Search Results

Search found 905 results on 37 pages for 'signals slots'.

Page 11/37 | < Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >

  • HP Proliant DL360 G5 + MSA50 RAID Setup recommendations

    - by JohnRB
    I am running a HP Proliant DL360 2 x 3GHz Xeon 16GB Ram P400 integrated RAID card with 6 x 73GB SAS HDDs running Ubuntu Server 14.04 CLI only. I recently got my hands on a MSA50 SAS Enclosure (10 x SAS HDD bays w/ SAS in/out interface) and wondering what you guys recommended as far as an addon raid controller for one of the pciex slots. I have both slots free Full and Half sizes. Any suggestions are greatly appreciated, I am an I.T. Consultant but have not used these particular units before so I was hoping to hear from someone who has. Thanks!

    Read the article

  • What calls trigger a new batch?

    - by sebf
    I am finding my project is starting to show performance degradation and I need to optimize it. The answer to my previous question and this presentation from NVidia have helped greatly in understanding the performance characteristics of code using the GPU but there are a couple of things that aren't clear that I need to know to optimize my drawing. Specifically, what calls make the distinction between batches. I know that any state changes cause a new batch, so that includes: Render State Changes Buffer Changes Shader Changes Render Target Changes Correct? What else counts as a 'state change'? Does each Draw**Primitive() call constitute a new batch? Even if I were to issue the same call twice, with no state changes, or call it once on on part of the buffer, then again on another? If I were to update a buffer, but not change the bindings, would that be a new batch? That presentation and a DX9 page suggest using all of the texture slots available, which I take to mean loading multiple objects in 'parallel' by mapping their buffers/shaders/textures to slots 1-16. But I am not sure how this works - surely to do this you would need to change the buffer binding and that would count as a state change? (or is it a case of you do but it saves 16 calls so its OK?)

    Read the article

  • How much does it wear an SD card to be frequently removed/reinserted?

    - by jtbandes
    My digital camera (a Sony a55) stores photos on an SD card. When I want to transfer these to my computer (a mid-2010 MacBook Pro), I have two options: use the USB cable to connect the camera to the computer, or use the computer's built-in SD card reader. The camera's SD card slot is the standard click-in, click-out (spring-loaded) mechanism. My laptop has a simple slot into which the card slides with a little more resistance than the former (the card slides only about halfway in so it can be easily removed). I notice that the card's contacts now have some shiny marks from one or both of these card slots: Does this type of wear threaten to significantly damage the card? Should I avoid switching the card between slots frequently, to extend its lifetime?

    Read the article

  • New Write Flash SSDs and more disk trays

    - by Steve Tunstall
    In case you haven't heard, the Write SSDs the ZFSSA have been updated. Much faster now for the same price. Sweet. The new write-flash SSDs have a new part number of 7105026 , so make sure you order the right ones. It's important to note that you MUST be on code level 2011.1.4.0 or higher to use these. They have increased in IOPS from 6,000 to 11,000, and increased throughput from 200MB/s to 350MB/s.    Also, you can now add six SAS HBAs (up from 4) to the 7420, allowing one to have three SAS channels with 12 disk trays each, for a new total of 36 disk trays. With 3TB drives, that's 2.5 Petabytes. Is that enough for you? Make sure you add new cards to the correct slots. I've talked about this before, but here is the handy-dandy matrix again so you don't have to go find it. Remember the rules: You can have 6 of any one kind of card (like six 10GigE cards), but you only really get 8 slots, since you have two SAS cards no matter what. If you want more than 12 disk trays, you need two more SAS cards, so think about expansion later, too. In fact, if you are going to have two different speeds of drives, in other words you want to mix 15K speed and 7,200 speed drives in the same system, I would highly recommend two different SAS channels. So I would want four SAS cards in that system, no matter how many trays you have. 

    Read the article

  • Is PCI Express x4 faster or slower than a standard PCI slot for graphic cards?

    - by Stephen R
    I am looking at potential motherboards for a computer I want to build and ran into this conundrum. The motherboard has two PCI Express slots that allow for 16 channel cards to fit in them. The catch is only one of them operates at 16 channels, the other operates only 4 channels. My question is, would it be faster to buy a PCI Express graphic card and install it in the 4 channel PCI Express slot? Or would it be better to buy a standard PCI graphic card and install it in one of the available PCI slots?

    Read the article

  • Will adding extra RAM in my computer speed it up?

    - by Harry Simpson
    I have a 5 year old Dell Inspiron 530 desktop computer which is slowly grinding to a halt. Someone told me if i put extra RAM in itll speed it up. Inside the computer there are four slots for memory but only two has memory in them and they are 1GB each. if i bought another 2no. 1GB and put them in the free slots would it speed the computer up (would it be twice as fast?) and is it as simple as just putting them in or is there other things i need to do?

    Read the article

  • Help deciding on language for a complex desktop - web application

    - by user967834
    I'm about to start working on a fairly complex project needing a desktop GUI as well as a web interface and I need to decide on a language(s) to use. This is from an electrical engineering/robotics background. These are the requirements: Program will have to read data from multiple sensors and inputs (motion sensor, temperature sensor, capacitive sensor, infrared, magnetic sensors, etc) through a port on a computer - so either through USB or ethernet. Program will have to be able to send control signals based on this input. Program will have to continuously monitor all input signals at all times - so realtime data. Program will require authentication. Program will need to be controllable from a web interface from anywhere via logging in to a website. Web interface will also need to have realtime feedback once authenticated. What language do you think would best accomplish this? I was thinking maybe saving everything into a database which can be accessed by both the desktop and web app? And would Python be able to do all of this? Or something like a remote desktop app? I know this is a complex project but let's assume I can learn any language. Has anyone done something like this and if so how did you accomplish it?

    Read the article

  • Where can I connect this USB 3.0 cord?

    - by tomsawyer95
    My motherboard has 2 USB 3.o slots in the back, where the usual slots go, but the tower also supports 1 or 2 USB 3.0 ports in the front, above the DVD drive. So, there is a cord coming out of those ports that has an end exactly like the one in the attached picture. I am not able to find a matching port on the mobo, so I presume it doesn't have one, and I would need an adapter or else just leave it inoperable. I have an ASUS P8Z68-V LX and an Antec 900 tower.

    Read the article

  • How to retry connections with wget?

    - by Andrei
    I have a very unstable internet connection, and sometimes have to download files as large as 200 MB. The problem is that the speed frequently drops and sits at --, -K/s and the process remains alive. I thought just to send some KILL signals to the process, but as I read in the wget manual about signals it doesn't help. How can I force wget to reinitialize itself and pick the download up where it left off after the connection drops and comes back up again? I would like to leave wget running, and when I come back, I want to see it downloading, and not waiting with speed --,-K/s.

    Read the article

  • Infiniband: a highperformance network fabric - Part I

    - by Karoly Vegh
    Introduction:At the OpenWorld this year I managed to chat with interesting people again - one of them answering Infiniband deepdive questions with ease by coffee turned out to be one of Oracle's IB engineers, Ted Kim, who actually actively participates in the Infiniband Trade Association and integrates Oracle solutions with this highspeed network. This is why I love attending OOW. He granted me an hour of his time to talk about IB. This post is mostly based on that tech interview.Start of the actual post: Traditionally datatransfer between servers and storage elements happens in networks with up to 10 gigabit/seconds or in SANs with up to 8 gbps fiberchannel connections. Happens. Well, data rather trickles through.But nowadays data amounts grow well over the TeraByte order of magnitude, and multisocket/multicore/multithread Servers hunger data that these transfer technologies just can't deliver fast enough, causing all CPUs of this world do one thing at the same speed - waiting for data. And once again, I/O is the bottleneck in computing. FC and Ethernet can't keep up. We have half-TB SSDs, dozens of TB RAM to store data to be modified in, but can't transfer it. Can't backup fast enough, can't replicate fast enough, can't synchronize fast enough, can't load fast enough. The bad news is, everyone is used to this, like back in the '80s everyone was used to start compile jobs and go for a coffee. Or on vacation. The good news is, there's an alternative. Not so-called "bleeding-edge" 8gbps, but (as of now) 56. Not layers of overhead, but low latency. And it is available now. It has been for a while, actually. Welcome to the world of Infiniband. Short history:Infiniband was born as a result of joint efforts of HPAQ, IBM, Intel, Sun and Microsoft. They planned to implement a next-generation I/O fabric, in the 90s. In the 2000s Infiniband (from now on: IB) was quite popular in the high-performance computing field, powering most of the top500 supercomputers. Then in the middle of the decade, Oracle realized its potential and used it as an interconnect backbone for the first Database Machine, the first Exadata. Since then, IB has been booming, Oracle utilizes and supports it in a large set of its HW products, it is the backbone of the famous Engineered Systems: Exadata, SPARC SuperCluster, Exalogic, OVCA and even the new DB backup/recovery box. You can also use it to make servers talk highspeed IP to eachother, or to a ZFS Storage Appliance. Following Oracle's lead, even IBM has jumped the wagon, and leverages IB in its PureFlex systems, their first InfiniBand Machines.IB Structural Overview: If you want to use IB in your servers, the first thing you will need is PCI cards, in IB terms Host Channel Adapters, or HCAs. Just like NICs for Ethernet, or HBAs for FC. In these you plug an IB cable, going to an IB switch providing connection to other IB HCAs. Of course you're going to need drivers for those in your OS. Yes, these are long-available for Solaris and Linux. Now, what protocols can you talk over IB? There's a range of choices. See, IB isn't accepting package loss like Ethernet does, and hence doesn't need to rely on TCP/IP as a workaround for resends. That is, you still can run IP over IB (IPoIB), and that is used in various cases for control functionality, but the datatransfer can run over more efficient protocols - like native IB. About PCI connectivity: IB cards, as you see are fast. They bring low latency, which is just as important as their bandwidth. Current IB cards run at 56 gbit/s. That is slightly more than double of the capacity of a PCI Gen2 slot (of ~25 gbit/s). And IB cards are equipped usually with two ports - that is, altogether you'd need 112 gbit/s PCI slots, to be able to utilize FDR IB cards in an active-active fashion. PCI Gen3 slots provide you with around ~50gbps. This is why the most IB cards are configured in an active-standby way if both ports are used. Once again the PCI slot is the bottleneck. Anyway, the new Oracle servers are equipped with Gen3 PCI slots, an the new IB HCAs support those too. Oracle utilizes the QDR HCAs, running at 40gbp/s brutto, which translates to a 32gbp/s net traffic due to the 10:8 signal-to-data information ratio. Consolidation techniques: Technology never stops to evolve. Mellanox is working on the 100 gbps (EDR) version already, which will be optical, since signal technology doesn't allow EDR to be copper. Also, I hear you say "100gbps? I will never use/need that much". Are you sure? Have you considered consolidation scenarios, where (for example with Oracle Virtual Network) you could consolidate your platform to a high densitiy virtualized solution providing many virtual 10gbps interfaces through that 100gbps? Technology never stops to evolve. I still remember when a 10mbps network was impressively fast. Back in those days, 16MB of RAM was a lot. Now we usually run servers with around 100.000 times more RAM. If network infrastrucure speends could grow as fast as main memory capacities, we'd have a different landscape now :) You can utilize SRIOV as well for consolidation. That is, if you run LDoms (aka Oracle VM Server for SPARC) you do not have to add physical IB cards to all your guest LDoms, and you do not need to run VIO devices through the hypervisor either (avoiding overhead). You can enable SRIOV on those IB cards, which practically virtualizes the PCI bus, and you can dedicate Physical- and Virtual Functions of the virtualized HCAs as native, physical HW devices to your guests. See Raghuram's excellent post explaining SRIOV. SRIOV for IB is supported since LDoms 3.1.  This post is getting lengthier, so I will rename it to Part I, and continue it in a second post. 

    Read the article

  • LSI 9285-8e and Supermicro SC837E26-RJBOD1 duplicate enclosure ID and slot numbers

    - by Andy Shinn
    I am working with 2 x Supermicro SC837E26-RJBOD1 chassis connected to a single LSI 9285-8e card in a Supermicro 1U host. There are 28 drives in each chassis for a total of 56 drives in 28 RAID1 mirrors. The problem I am running in to is that there are duplicate slots for the 2 chassis (the slots list twice and only go from 0 to 27). All the drives also show the same enclosure ID (ID 36). However, MegaCLI -encinfo lists the 2 enclosures correctly (ID 36 and ID 65). My question is, why would this happen? Is there an option I am missing to use 2 enclosures effectively? This is blocking me rebuilding a drive that failed in slot 11 since I can only specify enclosure and slot as parameters to replace a drive. When I do this, it picks the wrong slot 11 (device ID 46 instead of device ID 19). Adapter #1 is the LSI 9285-8e, adapter #0 (which I removed due to space limitations) is the onboard LSI. Adapter information: Adapter #1 ============================================================================== Versions ================ Product Name : LSI MegaRAID SAS 9285-8e Serial No : SV12704804 FW Package Build: 23.1.1-0004 Mfg. Data ================ Mfg. Date : 06/30/11 Rework Date : 00/00/00 Revision No : 00A Battery FRU : N/A Image Versions in Flash: ================ BIOS Version : 5.25.00_4.11.05.00_0x05040000 WebBIOS Version : 6.1-20-e_20-Rel Preboot CLI Version: 05.01-04:#%00001 FW Version : 3.140.15-1320 NVDATA Version : 2.1106.03-0051 Boot Block Version : 2.04.00.00-0001 BOOT Version : 06.253.57.219 Pending Images in Flash ================ None PCI Info ================ Vendor Id : 1000 Device Id : 005b SubVendorId : 1000 SubDeviceId : 9285 Host Interface : PCIE ChipRevision : B0 Number of Frontend Port: 0 Device Interface : PCIE Number of Backend Port: 8 Port : Address 0 5003048000ee8e7f 1 5003048000ee8a7f 2 0000000000000000 3 0000000000000000 4 0000000000000000 5 0000000000000000 6 0000000000000000 7 0000000000000000 HW Configuration ================ SAS Address : 500605b0038f9210 BBU : Present Alarm : Present NVRAM : Present Serial Debugger : Present Memory : Present Flash : Present Memory Size : 1024MB TPM : Absent On board Expander: Absent Upgrade Key : Absent Temperature sensor for ROC : Present Temperature sensor for controller : Absent ROC temperature : 70 degree Celcius Settings ================ Current Time : 18:24:36 3/13, 2012 Predictive Fail Poll Interval : 300sec Interrupt Throttle Active Count : 16 Interrupt Throttle Completion : 50us Rebuild Rate : 30% PR Rate : 30% BGI Rate : 30% Check Consistency Rate : 30% Reconstruction Rate : 30% Cache Flush Interval : 4s Max Drives to Spinup at One Time : 2 Delay Among Spinup Groups : 12s Physical Drive Coercion Mode : Disabled Cluster Mode : Disabled Alarm : Enabled Auto Rebuild : Enabled Battery Warning : Enabled Ecc Bucket Size : 15 Ecc Bucket Leak Rate : 1440 Minutes Restore HotSpare on Insertion : Disabled Expose Enclosure Devices : Enabled Maintain PD Fail History : Enabled Host Request Reordering : Enabled Auto Detect BackPlane Enabled : SGPIO/i2c SEP Load Balance Mode : Auto Use FDE Only : No Security Key Assigned : No Security Key Failed : No Security Key Not Backedup : No Default LD PowerSave Policy : Controller Defined Maximum number of direct attached drives to spin up in 1 min : 10 Any Offline VD Cache Preserved : No Allow Boot with Preserved Cache : No Disable Online Controller Reset : No PFK in NVRAM : No Use disk activity for locate : No Capabilities ================ RAID Level Supported : RAID0, RAID1, RAID5, RAID6, RAID00, RAID10, RAID50, RAID60, PRL 11, PRL 11 with spanning, SRL 3 supported, PRL11-RLQ0 DDF layout with no span, PRL11-RLQ0 DDF layout with span Supported Drives : SAS, SATA Allowed Mixing: Mix in Enclosure Allowed Mix of SAS/SATA of HDD type in VD Allowed Status ================ ECC Bucket Count : 0 Limitations ================ Max Arms Per VD : 32 Max Spans Per VD : 8 Max Arrays : 128 Max Number of VDs : 64 Max Parallel Commands : 1008 Max SGE Count : 60 Max Data Transfer Size : 8192 sectors Max Strips PerIO : 42 Max LD per array : 16 Min Strip Size : 8 KB Max Strip Size : 1.0 MB Max Configurable CacheCade Size: 0 GB Current Size of CacheCade : 0 GB Current Size of FW Cache : 887 MB Device Present ================ Virtual Drives : 28 Degraded : 0 Offline : 0 Physical Devices : 59 Disks : 56 Critical Disks : 0 Failed Disks : 0 Supported Adapter Operations ================ Rebuild Rate : Yes CC Rate : Yes BGI Rate : Yes Reconstruct Rate : Yes Patrol Read Rate : Yes Alarm Control : Yes Cluster Support : No BBU : No Spanning : Yes Dedicated Hot Spare : Yes Revertible Hot Spares : Yes Foreign Config Import : Yes Self Diagnostic : Yes Allow Mixed Redundancy on Array : No Global Hot Spares : Yes Deny SCSI Passthrough : No Deny SMP Passthrough : No Deny STP Passthrough : No Support Security : No Snapshot Enabled : No Support the OCE without adding drives : Yes Support PFK : Yes Support PI : No Support Boot Time PFK Change : Yes Disable Online PFK Change : No PFK TrailTime Remaining : 0 days 0 hours Support Shield State : Yes Block SSD Write Disk Cache Change: Yes Supported VD Operations ================ Read Policy : Yes Write Policy : Yes IO Policy : Yes Access Policy : Yes Disk Cache Policy : Yes Reconstruction : Yes Deny Locate : No Deny CC : No Allow Ctrl Encryption: No Enable LDBBM : No Support Breakmirror : No Power Savings : Yes Supported PD Operations ================ Force Online : Yes Force Offline : Yes Force Rebuild : Yes Deny Force Failed : No Deny Force Good/Bad : No Deny Missing Replace : No Deny Clear : No Deny Locate : No Support Temperature : Yes Disable Copyback : No Enable JBOD : No Enable Copyback on SMART : No Enable Copyback to SSD on SMART Error : Yes Enable SSD Patrol Read : No PR Correct Unconfigured Areas : Yes Enable Spin Down of UnConfigured Drives : Yes Disable Spin Down of hot spares : No Spin Down time : 30 T10 Power State : Yes Error Counters ================ Memory Correctable Errors : 0 Memory Uncorrectable Errors : 0 Cluster Information ================ Cluster Permitted : No Cluster Active : No Default Settings ================ Phy Polarity : 0 Phy PolaritySplit : 0 Background Rate : 30 Strip Size : 64kB Flush Time : 4 seconds Write Policy : WB Read Policy : Adaptive Cache When BBU Bad : Disabled Cached IO : No SMART Mode : Mode 6 Alarm Disable : Yes Coercion Mode : None ZCR Config : Unknown Dirty LED Shows Drive Activity : No BIOS Continue on Error : No Spin Down Mode : None Allowed Device Type : SAS/SATA Mix Allow Mix in Enclosure : Yes Allow HDD SAS/SATA Mix in VD : Yes Allow SSD SAS/SATA Mix in VD : No Allow HDD/SSD Mix in VD : No Allow SATA in Cluster : No Max Chained Enclosures : 16 Disable Ctrl-R : Yes Enable Web BIOS : Yes Direct PD Mapping : No BIOS Enumerate VDs : Yes Restore Hot Spare on Insertion : No Expose Enclosure Devices : Yes Maintain PD Fail History : Yes Disable Puncturing : No Zero Based Enclosure Enumeration : No PreBoot CLI Enabled : Yes LED Show Drive Activity : Yes Cluster Disable : Yes SAS Disable : No Auto Detect BackPlane Enable : SGPIO/i2c SEP Use FDE Only : No Enable Led Header : No Delay during POST : 0 EnableCrashDump : No Disable Online Controller Reset : No EnableLDBBM : No Un-Certified Hard Disk Drives : Allow Treat Single span R1E as R10 : No Max LD per array : 16 Power Saving option : Don't Auto spin down Configured Drives Max power savings option is not allowed for LDs. Only T10 power conditions are to be used. Default spin down time in minutes: 30 Enable JBOD : No TTY Log In Flash : No Auto Enhanced Import : No BreakMirror RAID Support : No Disable Join Mirror : No Enable Shield State : Yes Time taken to detect CME : 60s Exit Code: 0x00 Enclosure information: # /opt/MegaRAID/MegaCli/MegaCli64 -encinfo -a1 Number of enclosures on adapter 1 -- 3 Enclosure 0: Device ID : 36 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port B Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 65 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11820 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 48 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 1: Device ID : 65 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port A Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 36 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11760 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 47 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 2: Device ID : 252 Number of Slots : 8 Number of Power Supplies : 0 Number of Fans : 0 Number of Temperature Sensors : 0 Number of Alarms : 0 Number of SIM Modules : 1 Number of Physical Drives : 0 Status : Normal Position : 1 Connector Name : Unavailable Enclosure type : SGPIO Failed in first Inquiry commnad FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : Unavailable Inquiry data : Vendor Identification : LSI Product Identification : SGPIO Product Revision Level : N/A Vendor Specific : Exit Code: 0x00 Now, notice that each slot 11 device shows an enclosure ID of 36, I think this is where the discrepancy happens. One should be 36. But the other should be on enclosure 65. Drives in slot 11: Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 5, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 48 WWN: Sequence Number: 11 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : YES Device Firmware Level: A5C0 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8a53 Connected Port Number: 1(path0) Inquiry Data: MJ1311YNG6YYXAHitachi HDS5C3030ALA630 MEAOA5C0 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 19, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 19 WWN: Sequence Number: 4 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : NO Device Firmware Level: A580 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8e53 Connected Port Number: 0(path0) Inquiry Data: MJ1313YNG1VA5CHitachi HDS5C3030ALA630 MEAOA580 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Update 06/28/12: I finally have some new information about (what we think) the root cause of this problem so I thought I would share. After getting in contact with a very knowledgeable Supermicro tech, they provided us with a tool called Xflash (doesn't appear to be readily available on their FTP). When we gathered some information using this utility, my colleague found something very strange: root@mogile2 test]# ./xflash.dat -i get avail Initializing Interface. Expander: SAS2X36 (SAS2x36) 1) SAS2X36 (SAS2x36) (50030480:00EE917F) (0.0.0.0) 2) SAS2X36 (SAS2x36) (50030480:00E9D67F) (0.0.0.0) 3) SAS2X36 (SAS2x36) (50030480:0112D97F) (0.0.0.0) This lists the connected enclosures. You see the 3 connected (we have since added a 3rd and a 4th which is not yet showing up) with their respective SAS address / WWN (50030480:00EE917F). Now we can use this address to get information on the individual enclosures: [root@mogile2 test]# ./xflash.dat -i 5003048000EE917F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00EE917F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 5003048000E9D67F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00E9D67F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 500304800112D97F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:0112D97F Enclosure Logical Id: 50030480:0112D97F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 Did you catch it? The first 2 enclosures logical ID is partially masked out where the 3rd one (which has a correct unique enclosure ID) is not. We pointed this out to Supermicro and were able to confirm that this address is supposed to be set during manufacturing and there was a problem with a certain batch of these enclosures where the logical ID was not set. We believe that the RAID controller is determining the ID based on the logical ID and since our first 2 enclosures have the same logical ID, they get the same enclosure ID. We also confirmed that 0000007F is the default which comes from LSI as an ID. The next pointer that helps confirm this could be a manufacturing problem with a run of JBODs is the fact that all 6 of the enclosures that have this problem begin with 00E. I believe that between 00E8 and 00EE Supermicro forgot to program the logical IDs correctly and neglected to recall or fix the problem post production. Fortunately for us, there is a tool to manage the WWN and logical ID of the devices from Supermicro: ftp://ftp.supermicro.com/utility/ExpanderXtools_Lite/. Our next step is to schedule a shutdown of these JBODs (after data migration) and reprogram the logical ID and see if it solves the problem. Update 06/28/12 #2: I just discovered this FAQ at Supermicro while Google searching for "lsi 0000007f": http://www.supermicro.com/support/faqs/faq.cfm?faq=11805. I still don't understand why, in the last several times we contacted Supermicro, they would have never directed us to this article :\

    Read the article

  • How to properly use .SWC packages in Flash CS 4

    - by DevEight
    Hi! I've googled a lot trying to find how to properly import and use .swc files in Flash CS 4, tried lots of different methods but none seem to work. What I've done is: 1. Placed it in my "D:\Program Files (x86)\Adobe\Adobe Flash CS4\en\Configuration\Components" folder. It does however not show up in the component inspector. 2. Added it in Publishing Settings as a Library and External Library, still can't seem to use it. I've also tried adding "import org.osflash.signals;" after each method but I receive the error "1172: Definition org.osflash:signals could not be found." So what I'm asking for is an easy way to get the .swc package working code-wise with all classes imported etc. The .swc file is as you may have guessed as3signals. Thanks in advance.

    Read the article

  • Django version in GAE

    - by Alex
    I'm tring to use Django 1.1 in GAE, But when I uncomment use_library('django', '1.1') in this script import os os.environ['DJANGO_SETTINGS_MODULE'] = 'settings' from google.appengine.dist import use_library #use_library('django', '1.1') # Google App Engine imports. from google.appengine.ext.webapp import util # Force Django to reload its settings. from django.conf import settings settings._target = None import django.core.handlers.wsgi import django.core.signals import django.db import django.dispatch.dispatcher # Unregister the rollback event handler. django.dispatch.dispatcher.disconnect( django.db._rollback_on_exception, django.core.signals.got_request_exception) def main(): # Create a Django application for WSGI. application = django.core.handlers.wsgi.WSGIHandler() # Run the WSGI CGI handler with that application. util.run_wsgi_app(application) if __name__ == "__main__": main() I receives AttributeError: 'module' object has no attribute 'disconnect' What is going on?

    Read the article

  • Penalty of using QGraphicsObject vs QGraphicsItem?

    - by Dutch
    I currently have a hierarchy of items based off of QGraphicsItem. I want to move to QGraphicsObject instead so that I can put properties on my items. I will not be making use of signals/slots or any other features of QObject. I'm told that you shouldn't derive from QObject because it's "heavy" and "slow". To test the impact, I derive from QGraphicsObject, add a couple properties to my items, and look at the memory usage of the running app. I create 1000 items using both flavors and I don't notice anything more than 10k more memory usage. Since all I am adding on to my items are properties, is it safe to say that QObject only adds weight if you are using signals/slots?

    Read the article

  • Unable to run OpenMPI across more than two machines

    - by rcollyer
    When attempting to run the first example in the boost::mpi tutorial, I was unable to run across more than two machines. Specifically, this seemed to run fine: mpirun -hostfile hostnames -np 4 boost1 with each hostname in hostnames as <node_name> slots=2 max_slots=2. But, when I increase the number of processes to 5, it just hangs. I have decreased the number of slots/max_slots to 1 with the same result when I exceed 2 machines. On the nodes, this shows up in the job list: <user> Ss orted --daemonize -mca ess env -mca orte_ess_jobid 388497408 \ -mca orte_ess_vpid 2 -mca orte_ess_num_procs 3 -hnp-uri \ 388497408.0;tcp://<node_ip>:48823 Additionally, when I kill it, I get this message: node2- daemon did not report back when launched node3- daemon did not report back when launched The cluster is set up with the mpi and boost libs accessible on an NFS mounted drive. Am I running into a deadlock with NFS? Or, is something else going on?

    Read the article

  • How to add a slot to my main window in Qt builder?

    - by George Edison
    I am using Qt Builder to create a simple window. I used the menu editor to add a menu. Now, I figured out how to connect one of the menu items to the close() method of the main window. My problem is how to add a slot to the main window. Here is what I have: private slots: void OnAbout(); However, I can't get this method to show up in the 'Signals and Slots Editor'. How can I get it to show up?

    Read the article

  • mongrel not working - Ruby on Rails

    - by Steven
    I have deployed my rails app to a live server(linux) and I have successfully installed the the mongrel gems, and I can successfully start the server for my app but when i try to acceess the website on the server i get the error The server at 196.xx.xxx.xx is taking too long to respond. Is there anything i need to do to be able to access my app on the browser? Mongrel Logs ** Starting Rails with production environment... ** Rails loaded. ** Loading any Rails specific GemPlugins ** Signals ready. TERM = stop. USR2 = restart. INT = stop (no restart). ** Rails signals registered. HUP = reload (without restart). It might not work well. ** Mongrel 1.1.5 available at 0.0.0.0:3001 ** Writing PID file to /home/xxxxxxx.co.za/shared/log/mongrel.pid

    Read the article

  • Why are USB 2.0 devices crashing my system?

    - by BenAlabaster
    Background on the machine I'm having a problem with: The machine was inherited and appears to be circa 2003 (there's a date stamp on the power supply which leads me to this conclusion). I've got it set up as a Skype terminal for my 2 year old to keep in touch with her grandparents and other members of the family - which everyone loves. It has a generic baby-ATX motherboard with no identifying markings. CPU-Z identifies the motherboard model as VT8601 but doesn't provide me with any manufacturer name. There's one stamp on the motherboard that says "Rev.B". On board it has 10/100 LAN, 2 x USB 1.0, VGA, PS/2 for KB and mouse, parallel port, 2 x serial ports, 2 x IDE, 1 x floppy, 2 x SDRAM slots, 1 x CPU housing that is seating a 1.3GHz Intel Celeron CPU, 3 x PCI, 1 x AGP - although you can only use 2 of the PCI slots if you use the AGP slot due to the physical layout of the board. It's got 768Mb PC133 SDRAM - 1 x 512Mb & 1 x 256Mb installed as well as a D-LINK WDA-2320 54G Wi-Fi network card and a generic USB 2.0 expansion board containing 3 x external + 1 x internal USB connectors. All this is sitting in a slimline case. I don't know the wattage of the PSU, but can post this later if this proves to be helpful. The motherboard is running a version of Award BIOS for which I don't have the version number to hand but can again post this later if it would be helpful. It has an 80Gb Western Digital hard drive freshly formatted and built with Windows XP Professional with Service Pack 3 and all current patches. In addition to Windows XP, the only other software it's running is Skype 4.1 (4.2 crashes the machine as soon as it starts up). It's got a Daytek MV150 15" touch screen running through the VGA and COM1 with the most current drivers from the Daytek website and the most current version of ELO-Touchsystems drivers for the touch component. The webcam is a Logitech Webcam C200 with the latest drivers from the Logitech website. The problem If I hook any USB 2.0 devices to this machine, it hangs the whole machine and I have to hard boot it to get it back up. Workarounds found I can plug the same devices into the on board USB 1.0 connectors and everything works fine, albeit at reduced performance. I've tried 3 different kinds of USB thumb drives, 3 different makes/models of webcams and my iPhone all with the same effect. They're recognized and don't hang the machine when I hook them to the USB 1.0 but if I hook them to the USB 2.0 ports, the machine hangs within a couple of seconds of recognizing the devices were connected. Attempted solutions I've tried disabling all the on board devices that I'm not using - such as the on board LAN, the second COM port, the AGP connector etc. through the BIOS in an (perhaps misguided or futile) attempt to reduce the power consumption... I don't think it had any effect but it didn't do any harm. I was wondering if the PSU wattage just isn't enough to drive the USB 2.0 devices; I've seen this suggested but haven't found any confirmation that this could really be an issue - nor have I found a way to work around this issue - if indeed it is one. Any ideas? The only thing I haven't done which I only just thought of while writing this essay is trying the USB 2.0 card in a different PCI slot, or re-ordering the wi-fi and USB cards in the slots... although I'm not sure if this will make any difference. I've installed the USB card in another machine and it works without issue, so it's not a problem with the USB card itself. Other thoughts Perhaps this is an incompatibility between the USB 2.0 card and the BIOS, would re-flashing the BIOS with a newer version help? Do I need to be able to identify the manufacturer of the motherboard in order to be able to find a BIOS edition specific for this motherboard or will any version of Award BIOS function in its place? Question Does anyone have any ideas that could help me get my USB 2.0 devices hooked up to this machine?

    Read the article

  • Ghost Records, Backups, and Database Compression…With a Pinch of Security Considerations

    - by Argenis
      Today Jeffrey Langdon (@jlangdon) posed on #SQLHelp the following questions: So I set to answer his question, and I said to myself: “Hey, I haven’t blogged in a while, how about I blog about this particular topic?”. Thus, this post was born. (If you have never heard of Ghost Records and/or the Ghost Cleanup Task, go see this blog post by Paul Randal) 1) Do ghost records get copied over in a backup? If you guessed yes, you guessed right. The backup process in SQL Server takes all data as it is on disk – it doesn’t crack the pages open to selectively pick which slots have actual data and which ones do not. The whole page is backed up, regardless of its contents. Even if ghost cleanup has run and processed the ghost records, the slots are not overwritten immediately, but rather until another DML operation comes along and uses them. As a matter of fact, all of the allocated space for a database will be included in a full backup. So, this poses a bit of a security/compliance problem for some of you DBA folk: if you want to take a full backup of a database after you’ve purged sensitive data, you should rebuild all of your indexes (with FILLFACTOR set to 100%). But the empty space on your data file(s) might still contain sensitive data! A SHRINKFILE might help get rid of that (not so) empty space, but that might not be the end of your troubles. You might _STILL_ have (not so) empty space on your files! One approach that you can follow is to export all of the data on your database to another SQL Server instance that does NOT have Instant File Initialization enabled. This can be a tedious and time-consuming process, though. So you have to weigh in your options and see what makes sense for you. Snapshot Replication is another idea that comes to mind. 2) Does Compression get rid of ghost records (2008)? The answer to this is no. The Ghost Records/Ghost Cleanup Task mechanism is alive and well on compressed tables and indexes. You can prove this running a simple script: CREATE DATABASE GhostRecordsTest GO USE GhostRecordsTest GO CREATE TABLE myTable (myPrimaryKey int IDENTITY(1,1) PRIMARY KEY CLUSTERED,                       myWideColumn varchar(1000) NOT NULL DEFAULT 'Default string value')                         ALTER TABLE myTable REBUILD PARTITION = ALL WITH (DATA_COMPRESSION = PAGE) GO INSERT INTO myTable DEFAULT VALUES GO 10 DELETE myTable WHERE myPrimaryKey % 2 = 0 DBCC TRACEON(2514) DBCC CHECKTABLE(myTable) TraceFlag 2514 will make DBCC CHECKTABLE give you an extra tidbit of information on its output. For the above script: “Ghost Record count = 5” Until next time,   -Argenis

    Read the article

  • Ghost Records, Backups, and Database Compression…With a Pinch of Security Considerations

    - by Argenis
      Today Jeffrey Langdon (@jlangdon) posed on #SQLHelp the following questions: So I set to answer his question, and I said to myself: “Hey, I haven’t blogged in a while, how about I blog about this particular topic?”. Thus, this post was born. (If you have never heard of Ghost Records and/or the Ghost Cleanup Task, go see this blog post by Paul Randal) 1) Do ghost records get copied over in a backup? If you guessed yes, you guessed right. The backup process in SQL Server takes all data as it is on disk – it doesn’t crack the pages open to selectively pick which slots have actual data and which ones do not. The whole page is backed up, regardless of its contents. Even if ghost cleanup has run and processed the ghost records, the slots are not overwritten immediately, but rather until another DML operation comes along and uses them. As a matter of fact, all of the allocated space for a database will be included in a full backup. So, this poses a bit of a security/compliance problem for some of you DBA folk: if you want to take a full backup of a database after you’ve purged sensitive data, you should rebuild all of your indexes (with FILLFACTOR set to 100%). But the empty space on your data file(s) might still contain sensitive data! A SHRINKFILE might help get rid of that (not so) empty space, but that might not be the end of your troubles. You might _STILL_ have (not so) empty space on your files! One approach that you can follow is to export all of the data on your database to another SQL Server instance that does NOT have Instant File Initialization enabled. This can be a tedious and time-consuming process, though. So you have to weigh in your options and see what makes sense for you. Snapshot Replication is another idea that comes to mind. 2) Does Compression get rid of ghost records (2008)? The answer to this is no. The Ghost Records/Ghost Cleanup Task mechanism is alive and well on compressed tables and indexes. You can prove this running a simple script: CREATE DATABASE GhostRecordsTest GO USE GhostRecordsTest GO CREATE TABLE myTable (myPrimaryKey int IDENTITY(1,1) PRIMARY KEY CLUSTERED,                       myWideColumn varchar(1000) NOT NULL DEFAULT 'Default string value')                         ALTER TABLE myTable REBUILD PARTITION = ALL WITH (DATA_COMPRESSION = PAGE) GO INSERT INTO myTable DEFAULT VALUES GO 10 DELETE myTable WHERE myPrimaryKey % 2 = 0 DBCC TRACEON(2514) DBCC CHECKTABLE(myTable) TraceFlag 2514 will make DBCC CHECKTABLE give you an extra tidbit of information on its output. For the above script: “Ghost Record count = 5” Until next time,   -Argenis

    Read the article

  • JRockit R28/JRockit Mission Control 4.0 is out!

    - by Marcus Hirt
    The next major release of JRockit is finally out! Here are some highlights: Includes the all new JRockit Flight Recorder – supersedes the old JRockit Runtime Analyser. The new flight recorder is inspired by the “black box” in airplanes. It uses a highly efficient recording engine and thread local buffers to capture data about the runtime and the application running in the JVM. It can be configured to always be on, so that whenever anything “interesting” happens, data can be dumped for some time back. Think of it as your own personal profiling time machine. Automatic shortest path calculation in Memleak – no longer any need for running around in circles when trying to find your way back to a thread root from an instance. Memleak can now show class loader related information and split graphs on a per class loader basis. More easily configured JMX agent – default port for both RMI Registry and RMI Server can be configured, and is by default the same, allowing easier configuration of firewalls. Up to 64 GB (was 4GB) compressed references. Per thread allocation profiling in the Management Console. Native Memory Tracking – it is now possible to track native memory allocations with very high resolution. The information can either be accessed using JRCMD, or the dedicated Native Memory Tracking experimental plug-in for the Management Console (alas only available for the upcoming 4.0.1 release). JRockit can now produce heap dumps in HPROF format. Cooperative suspension – JRockit is no longer using system signals for stopping threads, which could lead to hangs if signals were lost or blocked (for example bad NFS shares). Now threads check periodically to see if they are suspended. VPAT/Section 508 compliant JRMC – greatly improved keyboard navigation and screen reader support. See New and Noteworthy for more information. JRockit Mission Control 4.0.0 can be downloaded from here: http://www.oracle.com/technology/software/products/jrockit/index.html <shameless ad> There is even a book to go with JRMC 4.0.0/JRockit R28! http://www.packtpub.com/oracle-jrockit-the-definitive-guide/book/ </shameless ad>

    Read the article

  • Configuring Oracle iPlanet WebServer / Oracle Traffic Director to use crypto accelerators on T4-1 servers

    - by mv
    Configuring Oracle iPlanet Web Server / Oracle Traffic Director to use crypto accelerators on T4-1 servers Jyri had written a technical article on Configuring Solaris Cryptographic Framework and Sun Java System Web Server 7 on Systems With UltraSPARC T1 Processors. I tried to find out what has changed since then in T4. I have used a T4-1 SPARC system with Solaris 10. Results slightly vary for Solaris 11.  For Solaris 11, the T4 optimization was implemented in libsoftcrypto.so while it was in pkcs11_softtoken_extra.so for Solaris 10. Overview of T4 processors is here in this blog. Many thanx to Chi-Chang Lin and Julien for their help. 1. Install Oracle iPlanet Web Server / Oracle Traffic Director.  Go to instance/config directory.  # cd /opt/oracle/webserver7/https-hostname.fqdn/config 2. List default PKCS#11 Modules # ../../bin/modutil -dbdir . -listListing of PKCS #11 Modules-----------------------------------------------------------1. NSS Internal PKCS #11 Moduleslots: 2 slots attachedstatus: loadedslot: NSS Internal Cryptographic Servicestoken: NSS Generic Crypto Servicesslot: NSS User Private Key and Certificate Servicestoken: NSS Certificate DB2. Root Certslibrary name: libnssckbi.soslots: 1 slot attachedstatus: loadedslot: NSS Builtin Objectstoken: Builtin Object Token----------------------------------------------------------- 3. Initialize the soft token data store in the $HOME/.sunw/pkcs11_softtoken/ directory # pktool setpin keystore=pkcs11Enter token passphrase: olderpasswordCreate new passphrase: passwordRe-enter new passphrase: passwordPassphrase changed. 4. Offload crypto operations to Solaris Crypto Framework on T4 $ ../../bin/modutil -dbdir . -nocertdb -add SCF -libfile /usr/lib/libpkcs11.so -mechanisms RSA:AES:SHA1:MD5 Module "SCF" added to database. Note that -nocertdb means modutil won't try to open the NSS softoken key database. It doesn't even have to be present. PKCS#11 library used is /usr/lib/libpkcs11.so. If the server is running in 64 bit mode, we have to use /usr/lib/64/libpkcs11.so Unlike T1 and T2, in T4 we do not have to disable mechanisms in softtoken provider using cryptoadm. 5. List again to check that a new module SCF is added # ../../bin/modutil -dbdir . -list Listing of PKCS #11 Modules-----------------------------------------------------------1. NSS Internal PKCS #11 Moduleslots: 2 slots attachedstatus: loadedslot: NSS Internal Cryptographic Servicestoken: NSS Generic Crypto Servicesslot: NSS User Private Key and Certificate Servicestoken: NSS Certificate DB2. SCFlibrary name: /usr/lib/libpkcs11.soslots: 2 slots attachedstatus: loadedslot: Sun Metaslottoken: Sun Metaslotslot: n2rng/0 SUNW_N2_Random_Number_Generator token: n2rng/0 SUNW_N2_RNG 3. Root Certs library name: libnssckbi.so slots: 1 slot attached status: loaded slot: NSS Builtin Objects token: Builtin Object Token----------------------------------------------------------- 6.  Create certificate in “Sun Metaslot” : I have used certutil, but you must use Admin Server CLI / GUI # ../../bin/certutil -S -x -n "Server-Cert" -t "CT,CT,CT" -s "CN=*.fqdn" -d . -h "Sun Metaslot"Enter Password or Pin for "Sun Metaslot": password 7. Verify that the certificate is created properly in “Sun Metslaot” # ../../bin/certutil -L -d . -h "Sun Metaslot"Certificate Nickname Trust AttributesSSL,S/MIME,JAR/XPIEnter Password or Pin for "Sun Metaslot": passwordSun Metaslot:Server-Cert CTu,Cu,Cu# 8. Associate this newly created certificate to http listener using Admin CLI/GUI. After that server.xml should have <http-listener> ...    <ssl>        <server-cert-nickname>Sun Metaslot:Server-Cert</server-cert-nicknamer>    </ssl> Note the prefix "Sun Metaslot" 9. Disable PKCS#11 bypass To use the accelerated AES algorithm, turn off PKCS#11 bypass, and configure modutil to have the AES mechanism go to the Metaslot. After you disable PKCS#11 bypasss using Admin GUI/CLI,  check that server.xml should have <server> ....    <pkcs11>         <enabled>1</enabled>         <allow-bypass>0</allow-bypass>     </pkcs11> With PKCS#11 bypass enabled, Oracle iPlanet Web Server will only use the RSA capability of the T4, provided certificate and key are stored in the T4 slot (Metaslot). Actually, the RSA op is never bypassed in NSS, it's always done with PKCS#11 calls. So the bypass settings won't affect the behavior of the probes for RSA at all. The only thing that matters if where the RSA key and certificate live, ie. which PKCS#11 token, and thus which PKCS#11 module gets called to do the work. If your certificate/key are in the NSS certificate/key db, you will see libsoftokn3/libfreebl libraries doing the RSA work. If they are in the Sun Metaslot, it should be the Solaris code. 10. Start the server instance # ../bin/startserv Oracle iPlanet Web Server 7.0.16 B09/14/2012 03:33Please enter the PIN for the "Sun Metaslot" token: password...info: HTTP3072: http-listener-1: https://hostname.fqdn:80 ready to accept requestsinfo: CORE3274: successful server startup 11. Figure out which process to run this DTrace script on # ps -eaf | grep webservd | grep -v dogwebservd 18224 18223 0 13:17:25 ? 0:07 webservd -d /opt/oracle/webserver7/https-hostname.fqdn/config -r /opt/root 18225 18224 0 13:17:25 ? 0:00 webservd -d /opt/oracle/webserver7/https-hostname.fqdn/config -r /opt/ (For Oracle Traffic Director look for process named "trafficd") We see that the child process id is “18225” 12. Clients for testing : You can use any browser. I used NSS tool tstclnt for testing $cat > req.txtGET /index.html HTTP/1.0 For checking both RSA and AES, I used cipher “:0035” which is TLS_RSA_WITH_AES_256_CBC_SHA $./tstclnt -h hostname -p 80 -d . -T -f -o -v -c “:0035” < req.txt 13. How do I make sure that crypto accelerator is being used 13.1 Create DTrace script The following D script should be able to uncover whether T4-specific crypto routine are being called or not. It also displays stats per second. # cat > t4crypto.d#!/usr/sbin/dtrace -spid$target::*rsa*:entry,pid$target::*yf*:entry{    @ops[probemod, probefunc] = count();}tick-1sec{    printa(@ops);    trunc(@ops);} Invoke with './t4crypto.d -p <pid> ' 13.2 EXPECTED PROBES FOR Solaris 10 : If offloading to T4 HW are correctly set up, the expected DTrace output would have these probes and libraries library Operations PROBES pkcs11_softtoken_extra.so RSA soft_decrypt_rsa_pkcs_decode, soft_encrypt_rsa_pkcs_encode soft_rsa_crypt_init_common soft_rsa_decrypt, soft_rsa_encrypt soft_rsa_decrypt_common, soft_rsa_encrypt_common AES yf_aes_instructions_present yf_aes_expand256, yf_aes256_cbc_decrypt, yf_aes256_cbc_encrypt, yf_aes256_load_keys_for_decrypt, yf_aes256_load_keys_for_encrypt, Note that these are for 256, same for 128, 192... these are for cbc, same for ecb, ctr, cfb128... DES yf_des_expand, yf_des_instructions_present yf_des_encrypt libmd_psr.so MD5 yf_md5_multiblock, yf_md5_instruction_present SHA1 yf_sha1_instruction_present, yf_sha1_multibloc 13.3 SAMPLE OUTPUT FOR CIPHER TLS_RSA_WITH_AES_256_CBC_SHA (0x0035) ON T4 SPARC SOLARIS 10 WITHOUT PKCS#11 BYPASS # ./t4crypto.d -p 18225 pkcs11_softtoken_extra.so.1   soft_decrypt_rsa_pkcs_decode    1 pkcs11_softtoken_extra.so.1   soft_rsa_crypt_init_common      1 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt                1 pkcs11_softtoken_extra.so.1   big_mp_mul_yf                   2 pkcs11_softtoken_extra.so.1   mpm_yf_mpmul                    2 pkcs11_softtoken_extra.so.1   mpmul_arr_yf                    2 pkcs11_softtoken_extra.so.1   rijndael_key_setup_enc_yf       2 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt_common         2 pkcs11_softtoken_extra.so.1   yf_aes_expand256                2 pkcs11_softtoken_extra.so.1   yf_aes256_cbc_decrypt           3 pkcs11_softtoken_extra.so.1   yf_aes256_load_keys_for_decrypt 3 pkcs11_softtoken_extra.so.1   big_mont_mul_yf                 6 pkcs11_softtoken_extra.so.1   mm_yf_montmul                   6 pkcs11_softtoken_extra.so.1   yf_des_instructions_present     6 pkcs11_softtoken_extra.so.1   yf_aes256_cbc_encrypt           8 pkcs11_softtoken_extra.so.1   yf_aes256_load_keys_for_encrypt 8 pkcs11_softtoken_extra.so.1   yf_mpmul_present                8 pkcs11_softtoken_extra.so.1   yf_aes_instructions_present    13 pkcs11_softtoken_extra.so.1   yf_des_encrypt                 18 libmd_psr.so.1                yf_md5_multiblock              41 libmd_psr.so.1                yf_md5_instruction_present     72 libmd_psr.so.1                yf_sha1_instruction_present    82 libmd_psr.so.1                yf_sha1_multiblock             82 This indicates that both RSA and AES ops are done in Solaris Crypto Framework. 13.4 SAMPLE OUTPUT FOR CIPHER TLS_RSA_WITH_AES_256_CBC_SHA (0x0035) ON T4 SPARC SOLARIS 10 WITH PKCS#11 BYPASS # ./t4crypto.d -p 18225 pkcs11_softtoken_extra.so.1   soft_decrypt_rsa_pkcs_decode 1 pkcs11_softtoken_extra.so.1   soft_rsa_crypt_init_common   1 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt             1 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt_common      1 pkcs11_softtoken_extra.so.1   big_mp_mul_yf                2 pkcs11_softtoken_extra.so.1   mpm_yf_mpmul                 2 pkcs11_softtoken_extra.so.1   mpmul_arr_yf                 2 pkcs11_softtoken_extra.so.1   big_mont_mul_yf              6 pkcs11_softtoken_extra.so.1   mm_yf_montmul                6 pkcs11_softtoken_extra.so.1   yf_mpmul_present             8 For this cipher, when I enable PKCS#11 bypass, Only RSA probes are being hit AES probes are not being hit. 13.5 ustack() for RSA operations / probefunc == "soft_rsa_decrypt" / Shows that libnss3.so is calling C_* functions of libpkcs11.so which is calling functions of pkcs11_softtoken_extra.so for both cases with and without bypass. When PKCS#11 bypass is disabled (allow-bypass is 0) pkcs11_softtoken_extra.so.1`soft_rsa_decrypt pkcs11_softtoken_extra.so.1`soft_rsa_decrypt_common+0x94 pkcs11_softtoken_extra.so.1`soft_unwrapkey+0x258 pkcs11_softtoken_extra.so.1`C_UnwrapKey+0x1ec libpkcs11.so.1`meta_unwrap_key+0x17c libpkcs11.so.1`meta_UnwrapKey+0xc4 libpkcs11.so.1`C_UnwrapKey+0xfc libnss3.so`pk11_AnyUnwrapKey+0x6b8 libnss3.so`PK11_PubUnwrapSymKey+0x8c libssl3.so`ssl3_HandleRSAClientKeyExchange+0x1a0 libssl3.so`ssl3_HandleClientKeyExchange+0x154 libssl3.so`ssl3_HandleHandshakeMessage+0x440 libssl3.so`ssl3_HandleHandshake+0x11c libssl3.so`ssl3_HandleRecord+0x5e8 libssl3.so`ssl3_GatherCompleteHandshake+0x5c libssl3.so`ssl_GatherRecord1stHandshake+0x30 libssl3.so`ssl_Do1stHandshake+0xec libssl3.so`ssl_SecureRecv+0x1c8 libssl3.so`ssl_Recv+0x9c libns-httpd40.so`__1cNDaemonSessionDrun6M_v_+0x2dc When PKCS#11 bypass is enabled (allow-bypass is 1) pkcs11_softtoken_extra.so.1`soft_rsa_decrypt pkcs11_softtoken_extra.so.1`soft_rsa_decrypt_common+0x94 pkcs11_softtoken_extra.so.1`C_Decrypt+0x164 libpkcs11.so.1`meta_do_operation+0x27c libpkcs11.so.1`meta_Decrypt+0x4c libpkcs11.so.1`C_Decrypt+0xcc libnss3.so`PK11_PrivDecryptPKCS1+0x1ac libssl3.so`ssl3_HandleRSAClientKeyExchange+0xe4 libssl3.so`ssl3_HandleClientKeyExchange+0x154 libssl3.so`ssl3_HandleHandshakeMessage+0x440 libssl3.so`ssl3_HandleHandshake+0x11c libssl3.so`ssl3_HandleRecord+0x5e8 libssl3.so`ssl3_GatherCompleteHandshake+0x5c libssl3.so`ssl_GatherRecord1stHandshake+0x30 libssl3.so`ssl_Do1stHandshake+0xec libssl3.so`ssl_SecureRecv+0x1c8 libssl3.so`ssl_Recv+0x9c libns-httpd40.so`__1cNDaemonSessionDrun6M_v_+0x2dc libnsprwrap.so`ThreadMain+0x1c libnspr4.so`_pt_root+0xe8 13.6 ustack() FOR AES operations / probefunc == "yf_aes256_cbc_encrypt" / When PKCS#11 bypass is disabled (allow-bypass is 0) pkcs11_softtoken_extra.so.1`yf_aes256_cbc_encrypt pkcs11_softtoken_extra.so.1`aes_block_process_contiguous_whole_blocks+0xb4 pkcs11_softtoken_extra.so.1`aes_crypt_contiguous_blocks+0x1cc pkcs11_softtoken_extra.so.1`soft_aes_encrypt_common+0x22c pkcs11_softtoken_extra.so.1`C_EncryptUpdate+0x10c libpkcs11.so.1`meta_do_operation+0x1fc libpkcs11.so.1`meta_EncryptUpdate+0x4c libpkcs11.so.1`C_EncryptUpdate+0xcc libnss3.so`PK11_CipherOp+0x1a0 libssl3.so`ssl3_CompressMACEncryptRecord+0x264 libssl3.so`ssl3_SendRecord+0x300 libssl3.so`ssl3_FlushHandshake+0x54 libssl3.so`ssl3_SendFinished+0x1fc libssl3.so`ssl3_HandleFinished+0x314 libssl3.so`ssl3_HandleHandshakeMessage+0x4ac libssl3.so`ssl3_HandleHandshake+0x11c libssl3.so`ssl3_HandleRecord+0x5e8 libssl3.so`ssl3_GatherCompleteHandshake+0x5c libssl3.so`ssl_GatherRecord1stHandshake+0x30 libssl3.so`ssl_Do1stHandshake+0xec Shows that libnss3.so is calling C_* functions of libpkcs11.so which is calling functions of pkcs11_softtoken_extra.so However when PKCS#11 bypass is disabled (allow-bypass is 1) this stack isn't getting called. 14. LIST OF ALL THE PROBES MATCHED BY D SCRIPT FOR REFERENCE # ./t4crypto.d -p 18225 -l ID PROVIDER MODULE FUNCTION NAME ... 55720 pid18225 libmd_psr.so.1 yf_md5_instruction_present entry 55721 pid18225 libmd_psr.so.1 yf_sha256_instruction_present entry 55722 pid18225 libmd_psr.so.1 yf_sha512_instruction_present entry 55723 pid18225 libmd_psr.so.1 yf_sha1_instruction_present entry 55724 pid18225 libmd_psr.so.1 yf_sha256 entry 55725 pid18225 libmd_psr.so.1 yf_sha256_multiblock entry 55726 pid18225 libmd_psr.so.1 yf_sha512 entry 55727 pid18225 libmd_psr.so.1 yf_sha512_multiblock entry 55728 pid18225 libmd_psr.so.1 yf_sha1 entry 55729 pid18225 libmd_psr.so.1 yf_sha1_multiblock entry 55730 pid18225 libmd_psr.so.1 yf_md5 entry 55731 pid18225 libmd_psr.so.1 yf_md5_multiblock entry 55732 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_instructions_present entry 55733 pid18225 pkcs11_softtoken_extra.so.1 rijndael_key_setup_enc_yf entry 55734 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_expand128 entry 55735 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_encrypt128 entry 55736 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_decrypt128 entry 55737 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_expand192 entry 55738 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_encrypt192 entry 55739 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_decrypt192 entry 55740 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_expand256 entry 55741 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_encrypt256 entry 55742 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_decrypt256 entry 55743 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_load_keys_for_encrypt entry 55744 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_load_keys_for_encrypt entry 55745 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_load_keys_for_encrypt entry 55746 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_ecb_encrypt entry 55747 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_ecb_encrypt entry 55748 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_ecb_encrypt entry 55749 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cbc_encrypt entry 55750 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cbc_encrypt entry 55751 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cbc_encrypt entry 55752 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_ctr_crypt entry 55753 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_ctr_crypt entry 55754 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_ctr_crypt entry 55755 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cfb128_encrypt entry 55756 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cfb128_encrypt entry 55757 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cfb128_encrypt entry 55758 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_load_keys_for_decrypt entry 55759 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_load_keys_for_decrypt entry 55760 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_load_keys_for_decrypt entry 55761 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_ecb_decrypt entry 55762 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_ecb_decrypt entry 55763 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_ecb_decrypt entry 55764 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cbc_decrypt entry 55765 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cbc_decrypt entry 55766 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cbc_decrypt entry 55767 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cfb128_decrypt entry 55768 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cfb128_decrypt entry 55769 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cfb128_decrypt entry 55771 pid18225 pkcs11_softtoken_extra.so.1 yf_des_instructions_present entry 55772 pid18225 pkcs11_softtoken_extra.so.1 yf_des_expand entry 55773 pid18225 pkcs11_softtoken_extra.so.1 yf_des_encrypt entry 55774 pid18225 pkcs11_softtoken_extra.so.1 yf_mpmul_present entry 55775 pid18225 pkcs11_softtoken_extra.so.1 yf_montmul_present entry 55776 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_montmul entry 55777 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_montsqr entry 55778 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_restore_func entry 55779 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_ret_from_mont_func entry 55780 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_execute_slp entry 55781 pid18225 pkcs11_softtoken_extra.so.1 big_modexp_ncp_yf entry 55782 pid18225 pkcs11_softtoken_extra.so.1 big_mont_mul_yf entry 55783 pid18225 pkcs11_softtoken_extra.so.1 mpmul_arr_yf entry 55784 pid18225 pkcs11_softtoken_extra.so.1 big_mp_mul_yf entry 55785 pid18225 pkcs11_softtoken_extra.so.1 mpm_yf_mpmul entry 55786 pid18225 libns-httpd40.so nsapi_rsa_set_priv_fn entry ... 55795 pid18225 libnss3.so prepare_rsa_priv_key_export_for_asn1 entry 55796 pid18225 libresolv.so.2 sunw_dst_rsaref_init entry 55797 pid18225 libnssutil3.so NSS_Get_SEC_UniversalStringTemplate entry ... 55813 pid18225 libsoftokn3.so prepare_low_rsa_priv_key_for_asn1 entry 55814 pid18225 libsoftokn3.so rsa_FormatOneBlock entry 55815 pid18225 libsoftokn3.so rsa_FormatBlock entry 55816 pid18225 libnssdbm3.so lg_prepare_low_rsa_priv_key_for_asn1 entry 55817 pid18225 libfreebl_32fpu_3.so rsa_build_from_primes entry 55818 pid18225 libfreebl_32fpu_3.so rsa_is_prime entry 55819 pid18225 libfreebl_32fpu_3.so rsa_get_primes_from_exponents entry 55820 pid18225 libfreebl_32fpu_3.so rsa_PrivateKeyOpNoCRT entry 55821 pid18225 libfreebl_32fpu_3.so rsa_PrivateKeyOpCRTNoCheck entry 55822 pid18225 libfreebl_32fpu_3.so rsa_PrivateKeyOpCRTCheckedPubKey entry 55823 pid18225 pkcs11_kernel.so.1 key_gen_rsa_by_value entry 55824 pid18225 pkcs11_kernel.so.1 get_rsa_private_key entry 55825 pid18225 pkcs11_kernel.so.1 get_rsa_public_key entry 55826 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_encrypt entry 55827 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_decrypt entry 55828 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_crypt_init_common entry 55829 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_encrypt_common entry 55830 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_decrypt_common entry 55831 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_sign_verify_init_common entry 55832 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_sign_common entry 55833 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_verify_common entry 55834 pid18225 pkcs11_softtoken_extra.so.1 generate_rsa_key entry 55835 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_genkey_pair entry 55836 pid18225 pkcs11_softtoken_extra.so.1 get_rsa_sha1_prefix entry 55837 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_digest_sign_common entry 55838 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_digest_verify_common entry 55839 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_verify_recover entry 55840 pid18225 pkcs11_softtoken_extra.so.1 rsa_pri_to_asn1 entry 55841 pid18225 pkcs11_softtoken_extra.so.1 asn1_to_rsa_pri entry 55842 pid18225 pkcs11_softtoken_extra.so.1 soft_encrypt_rsa_pkcs_encode entry 55843 pid18225 pkcs11_softtoken_extra.so.1 soft_decrypt_rsa_pkcs_decode entry 55844 pid18225 pkcs11_softtoken_extra.so.1 soft_sign_rsa_pkcs_encode entry 55845 pid18225 pkcs11_softtoken_extra.so.1 soft_verify_rsa_pkcs_decode entry 55770 profile tick-1sec

    Read the article

  • Windows Azure Role Instance Limits

    - by kaleidoscope
    Brief overview of the limits imposed on hosted services in Windows Azure is as follows: Effective before Dec. 10th 2009 Effective  after Dec. 10th 2009 Effective after Jan. 4th 2010 Token (CTP) Token (CTP) Token (non-billing country) Paying subscription Deployment Slots 2 2 2 2 Hosted Services 1 1 20 20 Roles per  deployment 5 5 5 5 Instances per Role 2 2 no limit no limit VM CPU Cores no limit 8 8 20 Storage Accounts 2 2 5 5 More Information: http://blog.toddysm.com/2010/01/windows-azure-role-instance-limits-explained.html   Amit, S

    Read the article

  • Pidgin script with Python/ Get Focus Signal

    - by Mr Alles
    I am creating a script in Python to integrate Pidgin with Unity (12.04), I've managed to do the counting notifications system using the Launcher API. But I dont know what event or signal is activated when the conversation window gains focus (To clear the message counter). I've tried some of the signals available on the documentation of Pidgin but none of them worked. Is there any GTK(or anything) event that is triggered when the window chat gets focus?

    Read the article

< Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >