Search Results

Search found 11325 results on 453 pages for 'supervised methods'.

Page 121/453 | < Previous Page | 117 118 119 120 121 122 123 124 125 126 127 128  | Next Page >

  • More Fun with C# Iterators and Generators

    - by James Michael Hare
    In my last post, I talked quite a bit about iterators and how they can be really powerful tools for filtering a list of items down to a subset of items.  This had both pros and cons over returning a full collection, which, in summary, were:   Pros: If traversal is only partial, does not have to visit rest of collection. If evaluation method is costly, only incurs that cost on elements visited. Adds little to no garbage collection pressure.    Cons: Very slight performance impact if you know caller will always consume all items in collection. And as we saw in the last post, that con for the cost was very, very small and only really became evident on very tight loops consuming very large lists completely.    One of the key items to note, though, is the garbage!  In the traditional (return a new collection) method, if you have a 1,000,000 element collection, and wish to transform or filter it in some way, you have to allocate space for that copy of the collection.  That is, say you have a collection of 1,000,000 items and you want to double every item in the collection.  Well, that means you have to allocate a collection to hold those 1,000,000 items to return, which is a lot especially if you are just going to use it once and toss it.   Iterators, though, don't have this problem.  Each time you visit the node, it would return the doubled value of the node (in this example) and not allocate a second collection of 1,000,000 doubled items.  Do you see the distinction?  In both cases, we're consuming 1,000,000 items.  But in one case we pass back each doubled item which is just an int (for example's sake) on the stack and in the other case, we allocate a list containing 1,000,000 items which then must be garbage collected.   So iterators in C# are pretty cool, eh?  Well, here's one more thing a C# iterator can do that a traditional "return a new collection" transformation can't!   It can return **unbounded** collections!   I know, I know, that smells a lot like an infinite loop, eh?  Yes and no.  Basically, you're relying on the caller to put the bounds on the list, and as long as the caller doesn't you keep going.  Consider this example:   public static class Fibonacci {     // returns the infinite fibonacci sequence     public static IEnumerable<int> Sequence()     {         int iteration = 0;         int first = 1;         int second = 1;         int current = 0;         while (true)         {             if (iteration++ < 2)             {                 current = 1;             }             else             {                 current = first + second;                 second = first;                 first = current;             }             yield return current;         }     } }   Whoa, you say!  Yes, that's an infinite loop!  What the heck is going on there?  Yes, that was intentional.  Would it be better to have a fibonacci sequence that returns only a specific number of items?  Perhaps, but that wouldn't give you the power to defer the execution to the caller.   The beauty of this function is it is as infinite as the sequence itself!  The fibonacci sequence is unbounded, and so is this method.  It will continue to return fibonacci numbers for as long as you ask for them.  Now that's not something you can do with a traditional method that would return a collection of ints representing each number.  In that case you would eventually run out of memory as you got to higher and higher numbers.  This method, though, never runs out of memory.   Now, that said, you do have to know when you use it that it is an infinite collection and bound it appropriately.  Fortunately, Linq provides a lot of these extension methods for you!   Let's say you only want the first 10 fibonacci numbers:       foreach(var fib in Fibonacci.Sequence().Take(10))     {         Console.WriteLine(fib);     }   Or let's say you only want the fibonacci numbers that are less than 100:       foreach(var fib in Fibonacci.Sequence().TakeWhile(f => f < 100))     {         Console.WriteLine(fib);     }   So, you see, one of the nice things about iterators is their power to work with virtually any size (even infinite) collections without adding the garbage collection overhead of making new collections.    You can also do fun things like this to make a more "fluent" interface for for loops:   // A set of integer generator extension methods public static class IntExtensions {     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> Every(this int start)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; ++i)         {             yield return i;         }     }     // Begins counting to infinity by the given step value, use To() to     public static IEnumerable<int> Every(this int start, int byEvery)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; i += byEvery)         {             yield return i;         }     }     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> To(this int start, int end)     {         for (var i = start; i <= end; ++i)         {             yield return i;         }     }     // Ranges the count by specifying the upper range of the count.     public static IEnumerable<int> To(this IEnumerable<int> collection, int end)     {         return collection.TakeWhile(item => item <= end);     } }   Note that there are two versions of each method.  One that starts with an int and one that starts with an IEnumerable<int>.  This is to allow more power in chaining from either an existing collection or from an int.  This lets you do things like:   // count from 1 to 30 foreach(var i in 1.To(30)) {     Console.WriteLine(i); }     // count from 1 to 10 by 2s foreach(var i in 0.Every(2).To(10)) {     Console.WriteLine(i); }     // or, if you want an infinite sequence counting by 5s until something inside breaks you out... foreach(var i in 0.Every(5)) {     if (someCondition)     {         break;     }     ... }     Yes, those are kinda play functions and not particularly useful, but they show some of the power of generators and extension methods to form a fluid interface.   So what do you think?  What are some of your favorite generators and iterators?

    Read the article

  • Pluggable Rules for Entity Framework Code First

    - by Ricardo Peres
    Suppose you want a system that lets you plug custom validation rules on your Entity Framework context. The rules would control whether an entity can be saved, updated or deleted, and would be implemented in plain .NET. Yes, I know I already talked about plugable validation in Entity Framework Code First, but this is a different approach. An example API is in order, first, a ruleset, which will hold the collection of rules: 1: public interface IRuleset : IDisposable 2: { 3: void AddRule<T>(IRule<T> rule); 4: IEnumerable<IRule<T>> GetRules<T>(); 5: } Next, a rule: 1: public interface IRule<T> 2: { 3: Boolean CanSave(T entity, DbContext ctx); 4: Boolean CanUpdate(T entity, DbContext ctx); 5: Boolean CanDelete(T entity, DbContext ctx); 6: String Name 7: { 8: get; 9: } 10: } Let’s analyze what we have, starting with the ruleset: Only has methods for adding a rule, specific to an entity type, and to list all rules of this entity type; By implementing IDisposable, we allow it to be cancelled, by disposing of it when we no longer want its rules to be applied. A rule, on the other hand: Has discrete methods for checking if a given entity can be saved, updated or deleted, which receive as parameters the entity itself and a pointer to the DbContext to which the ruleset was applied; Has a name property for helping us identifying what failed. A ruleset really doesn’t need a public implementation, all we need is its interface. The private (internal) implementation might look like this: 1: sealed class Ruleset : IRuleset 2: { 3: private readonly IDictionary<Type, HashSet<Object>> rules = new Dictionary<Type, HashSet<Object>>(); 4: private ObjectContext octx = null; 5:  6: internal Ruleset(ObjectContext octx) 7: { 8: this.octx = octx; 9: } 10:  11: public void AddRule<T>(IRule<T> rule) 12: { 13: if (this.rules.ContainsKey(typeof(T)) == false) 14: { 15: this.rules[typeof(T)] = new HashSet<Object>(); 16: } 17:  18: this.rules[typeof(T)].Add(rule); 19: } 20:  21: public IEnumerable<IRule<T>> GetRules<T>() 22: { 23: if (this.rules.ContainsKey(typeof(T)) == true) 24: { 25: foreach (IRule<T> rule in this.rules[typeof(T)]) 26: { 27: yield return (rule); 28: } 29: } 30: } 31:  32: public void Dispose() 33: { 34: this.octx.SavingChanges -= RulesExtensions.OnSaving; 35: RulesExtensions.rulesets.Remove(this.octx); 36: this.octx = null; 37:  38: this.rules.Clear(); 39: } 40: } Basically, this implementation: Stores the ObjectContext of the DbContext to which it was created for, this is so that later we can remove the association; Has a collection - a set, actually, which does not allow duplication - of rules indexed by the real Type of an entity (because of proxying, an entity may be of a type that inherits from the class that we declared); Has generic methods for adding and enumerating rules of a given type; Has a Dispose method for cancelling the enforcement of the rules. A (really dumb) rule applied to Product might look like this: 1: class ProductRule : IRule<Product> 2: { 3: #region IRule<Product> Members 4:  5: public String Name 6: { 7: get 8: { 9: return ("Rule 1"); 10: } 11: } 12:  13: public Boolean CanSave(Product entity, DbContext ctx) 14: { 15: return (entity.Price > 10000); 16: } 17:  18: public Boolean CanUpdate(Product entity, DbContext ctx) 19: { 20: return (true); 21: } 22:  23: public Boolean CanDelete(Product entity, DbContext ctx) 24: { 25: return (true); 26: } 27:  28: #endregion 29: } The DbContext is there because we may need to check something else in the database before deciding whether to allow an operation or not. And here’s how to apply this mechanism to any DbContext, without requiring the usage of a subclass, by means of an extension method: 1: public static class RulesExtensions 2: { 3: private static readonly MethodInfo getRulesMethod = typeof(IRuleset).GetMethod("GetRules"); 4: internal static readonly IDictionary<ObjectContext, Tuple<IRuleset, DbContext>> rulesets = new Dictionary<ObjectContext, Tuple<IRuleset, DbContext>>(); 5:  6: private static Type GetRealType(Object entity) 7: { 8: return (entity.GetType().Assembly.IsDynamic == true ? entity.GetType().BaseType : entity.GetType()); 9: } 10:  11: internal static void OnSaving(Object sender, EventArgs e) 12: { 13: ObjectContext octx = sender as ObjectContext; 14: IRuleset ruleset = rulesets[octx].Item1; 15: DbContext ctx = rulesets[octx].Item2; 16:  17: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Added)) 18: { 19: Object entity = entry.Entity; 20: Type realType = GetRealType(entity); 21:  22: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 23: { 24: if (rule.CanSave(entity, ctx) == false) 25: { 26: throw (new Exception(String.Format("Cannot save entity {0} due to rule {1}", entity, rule.Name))); 27: } 28: } 29: } 30:  31: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Deleted)) 32: { 33: Object entity = entry.Entity; 34: Type realType = GetRealType(entity); 35:  36: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 37: { 38: if (rule.CanDelete(entity, ctx) == false) 39: { 40: throw (new Exception(String.Format("Cannot delete entity {0} due to rule {1}", entity, rule.Name))); 41: } 42: } 43: } 44:  45: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Modified)) 46: { 47: Object entity = entry.Entity; 48: Type realType = GetRealType(entity); 49:  50: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 51: { 52: if (rule.CanUpdate(entity, ctx) == false) 53: { 54: throw (new Exception(String.Format("Cannot update entity {0} due to rule {1}", entity, rule.Name))); 55: } 56: } 57: } 58: } 59:  60: public static IRuleset CreateRuleset(this DbContext context) 61: { 62: Tuple<IRuleset, DbContext> ruleset = null; 63: ObjectContext octx = (context as IObjectContextAdapter).ObjectContext; 64:  65: if (rulesets.TryGetValue(octx, out ruleset) == false) 66: { 67: ruleset = rulesets[octx] = new Tuple<IRuleset, DbContext>(new Ruleset(octx), context); 68: 69: octx.SavingChanges += OnSaving; 70: } 71:  72: return (ruleset.Item1); 73: } 74: } It relies on the SavingChanges event of the ObjectContext to intercept the saving operations before they are actually issued. Yes, it uses a bit of dynamic magic! Very handy, by the way! So, let’s put it all together: 1: using (MyContext ctx = new MyContext()) 2: { 3: IRuleset rules = ctx.CreateRuleset(); 4: rules.AddRule(new ProductRule()); 5:  6: ctx.Products.Add(new Product() { Name = "xyz", Price = 50000 }); 7:  8: ctx.SaveChanges(); //an exception is fired here 9:  10: //when we no longer need to apply the rules 11: rules.Dispose(); 12: } Feel free to use it and extend it any way you like, and do give me your feedback! As a final note, this can be easily changed to support plain old Entity Framework (not Code First, that is), if that is what you are using.

    Read the article

  • Changing CSS with jQuery syntax in Silverlight using jLight

    - by Timmy Kokke
    Lately I’ve ran into situations where I had to change elements or had to request a value in the DOM from Silverlight. jLight, which was introduced in an earlier article, can help with that. jQuery offers great ways to change CSS during runtime. Silverlight can access the DOM, but it isn’t as easy as jQuery. All examples shown in this article can be looked at in this online demo. The code can be downloaded here.   Part 1: The easy stuff Selecting and changing properties is pretty straight forward. Setting the text color in all <B> </B> elements can be done using the following code:   jQuery.Select("b").Css("color", "red");   The Css() method is an extension method on jQueryObject which is return by the jQuery.Select() method. The Css() method takes to parameters. The first is the Css style property. All properties used in Css can be entered in this string. The second parameter is the value you want to give the property. In this case the property is “color” and it is changed to “red”. To specify which element you want to select you can add a :selector parameter to the Select() method as shown in the next example.   jQuery.Select("b:first").Css("font-family", "sans-serif");   The “:first” pseudo-class selector selects only the first element. This example changes the “font-family” property of the first <B></B> element to “sans-serif”. To make use of intellisense in Visual Studio I’ve added a extension methods to help with the pseudo-classes. In the example below the “font-weight” of every “Even” <LI></LI> is set to “bold”.   jQuery.Select("li".Even()).Css("font-weight", "bold");   Because the Css() extension method returns a jQueryObject it is possible to chain calls to Css(). The following example show setting the “color”, “background-color” and the “font-size” of all headers in one go.   jQuery.Select(":header").Css("color", "#12FF70") .Css("background-color", "yellow") .Css("font-size", "25px");   Part 2: More complex stuff In only a few cases you need to change only one style property. More often you want to change an entire set op style properties all in one go.  You could chain a lot of Css() methods together. A better way is to add a class to a stylesheet and define all properties in there. With the AddClass() method you can set a style class to a set of elements. This example shows how to add the “demostyle” class to all <B></B> in the document.   jQuery.Select("b").AddClass("demostyle");   Removing the class works in the same way:   jQuery.Select("b").RemoveClass("demostyle");   jLight is build for interacting with to the DOM from Silverlight using jQuery. A jQueryObjectCss object can be used to define different sets of style properties in Silverlight. The over 60 most common Css style properties are defined in the jQueryObjectCss class. A string indexer can be used to access all style properties ( CssObject1[“background-color”] equals CssObject1.BackgroundColor). In the code below, two jQueryObjectCss objects are defined and instantiated.   private jQueryObjectCss CssObject1; private jQueryObjectCss CssObject2;   public Demo2() { CssObject1 = new jQueryObjectCss { BackgroundColor = "Lime", Color="Black", FontSize = "12pt", FontFamily = "sans-serif", FontWeight = "bold", MarginLeft = 150, LineHeight = "28px", Border = "Solid 1px #880000" }; CssObject2 = new jQueryObjectCss { FontStyle = "Italic", FontSize = "48", Color = "#225522" }; InitializeComponent(); }   Now instead of chaining to set all different properties you can just pass one of the jQueryObjectCss objects to the Css() method. In this case all <LI></LI> elements are set to match this object.   jQuery.Select("li").Css(CssObject1); When using the jQueryObjectCss objects chaining is still possible. In the following example all headers are given a blue backgroundcolor and the last is set to match CssObject2.   jQuery.Select(":header").Css(new jQueryObjectCss{BackgroundColor = "Blue"}) .Eq(-1).Css(CssObject2);   Part 3: The fun stuff Having Silverlight call JavaScript and than having JavaScript to call Silverlight requires a lot of plumbing code. Everything has to be registered and strings are passed back and forth to execute the JavaScript. jLight makes this kind of stuff so easy, it becomes fun to use. In a lot of situations jQuery can call a function to decide what to do, setting a style class based on complex expressions for example. jLight can do the same, but the callback methods are defined in Silverlight. This example calls the function() method for each <LI></LI> element. The callback method has to take a jQueryObject, an integer and a string as parameters. In this case jLight differs a bit from the actual jQuery implementation. jQuery uses only the index and the className parameters. A jQueryObject is added to make it simpler to access the attributes and properties of the element. If the text of the listitem starts with a ‘D’ or an ‘M’ the class is set. Otherwise null is returned and nothing happens.   private void button1_Click(object sender, RoutedEventArgs e) { jQuery.Select("li").AddClass(function); }   private string function(jQueryObject obj, int index, string className) { if (obj.Text[0] == 'D' || obj.Text[0] == 'M') return "demostyle"; return null; }   The last thing I would like to demonstrate uses even more Silverlight and less jLight, but demonstrates the power of the combination. Animating a style property using a Storyboard with easing functions. First a dependency property is defined. In this case it is a double named Intensity. By handling the changed event the color is set using jQuery.   public double Intensity { get { return (double)GetValue(IntensityProperty); } set { SetValue(IntensityProperty, value); } }   public static readonly DependencyProperty IntensityProperty = DependencyProperty.Register("Intensity", typeof(double), typeof(Demo3), new PropertyMetadata(0.0, IntensityChanged));   private static void IntensityChanged(DependencyObject d, DependencyPropertyChangedEventArgs e) { var i = (byte)(double)e.NewValue; jQuery.Select("span").Css("color", string.Format("#{0:X2}{0:X2}{0:X2}", i)); }   An animation has to be created. This code defines a Storyboard with one keyframe that uses a bounce ease as an easing function. The animation is set to target the Intensity dependency property defined earlier.   private Storyboard CreateAnimation(double value) { Storyboard storyboard = new Storyboard(); var da = new DoubleAnimationUsingKeyFrames(); var d = new EasingDoubleKeyFrame { EasingFunction = new BounceEase(), KeyTime = KeyTime.FromTimeSpan(TimeSpan.FromSeconds(1.0)), Value = value }; da.KeyFrames.Add(d); Storyboard.SetTarget(da, this); Storyboard.SetTargetProperty(da, new PropertyPath(Demo3.IntensityProperty)); storyboard.Children.Add(da); return storyboard; }   Initially the Intensity is set to 128 which results in a gray color. When one of the buttons is pressed, a new animation is created an played. One to animate to black, and one to animate to white.   public Demo3() { InitializeComponent(); Intensity = 128; }   private void button2_Click(object sender, RoutedEventArgs e) { CreateAnimation(255).Begin(); }   private void button3_Click(object sender, RoutedEventArgs e) { CreateAnimation(0).Begin(); }   Conclusion As you can see jLight can make the life of a Silverlight developer a lot easier when accessing the DOM. Almost all jQuery functions that are defined in jLight use the same constructions as described above. I’ve tried to stay as close as possible to the real jQuery. Having JavaScript perform callbacks to Silverlight using jLight will be described in more detail in a future tutorial about AJAX or eventing.

    Read the article

  • Understanding and Benefiting from Code Contracts in .NET 4.0

    One of the fundamental programming challenges is managing state. Chances are you have written dozens and dozens of methods that at the beginning check that certain conditions are met, and that another set of conditions is met when the method returns. With Code Contracts in .NET 4.0, you can make things considerably easier. Read on to learn how.

    Read the article

  • What is a Long Tail Keyword?

    Did you know that a long tail keyword will out convert a root keyword 9 times out of 10. In this article, I will discuss the reasons why the long tail is a better keyword to chase than the more common methods of chasing the root.

    Read the article

  • Which web framework to use under Backbonejs?

    - by egidra
    For a previous project, I was using Backbonejs alongside Django, but I found out that I didn't use many features from Django. So, I am looking for a lighter framework to use underneath a Backbonejs web app. I never used Django built in templates. When I did, it was to set up the initial index page, but that's all. I did use the user management system that Django provided. I used the models.py, but never views.py. I used urls.py to set up which template the user would hit upon visiting the site. I noticed that the two features that I used most from Django was South and Tastypie, and they aren't even included with Django. Particularly, django-tastypie made it easy for me to link up my frontend models to my backend models. It made it easy to JSONify my front end models and send them to Tastypie. Although, I found myself overriding a lot of tastypie's methods for GET, PUT, POST requests, so it became useless. South made it easy to migrate new changes to the database. Although, I had so much trouble with South. Is there a framework with an easier way of handling database modifications than using South? When using South with multiple people, we had the worse time keeping our databases synced. When someone added a new table and pushed their migration to git, the other two people would spend days trying to use South's automatic migration, but it never worked. I liked how Rails had a manual way of migrating databases. Even though I used Tastypie and South a lot, I found myself not actually liking them because I ended up overriding most Tastypie methods for each Resource, and I also had the worst trouble migrating new tables and columns with South. So, I would like a framework that makes that process easier. Part of my problem was that they are too "magical". Which framework should I use? Nodejs or a lighter Python framework? Which works best with my above criteria?

    Read the article

  • Referential Integrity: Best Practices for IBM DB2

    Of the various constraints possible on relational tables, referential constraints are perhaps the most common ... and most misused. Learn about the advantages and disadvantages of different methods to implement and enforce RI, and issues that must be addressed when implementing DBMS-enforced Referential Integrity.

    Read the article

  • Oracle redonne un élan au Projet Lambda sur Java 7 et les closures : Interface evolution via "public

    Bonjour, Depuis quelques temps, on n'entendait plus trop parler des Closures et de leur ajout à Java 7. En réponse à David Flanagan qui s'inquiétait récemment du silence d'Oracle et de la stagnation du Project Lambda, Brian Goetz (Oracle) a soumis il y a quelques jours un document de réflexion sur la notion de virtual extension methods permettant d'ajouter sur une interface existante de nouvelles méthodes (avec des implémentations par défaut) sans casser le contrat avec le code existant.

    Read the article

  • Returning null vs Throwing exceptions

    - by Svish
    Is in a bit of disagreement with a more experienced developer on this issue, and was wondering what you guys here think about this. Environment is Java, EJB 3, services, etc. The code I wrote calls a service to get things and to create things. Problem was that I got null pointer exceptions in places that didn't make sense. For example when I asked the service to create an object, I got null back. And when I tried to look up an object with an id I knew existed, I still got null back. Was like it was ignoring me. Spent some time trying to figure out what was wrong in my code (since I'm less experienced I usually assume I have messed up). Turns out the reason was security. If the user principal using my service didn't have the right permissions to use the service I called from my service, then that service simply returned null. The services that are here already are usually not documented either, so this is just something you have to know... somehow... So here is the thing: I mean that this is rather confusing as a developer interacting with this service. To me it would make much more sense if that service thew an exception which would tell me that hey, you don't have the proper permissions to get info about this thing or to create this new thing. I would then immediately know why my service wasn't working as expected. However, he argued that asking is not wrong. Exceptions should only be thrown when there is an error and asking for a thing is not an error. Even if you don't have permission to "see" that the thing you asked for. The things are often looked up in a GUI by users and for those users not having the right permissions, these things simply "do not exist". So, in short: Asking is not wrong, hence no exception. Get methods return null because to those users those things "doesn't exist". Create methods return null because nothing was created, since the user wasn't allowed to create anything. So, what do you guys think? Is this normal and/or good practice? I prefer exceptions as I prefer throwing and catching exceptions because I find it much easier to know what's going on. So I would for example also prefer to throw a NotFoundException if you asked for an id which didn't exist, rather than returning null. Anyways, just curious to what others think about this as I'm not the most experienced developer yet.

    Read the article

  • Keyword Optimization Tips That Work

    As an online marketer or business owner who is advertising and promoting products and services online, one of the significant selling methods you ought to be acquainted with and be aware of is on page keyword optimization. Keyword optimization is an essential part in the SEO process.

    Read the article

  • How do you exclude yourself from Google Analytics on your website using cookies?

    - by Keoki Zee
    I'm trying to set up an exclusion filter with a browser cookie, so that my own visits to my don't show up in my Google Analytics. I tried 3 different methods and none of them have worked so far. I would like help understanding what I am doing wrong and how I can fix this. Method 1 First, I tried following Google's instructions, http://www.google.com/support/analytics/bin/answer.py?hl=en&answer=55481, for excluding traffic by Cookie Content: Create a new page on your domain, containing the following code: <body onLoad="javascript:pageTracker._setVar('test_value');"> Method 2 Next, when that didn't work, I googled around and found this Google thread, http://www.google.com/support/forum/p/Google%20Analytics/thread?tid=4741f1499823fcd5&hl=en, where the most popular answer says to use a slightly different code: SHS Analytics wrote: <body onLoad="javascript:_gaq.push(['_setVar','test_value']);"> Thank you! This has now set a __utmv cookie containing "test_value", whereas the original: pageTracker._setVar('test_value') (which Google is still recommending) did not manage to do that for me (in Mac Safari 5 and Firefox 3.6.8). So I tried this code, but it didn't work for me. Method 3 Finally, I searched StackOverflow and came across this thread, http://stackoverflow.com/questions/3495270/exclude-my-traffic-from-google-analytics-using-cookie-with-subdomain, which suggests that the following code might work: <script type="text/javascript"> var _gaq = _gaq || []; _gaq.push(['_setVar', 'exclude_me']); _gaq.push(['_setAccount', 'UA-xxxxxxxx-x']); _gaq.push(['_trackPageview']); // etc... </script> This script appeared in the head element in the example, instead of in the onload event of the body like in the previous 2 examples. So I tried this too, but still had no luck with trying to exclude myself from Google Analytics. Re-iterate question So, I tried all 3 methods above with no success. Am I doing something wrong? How can I exclude myself from my Google Analytics using an exclusion cookie for my browser?

    Read the article

  • Using Article Sites For SEO Google Ranking

    Article marketing is one of the highly awarding methods for online marketing and it can also help you achieve good SEO Google Ranking. With the various article directories you can get a good amount of marketing done however with a little more focus and attention you will be able to use all features that are offered by these directories.

    Read the article

  • Revision Methodology for Developer Post as Entry Level

    - by Demla Pawan
    I had revised all basic concepts of my computer science ciriculum like: Core Java(basics),SQL(basics),C++(basics),XHTML,PHP(basics),Datastructures(basics) and what I need to do,and How to do, as their may be fault in my preparation methods for revision session's, So can Anybody suggest Methodology to revise those technical things,to which you are not in touch at present, but you can write basic programs or have used 1-2 years ago. And also can U suggest some Quick revision links on Net for various technologies mentioned above.

    Read the article

  • 7 Tips For Strong On Page SEO

    On page SEO is the first thing a webmaster should consider when planning the marketing of his website. Follow these simple yet effective methods to give your SEO campaign a kick start.

    Read the article

  • The Best Way to Build Backlinks - A List of 36 Sites to Get Backlinks

    Every webmaster can understand the meaning of backlinks. We need backlinks to rank our sites higher in Google and other search engines. Search engines count the number of backlinks for a web page and assign a rank to it in in search results. Hence, every webmaster always look to get as many backlinks as possible. In this article I explained few free methods of getting links.

    Read the article

  • How can I screen clients that try to register multiple times?

    - by Aba Dov
    My company offers a bonus to every client that register. We would like to prevent people from abusing this by registering several times. we thought about filtering clients by ip (there is a problem with workplaces where all stations have the same ip) cookies (if cookies are not allowed we might lose a client) I would like your opinions on these two methods and will be glad to hear about new ones. thanks

    Read the article

  • Dominating Search Results With Local SEO

    Local Businesses are turning to local SEO services to obtain high placement with the major search engines. With tens of millions of websites currently online, dominant placement with the search engines is vital for online success. To obtain high placement within search engine results, you will need to deploy proven search engine optimization methods.

    Read the article

  • Dynamic character animation - Using the physics engine or not

    - by Lex Webb
    I'm planning on building a dynamic reactant animation engine for the characters in my 2D Game. I have already built templates for a skeleton based animation system using key frames and interpolation to specify a limbs position at any given moment in time. I am using Farseer physics (an extension of Box2D) in Monogame/XNA in C# My real question lies in how i go about tying this character animation into the physics engine. I have two options: Moving limbs using physics engine - applying a interpolated force to each limb (dynamic body) in order to attempt to get it to its position as donated by the skeleton animation. Moving limbs by simply changing the position of a fixed body - Updating the new position of each limb manually, attempting to take into account physics collisions. Then stepping the physics after the animation to allow for environment interaction. Each of these methods have their distinct advantages and disadvantages. Physics based movement Advantages: Possibly more natural/realistic movement Better interaction with game objects as force applying to objects colliding with characters would be calculated for me. No need to convert to dynamic bodies when reacting to projectiles/death/fighting. Disadvantages: Possible difficulty in calculating correct amount of force to move a limb a certain distance at a constant rate. Underlying character balance system would need to be created that would need to be robust enough to prevent characters falling over at the touch of a feather. Added code complexity and processing time for the above. Static Object movement Advantages: Easy to interpolate movement of limbs between game steps Moving limbs is as simple as applying a rotation to the skeleton bone. Greater control over limbs, wont need to worry about characters falling over as all animation would be pre-defined. Disadvantages: Possible unnatural movement (Depends entirely on my animation skills!) Bad physics collision reactions with physics engine (Dynamic bodies simply slide out of the way of static objects) Need to calculate collisions with physics objects and my limbs myself and apply directional forces to them. Hard to account for slopes/stairs/non standard planes when animating walking/running animations. Need to convert objects to dynamic when reacting to projectile/fighting/death physics objects. The Question! As you can see, i have thought about this extensively, i have also had Google into physics based animation and have found mostly dissertation papers! Which is filling me with sense that it may a lot more advanced than my mathematics skills. My question is mostly subjective based on my findings above/any experience you may have: Which of the above methods should i use when creating my game? I am willing to spend the time to get a physics solution working if you think it would be possible. In the end i want to provide the most satisfying experience for the gamer, as well as a robust and dynamic system i can use to animate pretty much anything i need.

    Read the article

  • When you should and should not use the 'new' keyword?

    - by skizeey
    I watched a Google Tech Talk presentation on Unit Testing, given by Misko Hevery, and he said to avoid using the new keyword in business logic code. I wrote a program, and I did end up using the new keyword here and there, but they were mostly for instantiating objects that hold data (ie, they didn't have any functions or methods). I'm wondering, did I do something wrong when I used the new keyword for my program. And where can we break that 'rule'?

    Read the article

  • Unit testing in Django

    - by acjohnson55
    I'm really struggling to write effective unit tests for a large Django project. I have reasonably good test coverage, but I've come to realize that the tests I've been writing are definitely integration/acceptance tests, not unit tests at all, and I have critical portions of my application that are not being tested effectively. I want to fix this ASAP. Here's my problem. My schema is deeply relational, and heavily time-oriented, giving my model object high internal coupling and lots of state. Many of my model methods query based on time intervals, and I've got a lot of auto_now_add going on in timestamped fields. So take a method that looks like this for example: def summary(self, startTime=None, endTime=None): # ... logic to assign a proper start and end time # if none was provided, probably using datetime.now() objects = self.related_model_set.manager_method.filter(...) return sum(object.key_method(startTime, endTime) for object in objects) How does one approach testing something like this? Here's where I am so far. It occurs to me that the unit testing objective should be given some mocked behavior by key_method on its arguments, is summary correctly filtering/aggregating to produce a correct result? Mocking datetime.now() is straightforward enough, but how can I mock out the rest of the behavior? I could use fixtures, but I've heard pros and cons of using fixtures for building my data (poor maintainability being a con that hits home for me). I could also setup my data through the ORM, but that can be limiting, because then I have to create related objects as well. And the ORM doesn't let you mess with auto_now_add fields manually. Mocking the ORM is another option, but not only is it tricky to mock deeply nested ORM methods, but the logic in the ORM code gets mocked out of the test, and mocking seems to make the test really dependent on the internals and dependencies of the function-under-test. The toughest nuts to crack seem to be the functions like this, that sit on a few layers of models and lower-level functions and are very dependent on the time, even though these functions may not be super complicated. My overall problem is that no matter how I seem to slice it, my tests are looking way more complex than the functions they are testing.

    Read the article

  • How to determine character's foot contact point on a uniform triangle mesh terrain?

    - by xenon
    For a terrain that is modelled by a heightmap with a uniform triangle mesh, what are some techniques I could use to determine the contact point of the foot of a character standing on the terrain? Since the terrain's Y values are altered by the heightmap, they won't be flat any more. As the character moves on the terrain, it has to know at which values of Y-value its foot should be. Conceptually, what are some methods and techniques to determine the contact point of the character's foot standing on the terrain?

    Read the article

  • Increasing Your Internet Speed

    I';ve been writing just recently about slow broadband connections and discussing common methods used to improve line speeds. This week I was pointed in the direction of a little device which claims to... [Author: Chris Holgate - Computers and Internet - April 05, 2010]

    Read the article

  • What are the software design essentials? [closed]

    - by Craig Schwarze
    I've decided to create a 1 page "cheat sheet" of essential software design principles for my programmers. It doesn't explain the principles in any great depth, but is simply there as a reference and a reminder. Here's what I've come up with - I would welcome your comments. What have I left out? What have I explained poorly? What is there that shouldn't be? Basic Design Principles The Principle of Least Surprise – your solution should be obvious, predictable and consistent. Keep It Simple Stupid (KISS) - the simplest solution is usually the best one. You Ain’t Gonna Need It (YAGNI) - create a solution for the current problem rather than what might happen in the future. Don’t Repeat Yourself (DRY) - rigorously remove duplication from your design and code. Advanced Design Principles Program to an interface, not an implementation – Don’t declare variables to be of a particular concrete class. Rather, declare them to an interface, and instantiate them using a creational pattern. Favour composition over inheritance – Don’t overuse inheritance. In most cases, rich behaviour is best added by instantiating objects, rather than inheriting from classes. Strive for loosely coupled designs – Minimise the interdependencies between objects. They should be able to interact with minimal knowledge of each other via small, tightly defined interfaces. Principle of Least Knowledge – Also called the “Law of Demeter”, and is colloquially summarised as “Only talk to your friends”. Specifically, a method in an object should only invoke methods on the object itself, objects passed as a parameter to the method, any object the method creates, any components of the object. SOLID Design Principles Single Responsibility Principle – Each class should have one well defined purpose, and only one reason to change. This reduces the fragility of your code, and makes it much more maintainable. Open/Close Principle – A class should be open to extension, but closed to modification. In practice, this means extracting the code that is most likely to change to another class, and then injecting it as required via an appropriate pattern. Liskov Substitution Principle – Subtypes must be substitutable for their base types. Essentially, get your inheritance right. In the classic example, type square should not inherit from type rectangle, as they have different properties (you can independently set the sides of a rectangle). Instead, both should inherit from type shape. Interface Segregation Principle – Clients should not be forced to depend upon methods they do not use. Don’t have fat interfaces, rather split them up into smaller, behaviour centric interfaces. Dependency Inversion Principle – There are two parts to this principle: High-level modules should not depend on low-level modules. Both should depend on abstractions. Abstractions should not depend on details. Details should depend on abstractions. In modern development, this is often handled by an IoC (Inversion of Control) container.

    Read the article

< Previous Page | 117 118 119 120 121 122 123 124 125 126 127 128  | Next Page >