windows; using System.Windows.Controls; using System.Windows.Data; using System.Windows.Documents; using System.Windows.Input; using System.Windows.Media; using System.Windows.Media.Imaging; using System.Windows.Navigation; using System.Windows.Shapes; using SharpGL.Enumerations; namespace TwoDSample { /// <summary> /// Interaction logic for MainWindow.xaml /// </summary> public partial class MainWindow : Window { public MainWindow() { InitializeComponent(); } // NOTE: I use this to restrict the openGLControl1_OpenGLDraw method to // drawing only once after m_drawCount is set to zero; int m_drawCount = 0; private void openGLControl1_OpenGLDraw(object sender, SharpGL.SceneGraph.OpenGLEventArgs args) { // NOTE: Only draw once after m_drawCount is set to zero if (m_drawCount < 1) { // Get the OpenGL instance. var gl = args.OpenGL; gl.Color(1f, 0f, 0f); gl.PointSize(2.0f); // Draw 10000 random points. gl.Begin(BeginMode.Points); Random random = new Random(); for (int i = 0; i < 10000; i++) { double x = 10 + 400 * random.NextDouble(); double y = 10 + 400 * random.NextDouble(); double z = (double)random.Next(-10, 0); // Color the point according to z value gl.Color(0f, 0f, 1f); // default to blue if (z == -10) gl.Color(1f, 0f, 0f); // Red for z = -10 else if (z == -1) gl.Color(0f, 1f, 0f); // Green for z = -1 gl.Vertex(x, y, z); } gl.End(); m_drawCount++; } } private void openGLControl1_OpenGLInitialized(object sender, SharpGL.SceneGraph.OpenGLEventArgs args) { } private void openGLControl1_Resized(object sender, SharpGL.SceneGraph.OpenGLEventArgs args) { // NOTE: force the draw routine to happen again when resize occurs m_drawCount = 0; // Get the OpenGL instance. var gl = args.OpenGL; // Create an orthographic projection. gl.MatrixMode(MatrixMode.Projection); gl.LoadIdentity(); // NOTE: Basically no matter what I do, the only points I see are those at // the "near" surface (with z = -zNear)--in this case, I only see green points gl.Ortho(0, openGLControl1.ActualWidth, openGLControl1.ActualHeight, 0, 1, 10); // Back to the modelview. gl.MatrixMode(MatrixMode.Modelview); } } }

    Read the article

  • Please explain some of Paul Graham's points on LISP

    - by kunjaan
    I need some help understanding some of the points from Paul Graham's article http://www.paulgraham.com/diff.html A new concept of variables. In Lisp, all variables are effectively pointers. Values are what have types, not variables, and assigning or binding variables means copying pointers, not what they point to. A symbol type. Symbols differ from strings in that you can test equality by comparing a pointer. A notation for code using trees of symbols. The whole language always available. There is no real distinction between read-time, compile-time, and runtime. You can compile or run code while reading, read or run code while compiling, and read or compile code at runtime. What do these points mean How are they different in languages like C or Java? Do any other languages other than LISP family languages have any of these constructs now?

    Read the article

  • StackOverflow Exception in Umanaged Dll When Called from Managed DLL

    - by Ngu Soon Hui
    My question is similar to this one here, but there are some difference. I have a fortran dll as the backend, and a C# exe as the front end. I use PInvoke to pass data between them. There are 22 parameters between the C# and the fortran code. And some of them are integer, double, pointers ( C# pointers), array and whatnot. So it's a mix of types. The problem is that for small arrays, the code works fine, however, for large arrays (~10k element size), a stackoverflowexception was thrown right after my code enters into the managed code. Any idea why this is the case, and how to fix this?

    Read the article

  • IE8 + Jquery ajax call giving parsererror : for json data which seems valid in Firefox

    - by PlanetUnknown
    The ajax call works fine in FF. the data returned is in JSON here is an example from FF firebug - {"noProfiles": "No profiles have been created, lets start now !"} When I try to print the error in IE8 (& in compatibility modes as well), it says "parsererror". But the output seems to be valid JSON. Here is the ajax function call I'm making. Any pointers would be great ! $.ajax({ type: "GET", url: "/get_all_profile_details/", data: "", dataType: "json", beforeSend: function() {alert("before send called");}, success: function(jsonData) { alert("data received"); }, error: function(xhr, txt, err){ alert("xhr: " + xhr + "\n textStatus: " + txt + "\n errorThrown: " + err); } }); The alerts in the error function above give - xhr:<blank> textstatus:parsererror errorThrown: undefined Any pointers would be great ! Note : jquery : 1.3.2

    Read the article

  • Ubuntu mount hard drive confusing

    - by Fresheyeball
    I'm new to linux and have a home server set up running ubuntu. In the ui its very easy to mount my additional internal harddrives. I just double click on them. Since I have made this server headless, I now need to mount via the command line. How can I replicate the very simple double click gui behavior? So far all the information I've found is very complex. Ubuntu auto generated folders for each hd in under /media and I can see the harddrives under /dev but have no idea which is which as the hardware is identical between them. I also don't know how they are formated. Thanks in advance for any advice you have.

    Read the article

  • How to pass user-defined structs using boost mpi

    - by lava
    I am trying to send a user-defined structure named ABC using boost::mpi::send () call. The given struct contains a vector "data" whose size is determined at runtime. Objects of struct ABC are sent by master to slaves. But the slaves need to know the size of vector "data" so that the sufficient buffer is available on the slave to receive this data. I can work around it by sending the size first and initialize sufficient buffer on the slave before receiving the objects of struct ABC. But that defeats the whole purpose of using STL containers. Does anyone know of a better way to do handle this ? Any suggestions are greatly appreciated. Here is a sample code that describes the intent of my program. This code fails at runtime due to above mentioned reason. struct ABC { double cur_stock_price; double strike_price; double risk_free_rate; double option_price; std::vector <char> data; }; namespace boost { namespace serialization { template<class Archive> void serialize (Archive &ar, struct ABC &abc, unsigned int version) { ar & abc.cur_stock_price; ar & abc.strike_price; ar & abc.risk_free_rate; ar & abc.option_price; ar & bopr.data; } } } BOOST_IS_MPI_DATATYPE (ABC); int main(int argc, char* argv[]) { mpi::environment env (argc, argv); mpi::communicator world; if (world.rank () == 0) { ABC abc_obj; abc.cur_stock_price = 1.0; abc.strike_price = 5.0; abc.risk_free_rate = 2.5; abc.option_price = 3.0; abc_obj.data.push_back ('a'); abc_obj.data.push_back ('b'); world.send ( 1, ANY_TAG, abc_obj;); std::cout << "Rank 0 OK!" << std::endl; } else if (world.rank () == 1) { ABC abc_obj; // Fails here because abc_obj is not big enough world.recv (0,ANY_TAG, abc_obj;); std::cout << "Rank 1 OK!" << std::endl; for (int i = 0; i < abc_obj;.data.size(); i++) std::cout << i << "=" << abc_obj.data[i] << std::endl; } MPI_Finalize(); return 0; }

    Read the article

  • Free Large datasets to experiment with Hadoop

    - by Sundar
    Do you know any large datasets to experiment with Hadoop which is free/low cost? Any pointers/links related is appreciated. Prefernce: Atleast one GB of data. Production log data of webserver. Few of them which I found so far: http://dumps.wikimedia.org/enwiki/20100130/ http://wiki.freebase.com/wiki/Data_dumps http://aws.amazon.com/publicdatasets/ Also can we run our own crawler to gather data from sites e.g. Wikipedia? Any pointers on how to do this is appreciated as well.

    Read the article

  • Maxi/minimizing active applications in system tray

    - by ldigas
    This is a little hard to explain, so I'll try with an examle ... I got a lot of always active applications that have the feature which enables them to be minimized to system tray. Double click / or single click to restore them, and down there again they go. So I spend a lot of time double/single clicking. Is it possible, and how would one go about it, to define an for example AHK shortcut for minimizing/restoring back again those applications (where every app. would have its own shortcut, of course) ? Of course, all other approaches are equally welcomed.

    Read the article

  • Parameter passing become pointer for integer

    - by Kangkan
    I am working on a c/Linux app for a device. I consume a web service (in WCF/c#) and use gSOAP for the same. The issue is that the parameters in the service methods become pointers for simple data types like int, short etc also. I initially used the same service exposed as ASMX web service and the client proxy generated using gSOAP created methods with parameters passed as values. But once the service has been upgraded to WCF, all the parameters became pointers. Can somebody help?

    Read the article

  • Running Excel 2007 as admin on Win7 causes “There was a problem sending the command to the program”

    - by Flack
    I am running Excel 2007 on Windows 7 64bit. I need to run Excel as administrator so I have the "Run as Administrator" box in the Excel shortcut checked. Now, when I try to open an Excel file by double clicking, I get the following error: There was a problem sending the command to the program Excel opens fine after that, and I can open the file fine through Excel's File/Open menu. Why can't I open the file by double clicking? Some sites suggest changing a specific Excel option. I tried while checking/unchecking Excel's "Ignore other applications that use Dynamic Data Exchange (DDE)" but that didn't help. The issue goes away if I uncheck "Run as Administrator" but I want to be able to leave that checked. Any ideas?

    Read the article

  • image processing algorithm in MATLAB

    - by user261002
    I am trying to reconstruct an algorithm belong to this paper: Decomposition of biospeckle images in temporary spectral bands Here is an explanation of the algorithm: We recorded a sequence of N successive speckle images with a sampling frequency fs. In this way it was possible to observe how a pixel evolves through the N images. That evolution can be treated as a time series and can be processed in the following way: Each signal corresponding to the evolution of every pixel was used as input to a bank of filters. The intensity values were previously divided by their temporal mean value to minimize local differences in reflectivity or illumination of the object. The maximum frequency that can be adequately analyzed is determined by the sampling theorem and s half of sampling frequency fs. The latter is set by the CCD camera, the size of the image, and the frame grabber. The bank of filters is outlined in Fig. 1. In our case, ten 5° order Butterworth11 filters were used, but this number can be varied according to the required discrimination. The bank was implemented in a computer using MATLAB software. We chose the Butter-worth filter because, in addition to its simplicity, it is maximally flat. Other filters, an infinite impulse response, or a finite impulse response could be used. By means of this bank of filters, ten corresponding signals of each filter of each temporary pixel evolution were obtained as output. Average energy Eb in each signal was then calculated: where pb(n) is the intensity of the filtered pixel in the nth image for filter b divided by its mean value and N is the total number of images. In this way, en values of energy for each pixel were obtained, each of hem belonging to one of the frequency bands in Fig. 1. With these values it is possible to build ten images of the active object, each one of which shows how much energy of time-varying speckle there is in a certain frequency band. False color assignment to the gray levels in the results would help in discrimination. and here is my MATLAB code base on that : clear all for i=0:39 str = num2str(i); str1 = strcat(str,'.mat'); load(str1); D{i+1}=A; end new_max = max(max(A)); new_min = min(min(A)); for i=20:180 for j=20:140 ts = []; for k=1:40 ts = [ts D{k}(i,j)]; %%% kth image pixel i,j --- ts is time series end ts = double(ts); temp = mean(ts); ts = ts-temp; ts = ts/temp; N = 5; % filter order W = [0.00001 0.05;0.05 0.1;0.1 0.15;0.15 0.20;0.20 0.25;0.25 0.30;0.30 0.35;0.35 0.40;0.40 0.45;0.45 0.50]; N1 = 5; for ind = 1:10 Wn = W(ind,:); [B,A] = butter(N1,Wn); ts_f(ind,:) = filter(B,A,ts); end for ind=1:10 imag_test1{ind}(i,j) =sum((ts_f(ind,:)./mean(ts_f(ind,:))).^2); end end end for i=1:10 temp_imag = imag_test1{i}(:,:); x=isnan(temp_imag); temp_imag(x)=0; temp_imag=medfilt2(temp_imag); t_max = max(max(temp_imag)); t_min = min(min(temp_imag)); temp_imag = (temp_imag-t_min).*(double(new_max-new_min)/double(t_max-t_min))+double(new_min); imag_test2{i}(:,:) = temp_imag; end for i=1:10 A=imag_test2{i}(:,:); B=A/max(max(A)); B=histeq(B); figure,imshow(B) colorbar end but I am not getting the same result as paper. has anybody has aby idea why? or where I have gone wrong? Refrence Link to the paper

    Read the article

  • Unable to open attachment in Windows Live Mail 2011 (Build 15.4.3502.0922)

    - by Anon2010
    I use Windows Live Mail 2011 (Build 15.4.3502.0922), in Windows 7 Pro 64. When I receive an email message that has an attachment, when I double click to open this attachment, nothing happens. Any kind of attachment, nothing happens. If I right click and choose "Open", nothing happens either. If I right click and choose Save As, I can save the file to disk and open it via Windows Explorer. I would like to be able to double click to open the attachment. I tried to repair WLM but that didn't make any difference. My antivirus is Microsoft Security Essentials. Does anyone know anything about this issue? Thanks

    Read the article

  • Custom links in RichTextBox

    - by IVlad
    Suppose I want every word starting with a # to generate an event on double click. For this I have implemented the following test code: private bool IsChannel(Point position, out int start, out int end) { if (richTextBox1.Text.Length == 0) { start = end = -1; return false; } int index = richTextBox1.GetCharIndexFromPosition(position); int stop = index; while (index >= 0 && richTextBox1.Text[index] != '#') { if (richTextBox1.Text[index] == ' ') { break; } --index; } if (index < 0 || richTextBox1.Text[index] != '#') { start = end = -1; return false; } while (stop < richTextBox1.Text.Length && richTextBox1.Text[stop] != ' ') { ++stop; } --stop; start = index; end = stop; return true; } private void richTextBox1_MouseMove(object sender, MouseEventArgs e) { textBox1.Text = richTextBox1.GetCharIndexFromPosition(new Point(e.X, e.Y)).ToString(); int d1, d2; if (IsChannel(new Point(e.X, e.Y), out d1, out d2) == true) { if (richTextBox1.Cursor != Cursors.Hand) { richTextBox1.Cursor = Cursors.Hand; } } else { richTextBox1.Cursor = Cursors.Arrow; } } This handles detecting words that start with # and making the mouse cursor a hand when it hovers over them. However, I have the following two problems: If I try to implement a double click event for richTextBox1, I can detect when a word is clicked, however that word is highlighted (selected), which I'd like to avoid. I can deselect it programmatically by selecting the end of the text, but that causes a flicker, which I would like to avoid. What ways are there to do this? The GetCharIndexFromPosition method returns the index of the character that is closest to the cursor. This means that if the only thing my RichTextBox contains is a word starting with a # then the cursor will be a hand no matter where on the rich text control it is. How can I make it so that it is only a hand when it hovers over an actual word or character that is part of a word I'm interested in? The implemented URL detection also partially suffers from this problem. If I enable detection of URLs and only write www.test.com in the rich text editor, the cursor will be a hand as long as it is on or below the link. It will not be a hand if it's to the right of the link however. I'm fine even with this functionality if making the cursor a hand if and only if it's on the text proves to be too difficult. I'm guessing I'll have to resort to some sort of Windows API calls, but I don't really know where to start. I am using Visual Studio 2008 and I would like to implement this myself. Update: The flickering problem would be solved if I could make it so that no text is selectable through double clicking, only through dragging the mouse cursor. Is this easier to achieve? Because I don't really care if one can select text or not by double clicking in this case.

    Read the article

  • Is there a COM object that just implements IUnknown I can use?

    - by Matt
    For an asynchronous Windows API, I can provide an IUnknown state parameter to associate calls to the API with calls from the callback. It's my understanding that COM guarantees that two IUnknown pointers to the same object will be of the same value. Thus, if I only want to associate API calls with callbacks, IUnknown should be all I need, by comparing the values of the pointers. Is there a stock implementation of IUnknown I can use? Of course it would be trivial to implement myself, but for such a base component of COM, I'm wondering if Windows or ATL provides one I should use instead. Thanks, --Matt

    Read the article

  • Word mergefield wildcard not correctly matching

    - by aZn137
    Hello, Below is my mergefield code: { IF { MERGEFIELD Subs_State } = "GA" "blah blah" "{ IF { MERGEFIELD CEOrgStates } = "GA" "blah blah" ""} "} I'm pulling records from a MS Access db. My goal is to check whether a record has Subs_State field matching "GA", or the CEOrgStates has the word "GA" (some records have stuff like "|FL|CA|GA|CT|KY|" (no quotes)). When I merged the docs, Word doesnt seem to be able to match with the wildcards: If I use and compare "*GA" (fields ending with GA), it works; however, the double wildcards "*GA*" dont seem to work at all. Here are the things I’ve tried: Have data in lowercase, then compare with lowercase Have data in lowercase, convert to and then compare with uppercase Do the opposite of the above 2 with uppercase data Use “*GA*” and “*ga*” (no pipe) Use different delimiters Nothing seems to work with the double wildcard matching. What am I doing wrong? Thanks!

    Read the article

  • speech bubbles like in comics for iphone

    - by plspl
    I am new to iphone application development. I am building an iphone app where the user needs to be able to add speech bubbles (think comics) over existing images. I have some questions on how to implement this, Have an empty speech bubble image and overlay it over existing image - Do I use a separate UIImage for the speech bubble? Or should I draw the speech bubble myself? Allow the user to move the speech bubble using touch- Any pointers or examples would be great! Also let him resize the speech depending on the amount of text - Any pointers or examples would be great! Finally he should be able to add text to speech bubble - Is there a way to add textbox over an existing image? Thanks,

    Read the article

  • I create a JPanel and GridBagLayout within an object but when I get it in the main object, attributes are missing

    - by chickeneaterguy
    public oijoij() { String name = "Jackie"; int priority = 50; int minPriority = 90; setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setBounds(100, 100, 450, 300); contentPane = new JPanel(); contentPane.setBorder(new EmptyBorder(5, 5, 5, 5)); contentPane.setLayout(new BorderLayout(0, 0)); setContentPane(contentPane); JPanel panel = new JPanel(); GridBagLayout gbc_panel = new GridBagLayout(); gbc_panel.columnWidths = new int[]{0,0,0}; gbc_panel.rowHeights = new int[]{0, 0, 0, 0, 0, 0}; gbc_panel.columnWeights = new double[]{0.0, 0.0, Double.MIN_VALUE}; gbc_panel.rowWeights = new double[]{0.0, 0.0, 0.0, 0.0, 0.0, Double.MIN_VALUE}; panel.setBorder(new LineBorder(new Color(0,0,0),1)); panel.setLayout(gbc_panel); panel.setAlignmentX(Component.LEFT_ALIGNMENT); panel.setMinimumSize(new Dimension(110,110)); panel.setPreferredSize(new Dimension(110, 110)); panel.setSize(new Dimension(110,110)); JLabel lblNewLabel = new JLabel("Process ID:"); GridBagConstraints gbc_lblNewLabel = new GridBagConstraints(); gbc_lblNewLabel.gridheight = 2; gbc_lblNewLabel.insets = new Insets(0, 0, 5, 5); gbc_lblNewLabel.gridx = 0; gbc_lblNewLabel.gridy = 0; panel.add(lblNewLabel, gbc_lblNewLabel); JLabel lblNewLabel_1 = new JLabel(name); GridBagConstraints gbc_lblNewLabel_1 = new GridBagConstraints(); gbc_lblNewLabel_1.gridheight = 2; gbc_lblNewLabel_1.insets = new Insets(0, 0, 5, 0); gbc_lblNewLabel_1.gridx = 1; gbc_lblNewLabel_1.gridy = 0; panel.add(lblNewLabel_1, gbc_lblNewLabel_1); JLabel lblNewLabel_2 = new JLabel("Priority:"); GridBagConstraints gbc_lblNewLabel_2 = new GridBagConstraints(); gbc_lblNewLabel_2.insets = new Insets(0, 0, 5, 5); gbc_lblNewLabel_2.gridx = 0; gbc_lblNewLabel_2.gridy = 2; panel.add(lblNewLabel_2, gbc_lblNewLabel_2); JLabel lblNum = new JLabel(Integer.toString(priority)); GridBagConstraints gbc_lblNum = new GridBagConstraints(); gbc_lblNum.insets = new Insets(0, 0, 5, 0); gbc_lblNum.gridx = 1; gbc_lblNum.gridy = 2; panel.add(lblNum, gbc_lblNum); JLabel lblNewLabel_3 = new JLabel("Min Priority:"); GridBagConstraints gbc_lblNewLabel_3 = new GridBagConstraints(); gbc_lblNewLabel_3.insets = new Insets(0, 0, 5, 5); gbc_lblNewLabel_3.gridx = 0; gbc_lblNewLabel_3.gridy = 3; panel.add(lblNewLabel_3, gbc_lblNewLabel_3); JLabel lblMp = new JLabel(Integer.toString(minPriority)); GridBagConstraints gbc_lblMp = new GridBagConstraints(); gbc_lblMp.insets = new Insets(0, 0, 5, 0); gbc_lblMp.gridx = 1; gbc_lblMp.gridy = 3; panel.add(lblMp, gbc_lblMp); JLabel lblTimeSlice = new JLabel("Time Slice:"); GridBagConstraints gbc_lblTimeSlice = new GridBagConstraints(); gbc_lblTimeSlice.insets = new Insets(0, 0, 0, 5); gbc_lblTimeSlice.gridx = 0; gbc_lblTimeSlice.gridy = 4; panel.add(lblTimeSlice, gbc_lblTimeSlice); Random r = new Random(System.currentTimeMillis()); panel.setBackground(new Color( r.nextInt(255 - 210) + 210, r.nextInt(255 - 210) + 210, r.nextInt(255 - 210) + 210)); } I have accessor methods for the GridBagLayout and the JPanel. When calling the functions in another file, it looks like I just get the JPanel (but without any labels or the layout or other GridBagLayout features). Help?

    Read the article

  • How to add the coding for displaying the address when a particular set of latitude and longitude is

    - by KKC
    import com.google.android.maps.GeoPoint; import com.google.android.maps.MapActivity; import com.google.android.maps.MapController; import com.google.android.maps.MapView; import android.os.Bundle; import android.view.KeyEvent; import android.view.View; import android.widget.AdapterView; import android.widget.ArrayAdapter; import android.widget.Spinner; import android.widget.AdapterView.OnItemSelectedListener; public class PopularAttractions extends MapActivity { private String[ ][ ] locations = { {"Singapore Zoological Garden","1.40502,103.793449"}, {"Singapore Night Safari","1.4037,103.789467"}, {"Jurong BirdPark","1.32005,103.707153"}, {"Jurong Reptile Park","1.321177,103.708486"}, {"Singapore Botanic Garden","1.31471,103.815689"}, {"Sungei Buloh Wetland Reserver","1.445144,103.729595"}, {"Escape Theme Park","1.38104,103.936928"}, {"Snow City","1.32823,103.74263"}, {"Super Ice World","1.300422,103.875348"}, {"Chinatown Heritage Center","1.2836,103.84425"}, {"Singapore Science Center","1.3249,103.740578"}, {"Red Dot Design Museum","1.277762,103.846225"}, {"G-Max Reverse Bungy","1.2906,103.845322"}, {"NEWater Visitor Center","1.33105,103.955311"} }; private Spinner spinnerView; private MapView mapView; private MapController mc; /** Called when the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); spinnerView = (Spinner) this.findViewById(R.id.spinner1); mapView = (MapView) findViewById(R.id.mapview1); mc = mapView.getController(); ArrayAdapter<CharSequence> adapter = new ArrayAdapter<CharSequence>(this, android.R.layout.simple_spinner_dropdown_item); //--add the various locations--- for(int i = 0; i < locations.length; i++) adapter.add(locations[i][0]); adapter.setDropDownViewResource( android.R.layout.simple_spinner_dropdown_item); spinnerView.setAdapter(adapter); spinnerView.setOnItemSelectedListener(selectListener); gotoSelected(); } //---when user selects an item--- private OnItemSelectedListener selectListener = new OnItemSelectedListener() { //---these are two methods you need to implement--- public void onItemSelected( AdapterView<?>parent, View v, int position, long id) { gotoSelected(); } public void onNothingSelected(AdapterView<?> arg0) {} }; //---when an item has been selected--- public void gotoSelected() { int index = spinnerView.getSelectedItemPosition(); String[] coordinates = locations[index][1].split(","); double lat = Double.parseDouble(coordinates[0]); double lng = Double.parseDouble(coordinates[1]); GeoPoint location = new GeoPoint ( (int)(lat * 1E6), (int)(lng * 1E6)); mc.animateTo(location); mc.setZoom(16); if (mapView.isSatellite()) mapView.setSatellite(false); else mapView.setStreetView(true); mapView.invalidate(); } public boolean onKeyDown(int keyCode, KeyEvent event) { MapController mc = mapView.getController(); switch (keyCode) { case KeyEvent.KEYCODE_3: mc.zoomIn(); break; case KeyEvent.KEYCODE_1: mc.zoomOut(); break; } return super.onKeyDown(keyCode, event); } @Override protected boolean isRouteDisplayed(){ //TODO Auto-generated method sub return false; } }

    Read the article

  • GLSL Error: failed to preprocess the source. How can I troubleshoot this?

    - by Brent Parker
    I'm trying to learn to play with OpenGL GLSL shaders. I've written a very simple program to simply create a shader and compile it. However, whenever I get to the compile step, I get the error: Error: Preprocessor error Error: failed to preprocess the source. Here's my very simple code: #include <GL/gl.h> #include <GL/glu.h> #include <GL/glut.h> #include <GL/glext.h> #include <time.h> #include <stdio.h> #include <iostream> #include <stdlib.h> using namespace std; const int screenWidth = 640; const int screenHeight = 480; const GLchar* gravity_shader[] = { "#version 140" "uniform float t;" "uniform mat4 MVP;" "in vec4 pos;" "in vec4 vel;" "const vec4 g = vec4(0.0, 0.0, -9.80, 0.0);" "void main() {" " vec4 position = pos;" " position += t*vel + t*t*g;" " gl_Position = MVP * position;" "}" }; double pointX = (double)screenWidth/2.0; double pointY = (double)screenWidth/2.0; void initShader() { GLuint shader = glCreateShader(GL_VERTEX_SHADER); glShaderSource(shader, 1, gravity_shader, NULL); glCompileShader(shader); GLint compiled = true; glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled); if(!compiled) { GLint length; GLchar* log; glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &length); log = (GLchar*)malloc(length); glGetShaderInfoLog(shader, length, &length, log); std::cout << log <<std::endl; free(log); } exit(0); } bool myInit() { initShader(); glClearColor(1.0f, 1.0f, 1.0f, 0.0f); glColor3f(0.0f, 0.0f, 0.0f); glPointSize(1.0); glLineWidth(1.0f); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(0.0, (GLdouble) screenWidth, 0.0, (GLdouble) screenHeight); glEnable(GL_DEPTH_TEST); return true; } int main(int argc, char** argv) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB); glutInitWindowSize(screenWidth, screenHeight); glutInitWindowPosition(100, 150); glutCreateWindow("Mouse Interaction Display"); myInit(); glutMainLoop(); return 0; } Where am I going wrong? If it helps, I am trying to do this on a Acer Aspire One with an atom processor and integrated Intel video running the latest Ubuntu. It's not very powerful, but then again, this is a very simple shader. Thanks a lot for taking a look!

    Read the article

< Previous Page | 101 102 103 104 105 106 107 108 109 110 111 112  | Next Page >