Search Results

Search found 14617 results on 585 pages for 'non breaking spaces'.

Page 115/585 | < Previous Page | 111 112 113 114 115 116 117 118 119 120 121 122  | Next Page >

  • Strict pointer aliasing: any solution for a specific problem?

    - by doublep
    I have a problem caused by breaking strict pointer aliasing rule. I have a type T that comes from a template and some integral type Int of the same size (as with sizeof). My code essentially does the following: T x = some_other_t; if (*reinterpret_cast <Int*> (&x) == 0) ... Because T is some arbitary (other than the size restriction) type that could have a constructor, I cannot make a union of T and Int. (This is allowed only in C++0x only and isn't even supported by GCC yet). Is there any way I could rewrite the above pseudocode to preserve functionality and avoid breaking strict aliasing rule? Note that this is a template, I cannot control T or value of some_other_t; the assignment and subsequent comparison do happen inside the templated code. (For the record, the above code started breaking on GCC 4.5 if T contains any bit fields.)

    Read the article

  • latin bases language segmentation gramatical rules

    - by pravin
    Hi folks, I am working on one feature i.e. to apply language segmentation rules ( grammatical ) for Latin based language ( English currently ). Currently I am in phase of breaking sentences of user input. e.g.: "I am working in language translation". "I have used Google MT API for this" In above example i will break above sentence by full stop (.) This is normal cases where I am breaking sentence on dot, but there are n number of characters for breaking sentence like ( . ! ? etc ). I have following SRX rules for segmentation. Here my question are :- 1) Is there any reference ? which I can use for resolving my language segmentation rules. 2) Or Is there any forums on language segmentation ? , so that i can discuss efficiently Please let me know if anybody know about this ? Thanks a lot.

    Read the article

  • java - how to split string in to multiple parts?

    - by Ewen
    I have a string that contains a value "firstword second third", and an ArrayList. I want to split the whole string in to by spaces and add the splitted strings in to the ArrayList. For example,"firstword second third" can be split to three separate strings and added three times in to the ArrayList. "1 2 3 4" can be splitted in to 4 strings and added 4 times in to the ArrayList. See the code below: public void separateAndAdd(String notseparated) { for(int i=0;i<canBeSepartedinto(notseparated);i++{ //what should i put here in order to split the string via spaces? thearray.add(separatedstring); } } public int canBeSeparatedinto(String string) //what do i put here to find out the amount of spaces inside the string? return .... } Please leave a comment if you dont get what I mean or I should fix some errors in this post. Thanks for your time!

    Read the article

  • iPhone c++ development / compiler on a non-Mac PC? (Windows? Linux?)

    - by Ehrann Mehdan
    According to the (in)famous iPhone Developer Program License Agreement change 3.3.1 — Applications may only use Documented APIs in the manner prescribed by Apple and must not use or call any private APIs. Applications must be originally written in Objective-C, C, C++, or JavaScript as executed by the iPhone OS WebKit engine, and only code written in C, C++, and Objective-C may compile and directly link against the Documented APIs (e.g., Applications that link to Documented APIs through an intermediary translation or compatibility layer or tool are prohibited). So it is allowed to develop iPhone apps using C++ My questions Is there a compiler / IDE for developing iPhone apps using C++? Is that compiler / IDE available on non Mac environments? (Windows? Linux?) If not, why? I mean an eclipse C++ plugin for iPhone development will be quite popular, or is there already any serious attempt to do that?

    Read the article

  • I need help understanding what Exercise 5-12 is asking for in the C Programming Language book.

    - by marsol0x
    K&R C Programming Language: pg. 105 Extend entab and detab to accept the shorthand entab -m +n to mean tab stops every n columns, starting at column m. entab replaces a number of spaces with a tab character and detab does the opposite. The question I have concerns the tab stops and entab. I figure that for detab it's pretty easy to determine the number of spaces needed to reach the next tab stop, so no worries there. With entab, replacing spaces with tabs is slightly more difficult since I cannot for sure know how large the tab character goes to its own tab stop (unless there is a way to know for sure). Am I even thinking about this thing properly?

    Read the article

  • parsing position files in ruby

    - by john
    I have a sample position file like below. 789754654 COLORA SOMETHING1 19370119FYY076 2342423234SS323423 742784897 COLORB SOMETHING2 20060722FYY076 2342342342SDFSD3423 I am interested in positions 54-61 (4th column). I want to change the date to be a different format. So final outcome will be: 789754654 COLORA SOMETHING1 01191937FYY076 2342423234SS323423 742784897 COLORB SOMETHING2 07222006FYY076 2342342342SDFSD3423 The columns are seperated by spaces not tabs. And the final file should have exact number of spaces as the original file....only thing changing should be the date format. How can I do this? I wrote a script but it will lose the original spaces and positioning will be messed up. file.each_line do |line| dob = line.split(" ") puts dob[3] #got the date. change its format 5.times { puts "**" } end Can anyone suggest a better strategy so that positioning in the original file remains the same?

    Read the article

  • unnecessary vertical scrollbar in ie6

    - by tirso
    hi to all does any could help me how to remove unnecessary scroll bar in ie6. I have already put overflow-y: hidden; but still the same output. thanks in advance here is my url http://webberzsoft.com/clients/csslayouttest/template_new.php here is my css * {margin:0;padding:0;}/*for demo purposes only, use a proper reset in your final layout*/ html,body { overflow: auto; height:100%; } body { font-size:100%; background:#777; } #wrapper{ min-height:99%; width: 1240px; margin:0 auto; background: #FFFFFF; border-left:1px solid #000; border-right:1px solid #000; } #header { background:#77F; border-bottom:1px solid #000; height: 70px; } #content{/*just to create top padding without tampering with min-height:100% on #inner*/ padding:10px 0; overflow:hidden;/*contain floats*/ } #left-index { float:left; width:220px; } #right-index { float:right; width:180px; } #middle-index { float:left; width:840px; overflow:hidden;/*contain floats*/ } #left-home { float:left; width:300px; } #right-home { float:right; width:940px; } here is my html <div id="wrapper"> <div id="header"> <h1 align="right">Fixed Header</h1> <h3>IE6 gets an expression</h3> </div> <div id="content"> <div id="left-index"> <h3>Left</h3> <p>Lorem ipsum dolor sit amet consectetuer quis tempus tristique facilisi Vestibulum. Gravida rhoncus orci leo neque mattis felis Sed et tincidunt tellus. Massa ac condimentum elit ridiculus eget urna wisi id Suspendisse ullamcorper.</p> <p>Hendrerit eros ridiculus urna ipsum leo a ac sed tortor nisl. Tincidunt Morbi justo dis odio sit non sapien enim a augue. Sapien odio dui est Sed nisl id id malesuada sagittis et.</p> <p>Lorem ipsum dolor sit amet consectetuer quis tempus tristique facilisi Vestibulum. Gravida rhoncus orci leo neque mattis felis Sed et tincidunt tellus. Massa ac condimentum elit ridiculus eget urna wisi id Suspendisse ullamcorper.</p> <p>Hendrerit eros ridiculus urna ipsum leo a ac sed tortor nisl. Tincidunt Morbi justo dis odio sit non sapien enim a augue. Sapien odio dui est Sed nisl id id malesuada sagittis et.</p> <p>Lorem ipsum dolor sit amet consectetuer quis tempus tristique facilisi Vestibulum. Gravida rhoncus orci leo neque mattis felis Sed et tincidunt tellus. Massa ac condimentum elit ridiculus eget urna wisi id Suspendisse ullamcorper.</p> <p>Hendrerit eros ridiculus urna ipsum leo a ac sed tortor nisl. Tincidunt Morbi justo dis odio sit non sapien enim a augue. Sapien odio dui est Sed nisl id id malesuada sagittis et.</p> <p>Lorem ipsum dolor sit amet consectetuer quis tempus tristique facilisi Vestibulum. Gravida rhoncus orci leo neque mattis felis Sed et tincidunt tellus. Massa ac condimentum elit ridiculus eget urna wisi id Suspendisse ullamcorper.</p> <p>Hendrerit eros ridiculus urna ipsum leo a ac sed tortor nisl. Tincidunt Morbi justo dis odio sit non sapien enim a augue. Sapien odio dui est Sed nisl id id malesuada sagittis et.</p> <p>Lorem ipsum dolor sit amet consectetuer quis tempus tristique facilisi Vestibulum. Gravida rhoncus orci leo neque mattis felis Sed et tincidunt tellus. Massa ac condimentum elit ridiculus eget urna wisi id Suspendisse ullamcorper.</p> <p>Hendrerit eros ridiculus urna ipsum leo a ac sed tortor nisl. Tincidunt Morbi justo dis odio sit non sapien enim a augue. Sapien odio dui est Sed nisl id id malesuada sagittis et.</p> <p>Lorem ipsum dolor sit amet consectetuer quis tempus tristique facilisi Vestibulum. Gravida rhoncus orci leo neque mattis felis Sed et tincidunt tellus. Massa ac condimentum elit ridiculus eget urna wisi id Suspendisse ullamcorper.</p> </div> <div id="middle-index"> <h3>Middle</h3> <p>Lorem ipsum sed pede non adipiscing nulla lacinia ipsum quis ac Integer. Ut consectetuer Cras fringilla Ut non gravida morbi Maecenas semper vel. Vestibulum quis In Nulla Vivamus Sed feugiat Quisque et ipsum tincidunt. Semper vitae cursus metus risus enim gravida tellus id dignissim nec. Justo laoreet dui commodo Integer malesuada vel quis vel consequat metus. Nec id dolor Aliquam Nullam gravida libero montes nunc ante Nulla. Tortor id.</p> <p>Lorem ipsum sed pede non adipiscing nulla lacinia ipsum quis ac Integer. Ut consectetuer Cras fringilla Ut non gravida morbi Maecenas semper vel. Vestibulum quis In Nulla Vivamus Sed feugiat Quisque et ipsum tincidunt. Semper vitae cursus metus risus enim gravida tellus id dignissim nec. Justo laoreet dui commodo Integer malesuada vel quis vel consequat metus. Nec id dolor Aliquam Nullam gravida libero montes nunc ante Nulla. Tortor id.</p> <p class="lgmarg">testing text for scrolling</p> <p class="lgmarg">testing text for scrolling</p> <p class="lgmarg">testing text for scrolling</p> <p class="lgmarg">testing text for scrolling</p> <p class="lgmarg">testing text for scrolling</p> <p class="lgmarg">testing text for scrolling</p> <p class="lgmarg">testing text for scrolling</p> <p class="lgmarg">testing text for scrolling</p> <p class="lgmarg">testing text for scrolling</p> <p class="lgmarg">testing text for scrolling</p> </div> <div id="right-index"> <h3>Right</h3> <p>Lorem ipsum dolor sit amet consectetuer quis tempus tristique facilisi Vestibulum. Gravida rhoncus orci leo neque mattis felis Sed et tincidunt tellus. Massa ac condimentum elit ridiculus eget urna wisi id Suspendisse ullamcorper.</p> <p>Hendrerit eros ridiculus urna ipsum leo a ac sed tortor nisl. Tincidunt Morbi justo dis odio sit non sapien enim a augue. Sapien odio dui est Sed nisl id id malesuada sagittis et.</p> </div> </div><!--end content--> </div>

    Read the article

  • Enable wireless on Dell Inspiron 1300

    - by Simon
    As per subject, I've looked at various resources and attempted ndiswrapper solutions, found a one-click solution that lead to a 404 and this but none works. I've run all updates. Once I managed to lose my wired connection as well and had to reinstall. This is my first hour with Linux. iwconfig gives this before I do anything: lo no wireless extensions. wlan0 IEEE 802.11bg ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=0 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:on eth0 no wireless extens Thanks for responding lspci returns 00:00.0 Host bridge: Intel Corporation Mobile 915GM/PM/GMS/910GML Express Processor to DRAM Controller (rev 03) Subsystem: Dell Device 01c9 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort+ >SERR- <PERR- INTx- Latency: 0 Capabilities: <access denied> Kernel driver in use: agpgart-intel 00:02.0 VGA compatible controller: Intel Corporation Mobile 915GM/GMS/910GML Express Graphics Controller (rev 03) (prog-if 00 [VGA controller]) Subsystem: Dell Device 01c9 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 0: Memory at dff00000 (32-bit, non-prefetchable) [size=512K] Region 1: I/O ports at eff8 [size=8] Region 2: Memory at c0000000 (32-bit, prefetchable) [size=256M] Region 3: Memory at dfec0000 (32-bit, non-prefetchable) [size=256K] Expansion ROM at <unassigned> [disabled] Capabilities: <access denied> Kernel driver in use: i915 Kernel modules: intelfb, i915 00:02.1 Display controller: Intel Corporation Mobile 915GM/GMS/910GML Express Graphics Controller (rev 03) Subsystem: Dell Device 01c9 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Region 0: Memory at dff80000 (32-bit, non-prefetchable) [size=512K] Capabilities: <access denied> 00:1b.0 Audio device: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) High Definition Audio Controller (rev 03) Subsystem: Dell Device 01c9 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Interrupt: pin A routed to IRQ 42 Region 0: Memory at dfebc000 (64-bit, non-prefetchable) [size=16K] Capabilities: <access denied> Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 00:1c.0 PCI bridge: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) PCI Express Port 1 (rev 03) (prog-if 00 [Normal decode]) Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Bus: primary=00, secondary=0b, subordinate=0b, sec-latency=0 I/O behind bridge: 00002000-00002fff Memory behind bridge: 30000000-301fffff Prefetchable memory behind bridge: 0000000030200000-00000000303fffff Secondary status: 66MHz- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- <SERR- <PERR- BridgeCtl: Parity- SERR+ NoISA- VGA- MAbort- >Reset- FastB2B- PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn- Capabilities: <access denied> Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.3 PCI bridge: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) PCI Express Port 4 (rev 03) (prog-if 00 [Normal decode]) Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Bus: primary=00, secondary=0c, subordinate=0d, sec-latency=0 I/O behind bridge: 0000d000-0000dfff Memory behind bridge: dfc00000-dfdfffff Prefetchable memory behind bridge: 00000000d0000000-00000000d01fffff Secondary status: 66MHz- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- <SERR- <PERR- BridgeCtl: Parity- SERR+ NoISA- VGA- MAbort- >Reset- FastB2B- PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn- Capabilities: <access denied> Kernel driver in use: pcieport Kernel modules: shpchp 00:1d.0 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #1 (rev 03) (prog-if 00 [UHCI]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 4: I/O ports at bf80 [size=32] Kernel driver in use: uhci_hcd 00:1d.1 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #2 (rev 03) (prog-if 00 [UHCI]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin B routed to IRQ 17 Region 4: I/O ports at bf60 [size=32] Kernel driver in use: uhci_hcd 00:1d.2 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #3 (rev 03) (prog-if 00 [UHCI]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin C routed to IRQ 18 Region 4: I/O ports at bf40 [size=32] Kernel driver in use: uhci_hcd 00:1d.3 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #4 (rev 03) (prog-if 00 [UHCI]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin D routed to IRQ 19 Region 4: I/O ports at bf20 [size=32] Kernel driver in use: uhci_hcd 00:1d.7 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB2 EHCI Controller (rev 03) (prog-if 20 [EHCI]) Subsystem: Dell Device 01c9 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 0: Memory at b0000000 (32-bit, non-prefetchable) [size=1K] Capabilities: <access denied> Kernel driver in use: ehci_hcd 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev d3) (prog-if 01 [Subtractive decode]) Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Bus: primary=00, secondary=02, subordinate=02, sec-latency=32 I/O behind bridge: 0000f000-00000fff Memory behind bridge: dfb00000-dfbfffff Prefetchable memory behind bridge: 00000000fff00000-00000000000fffff Secondary status: 66MHz- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort+ <SERR- <PERR- BridgeCtl: Parity- SERR+ NoISA- VGA- MAbort- >Reset- FastB2B- PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn- Capabilities: <access denied> 00:1f.0 ISA bridge: Intel Corporation 82801FBM (ICH6M) LPC Interface Bridge (rev 03) Subsystem: Dell Device 01c9 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B- ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Kernel modules: iTCO_wdt, intel-rng 00:1f.1 IDE interface: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) IDE Controller (rev 03) (prog-if 8a [Master SecP PriP]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 0: I/O ports at 01f0 [size=8] Region 1: I/O ports at 03f4 [size=1] Region 2: I/O ports at 0170 [size=8] Region 3: I/O ports at 0374 [size=1] Region 4: I/O ports at bfa0 [size=16] Kernel driver in use: ata_piix 02:00.0 Ethernet controller: Broadcom Corporation BCM4401-B0 100Base-TX (rev 02) Subsystem: Dell Device 01c9 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 64 Interrupt: pin A routed to IRQ 18 Region 0: Memory at dfbfc000 (32-bit, non-prefetchable) [size=8K] Capabilities: <access denied> Kernel driver in use: b44 Kernel modules: b44 02:03.0 Network controller: Broadcom Corporation BCM4318 [AirForce One 54g] 802.11g Wireless LAN Controller (rev 02) Subsystem: Dell Wireless 1370 WLAN Mini-PCI Card Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 64 Interrupt: pin A routed to IRQ 17 Region 0: Memory at dfbfe000 (32-bit, non-prefetchable) [size=8K] Kernel driver in use: b43-pci-bridge Kernel modules: ssb and the rfkill shows 0: phy0: Wireless LAN Soft blocked: no Hard blocked: no Just checking addtional drivers. Says no additional driver installed in this system

    Read the article

  • elffile: ELF Specific File Identification Utility

    - by user9154181
    Solaris 11 has a new standard user level command, /usr/bin/elffile. elffile is a variant of the file utility that is focused exclusively on linker related files: ELF objects, archives, and runtime linker configuration files. All other files are simply identified as "non-ELF". The primary advantage of elffile over the existing file utility is in the area of archives — elffile examines the archive members and can produce a summary of the contents, or per-member details. The impetus to add elffile to Solaris came from the effort to extend the format of Solaris archives so that they could grow beyond their previous 32-bit file limits. That work introduced a new archive symbol table format. Now that there was more than one possible format, I thought it would be useful if the file utility could identify which format a given archive is using, leading me to extend the file utility: % cc -c ~/hello.c % ar r foo.a hello.o % file foo.a foo.a: current ar archive, 32-bit symbol table % ar r -S foo.a hello.o % file foo.a foo.a: current ar archive, 64-bit symbol table In turn, this caused me to think about all the things that I would like the file utility to be able to tell me about an archive. In particular, I'd like to be able to know what's inside without having to unpack it. The end result of that train of thought was elffile. Much of the discussion in this article is adapted from the PSARC case I filed for elffile in December 2010: PSARC 2010/432 elffile Why file Is No Good For Archives And Yet Should Not Be Fixed The standard /usr/bin/file utility is not very useful when applied to archives. When identifying an archive, a user typically wants to know 2 things: Is this an archive? Presupposing that the archive contains objects, which is by far the most common use for archives, what platform are the objects for? Are they for sparc or x86? 32 or 64-bit? Some confusing combination from varying platforms? The file utility provides a quick answer to question (1), as it identifies all archives as "current ar archive". It does nothing to answer the more interesting question (2). To answer that question, requires a multi-step process: Extract all archive members Use the file utility on the extracted files, examine the output for each file in turn, and compare the results to generate a suitable summary description. Remove the extracted files It should be easier and more efficient to answer such an obvious question. It would be reasonable to extend the file utility to examine archive contents in place and produce a description. However, there are several reasons why I decided not to do so: The correct design for this feature within the file utility would have file examine each archive member in turn, applying its full abilities to each member. This would be elegant, but also represents a rather dramatic redesign and re-implementation of file. Archives nearly always contain nothing but ELF objects for a single platform, so such generality in the file utility would be of little practical benefit. It is best to avoid adding new options to standard utilities for which other implementations of interest exist. In the case of the file utility, one concern is that we might add an option which later appears in the GNU version of file with a different and incompatible meaning. Indeed, there have been discussions about replacing the Solaris file with the GNU version in the past. This may or may not be desirable, and may or may not ever happen. Either way, I don't want to preclude it. Examining archive members is an O(n) operation, and can be relatively slow with large archives. The file utility is supposed to be a very fast operation. I decided that extending file in this way is overkill, and that an investment in the file utility for better archive support would not be worth the cost. A solution that is more narrowly focused on ELF and other linker related files is really all that we need. The necessary code for doing this already exists within libelf. All that is missing is a small user-level wrapper to make that functionality available at the command line. In that vein, I considered adding an option for this to the elfdump utility. I examined elfdump carefully, and even wrote a prototype implementation. The added code is small and simple, but the conceptual fit with the rest of elfdump is poor. The result complicates elfdump syntax and documentation, definite signs that this functionality does not belong there. And so, I added this functionality as a new user level command. The elffile Command The syntax for this new command is elffile [-s basic | detail | summary] filename... Please see the elffile(1) manpage for additional details. To demonstrate how output from elffile looks, I will use the following files: FileDescription configA runtime linker configuration file produced with crle dwarf.oAn ELF object /etc/passwdA text file mixed.aArchive containing a mixture of ELF and non-ELF members mixed_elf.aArchive containing ELF objects for different machines not_elf.aArchive containing no ELF objects same_elf.aArchive containing a collection of ELF objects for the same machine. This is the most common type of archive. The file utility identifies these files as follows: % file config dwarf.o /etc/passwd mixed.a mixed_elf.a not_elf.a same_elf.a config: Runtime Linking Configuration 64-bit MSB SPARCV9 dwarf.o: ELF 64-bit LSB relocatable AMD64 Version 1 /etc/passwd: ascii text mixed.a: current ar archive, 32-bit symbol table mixed_elf.a: current ar archive, 32-bit symbol table not_elf.a: current ar archive same_elf.a: current ar archive, 32-bit symbol table By default, elffile uses its "summary" output style. This output differs from the output from the file utility in 2 significant ways: Files that are not an ELF object, archive, or runtime linker configuration file are identified as "non-ELF", whereas the file utility attempts further identification for such files. When applied to an archive, the elffile output includes a description of the archive's contents, without requiring member extraction or other additional steps. Applying elffile to the above files: % elffile config dwarf.o /etc/passwd mixed.a mixed_elf.a not_elf.a same_elf.a config: Runtime Linking Configuration 64-bit MSB SPARCV9 dwarf.o: ELF 64-bit LSB relocatable AMD64 Version 1 /etc/passwd: non-ELF mixed.a: current ar archive, 32-bit symbol table, mixed ELF and non-ELF content mixed_elf.a: current ar archive, 32-bit symbol table, mixed ELF content not_elf.a: current ar archive, non-ELF content same_elf.a: current ar archive, 32-bit symbol table, ELF 64-bit LSB relocatable AMD64 Version 1 The output for same_elf.a is of particular interest: The vast majority of archives contain only ELF objects for a single platform, and in this case, the default output from elffile answers both of the questions about archives posed at the beginning of this discussion, in a single efficient step. This makes elffile considerably more useful than file, within the realm of linker-related files. elffile can produce output in two other styles, "basic", and "detail". The basic style produces output that is the same as that from 'file', for linker-related files. The detail style produces per-member identification of archive contents. This can be useful when the archive contents are not homogeneous ELF object, and more information is desired than the summary output provides: % elffile -s detail mixed.a mixed.a: current ar archive, 32-bit symbol table mixed.a(dwarf.o): ELF 32-bit LSB relocatable 80386 Version 1 mixed.a(main.c): non-ELF content mixed.a(main.o): ELF 64-bit LSB relocatable AMD64 Version 1 [SSE]

    Read the article

  • Download and Try Out the New ‘Australis UI’ Test-Build of Firefox for Windows

    - by Asian Angel
    We have all been hearing about the upcoming changes to the UI in Firefox and now the first test build is finally available to try out. Mozilla software engineer Jared Wein has worked hard and put together an unofficial (at the moment) Australis UI build that you can download as a regular installer or as a portable in zip file format. Here is a closer look at the new tab setup in the Australis build. Notice that only the focused tab is non-transparent while the non-active tabs blend nicely into the background. Special Note: Our screenshots were taken in Windows 8, thus the slightly different looking (non-rounded) corners on the app window. The test build only works on Windows at the moment, but you can bet that Linux and MacOS builds are coming in the near future! How to Make Your Laptop Choose a Wired Connection Instead of Wireless HTG Explains: What Is Two-Factor Authentication and Should I Be Using It? HTG Explains: What Is Windows RT and What Does It Mean To Me?

    Read the article

  • Parallelism in .NET – Part 3, Imperative Data Parallelism: Early Termination

    - by Reed
    Although simple data parallelism allows us to easily parallelize many of our iteration statements, there are cases that it does not handle well.  In my previous discussion, I focused on data parallelism with no shared state, and where every element is being processed exactly the same. Unfortunately, there are many common cases where this does not happen.  If we are dealing with a loop that requires early termination, extra care is required when parallelizing. Often, while processing in a loop, once a certain condition is met, it is no longer necessary to continue processing.  This may be a matter of finding a specific element within the collection, or reaching some error case.  The important distinction here is that, it is often impossible to know until runtime, what set of elements needs to be processed. In my initial discussion of data parallelism, I mentioned that this technique is a candidate when you can decompose the problem based on the data involved, and you wish to apply a single operation concurrently on all of the elements of a collection.  This covers many of the potential cases, but sometimes, after processing some of the elements, we need to stop processing. As an example, lets go back to our previous Parallel.ForEach example with contacting a customer.  However, this time, we’ll change the requirements slightly.  In this case, we’ll add an extra condition – if the store is unable to email the customer, we will exit gracefully.  The thinking here, of course, is that if the store is currently unable to email, the next time this operation runs, it will handle the same situation, so we can just skip our processing entirely.  The original, serial case, with this extra condition, might look something like the following: foreach(var customer in customers) { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) break; customer.LastEmailContact = DateTime.Now; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re processing our loop, but at any point, if we fail to send our email successfully, we just abandon this process, and assume that it will get handled correctly the next time our routine is run.  If we try to parallelize this using Parallel.ForEach, as we did previously, we’ll run into an error almost immediately: the break statement we’re using is only valid when enclosed within an iteration statement, such as foreach.  When we switch to Parallel.ForEach, we’re no longer within an iteration statement – we’re a delegate running in a method. This needs to be handled slightly differently when parallelized.  Instead of using the break statement, we need to utilize a new class in the Task Parallel Library: ParallelLoopState.  The ParallelLoopState class is intended to allow concurrently running loop bodies a way to interact with each other, and provides us with a way to break out of a loop.  In order to use this, we will use a different overload of Parallel.ForEach which takes an IEnumerable<T> and an Action<T, ParallelLoopState> instead of an Action<T>.  Using this, we can parallelize the above operation by doing: Parallel.ForEach(customers, (customer, parallelLoopState) => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) parallelLoopState.Break(); else customer.LastEmailContact = DateTime.Now; } }); There are a couple of important points here.  First, we didn’t actually instantiate the ParallelLoopState instance.  It was provided directly to us via the Parallel class.  All we needed to do was change our lambda expression to reflect that we want to use the loop state, and the Parallel class creates an instance for our use.  We also needed to change our logic slightly when we call Break().  Since Break() doesn’t stop the program flow within our block, we needed to add an else case to only set the property in customer when we succeeded.  This same technique can be used to break out of a Parallel.For loop. That being said, there is a huge difference between using ParallelLoopState to cause early termination and to use break in a standard iteration statement.  When dealing with a loop serially, break will immediately terminate the processing within the closest enclosing loop statement.  Calling ParallelLoopState.Break(), however, has a very different behavior. The issue is that, now, we’re no longer processing one element at a time.  If we break in one of our threads, there are other threads that will likely still be executing.  This leads to an important observation about termination of parallel code: Early termination in parallel routines is not immediate.  Code will continue to run after you request a termination. This may seem problematic at first, but it is something you just need to keep in mind while designing your routine.  ParallelLoopState.Break() should be thought of as a request.  We are telling the runtime that no elements that were in the collection past the element we’re currently processing need to be processed, and leaving it up to the runtime to decide how to handle this as gracefully as possible.  Although this may seem problematic at first, it is a good thing.  If the runtime tried to immediately stop processing, many of our elements would be partially processed.  It would be like putting a return statement in a random location throughout our loop body – which could have horrific consequences to our code’s maintainability. In order to understand and effectively write parallel routines, we, as developers, need a subtle, but profound shift in our thinking.  We can no longer think in terms of sequential processes, but rather need to think in terms of requests to the system that may be handled differently than we’d first expect.  This is more natural to developers who have dealt with asynchronous models previously, but is an important distinction when moving to concurrent programming models. As an example, I’ll discuss the Break() method.  ParallelLoopState.Break() functions in a way that may be unexpected at first.  When you call Break() from a loop body, the runtime will continue to process all elements of the collection that were found prior to the element that was being processed when the Break() method was called.  This is done to keep the behavior of the Break() method as close to the behavior of the break statement as possible. We can see the behavior in this simple code: var collection = Enumerable.Range(0, 20); var pResult = Parallel.ForEach(collection, (element, state) => { if (element > 10) { Console.WriteLine("Breaking on {0}", element); state.Break(); } Console.WriteLine(element); }); If we run this, we get a result that may seem unexpected at first: 0 2 1 5 6 3 4 10 Breaking on 11 11 Breaking on 12 12 9 Breaking on 13 13 7 8 Breaking on 15 15 What is occurring here is that we loop until we find the first element where the element is greater than 10.  In this case, this was found, the first time, when one of our threads reached element 11.  It requested that the loop stop by calling Break() at this point.  However, the loop continued processing until all of the elements less than 11 were completed, then terminated.  This means that it will guarantee that elements 9, 7, and 8 are completed before it stops processing.  You can see our other threads that were running each tried to break as well, but since Break() was called on the element with a value of 11, it decides which elements (0-10) must be processed. If this behavior is not desirable, there is another option.  Instead of calling ParallelLoopState.Break(), you can call ParallelLoopState.Stop().  The Stop() method requests that the runtime terminate as soon as possible , without guaranteeing that any other elements are processed.  Stop() will not stop the processing within an element, so elements already being processed will continue to be processed.  It will prevent new elements, even ones found earlier in the collection, from being processed.  Also, when Stop() is called, the ParallelLoopState’s IsStopped property will return true.  This lets longer running processes poll for this value, and return after performing any necessary cleanup. The basic rule of thumb for choosing between Break() and Stop() is the following. Use ParallelLoopState.Stop() when possible, since it terminates more quickly.  This is particularly useful in situations where you are searching for an element or a condition in the collection.  Once you’ve found it, you do not need to do any other processing, so Stop() is more appropriate. Use ParallelLoopState.Break() if you need to more closely match the behavior of the C# break statement. Both methods behave differently than our C# break statement.  Unfortunately, when parallelizing a routine, more thought and care needs to be put into every aspect of your routine than you may otherwise expect.  This is due to my second observation: Parallelizing a routine will almost always change its behavior. This sounds crazy at first, but it’s a concept that’s so simple its easy to forget.  We’re purposely telling the system to process more than one thing at the same time, which means that the sequence in which things get processed is no longer deterministic.  It is easy to change the behavior of your routine in very subtle ways by introducing parallelism.  Often, the changes are not avoidable, even if they don’t have any adverse side effects.  This leads to my final observation for this post: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • Preserving Permalinks

    One of the things that gets me on a rant is websites that break permalinks. If you have posted something somewhere and there is a public URL pointing to it, that URL should never ever return a 404. You are breaking all websites that ever linked to you and you are breaking all search engine links to your content (that others will try and follow). It is a pet peeve of mine. So when I had to move my blog, obviously I would preserve the root URL (www.danielmoth.com/Blog/), but I also wanted to preserve...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Silverlight Cream for March 06, 2010 -- #808

    - by Dave Campbell
    In this Issue: András Velvárt, felix corke, Colin Eberhardt, Christopher Bennage, Gergely Orosz, Entity Spaces Team Blog, Mike Taulty(-2-), Jit Ghosh, and Jesse Liberty. Shoutouts: Jeremy Likness expands on the Silverlight Team's post Vancouver Olympics - How'd We Do That? Gavin Wignall has a post up Creating a 360 photograph of an object with Silverlight Photosynth From SilverlightCream.com: Transforming an Ugly Duckling into a Graceful Swan With Expression Blend and Silverlight - Part 2 Intro Animation András Velvárt has part 2 of his Transformation series up at SilverlightShow... he's taking the initro animation to a new length, allowing playback even... cool video tutorial! Free Silverlight 4 beta skin! felix corke has a Silerlight 4 theme up for us all to use. If you like a dark theme like Blend, you'll like this... I like it! Linq to Visual Tree Colin Eberhardt has a great tutorial up for using LINQ to query the WPF or Silverlight Visual Tree while retaining the tree structure. He also has links out to other techniques. XAML Attributes on Separate Lines Christopher Bennage has a post up showing how to easily get all your XAML attributes on separate lines using a VS menu option... I didn't know that! Using built-in, embedded and streamed fonts in Silverlight Gergely Orosz has a post up at ScottLogic going over Fonts in Silverlight -- built-in, embedded, or streamed, and examples with code. EntitySpaces 2010 Two Part Series on Silverlight and WCF Entity Spaces Team Blog has a pair of videos up on Entity Spaces 2010, WCF, and Silverlight. Part 1 is the intro and explanation, part 2 is a full-up app demonstrating it. MEF, Silverlight and the DeploymentCatalog In an attempt to respond fully to a query, Mike Taulty literally pushed the record button and took off on what became a tutorial video on building a real Silverlight app utilizing MEF. Silverlight 4, Experiment with Pluggable Navigation and a WCF Data Service Mike Taulty has an experiment detailed on his blog about pluggable navigation and Silverlight 4. He walks through the history of how we got to this point then takes on in an example... good external links too Enhancing Silverlight Video Experiences with Contextual Data This is a post on the MSDN Magazine site where Jit Ghosh has a great long post about not only Smooth Streaming with Silverlight, but also adding context data to your video. When Is It OK To Hack? Read what all Jesse Liberty gets involved in when he's trying to get something out the door and has to work around a problem. Just about as interesting are the comments ... check it out and leave your own! Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    MIX10

    Read the article

  • Pure virtual or abstract, what's in a name?

    - by Steven Jeuris
    While discussing a question about virtual functions on Stack Overflow, I wondered whether there was any official naming for pure (abstract) and non-pure virtual functions. I always relied on wikipedia for my information, which states that pure and non-pure virtual functions are the general term. Unfortunately, the article doesn't back it up with a origin or references. To quote Jon Skeet's answer to my reply that pure and non-pure are the general term used: @Steven: Hmm... possibly, but I've only ever seen it in the context of C++ before. I suspect anyone talking about them is likely to have a C++ background :) Did the terms originate from C++, or were they first defined or implemented in a earlier language, and are they the 'official' scientific terms?

    Read the article

  • Do premium domain names help us with other languages too?

    - by Fabio Milheiro
    It's commonly known that premium domains with one or two relevant keywords may help us improve our rankings in SERPS. But would it be possible that an english premium domain, for example gold.com (no, it's not mine) also helps to drive more non-english traffic (I'm talking about non-english pages ob)? Trying to make my question clear: Let's suppose that I have an english premium domain with a page like this: gold dot com/post/123/gold-is-yellow And decide to have a spanish, portuguese or french version of the site with pages like: gold dot com/es/post/123/el-oro-es-amarillo gold dot com/pt/post/123/o-ouro-e-amarelo gold dot com/fr/post/123/fsdfsdfsdf The fact that my english domain is a premium one and highly relevant for english terms, will also help me to achieve good rankings for non-english searched terms like: oro (spanish) or ouro (portuguese)?

    Read the article

  • How to make Rect of irregular shape sprite?

    - by Anil gupta
    I used masking for breaking an image as the below mention pattern now its breaking in different pieces but now i have one issue to make the Rect of each pieces, i need to drag the broken pieces and to adjust at correct position so that i can make again actual images. To drag and put at right positing i need to make Rect but i am not getting idea how to make Rect of this irregular shape, I will be very thankful to you, any idea or code to make rect . My previous Question is: How do I break an image into 6 or 8 pieces of different shapes? Thanks.

    Read the article

  • Jailbroken iPad 3G Is Capable of Sending SMS Text Messages

    - by Gopinath
    Wow! the iPhone Dev Team guys are crazy hackers, they don’t leave any iPhone/iPad OS without jail breaking it. Today the iPhone Dev team cracked the operating system of  iPad 3G and managed to send SMS from it using command line terminal interface. Here is the video demonstration of iPad 3G sending SMS Even though there is no user interface for sending SMS, this is a great achievement for the iPad jail breaking community. So what is next to come on iPad? Phone calls! Join us on Facebook to read all our stories right inside your Facebook news feed.

    Read the article

  • What is causing my spacebar to randomly stop working?

    - by Chris Billington
    A couple of times a day, I'll be typing something and realise I can't type spaces. Usually the cursor will flicker instead when I press the spacebar, and I can type all other letters as far as I can tell. If I'm in a terminal the cursor turns from a solid square to an empty square until I release the spacebar. For some reason, restarting compiz with alt-F2 compiz fixes it, until it next occurs. I can still copy and paste spaces from sources that already have them, and I can still insert spaces with ctrl-shift-u, 20, enter. This has been happening for a while, since before I upgraded to maverick, but it feels like its beceoming more frequent. There really doesn't seem to be any kind of a pattern to it. I'm using 64 bit ubuntu 10.10 on a system76 panp7 laptop. Any ideas how I might troubleshoot? EDIT: using xev, normally a spacebar registers as: KeyPress event, serial 36, synthetic NO, window 0x5600001, root 0x101, subw 0x0, time 26488647, (88,403), root:(748,458), state 0x10, keycode 65 (keysym 0x20, space), same_screen YES, XLookupString gives 1 bytes: (20) " " XmbLookupString gives 1 bytes: (20) " " XFilterEvent returns: False KeyRelease event, serial 36, synthetic NO, window 0x5600001, root 0x101, subw 0x0, time 26488729, (88,403), root:(748,458), state 0x10, keycode 65 (keysym 0x20, space), same_screen YES, XLookupString gives 1 bytes: (20) " " XFilterEvent returns: False But when it's stopped behaving a press of the spacebar instead gives the three events: FocusOut event, serial 36, synthetic NO, window 0x5600001, mode NotifyGrab, detail NotifyAncestor FocusIn event, serial 36, synthetic NO, window 0x5600001, mode NotifyUngrab, detail NotifyAncestor KeymapNotify event, serial 36, synthetic NO, window 0x0, keys: 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FURTHER EDIT: Ok, so I think I've solved the problem, and by that I mean I now know which package to file a bug against. I have a hot corner which initiates a window picker, and I've customised the window picking so that left click goes to a window, right click closes one and spacebar zooms in on one. When I go to this hot corner, compiz must take control of my spacebar, and clearly isn't giving it back when I leave the window picker. So I'll be filing a bug against compiz. reported:here

    Read the article

  • Trying to do a batch rename, can't figure out the proper RegEx

    - by trezy
    I'm trying to rename my movie collection. All of the files are currently named using dots instead of spaces, i.e. Men.in.Black.avi. I want to replace all of the dots with spaces which isn't terribly difficult, but I need to preserve the last dot for the file extension, i.e. .avi, .mp4, .ogg, etc. My Googling has provided no solutions. I'm also a Javascript developer and could see some snazzy applications for it. So, any suggestions?

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • Collision Detection algorithms with early Collision exit

    - by Grieverheart
    I'm using collision detection in Monte Carlo simulations and at the moment I'm using GJK which is quite fast. I can't help to think it could be done even faster though. In the simulations, about 70% of the time GJK is run, it detects a collision. Thus collisions are more than non-collisions in my case. Most collision detection algorithms I know have an early non-collision exit test. Are there any collision detection algorithms that have an early collision detect instead of non-collision and could be potentially faster than GJK in case of collision?

    Read the article

  • C++ - Constructor or Initialize Method to Startup

    - by Bob Fincheimer
    I want to determine when to do non-trivial initialization of a class. I see two times to do initialization: constructor and other method. I want to figure out when to use each. Choice 1: Constructor does initialization MyClass::MyClass(Data const& data) : m_data() { // does non-trivial initialization here } MyClass::~MyClass() { // cleans up here } Choice 2: Defer initialization to an initialize method MyClass::MyClass() : m_data() {} MyClass::Initialize(Data const& data) { // does non-trivial initialization here } MyClass::~MyClass() { // cleans up here } So to try and remove any subjectivity I want to figure out which is better in a couple of situations: Class that encapsulates a resource (window/font/some sort of handle) Class that composites resources to do something (a control/domain object) Data structure classes (tree/list/etc.) [Anything else you can think of] Things to analyze: Performance Ease of use by other developers How error-prone/opportunities for bugs [Anything else you can think of]

    Read the article

< Previous Page | 111 112 113 114 115 116 117 118 119 120 121 122  | Next Page >