Search Results

Search found 2993 results on 120 pages for 'demo'.

Page 12/120 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >

  • Error using paho-mqtt in App Engine Python App

    - by calumb
    I am trying to right a Google Cloud Platform app in python with Flask that makes an MQTT connection. I have included the paho python library by doing pip install paho-mqtt -t libs/. However, when I try to run the app, even if I don't try to connect to MQTT. I get a weird error about IP address checking: RuntimeError: error('illegal IP address string passed to inet_pton',) It seems something in the remote_socket lib is causing a problem. Is this a security issue? Is there someway to disable it? Relevant code: from flask import Flask import paho.mqtt.client as mqtt import logging as logger app = Flask(__name__) # Note: We don't need to call run() since our application is embedded within # the App Engine WSGI application server. #callback to print out connection status def on_connect(mosq, obj, rc): logger.info('on_connect') if rc == 0: logger.info("Connected") mqttc.subscribe('test', 0) else: logger.info(rc) def on_message(mqttc, obj, msg): logger.info(msg.topic+" "+str(msg.qos)+" "+str(msg.payload)) mqttc = mqtt.Client("mqttpy") mqttc.on_message = on_message mqttc.on_connect = on_connect As well as full stack trace: ERROR 2014-06-03 15:14:57,285 wsgi.py:262] Traceback (most recent call last): File "/Users/cbarnes/google-cloud-sdk/platform/google_appengine/google/appengine/runtime/wsgi.py", line 239, in Handle handler = _config_handle.add_wsgi_middleware(self._LoadHandler()) File "/Users/cbarnes/google-cloud-sdk/platform/google_appengine/google/appengine/runtime/wsgi.py", line 298, in _LoadHandler handler, path, err = LoadObject(self._handler) File "/Users/cbarnes/google-cloud-sdk/platform/google_appengine/google/appengine/runtime/wsgi.py", line 84, in LoadObject obj = __import__(path[0]) File "/Users/cbarnes/code/ignite/tank-demo/appengine-flask-demo/main.py", line 24, in <module> mqttc = mqtt.Client("mqtthtpp") File "/Users/cbarnes/code/ignite/tank-demo/appengine-flask-demo/lib/paho/mqtt/client.py", line 403, in __init__ self._sockpairR, self._sockpairW = _socketpair_compat() File "/Users/cbarnes/code/ignite/tank-demo/appengine-flask-demo/lib/paho/mqtt/client.py", line 255, in _socketpair_compat listensock.bind(("localhost", 0)) File "/Users/cbarnes/google-cloud-sdk/platform/google_appengine/google/appengine/dist27/socket.py", line 222, in meth return getattr(self._sock,name)(*args) File "/Users/cbarnes/google-cloud-sdk/platform/google_appengine/google/appengine/api/remote_socket/_remote_socket.py", line 668, in bind self._SetProtoFromAddr(request.mutable_proxy_external_ip(), address) File "/Users/cbarnes/google-cloud-sdk/platform/google_appengine/google/appengine/api/remote_socket/_remote_socket.py", line 632, in _SetProtoFromAddr proto.set_packed_address(self._GetPackedAddr(address)) File "/Users/cbarnes/google-cloud-sdk/platform/google_appengine/google/appengine/api/remote_socket/_remote_socket.py", line 627, in _GetPackedAddr AI_NUMERICSERV|AI_PASSIVE): File "/Users/cbarnes/google-cloud-sdk/platform/google_appengine/google/appengine/api/remote_socket/_remote_socket.py", line 338, in getaddrinfo canonical=(flags & AI_CANONNAME)) File "/Users/cbarnes/google-cloud-sdk/platform/google_appengine/google/appengine/api/remote_socket/_remote_socket.py", line 211, in _Resolve canon, aliases, addresses = _ResolveName(name, families) File "/Users/cbarnes/google-cloud-sdk/platform/google_appengine/google/appengine/api/remote_socket/_remote_socket.py", line 229, in _ResolveName apiproxy_stub_map.MakeSyncCall('remote_socket', 'Resolve', request, reply) File "/Users/cbarnes/google-cloud-sdk/platform/google_appengine/google/appengine/api/apiproxy_stub_map.py", line 94, in MakeSyncCall return stubmap.MakeSyncCall(service, call, request, response) File "/Users/cbarnes/google-cloud-sdk/platform/google_appengine/google/appengine/api/apiproxy_stub_map.py", line 328, in MakeSyncCall rpc.CheckSuccess() File "/Users/cbarnes/google-cloud-sdk/platform/google_appengine/google/appengine/api/apiproxy_rpc.py", line 156, in _WaitImpl self.request, self.response) File "/Users/cbarnes/google-cloud-sdk/platform/google_appengine/google/appengine/ext/remote_api/remote_api_stub.py", line 200, in MakeSyncCall self._MakeRealSyncCall(service, call, request, response) File "/Users/cbarnes/google-cloud-sdk/platform/google_appengine/google/appengine/ext/remote_api/remote_api_stub.py", line 234, in _MakeRealSyncCall raise pickle.loads(response_pb.exception()) RuntimeError: error('illegal IP address string passed to inet_pton',) INFO 2014-06-03 15:14:57,291 module.py:639] default: "GET / HTTP/1.1" 500 - Thanks!

    Read the article

  • Rewrite rules doesn't work apache 1.3

    - by Sander Versluys
    I'm using a couple of rewrite directives that always works before on apache2 but now i'm uploaded to a shared hosting and the rewrite rules do not seem to get applied. I've reduced the my .htaccess files to the following essential rules: RewriteEngine On Rewritebase /demo/ RewriteRule ^(.*)$ index.php/$1 [L] As you can see, i want to rewrite every request to my index.php file in the demo folder from root. So everything like http://www.example.com/demo/albums/show/1 should be processed by http://www.example.com/demo/index.php for a standard MVC setup. (I'm using CodeIgniter btw) The directives above results in a 500 error, so i thought maybe because of some possible syntax differences between 1.3 and 2.x. After some trail and error editing, i've found the rewrite rule itself to be at fault but i really don't understand why. Any ideas to why my rewrite rule doesn't work? it did before on lots of different servers. Suggestions how to fix it? Note: mod_rewrite does work, i've written a small test to be sure.

    Read the article

  • Project generation problem using Spring Roo

    - by Harry
    Hi, I just downloaded SpringSource Tool Suite, and tried to generate a demo application using roo, but i'm getting error below Code: Created /home/dev/springsource/workspace/demo/pom.xml Undo create /home/dev/springsource/workspace/demo/pom.xml Invalid dependency scope: PROVIDED [Timer-0] NullPointerException at org.springframework.roo.classpath.itd.AbstractItdMetadataProvider.notify(AbstractItdMetadataProvider.java:84) What is the problem? is this Maven issue? Using: Ubuntu 8.10, SpringSource Tool Suite Version: 2.3.3.M1, Roo 1.1.0.M1, Apache Maven Thanks

    Read the article

  • How to use SQL trigger to record the affected column's row number

    - by Freeman
    I want to have an 'updateinfo' table in order to record every update/insert/delete operations on another table. In oracle I've written this: CREATE TABLE updateinfo ( rnumber NUMBER(10), tablename VARCHAR2(100 BYTE), action VARCHAR2(100 BYTE), UPDATE_DATE date ) DROP TRIGGER TRI_TABLE; CREATE OR REPLACE TRIGGER TRI_TABLE AFTER DELETE OR INSERT OR UPDATE ON demo REFERENCING NEW AS NEW OLD AS OLD FOR EACH ROW BEGIN if inserting then insert into updateinfo(rnumber,tablename,action,update_date ) values(rownum,'demo', 'insert',sysdate); elsif updating then insert into updateinfo(rnumber,tablename,action,update_date ) values(rownum,'demo', 'update',sysdate); elsif deleting then insert into updateinfo(rnumber,tablename,action,update_date ) values(rownum,'demo', 'delete',sysdate); end if; -- EXCEPTION -- WHEN OTHERS THEN -- Consider logging the error and then re-raise -- RAISE; END TRI_TABLE; but when checking updateinfo, all rnumber column is zero. is there anyway to retrieve the correct row number?

    Read the article

  • how to handle large dataset like sproutcore

    - by Nik
    Hello all, I really don't have any substantial code to show here, actually, that's kinda why I am writing: I looked at the SproutCore demo, especially the Collection demo, on http://demo.sproutcore.com/sample_controls/, and am amazed by its loading 200,000 records to the page so easily. I tried using Rails to provide 200,000 records and in a completely blank HTML page with <% @projects.each do |p| % <%= p.title % <% end % that freezes the browser for seconds on my m1530 laptop with 4gb ram and t7700 256gb ssd. Yet the sproutcore demo does not freeze and takes less than 3 seconds to load. What do you think the one technique they are using to enable this is? Thanks!

    Read the article

  • #define and how to use them - C++

    - by ML
    Hi All, in a pre-compiled header if I do: #define DS_BUILD #define PGE_BUILD #define DEMO then in source I do: #if (DS_BUILD && DEMO) ---- code--- #elif (PGE_BUILD && DEMO) --- code--- #else --- code --- #endif Do I get an error that states: error: operator '&&' has no right operand I have never seen this before. I am using XCode 3.2, GCC 4.2 on OS X 10.6.3

    Read the article

  • Host AngularJS (Html5Mode) in ASP.NET vNext

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2014/06/10/host-angularjs-html5mode-in-asp.net-vnext.aspxMicrosoft had announced ASP.NET vNext in BUILD and TechED recently and as a developer, I found that we can add features into one ASP.NET vNext application such as MVC, WebAPI, SignalR, etc.. Also it's cross platform which means I can host ASP.NET on Windows, Linux and OS X.   If you are following my blog you should knew that I'm currently working on a project which uses ASP.NET WebAPI, SignalR and AngularJS. Currently the AngularJS part is hosted by Express in Node.js while WebAPI and SignalR are hosted in ASP.NET. I was looking for a solution to host all of them in one platform so that my SignalR can utilize WebSocket. Currently AngularJS and SignalR are hosted in the same domain but different port so it has to use ServerSendEvent. It can be upgraded to WebSocket if I host both of them in the same port.   Host AngularJS in ASP.NET vNext Static File Middleware ASP.NET vNext utilizes middleware pattern to register feature it uses, which is very similar as Express in Node.js. Since AngularJS is a pure client side framework in theory what I need to do is to use ASP.NET vNext as a static file server. This is very easy as there's a build-in middleware shipped alone with ASP.NET vNext. Assuming I have "index.html" as below. 1: <html data-ng-app="demo"> 2: <head> 3: <script type="text/javascript" src="angular.js" /> 4: <script type="text/javascript" src="angular-ui-router.js" /> 5: <script type="text/javascript" src="app.js" /> 6: </head> 7: <body> 8: <h1>ASP.NET vNext with AngularJS</h1> 9: <div> 10: <a href="javascript:void(0)" data-ui-sref="view1">View 1</a> | 11: <a href="javascript:void(0)" data-ui-sref="view2">View 2</a> 12: </div> 13: <div data-ui-view></div> 14: </body> 15: </html> And the AngularJS JavaScript file as below. Notices that I have two views which only contains one line literal indicates the view name. 1: 'use strict'; 2:  3: var app = angular.module('demo', ['ui.router']); 4:  5: app.config(['$stateProvider', '$locationProvider', function ($stateProvider, $locationProvider) { 6: $stateProvider.state('view1', { 7: url: '/view1', 8: templateUrl: 'view1.html', 9: controller: 'View1Ctrl' }); 10:  11: $stateProvider.state('view2', { 12: url: '/view2', 13: templateUrl: 'view2.html', 14: controller: 'View2Ctrl' }); 15: }]); 16:  17: app.controller('View1Ctrl', function ($scope) { 18: }); 19:  20: app.controller('View2Ctrl', function ($scope) { 21: }); All AngularJS files are located in "app" folder and my ASP.NET vNext files are besides it. The "project.json" contains all dependencies I need to host static file server. 1: { 2: "dependencies": { 3: "Helios" : "0.1-alpha-*", 4: "Microsoft.AspNet.FileSystems": "0.1-alpha-*", 5: "Microsoft.AspNet.Http": "0.1-alpha-*", 6: "Microsoft.AspNet.StaticFiles": "0.1-alpha-*", 7: "Microsoft.AspNet.Hosting": "0.1-alpha-*", 8: "Microsoft.AspNet.Server.WebListener": "0.1-alpha-*" 9: }, 10: "commands": { 11: "web": "Microsoft.AspNet.Hosting server=Microsoft.AspNet.Server.WebListener server.urls=http://localhost:22222" 12: }, 13: "configurations" : { 14: "net45" : { 15: }, 16: "k10" : { 17: "System.Diagnostics.Contracts": "4.0.0.0", 18: "System.Security.Claims" : "0.1-alpha-*" 19: } 20: } 21: } Below is "Startup.cs" which is the entry file of my ASP.NET vNext. What I need to do is to let my application use FileServerMiddleware. 1: using System; 2: using Microsoft.AspNet.Builder; 3: using Microsoft.AspNet.FileSystems; 4: using Microsoft.AspNet.StaticFiles; 5:  6: namespace Shaun.AspNet.Plugins.AngularServer.Demo 7: { 8: public class Startup 9: { 10: public void Configure(IBuilder app) 11: { 12: app.UseFileServer(new FileServerOptions() { 13: EnableDirectoryBrowsing = true, 14: FileSystem = new PhysicalFileSystem(System.IO.Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "app")) 15: }); 16: } 17: } 18: } Next, I need to create "NuGet.Config" file in the PARENT folder so that when I run "kpm restore" command later it can find ASP.NET vNext NuGet package successfully. 1: <?xml version="1.0" encoding="utf-8"?> 2: <configuration> 3: <packageSources> 4: <add key="AspNetVNext" value="https://www.myget.org/F/aspnetvnext/api/v2" /> 5: <add key="NuGet.org" value="https://nuget.org/api/v2/" /> 6: </packageSources> 7: <packageSourceCredentials> 8: <AspNetVNext> 9: <add key="Username" value="aspnetreadonly" /> 10: <add key="ClearTextPassword" value="4d8a2d9c-7b80-4162-9978-47e918c9658c" /> 11: </AspNetVNext> 12: </packageSourceCredentials> 13: </configuration> Now I need to run "kpm restore" to resolve all dependencies of my application. Finally, use "k web" to start the application which will be a static file server on "app" sub folder in the local 22222 port.   Support AngularJS Html5Mode AngularJS works well in previous demo. But you will note that there is a "#" in the browser address. This is because by default AngularJS adds "#" next to its entry page so ensure all request will be handled by this entry page. For example, in this case my entry page is "index.html", so when I clicked "View 1" in the page the address will be changed to "/#/view1" which means it still tell the web server I'm still looking for "index.html". This works, but makes the address looks ugly. Hence AngularJS introduces a feature called Html5Mode, which will get rid off the annoying "#" from the address bar. Below is the "app.js" with Html5Mode enabled, just one line of code. 1: 'use strict'; 2:  3: var app = angular.module('demo', ['ui.router']); 4:  5: app.config(['$stateProvider', '$locationProvider', function ($stateProvider, $locationProvider) { 6: $stateProvider.state('view1', { 7: url: '/view1', 8: templateUrl: 'view1.html', 9: controller: 'View1Ctrl' }); 10:  11: $stateProvider.state('view2', { 12: url: '/view2', 13: templateUrl: 'view2.html', 14: controller: 'View2Ctrl' }); 15:  16: // enable html5mode 17: $locationProvider.html5Mode(true); 18: }]); 19:  20: app.controller('View1Ctrl', function ($scope) { 21: }); 22:  23: app.controller('View2Ctrl', function ($scope) { 24: }); Then let's went to the root path of our website and click "View 1" you will see there's no "#" in the address. But the problem is, if we hit F5 the browser will be turn to blank. This is because in this mode the browser told the web server I want static file named "view1" but there's no file on the server. So underlying our web server, which is built by ASP.NET vNext, responded 404. To fix this problem we need to create our own ASP.NET vNext middleware. What it needs to do is firstly try to respond the static file request with the default StaticFileMiddleware. If the response status code was 404 then change the request path value to the entry page and try again. 1: public class AngularServerMiddleware 2: { 3: private readonly AngularServerOptions _options; 4: private readonly RequestDelegate _next; 5: private readonly StaticFileMiddleware _innerMiddleware; 6:  7: public AngularServerMiddleware(RequestDelegate next, AngularServerOptions options) 8: { 9: _next = next; 10: _options = options; 11:  12: _innerMiddleware = new StaticFileMiddleware(next, options.FileServerOptions.StaticFileOptions); 13: } 14:  15: public async Task Invoke(HttpContext context) 16: { 17: // try to resolve the request with default static file middleware 18: await _innerMiddleware.Invoke(context); 19: Console.WriteLine(context.Request.Path + ": " + context.Response.StatusCode); 20: // route to root path if the status code is 404 21: // and need support angular html5mode 22: if (context.Response.StatusCode == 404 && _options.Html5Mode) 23: { 24: context.Request.Path = _options.EntryPath; 25: await _innerMiddleware.Invoke(context); 26: Console.WriteLine(">> " + context.Request.Path + ": " + context.Response.StatusCode); 27: } 28: } 29: } We need an option class where user can specify the host root path and the entry page path. 1: public class AngularServerOptions 2: { 3: public FileServerOptions FileServerOptions { get; set; } 4:  5: public PathString EntryPath { get; set; } 6:  7: public bool Html5Mode 8: { 9: get 10: { 11: return EntryPath.HasValue; 12: } 13: } 14:  15: public AngularServerOptions() 16: { 17: FileServerOptions = new FileServerOptions(); 18: EntryPath = PathString.Empty; 19: } 20: } We also need an extension method so that user can append this feature in "Startup.cs" easily. 1: public static class AngularServerExtension 2: { 3: public static IBuilder UseAngularServer(this IBuilder builder, string rootPath, string entryPath) 4: { 5: var options = new AngularServerOptions() 6: { 7: FileServerOptions = new FileServerOptions() 8: { 9: EnableDirectoryBrowsing = false, 10: FileSystem = new PhysicalFileSystem(System.IO.Path.Combine(AppDomain.CurrentDomain.BaseDirectory, rootPath)) 11: }, 12: EntryPath = new PathString(entryPath) 13: }; 14:  15: builder.UseDefaultFiles(options.FileServerOptions.DefaultFilesOptions); 16:  17: return builder.Use(next => new AngularServerMiddleware(next, options).Invoke); 18: } 19: } Now with these classes ready we will change our "Startup.cs", use this middleware replace the default one, tell the server try to load "index.html" file if it cannot find resource. The code below is just for demo purpose. I just tried to load "index.html" in all cases once the StaticFileMiddleware returned 404. In fact we need to validation to make sure this is an AngularJS route request instead of a normal static file request. 1: using System; 2: using Microsoft.AspNet.Builder; 3: using Microsoft.AspNet.FileSystems; 4: using Microsoft.AspNet.StaticFiles; 5: using Shaun.AspNet.Plugins.AngularServer; 6:  7: namespace Shaun.AspNet.Plugins.AngularServer.Demo 8: { 9: public class Startup 10: { 11: public void Configure(IBuilder app) 12: { 13: app.UseAngularServer("app", "/index.html"); 14: } 15: } 16: } Now let's run "k web" again and try to refresh our browser and we can see the page loaded successfully. In the console window we can find the original request got 404 and we try to find "index.html" and return the correct result.   Summary In this post I introduced how to use ASP.NET vNext to host AngularJS application as a static file server. I also demonstrated how to extend ASP.NET vNext, so that it supports AngularJS Html5Mode. You can download the source code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Creating a thematic map

    - by jsharma
    This post describes how to create a simple thematic map, just a state population layer, with no underlying map tile layer. The map shows states color-coded by total population. The map is interactive with info-windows and can be panned and zoomed. The sample code demonstrates the following: Displaying an interactive vector layer with no background map tile layer (i.e. purpose and use of the Universe object) Using a dynamic (i.e. defined via the javascript client API) color bucket style Dynamically changing a layer's rendering style Specifying which attribute value to use in determining the bucket, and hence style, for a feature (FoI) The result is shown in the screenshot below. The states layer was defined, and stored in the user_sdo_themes view of the mvdemo schema, using MapBuilder. The underlying table is defined as SQL> desc states_32775  Name                                      Null?    Type ----------------------------------------- -------- ----------------------------  STATE                                              VARCHAR2(26)  STATE_ABRV                                         VARCHAR2(2) FIPSST                                             VARCHAR2(2) TOTPOP                                             NUMBER PCTSMPLD                                           NUMBER LANDSQMI                                           NUMBER POPPSQMI                                           NUMBER ... MEDHHINC NUMBER AVGHHINC NUMBER GEOM32775 MDSYS.SDO_GEOMETRY We'll use the TOTPOP column value in the advanced (color bucket) style for rendering the states layers. The predefined theme (US_STATES_BI) is defined as follows. SQL> select styling_rules from user_sdo_themes where name='US_STATES_BI'; STYLING_RULES -------------------------------------------------------------------------------- <?xml version="1.0" standalone="yes"?> <styling_rules highlight_style="C.CB_QUAL_8_CLASS_DARK2_1"> <hidden_info> <field column="STATE" name="Name"/> <field column="POPPSQMI" name="POPPSQMI"/> <field column="TOTPOP" name="TOTPOP"/> </hidden_info> <rule column="TOTPOP"> <features style="states_totpop"> </features> <label column="STATE_ABRV" style="T.BLUE_SERIF_10"> 1 </label> </rule> </styling_rules> SQL> The theme definition specifies that the state, poppsqmi, totpop, state_abrv, and geom columns will be queried from the states_32775 table. The state_abrv value will be used to label the state while the totpop value will be used to determine the color-fill from those defined in the states_totpop advanced style. The states_totpop style, which we will not use in our demo, is defined as shown below. SQL> select definition from user_sdo_styles where name='STATES_TOTPOP'; DEFINITION -------------------------------------------------------------------------------- <?xml version="1.0" ?> <AdvancedStyle> <BucketStyle> <Buckets default_style="C.S02_COUNTRY_AREA"> <RangedBucket seq="0" label="10K - 5M" low="10000" high="5000000" style="C.SEQ6_01" /> <RangedBucket seq="1" label="5M - 12M" low="5000001" high="1.2E7" style="C.SEQ6_02" /> <RangedBucket seq="2" label="12M - 20M" low="1.2000001E7" high="2.0E7" style="C.SEQ6_04" /> <RangedBucket seq="3" label="&gt; 20M" low="2.0000001E7" high="5.0E7" style="C.SEQ6_05" /> </Buckets> </BucketStyle> </AdvancedStyle> SQL> The demo defines additional advanced styles via the OM.style object and methods and uses those instead when rendering the states layer.   Now let's look at relevant snippets of code that defines the map extent and zoom levels (i.e. the OM.universe),  loads the states predefined vector layer (OM.layer), and sets up the advanced (color bucket) style. Defining the map extent and zoom levels. function initMap() {   //alert("Initialize map view");     // define the map extent and number of zoom levels.   // The Universe object is similar to the map tile layer configuration   // It defines the map extent, number of zoom levels, and spatial reference system   // well-known ones (like web mercator/google/bing or maps.oracle/elocation are predefined   // The Universe must be defined when there is no underlying map tile layer.   // When there is a map tile layer then that defines the map extent, srid, and zoom levels.      var uni= new OM.universe.Universe(     {         srid : 32775,         bounds : new OM.geometry.Rectangle(                         -3280000, 170000, 2300000, 3200000, 32775),         numberOfZoomLevels: 8     }); The srid specifies the spatial reference system which is Equal-Area Projection (United States). SQL> select cs_name from cs_srs where srid=32775 ; CS_NAME --------------------------------------------------- Equal-Area Projection (United States) The bounds defines the map extent. It is a Rectangle defined using the lower-left and upper-right coordinates and srid. Loading and displaying the states layer This is done in the states() function. The full code is at the end of this post, however here's the snippet which defines the states VectorLayer.     // States is a predefined layer in user_sdo_themes     var  layer2 = new OM.layer.VectorLayer("vLayer2",     {         def:         {             type:OM.layer.VectorLayer.TYPE_PREDEFINED,             dataSource:"mvdemo",             theme:"us_states_bi",             url: baseURL,             loadOnDemand: false         },         boundingTheme:true      }); The first parameter is a layer name, the second is an object literal for a layer config. The config object has two attributes: the first is the layer definition, the second specifies whether the layer is a bounding one (i.e. used to determine the current map zoom and center such that the whole layer is displayed within the map window) or not. The layer config has the following attributes: type - specifies whether is a predefined one, a defined via a SQL query (JDBC), or in a json-format file (DATAPACK) theme - is the predefined theme's name url - is the location of the mapviewer server loadOnDemand - specifies whether to load all the features or just those that lie within the current map window and load additional ones as needed on a pan or zoom The code snippet below dynamically defines an advanced style and then uses it, instead of the 'states_totpop' style, when rendering the states layer. // override predefined rendering style with programmatic one    var theRenderingStyle =      createBucketColorStyle('YlBr5', colorSeries, 'States5', true);   // specify which attribute is used in determining the bucket (i.e. color) to use for the state   // It can be an array because the style could be a chart type (pie/bar)   // which requires multiple attribute columns     // Use the STATE.TOTPOP column (aka attribute) value here    layer2.setRenderingStyle(theRenderingStyle, ["TOTPOP"]); The style itself is defined in the createBucketColorStyle() function. Dynamically defining an advanced style The advanced style used here is a bucket color style, i.e. a color style is associated with each bucket. So first we define the colors and then the buckets.     numClasses = colorSeries[colorName].classes;    // create Color Styles    for (var i=0; i < numClasses; i++)    {         theStyles[i] = new OM.style.Color(                      {fill: colorSeries[colorName].fill[i],                        stroke:colorSeries[colorName].stroke[i],                       strokeOpacity: useGradient? 0.25 : 1                      });    }; numClasses is the number of buckets. The colorSeries array contains the color fill and stroke definitions and is: var colorSeries = { //multi-hue color scheme #10 YlBl. "YlBl3": {   classes:3,                  fill: [0xEDF8B1, 0x7FCDBB, 0x2C7FB8],                  stroke:[0xB5DF9F, 0x72B8A8, 0x2872A6]   }, "YlBl5": {   classes:5,                  fill:[0xFFFFCC, 0xA1DAB4, 0x41B6C4, 0x2C7FB8, 0x253494],                  stroke:[0xE6E6B8, 0x91BCA2, 0x3AA4B0, 0x2872A6, 0x212F85]   }, //multi-hue color scheme #11 YlBr.  "YlBr3": {classes:3,                  fill:[0xFFF7BC, 0xFEC44F, 0xD95F0E],                  stroke:[0xE6DEA9, 0xE5B047, 0xC5360D]   }, "YlBr5": {classes:5,                  fill:[0xFFFFD4, 0xFED98E, 0xFE9929, 0xD95F0E, 0x993404],                  stroke:[0xE6E6BF, 0xE5C380, 0xE58A25, 0xC35663, 0x8A2F04]     }, etc. Next we create the bucket style.    bucketStyleDef = {       numClasses : colorSeries[colorName].classes, //      classification: 'custom',  //since we are supplying all the buckets //      buckets: theBuckets,       classification: 'logarithmic',  // use a logarithmic scale       styles: theStyles,       gradient:  useGradient? 'linear' : 'off' //      gradient:  useGradient? 'radial' : 'off'     };    theBucketStyle = new OM.style.BucketStyle(bucketStyleDef);    return theBucketStyle; A BucketStyle constructor takes a style definition as input. The style definition specifies the number of buckets (numClasses), a classification scheme (which can be equal-ranged, logarithmic scale, or custom), the styles for each bucket, whether to use a gradient effect, and optionally the buckets (required when using a custom classification scheme). The full source for the demo <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <title>Oracle Maps V2 Thematic Map Demo</title> <script src="http://localhost:8080/mapviewer/jslib/v2/oraclemapsv2.js" type="text/javascript"> </script> <script type="text/javascript"> //var $j = jQuery.noConflict(); var baseURL="http://localhost:8080/mapviewer"; // location of mapviewer OM.gv.proxyEnabled =false; // no mvproxy needed OM.gv.setResourcePath(baseURL+"/jslib/v2/images/"); // location of resources for UI elements like nav panel buttons var map = null; // the client mapviewer object var statesLayer = null, stateCountyLayer = null; // The vector layers for states and counties in a state var layerName="States"; // initial map center and zoom var mapCenterLon = -20000; var mapCenterLat = 1750000; var mapZoom = 2; var mpoint = new OM.geometry.Point(mapCenterLon,mapCenterLat,32775); var currentPalette = null, currentStyle=null; // set an onchange listener for the color palette select list // initialize the map // load and display the states layer $(document).ready( function() { $("#demo-htmlselect").change(function() { var theColorScheme = $(this).val(); useSelectedColorScheme(theColorScheme); }); initMap(); states(); } ); /** * color series from ColorBrewer site (http://colorbrewer2.org/). */ var colorSeries = { //multi-hue color scheme #10 YlBl. "YlBl3": { classes:3, fill: [0xEDF8B1, 0x7FCDBB, 0x2C7FB8], stroke:[0xB5DF9F, 0x72B8A8, 0x2872A6] }, "YlBl5": { classes:5, fill:[0xFFFFCC, 0xA1DAB4, 0x41B6C4, 0x2C7FB8, 0x253494], stroke:[0xE6E6B8, 0x91BCA2, 0x3AA4B0, 0x2872A6, 0x212F85] }, //multi-hue color scheme #11 YlBr. "YlBr3": {classes:3, fill:[0xFFF7BC, 0xFEC44F, 0xD95F0E], stroke:[0xE6DEA9, 0xE5B047, 0xC5360D] }, "YlBr5": {classes:5, fill:[0xFFFFD4, 0xFED98E, 0xFE9929, 0xD95F0E, 0x993404], stroke:[0xE6E6BF, 0xE5C380, 0xE58A25, 0xC35663, 0x8A2F04] }, // single-hue color schemes (blues, greens, greys, oranges, reds, purples) "Purples5": {classes:5, fill:[0xf2f0f7, 0xcbc9e2, 0x9e9ac8, 0x756bb1, 0x54278f], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Blues5": {classes:5, fill:[0xEFF3FF, 0xbdd7e7, 0x68aed6, 0x3182bd, 0x18519C], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Greens5": {classes:5, fill:[0xedf8e9, 0xbae4b3, 0x74c476, 0x31a354, 0x116d2c], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Greys5": {classes:5, fill:[0xf7f7f7, 0xcccccc, 0x969696, 0x636363, 0x454545], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Oranges5": {classes:5, fill:[0xfeedde, 0xfdb385, 0xfd8d3c, 0xe6550d, 0xa63603], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Reds5": {classes:5, fill:[0xfee5d9, 0xfcae91, 0xfb6a4a, 0xde2d26, 0xa50f15], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] } }; function createBucketColorStyle( colorName, colorSeries, rangeName, useGradient) { var theBucketStyle; var bucketStyleDef; var theStyles = []; var theColors = []; var aBucket, aStyle, aColor, aRange; var numClasses ; numClasses = colorSeries[colorName].classes; // create Color Styles for (var i=0; i < numClasses; i++) { theStyles[i] = new OM.style.Color( {fill: colorSeries[colorName].fill[i], stroke:colorSeries[colorName].stroke[i], strokeOpacity: useGradient? 0.25 : 1 }); }; bucketStyleDef = { numClasses : colorSeries[colorName].classes, // classification: 'custom', //since we are supplying all the buckets // buckets: theBuckets, classification: 'logarithmic', // use a logarithmic scale styles: theStyles, gradient: useGradient? 'linear' : 'off' // gradient: useGradient? 'radial' : 'off' }; theBucketStyle = new OM.style.BucketStyle(bucketStyleDef); return theBucketStyle; } function initMap() { //alert("Initialize map view"); // define the map extent and number of zoom levels. // The Universe object is similar to the map tile layer configuration // It defines the map extent, number of zoom levels, and spatial reference system // well-known ones (like web mercator/google/bing or maps.oracle/elocation are predefined // The Universe must be defined when there is no underlying map tile layer. // When there is a map tile layer then that defines the map extent, srid, and zoom levels. var uni= new OM.universe.Universe( { srid : 32775, bounds : new OM.geometry.Rectangle( -3280000, 170000, 2300000, 3200000, 32775), numberOfZoomLevels: 8 }); map = new OM.Map( document.getElementById('map'), { mapviewerURL: baseURL, universe:uni }) ; var navigationPanelBar = new OM.control.NavigationPanelBar(); map.addMapDecoration(navigationPanelBar); } // end initMap function states() { //alert("Load and display states"); layerName = "States"; if(statesLayer) { // states were already visible but the style may have changed // so set the style to the currently selected one var theData = $('#demo-htmlselect').val(); setStyle(theData); } else { // States is a predefined layer in user_sdo_themes var layer2 = new OM.layer.VectorLayer("vLayer2", { def: { type:OM.layer.VectorLayer.TYPE_PREDEFINED, dataSource:"mvdemo", theme:"us_states_bi", url: baseURL, loadOnDemand: false }, boundingTheme:true }); // add drop shadow effect and hover style var shadowFilter = new OM.visualfilter.DropShadow({opacity:0.5, color:"#000000", offset:6, radius:10}); var hoverStyle = new OM.style.Color( {stroke:"#838383", strokeThickness:2}); layer2.setHoverStyle(hoverStyle); layer2.setHoverVisualFilter(shadowFilter); layer2.enableFeatureHover(true); layer2.enableFeatureSelection(false); layer2.setLabelsVisible(true); // override predefined rendering style with programmatic one var theRenderingStyle = createBucketColorStyle('YlBr5', colorSeries, 'States5', true); // specify which attribute is used in determining the bucket (i.e. color) to use for the state // It can be an array because the style could be a chart type (pie/bar) // which requires multiple attribute columns // Use the STATE.TOTPOP column (aka attribute) value here layer2.setRenderingStyle(theRenderingStyle, ["TOTPOP"]); currentPalette = "YlBr5"; var stLayerIdx = map.addLayer(layer2); //alert('State Layer Idx = ' + stLayerIdx); map.setMapCenter(mpoint); map.setMapZoomLevel(mapZoom) ; // display the map map.init() ; statesLayer=layer2; // add rt-click event listener to show counties for the state layer2.addListener(OM.event.MouseEvent.MOUSE_RIGHT_CLICK,stateRtClick); } // end if } // end states function setStyle(styleName) { // alert("Selected Style = " + styleName); // there may be a counties layer also displayed. // that wll have different bucket ranges so create // one style for states and one for counties var newRenderingStyle = null; if (layerName === "States") { if(/3/.test(styleName)) { newRenderingStyle = createBucketColorStyle(styleName, colorSeries, 'States3', false); currentStyle = createBucketColorStyle(styleName, colorSeries, 'Counties3', false); } else { newRenderingStyle = createBucketColorStyle(styleName, colorSeries, 'States5', false); currentStyle = createBucketColorStyle(styleName, colorSeries, 'Counties5', false); } statesLayer.setRenderingStyle(newRenderingStyle, ["TOTPOP"]); if (stateCountyLayer) stateCountyLayer.setRenderingStyle(currentStyle, ["TOTPOP"]); } } // end setStyle function stateRtClick(evt){ var foi = evt.feature; //alert('Rt-Click on State: ' + foi.attributes['_label_'] + // ' with pop ' + foi.attributes['TOTPOP']); // display another layer with counties info // layer may change on each rt-click so create and add each time. var countyByState = null ; // the _label_ attribute of a feature in this case is the state abbreviation // we will use that to query and get the counties for a state var sqlText = "select totpop,geom32775 from counties_32775_moved where state_abrv="+ "'"+foi.getAttributeValue('_label_')+"'"; // alert(sqlText); if (currentStyle === null) currentStyle = createBucketColorStyle('YlBr5', colorSeries, 'Counties5', false); /* try a simple style instead new OM.style.ColorStyle( { stroke: "#B8F4FF", fill: "#18E5F4", fillOpacity:0 } ); */ // remove existing layer if any if(stateCountyLayer) map.removeLayer(stateCountyLayer); countyByState = new OM.layer.VectorLayer("stCountyLayer", {def:{type:OM.layer.VectorLayer.TYPE_JDBC, dataSource:"mvdemo", sql:sqlText, url:baseURL}}); // url:baseURL}, // renderingStyle:currentStyle}); countyByState.setVisible(true); // specify which attribute is used in determining the bucket (i.e. color) to use for the state countyByState.setRenderingStyle(currentStyle, ["TOTPOP"]); var ctLayerIdx = map.addLayer(countyByState); // alert('County Layer Idx = ' + ctLayerIdx); //map.addLayer(countyByState); stateCountyLayer = countyByState; } // end stateRtClick function useSelectedColorScheme(theColorScheme) { if(map) { // code to update renderStyle goes here //alert('will try to change render style'); setStyle(theColorScheme); } else { // do nothing } } </script> </head> <body bgcolor="#b4c5cc" style="height:100%;font-family:Arial,Helvetica,Verdana"> <h3 align="center">State population thematic map </h3> <div id="demo" style="position:absolute; left:68%; top:44px; width:28%; height:100%"> <HR/> <p/> Choose Color Scheme: <select id="demo-htmlselect"> <option value="YlBl3"> YellowBlue3</option> <option value="YlBr3"> YellowBrown3</option> <option value="YlBl5"> YellowBlue5</option> <option value="YlBr5" selected="selected"> YellowBrown5</option> <option value="Blues5"> Blues</option> <option value="Greens5"> Greens</option> <option value="Greys5"> Greys</option> <option value="Oranges5"> Oranges</option> <option value="Purples5"> Purples</option> <option value="Reds5"> Reds</option> </select> <p/> </div> <div id="map" style="position:absolute; left:10px; top:50px; width:65%; height:75%; background-color:#778f99"></div> <div style="position:absolute;top:85%; left:10px;width:98%" class="noprint"> <HR/> <p> Note: This demo uses HTML5 Canvas and requires IE9+, Firefox 10+, or Chrome. No map will show up in IE8 or earlier. </p> </div> </body> </html>

    Read the article

  • The relative effort of SharePoint 2010 vs. 2007

    - by erobillard
    SharePoint 2007 was the best demo-ware ever. It’s like going to the pet store and seeing a great dog that does backflips all kinds of tricks – and it really is a smart dog and it does all those tricks – but when you get it home you realize that what you need is a dog that gets the paper. SharePoint 2007 can be trained, but is fundamentally a platform where Microsoft's priority was to get the infrastructure right – to make it trainable and extensible. Because it was great demo-ware it caught on like...(read more)

    Read the article

  • Slides and Files from Day of .Net Ann Arbor &lsquo;10

    - by Brian Jackett
    This past Saturday I presented “Real World Deployment of SharePoint 2007 Solutions” at the Ann Arbor Day of .Net conference in Ann Arbor, MI.  Below are my slides and PowerShell demo scripts I used during the presentation.  Thanks to everyone who attended my session, as well as the sponsors, speakers, organizers and all attendees who made this event happen.   Slides and demo scripts

    Read the article

  • Oracle's ZFS Storage Appliance Simulator

    - by Steen Schmidt
    To those of you who has not played with the Oracle's ZFS Storage Appliance, but would like to. You should go an take a look at the Oracle's ZFS Storage Appliance Simulator. You can download this Oracle's ZFS Storage Appliance Simulator here, It will give you a pretty good idear what this unik product is capable of provide for you business.  You can also go and see a demo on how to set the appliance up in Oracle VirtualBox Demo Here. You find Oracle Virtualbox here

    Read the article

  • Last chance to vote in Optimizer Bumper Sticker Competition

    - by Maria Colgan
    There is still time to vote in our competition to find the best Optimizer bumper sticker, which we will give away at the Optimizer demo booth at this years Oracle Open World. Click here to vote for your favorite. Then stop by the Optimizer demo booth at Oracle Open World to claim your bumper sticker! Remember voting will close on June 30th and the winning slogan will be announced in early July. +Maria Colgan

    Read the article

  • We have a winner!

    - by Maria Colgan
    Thank you all for voting for your favorite Optimizer bumper sticker slogans. We are proud to announce we have a winner! With over 40% of the votes "Proud parent of a child cursor" will be the official Optimizer bumper sticker at this year's Oracle Open World! Don't forget you will be able to pickup your Optimizer bumper sticker at the Optimizer demo booth in the Oracle demo grounds! Looking forward to seeing you there! +Maria Colgan

    Read the article

  • Next Generation Directory @ Oracle Open World

    - by Etienne Remillon
    Oracle OpenWorld 2012 is bigger, better, and more educational than ever before, and identity management activities are no exception. For all identity related activities check this entry, or this handy PDF. Do you focus more specifically on directory?Come and meet with the directory team at: Our session: Next Generation Directory: Oracle Unified Directory / session #CON946 / Tuesday Oct 2 5:00 pm / Moscone West L3, Room 3008 Our demo pod: Oracle Directory Services Plus: Performant, Cloud-Ready demo / Moscone South, Right - S-222 Demonstration Hours @ Moscone South: Mon 10:00 - 6:00 / Tues 09:45 - 6:00 / Wed 09:45 – 4:00

    Read the article

  • SOA Community Newsletter September 2012

    - by JuergenKress
    Dear SOA partner community member Are you ready for Oracle Open World 2012? If you are planning to attend, make sure that you prepare your trip to San Francisco. If you could not make it, watch the keynotes live on-demand. You can also plan and decide to visit the SOA, Cloud and Service Technology Symposium 2012 and meet Tim Hall and Demed Lher from our product management team in London. As an Oracle partner you will get 50% discount on the conference pass, please use the code DJMXZ370 and avail your discount. The BPM Solution Catalogue is now live, make sure you use the process examples and contribute your processes. SOA Proactive support is the best resource to support your SOA implementations. To administrate your SOA systems Enterprise Manager Cloud Control 12c is the best tool, you can now attend thefree on-demand training. EM12c, Real User Experience Insight 12R1 gives you all the details, checkout our new demo. The BPM11g demo for Oracle E-Business Suite has become available. A wonderful SOA demo case is the Fusion Order Demo, Antony Reynolds posted an article how to update it on SOA Suite PS5. If you do use Coherence e.g. for SOA Suite, checkout the extension from our partner CloudTran. In this edition to this you will also find articles from: Automatically Disable Proxy Service to avoid overloading OSB By Jian Liang & Storing SCA Metadata in the Oracle Metadata Services Repository by Nicolás Fonnegra Martinez and Markus Lohn & Exploring MDS Explorer by Mark Nelson & Using Cloud OER to Find Fusion Applications On-Premise Service Concrete WSDL URL by Rajesh Raheja & Oracle Service Bus duplicate message check using Coherence by Jan van Zoggel & Installing Oracle SOA Suite10g on Oracle Enterprise Linux Lonneke Dikmans & Generating an EJB SDO Service Interface for Oracle SOA Suite by Edwin Biemond. Jürgen Kress Oracle SOA & BPM Partner Adoption EMEA To read the newsletter please visit http://tinyurl.com/soanewsSeptember2012 (OPN Account required) To become a member of the SOA Partner Community please register at http://www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Technorati Tags: SOA Community newsletter,SOA Community,Oracle SOA,Oracle BPM,BPM Community,OPN,Jürgen Kress

    Read the article

  • Flexi Slider 2 Ipad showing images underneath main slider image but all other os are fine [closed]

    - by David Buckley
    I am using the Flexi Slider 2 for the jquery slider on this test page but for some reason on the ipad it shows all images in a list and doesnt appear to load the jquery but if you rotate the ipad it works any ideas would be greatly appreciate please forgive my english im a programmer not an english lecture. http://colintest.webdeveloperbelfast.com/donate.php it is not spam their functions the client is wanting the demo u guys take things so bloddy littler when a person is asking for help please do not use the paypal buttons their only their for demo purpose this is not spam

    Read the article

  • New Virtual Compute Appliance Videos

    - by Cinzia Mascanzoni
    Watch the latest Virtual Compute Appliance videos to aid your conversations with partners and customers! Virtual Compute Appliance Flash demo shows your customers and partners the business benefits. VCA Product demo. Tier1 Customer Testimonial Video of using Oracle's Virtual Compute Appliance to build a private cloud virtualization platform to host its customers’ Oracle Enterprise and Windows applications. Centroid Partner Testimonial Video.

    Read the article

  • Thanks for Stopping by at Oracle Open World

    - by Etienne Remillon
    Thanks to hundreds of our customers and more specifically to our directory friends that came to Oracle Open World and meet with us at: One of our two OUD booth: Next Generation Directory in the Middleware demo-ground Optimized Solution for Oracle Unified Directory in the Hardware demo-ground Our well attended session on Next Generation Directory: Oracle Unified Directory One of our other gathering evens Was always a good opportunity to discuss your directory usages, expansion plan, expected evolutions and enhancements. Big thanks for making Oracle Open World 2012 a big event!

    Read the article

  • Oracle Social Analytics with the Big Data Appliance

    - by thegreeneman
    Found an awesome demo put together by one of the Oracle NoSQL Database partners, eDBA, on using the Big Data Appliance to do social analytics. In this video, James Anthony is showing off the BDA, Hadoop, the Oracle Big Data Connectors and how they can be used and integrated with the Oracle Database to do an end-to-end sentiment analysis leveraging twitter data.   A really great demo worth the view. 

    Read the article

  • Video: Content Localization Preview

    In our bi-weekly team meetingCharles Nurse gave a live demo of alpha code for work being done in content localization. Exciting stuff, especially for our international audience, some of whom received their own live demo today fromShaun Walker at the Eurpoean Day of DotNetNuke!...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Google Cloud Storage Office Hours - 9/5/2012

    Google Cloud Storage Office Hours - 9/5/2012 This session explains how to serve websites directly from Google Cloud Storage (including how to associate your storage resources with a custom domain name), followed by a Q&A session. Demo fun begins at 17:30! The slides (including live demo) can be found here: tinyurl.com From: GoogleDevelopers Views: 164 8 ratings Time: 50:13 More in Science & Technology

    Read the article

  • Slides and Scripts from SharePoint Cincy 2014

    - by Brian T. Jackett
    Originally posted on: http://geekswithblogs.net/bjackett/archive/2014/06/06/slides-and-scripts-from-sharepoint-cincy-2014.aspx   I was pleased to present at SharePoint Cincy again for the third year.  Geoff and all the organizers do a great job.  My presentation this year was “PowerShell for Your SharePoint Tool Belt”.  Below are my slides and demo scripts.  Thanks for all who attended, I hope you found something that will be useful for you in your work.   Demo PowerShell Scripts   Slidedeck           -Frog Out

    Read the article

  • How to add two textures ,one is used as background and another one is used in a rotating cube!

    - by VampirEMufasa
    I am working in OpenGL ES 2.0. Now I am writing a demo for my project, I load two png images as my textures with the libSOIL But now I need to use one of them as the texture of my demo's background and another one as the texture of a rotating cube. In OpenGL ES 2.0, the adding texture operation is in the shader But now I don't know how to add the different textures to the different place in a shader Who can help me! Thank you very much!

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >