Search Results

Search found 24043 results on 962 pages for 'private methods'.

Page 12/962 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >

  • Using extension methods to decrease the surface area of a C# interface

    - by brian_ritchie
    An interface defines a contract to be implemented by one or more classes.  One of the keys to a well-designed interface is defining a very specific range of functionality. The profile of the interface should be limited to a single purpose & should have the minimum methods required to implement this functionality.  Keeping the interface tight will keep those implementing the interface from getting lazy & not implementing it properly.  I've seen too many overly broad interfaces that aren't fully implemented by developers.  Instead, they just throw a NotImplementedException for the method they didn't implement. One way to help with this issue, is by using extension methods to move overloaded method definitions outside of the interface. Consider the following example: .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: public interface IFileTransfer 2: { 3: void SendFile(Stream stream, Uri destination); 4: } 5:   6: public static class IFileTransferExtension 7: { 8: public static void SendFile(this IFileTransfer transfer, 9: string Filename, Uri destination) 10: { 11: using (var fs = File.OpenRead(Filename)) 12: { 13: transfer.SendFile(fs, destination); 14: } 15: } 16: } 17:   18: public static class TestIFileTransfer 19: { 20: static void Main() 21: { 22: IFileTransfer transfer = new FTPFileTransfer("user", "pass"); 23: transfer.SendFile(filename, new Uri("ftp://ftp.test.com")); 24: } 25: } In this example, you may have a number of overloads that uses different mechanisms for specifying the source file. The great part is, you don't need to implement these methods on each of your derived classes.  This gives you a better interface and better code reuse.

    Read the article

  • Identifying methods with a specified Id in D [migrated]

    - by Ekyo777
    I want to have specific methods with a specific pattern recognized at compile time and registered along with a specified id trough mixins in a parent class. ex.: take a method 'X' from a class with a predetermined id:5, what I want is that, in a mixin in a parent class, method X will be registered as a delegate with its id to be called later on by its id. What would be the best way to specify the Id considering I want the id to be of type int and only the specified methods to be registered? should I (if it is even possible) do it with a custom annotation pretty much like the @property but with an argument, like: @autoregister(id) void method(...) if it is possible to do it this way, an example or a link to the documentation on how to do it would be nice since I didn't find it in the documentation.

    Read the article

  • using static methods and classes

    - by vedant1811
    I know that static methods/variables are associated with the class and not the objects of the class and are useful in situations when we need to keep count of, say the number of objects of the class that were created. Non-static members on the other hand may need to work on the specific object (i.e. to use the variables initialized by the constructor) My question what should we do when we need neither of the functionalities? Say I just need a utility function that accepts value(s) and returns a value besed solely on the values passed. I want to know whether such methods should be static or not. How is programming efficiency affected and which is a better coding practice/convention and why. PS: I don't want to spark off a debate, I just want a subjective answer and/or references.

    Read the article

  • Anonymous methods/functions: a fundamental feature or a violation of OO principles?

    - by RD1
    Is the recent movement towards anonymous methods/functions by mainstream languages like perl and C# something important, or a weird feature that violates OO principles? Are recent libraries like the most recent version of Intel's Thread Building Blocks and Microsofts PPL and Linq that depend on such things a good thing, or not? Are languages that currently reject anonymous methods/functions, like Java, making wise choices in sticking with a purely OO model, or are they falling behind by lacking a fundamental programming feature?

    Read the article

  • How to extend methods to a class not to its instances.

    - by Fraga
    Hi. Extending methods to any instance is really easy: public static string LeaveJustNumbers(this string text) { return Regex.Replace(text, @"[\D]", ""); } ... string JustNumbers = "A5gfb343j4".LeaveJustNumber(); But what if i want to extend methods to a sealed class like string, to work like: string.Format("Hi:{0}","Fraga"); Is there any way to do it?

    Read the article

  • Will methods like POST and GET formally evolve someday?

    - by Jorge
    The question may sound a bit naive or stupid, but i was wondering...will POST and GET evolve someday? What other methods exist besides those two? I was wondering specifically about server-pushes... why can't exist a method specifically for that? I don't even know if there's already something similar, and if there is, i apologize for my ignorance. The web is evolving, that's evident...will methods formally evolve too?

    Read the article

  • Extension Methods - IsNull and IsNotNull, good or bad use?

    - by Jaimal Chohan
    I like readability. So, I came up with an extension mothod a few minutes ago for the (x =! null) type syntax, called IsNotNull. Inversly, I also created a IsNull extension method, thus if(x == null) becomes if(x.IsNull()) and if(x != null) becomes if(x.IsNotNull()) However, I'm worried I might be abusing extension methods. Do you think that this is bad use of Extenion methods?

    Read the article

  • Is it good practice to put private API in the .m files and public API in .h files in Cocoa?

    - by Paperflyer
    Many of my classes in my current project have several properties and methods that are only ever called from within the class itself. Also, they might mess with the working of the class depending on the current state of the class. Currently, all these interfaces are defined in the main interface declaration in the .h files. Is it considered good practice to put the “private” methods and properties at the top of the .m files? This won't ever affect anything since I am very likely the only person ever to look at this source code, but of course it would be interesting to know for future projects.

    Read the article

  • How do you manage the namespaces of your extension methods?

    - by Robert Harvey
    Do you use a global, catchall namespace for all of your extension methods, or do you put the extension methods in the same namespace as the class(es) they extend? Or do you use some other method, like an application or library-specific namespace? EDIT: I ask because I have a need to extend System.Security.Principal.IIdentity, and putting the extension method in the System.Security.Principal namespace seems to make sense, but I've never seen it done this way.

    Read the article

  • Use properties or methods to expose business rules in C#?

    - by Val
    I'm writing a class to encapsulate some business rules, each of which is represented by a boolean value. The class will be used in processing an InfoPath form, so the rules get the current program state by looking up values in a global XML data structure using XPath operations. What's the best (most idiomatic) way to expose these rules to callers -- properties or public methods? Call using properties Rules rules = new Rules(); if ( rules.ProjectRequiresApproval ) { // get approval } else { // skip approval } Call using methods Rules rules = new Rules(); if ( rules.ProjectRequiresApproval() ) { // get approval } else { // skip approval } Rules class exposing rules as properties public class Rules() { private int _amount; private int threshold = 100; public Rules() { _amount = someExpensiveXpathOperation; } // rule property public bool ProjectRequiresApproval { get { return _amount < threshold } } } Rules class exposing rules as methods public class Rules() { private int _amount; private int threshold = 100; public Rules() { _amount = someExpensiveXpathOperation; } // rule method public bool ProjectRequiresApproval() { return _amount < threshold; } } What are the pros and cons of one over the other?

    Read the article

  • Python: When passing variables between methods, is it necessary to assign it a new name?

    - by Anthony
    I'm thinking that the answer is probably 'no' if the program is small and there are a lot of methods, but what about in a larger program? If I am going to be using one variable in multiple methods throughout the program, is it smarter to: Come up with a different phrasing for each method (to eliminate naming conflicts). Use the same name for each method (to eliminate confusion) Just use a global variable (to eliminate both) This is more of a stylistic question than anything else. What naming convention do YOU use when passing variables?

    Read the article

  • Why cant we create Object if constructor is in private section?

    - by Abhi
    Dear all I want to know why cant we create object if the constructor is in private section. I know that if i make a method static i can call that method using <classname> :: <methodname(...)>; But why cant we create object is my doubt... I also know if my method is not static then also i can call function by the following... class A { A(); public: void fun1(); void fun2(); void fun3(); }; int main() { A *obj =(A*)malloc(sizeof(A)); //Here we can't use new A() because constructor is in private //but we can use malloc with it, but it will not call the constructor //and hence it is harmful because object may not be in usable state. obj->fun1(); obj->fun2(); obj->fun3(); } So only doubt is why cant we create object when constructor is in private section? Thanks in advance

    Read the article

  • Given a PHP class would be the best and simplest way to override one or two of its methods with one

    - by racl101
    Here's the objective. I have a PHP class and there are one or two of its methods that I would like to override with my own. As I understand OOP (in PHP and in general) I could write a child class that extends it and overrides the functionality of the methods in question. However, I was wondering if this is the best way of achieving this task and if this is a proper use for child classes or if there is something better in PHP for what I'm trying to do.

    Read the article

  • Easing the Journey to the Private Cloud with Oracle Consulting

    - by MichaelM-Oracle
    By Sanjai Marimadaiah, Senior Director, Strategy & Business Development – Cloud Solutions, Oracle Consulting Services Business leaders are now leading the charge on how their firms can profit from cloud solutions. Agility and innovation are becoming the primary drivers of the business case for the cloud, even more than the anticipated cost savings. Leaders need to find the right strategy and optimize the use of cloud-based applications across their enterprise-computing infrastructure. The Problem – Current State With prevalent IT practices, many organizations find that they run multiple IT solutions serving similar business needs. This has led to the proliferation of technology stacks, for example: Oracle 10g on Sun T4 running Solaris 9; Oracle 11g on Exadata running Linux; or Oracle 12c on commodity x86 servers. This variance has a huge impact on an organization’s agility and expenses, and requires IT professionals with varied skills as well as on-going training for different systems and tools. Fortunately there is a practical business strategy to overcome this unneeded redundancy. Thus begins a journey to the right cloud computing solution. The Solution – Cloud Services from Oracle Consulting Services (OCS) Oracle Consulting Services (OCS ) works closely with our clients as trusted advisors to proactively respond to business needs and IT concerns. OCS understands that making the transition to cloud solutions begins with a strategic conversation, based on its deep expertise for successfully completing private cloud service engagements with several companies. For a journey to the cloud, Oracle Consulting Services leads the client through four phases– standardization, consolidation, service delivery, and enterprise cloud – to achieve optimal returns. Phase 1 - Standardization Oracle Consulting Services (OCS) works with clients to evaluate their business requirements and propose a set of standard solutions stacks for various IT solutions. This is an opportune time to evaluate cloud ready solutions, such as Oracle 12c, Oracle Exadata, and the Oracle Database Appliance (ODA). The OCS consultants, together with the delivery team, then turn to upgrading and migrating existing solution stacks to standardized offerings. OCS has the expertise and tools to complete this stage in a fraction of the time required by other IT services companies. Clients quickly realize cost savings in tools, processes, and type/number of resources required. This standardization also improves agility of the IT organizations and their abilities to respond to the needs of various business units. Phase 2 - Consolidation During the consolidation phase, OCS consultants programmatically consolidate hundreds of databases into a smaller number of servers to improve utilization, reduce floor space, and optimize maintenance costs. Consolidation helps clients realize huge savings in CapEx investments and shrink OpEx costs. The use of engineered systems, such as Oracle Exadata, greatly reduces the client’s risk of moving to a new solution stack. OCS recommends clients to pursue Phase 1 (Standardization) and Phase 2 (Consolidation) simultaneously to reduce the overall time, effort, and expense of the cloud journey. Phase 3 - Service Delivery Once a client is on a path of standardization and consolidation, OCS consultants create Service Catalogues based on the SLAs requirements and the criticality of the solutions. The number and types of Service Catalogues (Platinum, Gold, Silver, Bronze, etc.) vary from client to client. OCS consultants also implement a variety of value-added cloud solutions, including monitoring, metering, and charge-back solutions. At this stage, clients are able to achieve a high level of understanding in their cloud journey. Their IT organizations are operating efficiently and are more agile in responding to the needs of business units. Phase 4 - Enterprise Cloud In the final phase of the cloud journey, the economics of the IT organizations change. Business units can request services on-demand; applications can be deployed and consumed on a pay-as-you-go model. OCS has the expertise and capabilities to establish processes, programs, and solutions required for IT organizations to transform how they interact with business units. The Promise of Cloud Solutions Depending the size and complexity of their business model, some clients are able to abbreviate some phases of their cloud journey. Cloud solutions are still evolving and there is rapid pace of innovation to transform how IT organizations operate. The lesson is clear. Cloud solutions hold a lot of promise for business agility. Business leaders can now leverage an additional set of capabilities and services. They can ramp up their pace of innovation. With cloud maturity, they can compete more effectively in their respective markets. But there are certainly challenges ahead. A skilled consulting services partner can play a pivotal role as a trusted advisor in the successful adoption of cloud solutions. Oracle Consulting Services has expertise and a portfolio of services to help clients succeed on their journey to the cloud.

    Read the article

  • Best methods for Lazy Initialization with properties

    - by Stuart Pegg
    I'm currently altering a widely used class to move as much of the expensive initialization from the class constructor into Lazy Initialized properties. Below is an example (in c#): Before: public class ClassA { public readonly ClassB B; public void ClassA() { B = new ClassB(); } } After: public class ClassA { private ClassB _b; public ClassB B { get { if (_b == null) { _b = new ClassB(); } return _b; } } } There are a fair few more of these properties in the class I'm altering, and some are not used in certain contexts (hence the Laziness), but if they are used they're likely to be called repeatedly. Unfortunately, the properties are often also used inside the class. This means there is a potential for the private variable (_b) to be used directly by a method without it being initialized. Is there a way to make only the public property (B) available inside the class, or even an alternative method with the same initialized-when-needed?

    Read the article

  • Game Over function is not working Starling

    - by aNgeLyN omar
    I've been following a tutorial over the web but it somehow did not show something about creating a game over function. I am new to the Starling framework and Actionscript so I'm kind of still trying to find a way to make it work. Here's the complete snippet of the code. package screens { import flash.geom.Rectangle; import flash.utils.getTimer; import events.NavigationEvent; import objects.GameBackground; import objects.Hero; import objects.Item; import objects.Obstacle; import starling.display.Button; import starling.display.Image; import starling.display.Sprite; import starling.events.Event; import starling.events.Touch; import starling.events.TouchEvent; import starling.text.TextField; import starling.utils.deg2rad; public class InGame extends Sprite { private var screenInGame:InGame; private var screenWelcome:Welcome; private var startButton:Button; private var playAgain:Button; private var bg:GameBackground; private var hero:Hero; private var timePrevious:Number; private var timeCurrent:Number; private var elapsed:Number; private var gameState:String; private var playerSpeed:Number = 0; private var hitObstacle:Number = 0; private const MIN_SPEED:Number = 650; private var scoreDistance:int; private var obstacleGapCount:int; private var gameArea:Rectangle; private var touch:Touch; private var touchX:Number; private var touchY:Number; private var obstaclesToAnimate:Vector.<Obstacle>; private var itemsToAnimate:Vector.<Item>; private var scoreText:TextField; private var remainingLives:TextField; private var gameOverText:TextField; private var iconSmall:Image; static private var lives:Number = 2; public function InGame() { super(); this.addEventListener(starling.events.Event.ADDED_TO_STAGE, onAddedToStage); } private function onAddedToStage(event:Event):void { this.removeEventListener(Event.ADDED_TO_STAGE, onAddedToStage); drawGame(); scoreText = new TextField(300, 100, "Score: 0", "MyFontName", 35, 0xD9D919, true); remainingLives = new TextField(600, 100, "Lives: " + lives +" X ", "MyFontName", 35, 0xD9D919, true); iconSmall = new Image(Assets.getAtlas().getTexture("darnahead1")); iconSmall.x = 360; iconSmall.y = 40; this.addChild(iconSmall); this.addChild(scoreText); this.addChild(remainingLives); } private function drawGame():void { bg = new GameBackground(); this.addChild(bg); hero = new Hero(); hero.x = stage.stageHeight / 2; hero.y = stage.stageWidth / 2; this.addChild(hero); startButton = new Button(Assets.getAtlas().getTexture("startButton")); startButton.x = stage.stageWidth * 0.5 - startButton.width * 0.5; startButton.y = stage.stageHeight * 0.5 - startButton.height * 0.5; this.addChild(startButton); gameArea = new Rectangle(0, 100, stage.stageWidth, stage.stageHeight - 250); } public function disposeTemporarily():void { this.visible = false; } public function initialize():void { this.visible = true; this.addEventListener(Event.ENTER_FRAME, checkElapsed); hero.x = -stage.stageWidth; hero.y = stage.stageHeight * 0.5; gameState ="idle"; playerSpeed = 0; hitObstacle = 0; bg.speed = 0; scoreDistance = 0; obstacleGapCount = 0; obstaclesToAnimate = new Vector.<Obstacle>(); itemsToAnimate = new Vector.<Item>(); startButton.addEventListener(Event.TRIGGERED, onStartButtonClick); //var mainStage:InGame =InGame.current.nativeStage; //mainStage.dispatchEvent(new Event(Event.COMPLETE)); //playAgain.addEventListener(Event.TRIGGERED, onRetry); } private function onStartButtonClick(event:Event):void { startButton.visible = false; startButton.removeEventListener(Event.TRIGGERED, onStartButtonClick); launchHero(); } private function launchHero():void { this.addEventListener(TouchEvent.TOUCH, onTouch); this.addEventListener(Event.ENTER_FRAME, onGameTick); } private function onTouch(event:TouchEvent):void { touch = event.getTouch(stage); touchX = touch.globalX; touchY = touch.globalY; } private function onGameTick(event:Event):void { switch(gameState) { case "idle": if(hero.x < stage.stageWidth * 0.5 * 0.5) { hero.x += ((stage.stageWidth * 0.5 * 0.5 + 10) - hero.x) * 0.05; hero.y = stage.stageHeight * 0.5; playerSpeed += (MIN_SPEED - playerSpeed) * 0.05; bg.speed = playerSpeed * elapsed; } else { gameState = "flying"; } break; case "flying": if(hitObstacle <= 0) { hero.y -= (hero.y - touchY) * 0.1; if(-(hero.y - touchY) < 150 && -(hero.y - touchY) > -150) { hero.rotation = deg2rad(-(hero.y - touchY) * 0.2); } if(hero.y > gameArea.bottom - hero.height * 0.5) { hero.y = gameArea.bottom - hero.height * 0.5; hero.rotation = deg2rad(0); } if(hero.y < gameArea.top + hero.height * 0.5) { hero.y = gameArea.top + hero.height * 0.5; hero.rotation = deg2rad(0); } } else { hitObstacle-- cameraShake(); } playerSpeed -= (playerSpeed - MIN_SPEED) * 0.01; bg.speed = playerSpeed * elapsed; scoreDistance += (playerSpeed * elapsed) * 0.1; scoreText.text = "Score: " + scoreDistance; initObstacle(); animateObstacles(); createEggItems(); animateItems(); remainingLives.text = "Lives: "+lives + " X "; if(lives == 0) { gameState = "over"; } break; case "over": gameOver(); break; } } private function gameOver():void { gameOverText = new TextField(800, 400, "Hero WAS KILLED!!!", "MyFontName", 50, 0xD9D919, true); scoreText = new TextField(800, 600, "Score: "+scoreDistance, "MyFontName", 30, 0xFFFFFF, true); this.addChild(scoreText); this.addChild(gameOverText); playAgain = new Button(Assets.getAtlas().getTexture("button_tryAgain")); playAgain.x = stage.stageWidth * 0.5 - startButton.width * 0.5; playAgain.y = stage.stageHeight * 0.75 - startButton.height * 0.75; this.addChild(playAgain); playAgain.addEventListener(Event.TRIGGERED, onRetry); } private function onRetry(event:Event):void { playAgain.visible = false; gameOverText.visible = false; scoreText.visible = false; var btnClicked:Button = event.target as Button; if((btnClicked as Button) == playAgain) { this.dispatchEvent(new NavigationEvent(NavigationEvent.CHANGE_SCREEN, {id: "playnow"}, true)); } disposeTemporarily(); } private function animateItems():void { var itemToTrack:Item; for(var i:uint = 0; i < itemsToAnimate.length; i++) { itemToTrack = itemsToAnimate[i]; itemToTrack.x -= playerSpeed * elapsed; if(itemToTrack.bounds.intersects(hero.bounds)) { itemsToAnimate.splice(i, 1); this.removeChild(itemToTrack); } if(itemToTrack.x < -50) { itemsToAnimate.splice(i, 1); this.removeChild(itemToTrack); } } } private function createEggItems():void { if(Math.random() > 0.95){ var itemToTrack:Item = new Item(Math.ceil(Math.random() * 10)); itemToTrack.x = stage.stageWidth + 50; itemToTrack.y = int(Math.random() * (gameArea.bottom - gameArea.top)) + gameArea.top; this.addChild(itemToTrack); itemsToAnimate.push(itemToTrack); } } private function cameraShake():void { if(hitObstacle > 0) { this.x = Math.random() * hitObstacle; this.y = Math.random() * hitObstacle; } else if(x != 0) { this.x = 0; this.y = 0; lives--; } } private function initObstacle():void { if(obstacleGapCount < 1200) { obstacleGapCount += playerSpeed * elapsed; } else if(obstacleGapCount !=0) { obstacleGapCount = 0; createObstacle(Math.ceil(Math.random() * 5), Math.random() * 1000 + 1000); } } private function animateObstacles():void { var obstacleToTrack:Obstacle; for(var i:uint = 0; i<obstaclesToAnimate.length; i++) { obstacleToTrack = obstaclesToAnimate[i]; if(obstacleToTrack.alreadyHit == false && obstacleToTrack.bounds.intersects(hero.bounds)) { obstacleToTrack.alreadyHit = true; obstacleToTrack.rotation = deg2rad(70); hitObstacle = 30; playerSpeed *= 0.5; } if(obstacleToTrack.distance > 0) { obstacleToTrack.distance -= playerSpeed * elapsed; } else { if(obstacleToTrack.watchOut) { obstacleToTrack.watchOut = false; } obstacleToTrack.x -= (playerSpeed + obstacleToTrack.speed) * elapsed; } if(obstacleToTrack.x < -obstacleToTrack.width || gameState == "over") { obstaclesToAnimate.splice(i, 1); this.removeChild(obstacleToTrack); } } } private function checkElapsed(event:Event):void { timePrevious = timeCurrent; timeCurrent = getTimer(); elapsed = (timeCurrent - timePrevious) * 0.001; } private function createObstacle(type:Number, distance:Number):void{ var obstacle:Obstacle = new Obstacle(type, distance, true, 300); obstacle.x = stage.stageWidth; this.addChild(obstacle); if(type >= 4) { if(Math.random() > 0.5) { obstacle.y = gameArea.top; obstacle.position = "top" } else { obstacle.y = gameArea.bottom - obstacle.height; obstacle.position = "bottom"; } } else { obstacle.y = int(Math.random() * (gameArea.bottom - obstacle.height - gameArea.top)) + gameArea.top; obstacle.position = "middle"; } obstaclesToAnimate.push(obstacle); } } }

    Read the article

  • SSH Public Key - No supported authentication methods available (server sent public key)

    - by F21
    I have a 12.10 server setup in a virtual machine with its network set to bridged (essentially will be seen as a computer connected to my switch). I installed opensshd via apt-get and was able to connect to the server using putty with my username and password. I then set about trying to get it to use public/private key authentication. I did the following: Generated the keys using PuttyGen. Moved the public key to /etc/ssh/myusername/authorized_keys (I am using encrypted home directories). Set up sshd_config like so: PubkeyAuthentication yes AuthorizedKeysFile /etc/ssh/%u/authorized_keys StrictModes no PasswordAuthentication no UsePAM yes When I connect using putty or WinSCP, I get an error saying No supported authentication methods available (server sent public key). If I run sshd in debug mode, I see: PAM: initializing for "username" PAM: setting PAM_RHOST to "192.168.1.7" PAM: setting PAM_TTY to "ssh" userauth-request for user username service ssh-connection method publickey [preauth] attempt 1 failures 0 [preauth] test whether pkalg/pkblob are acceptable [preauth[ Checking blacklist file /usr/share/ssh/blacklist.RSA-1023 Checking blacklist file /etc/ssh/blacklist.RSA-1023 temporarily_use_uid: 1000/1000 (e=0/0) trying public key file /etc/ssh/username/authorized_keys fd4 clearing O_NONBLOCK restore_uid: 0/0 Failed publickey for username from 192.168.1.7 port 14343 ssh2 Received disconnect from 192.168.1.7: 14: No supported authentication methods available [preauth] do_cleanup [preauth] monitor_read_log: child log fd closed do_cleanup PAM: cleanup Why is this happening and how can I fix this?

    Read the article

  • The Most Effective Learning Methods – The Results

    - by BuckWoody
    Yesterday I posted a blank graph and asked where you thought the labels should go for the most effective learning methods, according to a study they read to me and other teachers here at the University of Washington. Here are the labels in the correct order according to that study – and remember, “Teaching” here means one student explaining something to another: It isn’t really that surprising to learn that we comprehend best when we have to teach a subject to someone else, and you can see that the “participation factor” is the key in the learning methods. The real shocker was the retention level at the various learning modes – lecture was down near the single digits! What does this have to do with databases or the DBA? Well, we all need to learn new things – and many of us are asked to teach others a new task. To be a good teacher, we have to know how a student learns best – and of course that makes us better students as well. So next time you’re asked to transfer some knowledge to someone else, take a look at this chart first – and let me know how it affected your knowledge transfer. Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • C#/.NET Little Wonders: Fun With Enum Methods

    - by James Michael Hare
    Once again lets dive into the Little Wonders of .NET, those small things in the .NET languages and BCL classes that make development easier by increasing readability, maintainability, and/or performance. So probably every one of us has used an enumerated type at one time or another in a C# program.  The enumerated types we create are a great way to represent that a value can be one of a set of discrete values (or a combination of those values in the case of bit flags). But the power of enum types go far beyond simple assignment and comparison, there are many methods in the Enum class (that all enum types “inherit” from) that can give you even more power when dealing with them. IsDefined() – check if a given value exists in the enum Are you reading a value for an enum from a data source, but are unsure if it is actually a valid value or not?  Casting won’t tell you this, and Parse() isn’t guaranteed to balk either if you give it an int or a combination of flags.  So what can we do? Let’s assume we have a small enum like this for result codes we want to return back from our business logic layer: 1: public enum ResultCode 2: { 3: Success, 4: Warning, 5: Error 6: } In this enum, Success will be zero (unless given another value explicitly), Warning will be one, and Error will be two. So what happens if we have code like this where perhaps we’re getting the result code from another data source (could be database, could be web service, etc)? 1: public ResultCode PerformAction() 2: { 3: // set up and call some method that returns an int. 4: int result = ResultCodeFromDataSource(); 5:  6: // this will suceed even if result is < 0 or > 2. 7: return (ResultCode) result; 8: } So what happens if result is –1 or 4?  Well, the cast does not fail, so what we end up with would be an instance of a ResultCode that would have a value that’s outside of the bounds of the enum constants we defined. This means if you had a block of code like: 1: switch (result) 2: { 3: case ResultType.Success: 4: // do success stuff 5: break; 6:  7: case ResultType.Warning: 8: // do warning stuff 9: break; 10:  11: case ResultType.Error: 12: // do error stuff 13: break; 14: } That you would hit none of these blocks (which is a good argument for always having a default in a switch by the way). So what can you do?  Well, there is a handy static method called IsDefined() on the Enum class which will tell you if an enum value is defined.  1: public ResultCode PerformAction() 2: { 3: int result = ResultCodeFromDataSource(); 4:  5: if (!Enum.IsDefined(typeof(ResultCode), result)) 6: { 7: throw new InvalidOperationException("Enum out of range."); 8: } 9:  10: return (ResultCode) result; 11: } In fact, this is often recommended after you Parse() or cast a value to an enum as there are ways for values to get past these methods that may not be defined. If you don’t like the syntax of passing in the type of the enum, you could clean it up a bit by creating an extension method instead that would allow you to call IsDefined() off any isntance of the enum: 1: public static class EnumExtensions 2: { 3: // helper method that tells you if an enum value is defined for it's enumeration 4: public static bool IsDefined(this Enum value) 5: { 6: return Enum.IsDefined(value.GetType(), value); 7: } 8: }   HasFlag() – an easier way to see if a bit (or bits) are set Most of us who came from the land of C programming have had to deal extensively with bit flags many times in our lives.  As such, using bit flags may be almost second nature (for a quick refresher on bit flags in enum types see one of my old posts here). However, in higher-level languages like C#, the need to manipulate individual bit flags is somewhat diminished, and the code to check for bit flag enum values may be obvious to an advanced developer but cryptic to a novice developer. For example, let’s say you have an enum for a messaging platform that contains bit flags: 1: // usually, we pluralize flags enum type names 2: [Flags] 3: public enum MessagingOptions 4: { 5: None = 0, 6: Buffered = 0x01, 7: Persistent = 0x02, 8: Durable = 0x04, 9: Broadcast = 0x08 10: } We can combine these bit flags using the bitwise OR operator (the ‘|’ pipe character): 1: // combine bit flags using 2: var myMessenger = new Messenger(MessagingOptions.Buffered | MessagingOptions.Broadcast); Now, if we wanted to check the flags, we’d have to test then using the bit-wise AND operator (the ‘&’ character): 1: if ((options & MessagingOptions.Buffered) == MessagingOptions.Buffered) 2: { 3: // do code to set up buffering... 4: // ... 5: } While the ‘|’ for combining flags is easy enough to read for advanced developers, the ‘&’ test tends to be easy for novice developers to get wrong.  First of all you have to AND the flag combination with the value, and then typically you should test against the flag combination itself (and not just for a non-zero)!  This is because the flag combination you are testing with may combine multiple bits, in which case if only one bit is set, the result will be non-zero but not necessarily all desired bits! Thanks goodness in .NET 4.0 they gave us the HasFlag() method.  This method can be called from an enum instance to test to see if a flag is set, and best of all you can avoid writing the bit wise logic yourself.  Not to mention it will be more readable to a novice developer as well: 1: if (options.HasFlag(MessagingOptions.Buffered)) 2: { 3: // do code to set up buffering... 4: // ... 5: } It is much more concise and unambiguous, thus increasing your maintainability and readability. It would be nice to have a corresponding SetFlag() method, but unfortunately generic types don’t allow you to specialize on Enum, which makes it a bit more difficult.  It can be done but you have to do some conversions to numeric and then back to the enum which makes it less of a payoff than having the HasFlag() method.  But if you want to create it for symmetry, it would look something like this: 1: public static T SetFlag<T>(this Enum value, T flags) 2: { 3: if (!value.GetType().IsEquivalentTo(typeof(T))) 4: { 5: throw new ArgumentException("Enum value and flags types don't match."); 6: } 7:  8: // yes this is ugly, but unfortunately we need to use an intermediate boxing cast 9: return (T)Enum.ToObject(typeof (T), Convert.ToUInt64(value) | Convert.ToUInt64(flags)); 10: } Note that since the enum types are value types, we need to assign the result to something (much like string.Trim()).  Also, you could chain several SetFlag() operations together or create one that takes a variable arg list if desired. Parse() and ToString() – transitioning from string to enum and back Sometimes, you may want to be able to parse an enum from a string or convert it to a string - Enum has methods built in to let you do this.  Now, many may already know this, but may not appreciate how much power are in these two methods. For example, if you want to parse a string as an enum, it’s easy and works just like you’d expect from the numeric types: 1: string optionsString = "Persistent"; 2:  3: // can use Enum.Parse, which throws if finds something it doesn't like... 4: var result = (MessagingOptions)Enum.Parse(typeof (MessagingOptions), optionsString); 5:  6: if (result == MessagingOptions.Persistent) 7: { 8: Console.WriteLine("It worked!"); 9: } Note that Enum.Parse() will throw if it finds a value it doesn’t like.  But the values it likes are fairly flexible!  You can pass in a single value, or a comma separated list of values for flags and it will parse them all and set all bits: 1: // for string values, can have one, or comma separated. 2: string optionsString = "Persistent, Buffered"; 3:  4: var result = (MessagingOptions)Enum.Parse(typeof (MessagingOptions), optionsString); 5:  6: if (result.HasFlag(MessagingOptions.Persistent) && result.HasFlag(MessagingOptions.Buffered)) 7: { 8: Console.WriteLine("It worked!"); 9: } Or you can parse in a string containing a number that represents a single value or combination of values to set: 1: // 3 is the combination of Buffered (0x01) and Persistent (0x02) 2: var optionsString = "3"; 3:  4: var result = (MessagingOptions) Enum.Parse(typeof (MessagingOptions), optionsString); 5:  6: if (result.HasFlag(MessagingOptions.Persistent) && result.HasFlag(MessagingOptions.Buffered)) 7: { 8: Console.WriteLine("It worked again!"); 9: } And, if you really aren’t sure if the parse will work, and don’t want to handle an exception, you can use TryParse() instead: 1: string optionsString = "Persistent, Buffered"; 2: MessagingOptions result; 3:  4: // try parse returns true if successful, and takes an out parm for the result 5: if (Enum.TryParse(optionsString, out result)) 6: { 7: if (result.HasFlag(MessagingOptions.Persistent) && result.HasFlag(MessagingOptions.Buffered)) 8: { 9: Console.WriteLine("It worked!"); 10: } 11: } So we covered parsing a string to an enum, what about reversing that and converting an enum to a string?  The ToString() method is the obvious and most basic choice for most of us, but did you know you can pass a format string for enum types that dictate how they are written as a string?: 1: MessagingOptions value = MessagingOptions.Buffered | MessagingOptions.Persistent; 2:  3: // general format, which is the default, 4: Console.WriteLine("Default : " + value); 5: Console.WriteLine("G (default): " + value.ToString("G")); 6:  7: // Flags format, even if type does not have Flags attribute. 8: Console.WriteLine("F (flags) : " + value.ToString("F")); 9:  10: // integer format, value as number. 11: Console.WriteLine("D (num) : " + value.ToString("D")); 12:  13: // hex format, value as hex 14: Console.WriteLine("X (hex) : " + value.ToString("X")); Which displays: 1: Default : Buffered, Persistent 2: G (default): Buffered, Persistent 3: F (flags) : Buffered, Persistent 4: D (num) : 3 5: X (hex) : 00000003 Now, you may not really see a difference here between G and F because I used a [Flags] enum, the difference is that the “F” option treats the enum as if it were flags even if the [Flags] attribute is not present.  Let’s take a non-flags enum like the ResultCode used earlier: 1: // yes, we can do this even if it is not [Flags] enum. 2: ResultCode value = ResultCode.Warning | ResultCode.Error; And if we run that through the same formats again we get: 1: Default : 3 2: G (default): 3 3: F (flags) : Warning, Error 4: D (num) : 3 5: X (hex) : 00000003 Notice that since we had multiple values combined, but it was not a [Flags] marked enum, the G and default format gave us a number instead of a value name.  This is because the value was not a valid single-value constant of the enum.  However, using the F flags format string, it broke out the value into its component flags even though it wasn’t marked [Flags]. So, if you want to get an enum to display appropriately for whether or not it has the [Flags] attribute, use G which is the default.  If you always want it to attempt to break down the flags, use F.  For numeric output, obviously D or  X are the best choice depending on whether you want decimal or hex. Summary Hopefully, you learned a couple of new tricks with using the Enum class today!  I’ll add more little wonders as I think of them and thanks for all the invaluable input!   Technorati Tags: C#,.NET,Little Wonders,Enum,BlackRabbitCoder

    Read the article

  • Unit testing internal methods in a strongly named assembly/project

    - by Rohit Gupta
    If you need create Unit tests for internal methods within a assembly in Visual Studio 2005 or greater, then we need to add an entry in the AssemblyInfo.cs file of the assembly for which you are creating the units tests for. For e.g. if you need to create tests for a assembly named FincadFunctions.dll & this assembly contains internal/friend methods within which need to write unit tests for then we add a entry in the FincadFunctions.dll’s AssemblyInfo.cs file like so : 1: [assembly: System.Runtime.CompilerServices.InternalsVisibleTo("FincadFunctionsTests")] where FincadFunctionsTests is the name of the Unit Test project which contains the Unit Tests. However if the FincadFunctions.dll is a strongly named assembly then you will the following error when compiling the FincadFunctions.dll assembly :      Friend assembly reference “FincadFunctionsTests” is invalid. Strong-name assemblies must specify a public key in their InternalsVisibleTo declarations. Thus to add a public key token to InternalsVisibleTo Declarations do the following: You need the .snk file that was used to strong-name the FincadFunctions.dll assembly. You can extract the public key from this .snk with the sn.exe tool from the .NET SDK. First we extract just the public key from the key pair (.snk) file into another .snk file. sn -p test.snk test.pub Then we ask for the value of that public key (note we need the long hex key not the short public key token): sn -tp test.pub We end up getting a super LONG string of hex, but that's just what we want, the public key value of this key pair. We add it to the strongly named project "FincadFunctions.dll" that we want to expose our internals from. Before what looked like: 1: [assembly: System.Runtime.CompilerServices.InternalsVisibleTo("FincadFunctionsTests")] Now looks like. 1: [assembly: System.Runtime.CompilerServices.InternalsVisibleTo("FincadFunctionsTests, 2: PublicKey=002400000480000094000000060200000024000052534131000400000100010011fdf2e48bb")] And we're done. hope this helps

    Read the article

  • Are Get-Set methods a violation of Encapsulation?

    - by Dipan Mehta
    In an Object oriented framework, one believes there must be strict encapsulation. Hence, internal variables are not to be exposed to outside applications. But in many codebases, we see tons of get/set methods which essentially open a formal window to modify internal variables that were originally intended to be strictly prohibited. Isn't it a clear violation of encapsulation? How broadly such a practice is seen and what to do about it? EDIT: I have seen some discussions where there are two opinions in extreme: on one hand people believe that because get/set interface is used to modify any parameter, it does qualifies not be violating encapsulation. On the other hand, there are people who believe it is does violate. Here is my point. Take a case of UDP server, with methods - get_URL(), set_URL(). The URL (to listen to) property is quite a parameter that application needs to be supplied and modified. However, in the same case, if the property like get_byte_buffer_length() and set_byte_buffer_length(), clearly points to values which are quite internal. Won't it imply that it does violate the encapsulation? In fact, even get_byte_buffer_length() which otherwise doesn't modify the object, still misses the point of encapsulation, because, certainly there is an App which knows i have an internal buffer! Tomorrow, if the internal buffer is replaced by something like a *packet_list* the method goes dysfunctional. Is there a universal yes/no towards get set method? Is there any strong guideline that tell programmers (specially the junior ones) as to when does it violate encapsulation and when does it not?

    Read the article

  • Discovery methods

    - by Owen Allen
    In Ops Center, asset discovery is a process in which the software determines what assets exist in your environment. You can't monitor an asset, or do anything to it through Ops Center, until it's discovered. I've seen a couple of questions about how to discover various types of asset, so I thought I'd explain the discovery methods and what they each do. Find Assets - This discovery method searches for service tags on all known networks. Service tags are small files on some hardware and operating systems that provide basic identification info. Once a service tag has been found, you provide credentials to manage the asset. This method can discover assets quickly, but only if the target assets have service tags. Add Assets with discovery profile - This method lets you specify targets by providing IP addresses, IP ranges, or hostnames, as well as the credentials needed to connect to and manage these assets. You can create discovery profiles for any type of asset. Declare asset - This method lets you specify the details of a server, with or without a configured service processor. You can then use Ops Center to install a new operating system or configure the SP. This method works well for new hardware. These methods are all discussed in more detail in the Asset Management chapter of the Feature Reference guide.

    Read the article

  • Find methods related to testcases in Java

    - by user3623718
    I want to automatically change some methods in the program. These methods contain some compiler error and my program aims to fix these compiler errors. After fixing compiler errors I need to run test cases related to the changed method (or class) to know it is correct and if not which test cases failed. As the programs under investigation are very big, I only need to run test cases related to changes. As an example, if I change one method, then I need to only run test cases related to this method. Therefore, what I need is to programmatically be able to find test cases related to each method, and class. It is also useful if there is a tool that can do that for me. As an example, a tool which creates a matrix shows each test case is related to which method(s) One easy way to do that is to run all test cases and save functions they accessed. However, the problem is at the beginning the input program contains compiler error and it is not possible to run test cases because of these compiler error. Please let me know what is the best way to do that. An API or a tool that I can be used programmatically is the best for me.

    Read the article

  • share code between check and process methods

    - by undu
    My job is to refactor an old library for GIS vector data processing. The main class encapsulates a collection of building outlines, and offers different methods for checking data consistency. Those checking functions have an optional parameter that allows to perform some process. For instance: std::vector<Point> checkIntersections(int process_mode = 0); This method tests if some building outlines are intersecting, and return the intersection points. But if you pass a non null argument, the method will modify the outlines to remove the intersection. I think it's pretty bad (at call site, a reader not familiar with the code base will assume that a method called checkSomething only performs a check and doesn't modifiy data) and I want to change this. I also want to avoid code duplication as check and process methods are mostly similar. So I was thinking to something like this: // a private worker std::vector<Point> workerIntersections(int process_mode = 0) { // it's the equivalent of the current checkIntersections, it may perform // a process depending on process_mode } // public interfaces for check and process std::vector<Point> checkIntersections() /* const */ { workerIntersections(0); } std::vector<Point> processIntersections(int process_mode /*I have different process modes*/) { workerIntersections(process_mode); } But that forces me to break const correctness as workerIntersections is a non-const method. How can I separate check and process, avoiding code duplication and keeping const-correctness?

    Read the article

  • Good practice to create extension methods that apply to System.Object?

    - by Christian
    Hello, I'm wondering whether I should create extension methods that apply on the object level or whether they should be located at a lower point in the class hierarchy. What I mean is something along the lines of: public static string SafeToString(this Object o) { if (o == null || o is System.DBNull) return ""; else { if (o is string) return (string)o; else return ""; } } public static int SafeToInt(this Object o) { if (o == null || o is System.DBNull) return 0; else { if (o.IsNumeric()) return Convert.ToInt32(o); else return 0; } } //same for double.. etc I wrote those methods since I have to deal a lot with database data (From the OleDbDataReader) that can be null (shouldn't, though) since the underlying database is unfortunately very liberal with columns that may be null. And to make my life a little easier, I came up with those extension methods. What I'd like to know is whether this is good style, acceptable style or bad style. I kinda have my worries about it since it kinda "pollutes" the Object-class. Thank you in advance & Best Regards :) Christian P.S. I didn't tag it as "subjective" intentionally.

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >