Search Results

Search found 24391 results on 976 pages for 'static methods'.

Page 124/976 | < Previous Page | 120 121 122 123 124 125 126 127 128 129 130 131  | Next Page >

  • How can one use online backup with large amounts of static data?

    - by Billy ONeal
    I'd like to setup an offsite backup solution for about 500GB of data that's currently stored between my various machines. I don't care about data retention rates, as this is only a backup of, not primary storage, for my data. If the backup is stored on crappy non-redundant systems, that does not matter. The data set is almost entirely static, and mostly consists of things like installers for Visual Studio, and installer disk images for all of my games. I have found two services which meet most of this: Mozy Carbonite However, both services impose low bandwidth caps, on the order of 50kb/s, which prevent me from backing up a dataset of this size effectively (somewhere on the order of 6 weeks), despite the fact that I get multiple MB/s upload speeds everywhere else from this location. Carbonite has the additional problem that it tries to ignore pretty much every file in my backup set by default, because the files are mostly iso files and vmdk files, which aren't backed up by default. There are other services such as EC2 which don't have such bandwidth caps, but such services are typically stored in highly redundant servers, and therefore cost on the order of 10 cents/gb/month, which is insanely expensive for storage of this kind of data set. (At $50/month I could build my own NAS to hold the data which would pay for itself after ~2-3 months) (To be fair, they're offering quite a bit more service than I'm looking for at that price, such as offering public HTTP access to the data) Does anything exist meeting those requirements or am I basically hosed?

    Read the article

  • Using nested public classes to organize constants

    - by FrustratedWithFormsDesigner
    I'm working on an application with many constants. At the last code review it came up that the constants are too scattered and should all be organized into a single "master" constants file. The disagreement is about how to organize them. The majority feel that using the constant name should be good enough, but this will lead to code that looks like this: public static final String CREDITCARD_ACTION_SUBMITDATA = "6767"; public static final String CREDITCARD_UIFIELDID_CARDHOLDER_NAME = "3959854"; public static final String CREDITCARD_UIFIELDID_EXPIRY_MONTH = "3524"; public static final String CREDITCARD_UIFIELDID_ACCOUNT_ID = "3524"; ... public static final String BANKPAYMENT_UIFIELDID_ACCOUNT_ID = "9987"; I find this type of naming convention to be cumbersome. I thought it might be easier to use public nested class, and have something like this: public class IntegrationSystemConstants { public class CreditCard { public static final String UI_EXPIRY_MONTH = "3524"; public static final String UI_ACCOUNT_ID = "3524"; ... } public class BankAccount { public static final String UI_ACCOUNT_ID = "9987"; ... } } This idea wasn't well received because it was "too complicated" (I didn't get much detail as to why this might be too complicated). I think this creates a better division between groups of related constants and the auto-complete makes it easier to find these as well. I've never seen this done though, so I'm wondering if this is an accepted practice or if there's better reasons that it shouldn't be done.

    Read the article

  • Application workflow

    - by manseuk
    I am in the planning process for a new application, the application will be written in PHP (using the Symfony 2 framework) but I'm not sure how relevant that is. The application will be browser based, although there will eventually be API access for other systems to interact with the data stored within the application, again probably not relavent at this point. The application manages SIM cards for lots of different providers - each SIM card belongs to a single provider but a single customer might have many SIM cards across many providers. The application allows the user to perform actions against the SIM card - for example Activate it, Barr it, Check on its status etc Some of the providers provide an API for doing this - so a single access point with multiple methods eg activateSIM, getStatus, barrSIM etc. The method names differ for each provider and some providers offer methods for extra functions that others don't. Some providers don't have APIs but do offer these methods by sending emails with attachments - the attachments are normally a CSV file that contains the SIM reference and action required - the email is processed by the provider and replied to once the action has been complete. To give you an example - the front end of my application will provide a customer with a list of SIM cards they own and give them access to the actions that are provided by the provider of each specific SIM card - some methods may require extra data which will either be stored in the backend or collected from the user frontend. Once the user has selected their action and added any required data I will handle the process in the backend and provide either instant feedback, in the case of the providers with APIs, or start the process off by sending an email and waiting for its reply before processing it and updating the backend so that next time the user checks the SIM card its status is correct (ie updated by a backend process). My reason for creating this question is because I'm stuck !! I'm confused about how to approach the actual workflow logic. I was thinking about creating a Provider Interface with the most common methods getStatus, activateSIM and barrSIM and then implementing that interface for each provider. So class Provider1 implements Provider - Then use a Factory to create the required class depending on user selected SIM card and invoking the method selected. This would work fine if all providers offered the same methods but they don't - there are a subset which are common but some providers offer extra methods - how can I implement that flexibly ? How can I deal with the processes where the workflow is different - ie some methods require and API call and value returned and some require an email to be sent and the next stage of the process doesn't start until the email reply is recieved ... Please help ! (I hope this is a readable question and that this is the correct place to be asking) Update I guess what I'm trying to avoid is a big if or switch / case statement - some design pattern that gives me a flexible approach to implementing this kind of fluid workflow .. anyone ?

    Read the article

  • .NET remoting exception: Permission denied: cannot call non-public or static methods remotely.

    - by Vilx-
    I'm writing a program which will allow to load a specific managed .DLL file and play with it. Since I want the ability to unload the .DLL file, I'm creating two AppDomains - one for the app itself, the other for the currently loaded .DLL. Since most of the objects in the loaded .DLL do not serialize well, I'm creating a MarshalByRefObject wrapper class which will keep the object itself in its own AppDomain, and expose some reflection functions to the main application AppDomain. However when I try to invoke a method on the remote object I get stuck with an exception: Permission denied: cannot call non-public or static methods remotely. This is very strange, because I'm not using any non-public or static methods at all. In essence, what I have is: class RemoteObjectWrapper: MarshalByRefObject { private Type SourceType; private object Source; public RemoteObjectWrapper(object source) { if (source == null) throw new ArgumentNullException("source"); this.Source = source; this.SourceType = source.GetType(); } public T WrapValue<T>(object value) { if ( value == null ) return default(T); var TType = typeof(T); if (TType == typeof(RemoteObjectWrapper)) value = new RemoteObjectWrapper(value); return (T)value; } public T InvokeMethod<T>(string methodName, params object[] args) { return WrapValue<T>(SourceType.InvokeMember(methodName, System.Reflection.BindingFlags.FlattenHierarchy | System.Reflection.BindingFlags.Instance | System.Reflection.BindingFlags.InvokeMethod | System.Reflection.BindingFlags.Public, null, this.Source, args)); } } And I get the exception when I try to do: var c = SomeInstanceOfRemoteObjectWrapper.InvokeMethod<RemoteObjectWrapper>("somePublicMethod", "some string parameter"); What's going on here? As far as I can understand, the InvokeMethod method doesn't even get executed, the exception is thrown when I try to run it. Added: To clarify - SomeInstanceOfRemoteObjectWrapper is constructed in the .DLL's AppDomain and then returned to my main AppDomain, The InvokeMethod<T>() is called from my main AppDomain (and I expect it to execute in the .DLL's AppDomain).

    Read the article

  • Any way to avoid creating a huge C# COM interface wrapper when only a few methods needed?

    - by Paul Accisano
    Greetings all, I’m working on a C# program that requires being able to get the index of the hot item in Windows 7 Explorer’s new ItemsView control. Fortunately, Microsoft has provided a way to do this through UI Automation, by querying custom properties of the control. Unfortunately, the System.Windows.Automation namespace inexplicably does not seem to provide a way to query custom properties! This leaves me with the undesirable position of having to completely ditch the C# Automation namespace and use only the unmanaged COM version. One way to do it would be to put all the Automation code in a separate C++/CLI module and call it from my C# application. However, I would like to avoid this option if possible, as it adds more files to my project, and I’d have to worry about 32/64-bit problems and such. The other option is to make use of the ComImport attribute to declare the relevant interfaces and do everything through COM-interop. This is what I would like to do. However, the relevant interfaces, such as IUIAutomation and IUIAutomationElement, are FREAKING HUGE. They have hundreds of methods in total, and reference tons and tons of interfaces (which I assume I would have to also declare), almost all of which I will never ever use. I don’t think the UI Automation interfaces are declared in any Type Library either, so I can’t use TLBIMP. Is there any way I can avoid having to manually translate a bajillion method signatures into C# and instead only declare the ten or so methods I actually need? I see that C# 4.0 added a new “dynamic” type that is supposed to ease COM interop; is that at all relevant to my problem? Thanks

    Read the article

  • Ruby on Rails: How to sanitize a string for SQL when not using find and other built-in methods?

    - by williamjones
    I'm trying to sanitize a string that involves user input without having to resort to manually crafting my own possibly buggy regex if possible. There are a number of methods in Rails that can allow you to enter in native SQL commands, how do people escape user input for those? The question I'm asking is a broad one, but in my particular case, I'm working with a column in my Postgres database that Rails does not natively understand as far as I know, the tsvector, which holds plain text search information. Rails is able to write and read from it as if it's a string, however, unlike a string, it doesn't seem to be automatically escaping it when I do things like vector= inside the model. For example, when I do model.name='::', where name is a string, it works fine. When I do model.vector='::' it errors out: ActiveRecord::StatementInvalid: PGError: ERROR: syntax error in tsvector: "::" "vectors" = E'::' WHERE "id" = 1 This seems to be a problem caused by lack of escaping of the semicolons, and I can manually set the vector='\:\:' fine. I also had the bright idea, maybe I can just call something like: ActiveRecord::Base.connection.execute "UPDATE medias SET vectors = ? WHERE id = 1", "::" However, this syntax doesn't work, because the raw SQL commands don't have access to find's method of escaping and inputting strings by using the ? mark. This strikes me as the same problem as calling connection.execute with any type of user input, as it all boils down to sanitizing the strings, but I can't seem to find any way to manually call Rails' SQL string sanitization methods. Can anyone provide any advice?

    Read the article

  • How to determine which inheriting class is using an abstract class' methods.

    - by Kin
    In my console application have an abstract Factory class "Listener" which contains code for listening and accepting connections, and spawning client classes. This class is inherited by two more classes (WorldListener, and MasterListener) that contain more protocol specific overrides and functions. I also have a helper class (ConsoleWrapper) which encapsulates and extends System.Console, containing methods for writing to console info on what is happening to instances of the WorldListener and MasterListener. I need a way to determine in the abstract ListenerClass which Inheriting class is calling its methods. Any help with this problem would be greatly appreciated! I am stumped :X Simplified example of what I am trying to do. abstract class Listener { public void DoSomething() { if(inheriting class == WorldListener) ConsoleWrapper.WorldWrite("Did something!"); if(inheriting class == MasterListener) ConsoleWrapper.MasterWrite("Did something!"); } } public static ConsoleWrapper { public void WorldWrite(string input) { System.Console.WriteLine("[World] {0}", input); } } public class WorldListener : Listener { public void DoSomethingSpecific() { ConsoleWrapper.WorldWrite("I did something specific!"); } } public void Main() { new WorldListener(); new MasterListener(); } Expected output [World] Did something! [World] I did something specific! [Master] Did something! [World] I did something specific!

    Read the article

  • What's the Matlab equivalent of NULL, when it's calling COM/ActiveX methods?

    - by David M
    Hi, I maintain a program which can be automated via COM. Generally customers use VBS to do their scripting, but we have a couple of customers who use Matlab's ActiveX support and are having trouble calling COM object methods with a NULL parameter. They've asked how they do this in Matlab - and I've been scouring Mathworks' COM/ActiveX documentation for a day or so now and can't figure it out. Their example code might look something like this: function do_something() OurAppInstance = actxserver('Foo.Application'); OurAppInstance.Method('Hello', NULL) end where NULL is where in another language, we'd write NULL or nil or Nothing, or, of course, pass in an object. The problem is this is optional (and these are implemented as optional parameters in most, but not all, cases) - these methods expect to get NULL quite often. They tell me they've tried [] (which from my reading seemed the most likely) as well as '', Nothing, 'Nothing', None, Null, and 0. I have no idea how many of those are even valid Matlab keywords - certainly none work in this case. Can anyone help? What's Matlab's syntax for a null pointer / object for use as a COM method parameter? Update: Thanks for all the replies so far! Unfortunately, none of the answers seem to work, not even libpointer. The error is the same in all cases: Error: Type mismatch, argument 2 This parameter in the COM type library is described in RIDL as: HRESULT _stdcall OurMethod([in] BSTR strParamOne, [in, optional] OurCoClass* oParamTwo, [out, retval] VARIANT_BOOL* bResult); The coclass in question implements a single interface descending from IDispatch.

    Read the article

  • Should you declare methods using overloads or optional parameters in C# 4.0?

    - by Greg Beech
    I was watching Anders' talk about C# 4.0 and sneak preview of C# 5.0, and it got me thinking about when optional parameters are available in C# what is going to be the recommended way to declare methods that do not need all parameters specified? For example something like the FileStream class has about fifteen different constructors which can be divided into logical 'families' e.g. the ones below from a string, the ones from an IntPtr and the ones from a SafeFileHandle. FileStream(string,FileMode); FileStream(string,FileMode,FileAccess); FileStream(string,FileMode,FileAccess,FileShare); FileStream(string,FileMode,FileAccess,FileShare,int); FileStream(string,FileMode,FileAccess,FileShare,int,bool); It seems to me that this type of pattern could be simplified by having three constructors instead, and using optional parameters for the ones that can be defaulted, which would make the different families of constructors more distinct [note: I know this change will not be made in the BCL, I'm talking hypothetically for this type of situation]. What do you think? From C# 4.0 will it make more sense to make closely related groups of constructors and methods a single method with optional parameters, or is there a good reason to stick with the traditional many-overload mechanism?

    Read the article

  • How to determine which inheriting class is using an abstract class's methods.

    - by Kin
    In my console application have an abstract Factory class "Listener" which contains code for listening and accepting connections, and spawning client classes. This class is inherited by two more classes (WorldListener, and MasterListener) that contain more protocol specific overrides and functions. I also have a helper class (ConsoleWrapper) which encapsulates and extends System.Console, containing methods for writing to console info on what is happening to instances of the WorldListener and MasterListener. I need a way to determine in the abstract ListenerClass which Inheriting class is calling its methods. Any help with this problem would be greatly appreciated! I am stumped :X Simplified example of what I am trying to do. abstract class Listener { public void DoSomething() { if(inheriting class == WorldListener) ConsoleWrapper.WorldWrite("Did something!"); if(inheriting class == MasterListener) ConsoleWrapper.MasterWrite("Did something!"); } } public static ConsoleWrapper { public void WorldWrite(string input) { System.Console.WriteLine("[World] {0}", input); } } public class WorldListener : Listener { public void DoSomethingSpecific() { ConsoleWrapper.WorldWrite("I did something specific!"); } } public void Main() { new WorldListener(); new MasterListener(); } Expected output [World] Did something! [World] I did something specific! [Master] Did something! [World] I did something specific!

    Read the article

  • How to structure code with 2 methods, one after another, which throw the same two exceptions?

    - by dotnetdev
    Hi, I have two methods, one called straight after another, which both throw the exact same 2 exceptions (IF an erroneous condition occurs, not stating that I'm getting exceptions). For this, should I write seperate try and catch blocks with the one statement in each try block and catch both exceptions (Both of which I can handle as I checked MSDN class library reference and there is something I can do, eg, re-open SqlConnection or run a query and not a stored proc which does not exist). So code like this: try { obj.Open(); } catch (SqlException) { // Take action here. } catch (InvalidOperationException) { // Take action here. } And likewise for the other method I call straight after. This seems like a very messy way of coding. The other way is to code with the exception variable (that is ommited as I am using AOP to log the exception details, using a class-level attribute). Doing this, this could aid me in finding out which method caused an exception and then taking action accordingly. Is this the best approach or is there another best practise altogether? I also assume that, as only these two methods are thrown, I do not need to catch Exception as that would be for an exception I cannot handle (causes way out of my control). Thanks

    Read the article

  • jQuery plugin design pattern for using `this` in private methods?

    - by thebossman
    I'm creating jQuery plugins using the pattern from the Plugins Authoring page: (function($) { $.fn.myPlugin = function(settings) { var config = {'foo': 'bar'}; if (settings) $.extend(config, settings); this.each(function() { // element-specific code here }); return this; }; })(jQuery); My code calls for several private methods that manipulate this. I am calling these private methods using the apply(this, arguments) pattern. Is there a way of designing my plugin such that I don't have to call apply to pass this from method to method? My modified plugin code looks roughly like this: (function($) { $.fn.myPlugin = function(settings) { var config = {'foo': 'bar'}; if (settings) $.extend(config, settings); this.each(function() { method1.apply(this); }); return this; }; function method1() { // do stuff with $(this) method2.apply(this); } function method2() { // do stuff with $(this), etc... } })(jQuery);

    Read the article

  • Use Extension method to write cleaner code

    - by Fredrik N
    This blog post will show you step by step to refactoring some code to be more readable (at least what I think). Patrik Löwnedahl gave me some of the ideas when we where talking about making code much cleaner. The following is an simple application that will have a list of movies (Normal and Transfer). The task of the application is to calculate the total sum of each movie and also display the price of each movie. class Program { enum MovieType { Normal, Transfer } static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies) { if (movie == MovieType.Normal) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } else if (movie == MovieType.Transfer) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } } } private static IEnumerable<MovieType> GetMovies() { return new List<MovieType>() { MovieType.Normal, MovieType.Transfer, MovieType.Normal }; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } In the code above I’m using an enum, a good way to add types (isn’t it ;)). I also use one foreach loop to calculate the price, the loop has a condition statement to check what kind of movie is added to the list of movies. I want to reuse the foreach only to increase performance and let it do two things (isn’t that smart of me?! ;)). First of all I can admit, I’m not a big fan of enum. Enum often results in ugly condition statements and can be hard to maintain (if a new type is added we need to check all the code in our app to see if we use the enum somewhere else). I don’t often care about pre-optimizations when it comes to write code (of course I have performance in mind). I rather prefer to use two foreach to let them do one things instead of two. So based on what I don’t like and Martin Fowler’s Refactoring catalog, I’m going to refactoring this code to what I will call a more elegant and cleaner code. First of all I’m going to use Split Loop to make sure the foreach will do one thing not two, it will results in two foreach (Don’t care about performance here, if the results will results in bad performance, you can refactoring later, but computers are so fast to day, so iterating through a list is not often so time consuming.) Note: The foreach actually do four things, will come to is later. var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies) { if (movie == MovieType.Normal) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } } foreach (var movie in movies) { if (movie == MovieType.Transfer) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To remove the condition statement we can use the Where extension method added to the IEnumerable<T> and is located in the System.Linq namespace: foreach (var movie in movies.Where( m => m == MovieType.Normal)) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } foreach (var movie in movies.Where( m => m == MovieType.Transfer)) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The above code will still do two things, calculate the total price, and display the price of the movie. I will not take care of it at the moment, instead I will focus on the enum and try to remove them. One way to remove enum is by using the Replace Conditional with Polymorphism. So I will create two classes, one base class called Movie, and one called MovieTransfer. The Movie class will have a property called Price, the Movie will now hold the price:   public class Movie { public virtual int Price { get { return 2; } } } public class MovieTransfer : Movie { public override int Price { get { return 3; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The following code has no enum and will use the new Movie classes instead: class Program { static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies.Where( m => m is Movie)) { totalPriceOfNormalMovie += movie.Price; Console.WriteLine(movie.Price); } foreach (var movie in movies.Where( m => m is MovieTransfer)) { totalPriceOfTransferMovie += movie.Price; Console.WriteLine(movie.Price); } } private static IEnumerable<Movie> GetMovies() { return new List<Movie>() { new Movie(), new MovieTransfer(), new Movie() }; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   If you take a look at the foreach now, you can see it still actually do two things, calculate the price and display the price. We can do some more refactoring here by using the Sum extension method to calculate the total price of the movies:   static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = movies.Where(m => m is Movie) .Sum(m => m.Price); int totalPriceOfTransferMovie = movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); foreach (var movie in movies.Where( m => m is Movie)) Console.WriteLine(movie.Price); foreach (var movie in movies.Where( m => m is MovieTransfer)) Console.WriteLine(movie.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now when the Movie object will hold the price, there is no need to use two separate foreach to display the price of the movies in the list, so we can use only one instead: foreach (var movie in movies) Console.WriteLine(movie.Price); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If we want to increase the Maintainability index we can use the Extract Method to move the Sum of the prices into two separate methods. The name of the method will explain what we are doing: static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); foreach (var movie in movies) Console.WriteLine(movie.Price); } private static int TotalPriceOfMovieTransfer(IEnumerable<Movie> movies) { return movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); } private static int TotalPriceOfMovie(IEnumerable<Movie> movies) { return movies.Where(m => m is Movie) .Sum(m => m.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now to the last thing, I love the ForEach method of the List<T>, but the IEnumerable<T> doesn’t have it, so I created my own ForEach extension, here is the code of the ForEach extension method: public static class LoopExtensions { public static void ForEach<T>(this IEnumerable<T> values, Action<T> action) { Contract.Requires(values != null); Contract.Requires(action != null); foreach (var v in values) action(v); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I will now replace the foreach by using this ForEach method: static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); movies.ForEach(m => Console.WriteLine(m.Price)); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The ForEach on the movies will now display the price of the movie, but maybe we want to display the name of the movie etc, so we can use Extract Method by moving the lamdba expression into a method instead, and let the method explains what we are displaying: movies.ForEach(DisplayMovieInfo); private static void DisplayMovieInfo(Movie movie) { Console.WriteLine(movie.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now the refactoring is done! Here is the complete code:   class Program { static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); movies.ForEach(DisplayMovieInfo); } private static void DisplayMovieInfo(Movie movie) { Console.WriteLine(movie.Price); } private static int TotalPriceOfMovieTransfer(IEnumerable<Movie> movies) { return movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); } private static int TotalPriceOfMovie(IEnumerable<Movie> movies) { return movies.Where(m => m is Movie) .Sum(m => m.Price); } private static IEnumerable<Movie> GetMovies() { return new List<Movie>() { new Movie(), new MovieTransfer(), new Movie() }; } } public class Movie { public virtual int Price { get { return 2; } } } public class MovieTransfer : Movie { public override int Price { get { return 3; } } } pulbic static class LoopExtensions { public static void ForEach<T>(this IEnumerable<T> values, Action<T> action) { Contract.Requires(values != null); Contract.Requires(action != null); foreach (var v in values) action(v); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I think the new code is much cleaner than the first one, and I love the ForEach extension on the IEnumerable<T>, I can use it for different kind of things, for example: movies.Where(m => m is Movie) .ForEach(DoSomething); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } By using the Where and ForEach extension method, some if statements can be removed and will make the code much cleaner. But the beauty is in the eye of the beholder. What would you have done different, what do you think will make the first example in the blog post look much cleaner than my results, comments are welcome! If you want to know when I will publish a new blog post, you can follow me on twitter: http://www.twitter.com/fredrikn

    Read the article

  • improving conversions to binary and back in C#

    - by Saad Imran.
    I'm trying to write a general purpose socket server for a game I'm working on. I know I could very well use already built servers like SmartFox and Photon, but I wan't to go through the pain of creating one myself for learning purposes. I've come up with a BSON inspired protocol to convert the the basic data types, their arrays, and a special GSObject to binary and arrange them in a way so that it can be put back together into object form on the client end. At the core, the conversion methods utilize the .Net BitConverter class to convert the basic data types to binary. Anyways, the problem is performance, if I loop 50,000 times and convert my GSObject to binary each time it takes about 5500ms (the resulting byte[] is just 192 bytes per conversion). I think think this would be way too slow for an MMO that sends 5-10 position updates per second with a 1000 concurrent users. Yes, I know it's unlikely that a game will have a 1000 users on at the same time, but like I said earlier this is supposed to be a learning process for me, I want to go out of my way and build something that scales well and can handle at least a few thousand users. So yea, if anyone's aware of other conversion techniques or sees where I'm loosing performance I would appreciate the help. GSBitConverter.cs This is the main conversion class, it adds extension methods to main datatypes to convert to the binary format. It uses the BitConverter class to convert the base types. I've shown only the code to convert integer and integer arrays, but the rest of the method are pretty much replicas of those two, they just overload the type. public static class GSBitConverter { public static byte[] ToGSBinary(this short value) { return BitConverter.GetBytes(value); } public static byte[] ToGSBinary(this IEnumerable<short> value) { List<byte> bytes = new List<byte>(); short length = (short)value.Count(); bytes.AddRange(length.ToGSBinary()); for (int i = 0; i < length; i++) bytes.AddRange(value.ElementAt(i).ToGSBinary()); return bytes.ToArray(); } public static byte[] ToGSBinary(this bool value); public static byte[] ToGSBinary(this IEnumerable<bool> value); public static byte[] ToGSBinary(this IEnumerable<byte> value); public static byte[] ToGSBinary(this int value); public static byte[] ToGSBinary(this IEnumerable<int> value); public static byte[] ToGSBinary(this long value); public static byte[] ToGSBinary(this IEnumerable<long> value); public static byte[] ToGSBinary(this float value); public static byte[] ToGSBinary(this IEnumerable<float> value); public static byte[] ToGSBinary(this double value); public static byte[] ToGSBinary(this IEnumerable<double> value); public static byte[] ToGSBinary(this string value); public static byte[] ToGSBinary(this IEnumerable<string> value); public static string GetHexDump(this IEnumerable<byte> value); } Program.cs Here's the the object that I'm converting to binary in a loop. class Program { static void Main(string[] args) { GSObject obj = new GSObject(); obj.AttachShort("smallInt", 15); obj.AttachInt("medInt", 120700); obj.AttachLong("bigInt", 10900800700); obj.AttachDouble("doubleVal", Math.PI); obj.AttachStringArray("muppetNames", new string[] { "Kermit", "Fozzy", "Piggy", "Animal", "Gonzo" }); GSObject apple = new GSObject(); apple.AttachString("name", "Apple"); apple.AttachString("color", "red"); apple.AttachBool("inStock", true); apple.AttachFloat("price", (float)1.5); GSObject lemon = new GSObject(); apple.AttachString("name", "Lemon"); apple.AttachString("color", "yellow"); apple.AttachBool("inStock", false); apple.AttachFloat("price", (float)0.8); GSObject apricoat = new GSObject(); apple.AttachString("name", "Apricoat"); apple.AttachString("color", "orange"); apple.AttachBool("inStock", true); apple.AttachFloat("price", (float)1.9); GSObject kiwi = new GSObject(); apple.AttachString("name", "Kiwi"); apple.AttachString("color", "green"); apple.AttachBool("inStock", true); apple.AttachFloat("price", (float)2.3); GSArray fruits = new GSArray(); fruits.AddGSObject(apple); fruits.AddGSObject(lemon); fruits.AddGSObject(apricoat); fruits.AddGSObject(kiwi); obj.AttachGSArray("fruits", fruits); Stopwatch w1 = Stopwatch.StartNew(); for (int i = 0; i < 50000; i++) { byte[] b = obj.ToGSBinary(); } w1.Stop(); Console.WriteLine(BitConverter.IsLittleEndian ? "Little Endian" : "Big Endian"); Console.WriteLine(w1.ElapsedMilliseconds + "ms"); } Here's the code for some of my other classes that are used in the code above. Most of it is repetitive. GSObject GSArray GSWrappedObject

    Read the article

  • Java: Best approach to have a long list of variables needed all the time without consuming memory?

    - by evilReiko
    I wrote an abstract class to contain all rules of the application because I need them almost everywhere in my application. So most of what it contains is static final variables, something like this: public abstract class appRules { public static final boolean IS_DEV = true; public static final String CLOCK_SHORT_TIME_FORMAT = "something"; public static final String CLOCK_SHORT_DATE_FORMAT = "something else"; public static final String CLOCK_FULL_FORMAT = "other thing"; public static final int USERNAME_MIN = 5; public static final int USERNAME_MAX = 16; // etc. } The class is big and contains LOTS of such variables. My Question: Isn't setting static variables means these variables are floating in memory all the time? Do you suggest insteading of having an abstract class, I have a instantiable class with non-static variables (just public final), so I instantiate the class and use the variables only when I need them. Or is what am I doing is completely wrong approach and you suggest something else?

    Read the article

  • Why won't ruby recognize Haml under ubuntu64 while using jekyll static blog generator?

    - by oldmanjoyce
    I have been trying, quite unsuccessfully, to run henrik's fork of the jekyll static blog generator on Ubuntu 64-bit. I just can't seem to figure this out and I've tried a bunch of different things. Originally I posted this over at stackoverflow, but this is probably the better spot for it. The base stats of my machine: Ubuntu 9.04, 64 bit, ruby 1.8.7 (2008-08-11 patchlevel 72) [x86_64-linux], rubygems 1.3.1. When I attempt to build the site, this is what happens: $ jekyll --pygments Configuration from ./_config.yml Using Sass for CSS generation You must have the haml gem installed first Using rdiscount for Markdown Building site: . - ./_site /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/core_ext.rb:27:in `method_missing': undefined method 'header' for #, page=# ..... cut ..... (NoMethodError) from (haml):9:in `render' from /home/chris/.gem/gems/haml-2.2.3/lib/haml/engine.rb:167:in 'render' from /home/chris/.gem/gems/haml-2.2.3/lib/haml/engine.rb:167:in 'instance_eval' from /home/chris/.gem/gems/haml-2.2.3/lib/haml/engine.rb:167:in 'render' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/convertible.rb:72:in 'render_haml_in_context' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/convertible.rb:105:in 'do_layout' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/post.rb:226:in 'render' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/site.rb:172:in 'read_posts' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/site.rb:171:in 'each' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/site.rb:171:in 'read_posts' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/site.rb:210:in 'transform_pages' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/../lib/jekyll/site.rb:126:in 'process' from /home/chris/.gem/gems/henrik-jekyll-0.5.2/bin/jekyll:135 from /home/chris/.gem/bin/jekyll:19:in `load' from /home/chris/.gem/bin/jekyll:19 I added spaces to the left of the ClosedStruct to enable better visibility - sorry that my inline html/formatting isn't perfect. I also cut out some middle text that is just data. $ gem list *** LOCAL GEMS *** actionmailer (2.3.4) actionpack (2.3.4) activerecord (2.3.4) activeresource (2.3.4) activesupport (2.3.4) classifier (1.3.1) directory_watcher (1.2.0) haml (2.2.3) haml-edge (2.3.27) henrik-jekyll (0.5.2) liquid (2.0.0) maruku (0.6.0) open4 (0.9.6) rack (1.0.0) rails (2.3.4) rake (0.8.7) rdiscount (1.3.5) RedCloth (4.2.2) stemmer (1.0.1) syntax (1.0.0) Some showing for path verification: $ echo $PATH /home/chris/.gem/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games $ which haml /home/chris/.gem/bin/haml $ which jekyll /home/chris/.gem/bin/jekyll

    Read the article

  • C#/.NET Little Wonders: Skip() and Take()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. I’ve covered many valuable methods from System.Linq class library before, so you already know it’s packed with extension-method goodness.  Today I’d like to cover two small families I’ve neglected to mention before: Skip() and Take().  While these methods seem so simple, they are an easy way to create sub-sequences for IEnumerable<T>, much the way GetRange() creates sub-lists for List<T>. Skip() and SkipWhile() The Skip() family of methods is used to ignore items in a sequence until either a certain number are passed, or until a certain condition becomes false.  This makes the methods great for starting a sequence at a point possibly other than the first item of the original sequence.   The Skip() family of methods contains the following methods (shown below in extension method syntax): Skip(int count) Ignores the specified number of items and returns a sequence starting at the item after the last skipped item (if any).  SkipWhile(Func<T, bool> predicate) Ignores items as long as the predicate returns true and returns a sequence starting with the first item to invalidate the predicate (if any).  SkipWhile(Func<T, int, bool> predicate) Same as above, but passes not only the item itself to the predicate, but also the index of the item.  For example: 1: var list = new[] { 3.14, 2.72, 42.0, 9.9, 13.0, 101.0 }; 2:  3: // sequence contains { 2.72, 42.0, 9.9, 13.0, 101.0 } 4: var afterSecond = list.Skip(1); 5: Console.WriteLine(string.Join(", ", afterSecond)); 6:  7: // sequence contains { 42.0, 9.9, 13.0, 101.0 } 8: var afterFirstDoubleDigit = list.SkipWhile(v => v < 10.0); 9: Console.WriteLine(string.Join(", ", afterFirstDoubleDigit)); Note that the SkipWhile() stops skipping at the first item that returns false and returns from there to the rest of the sequence, even if further items in that sequence also would satisfy the predicate (otherwise, you’d probably be using Where() instead, of course). If you do use the form of SkipWhile() which also passes an index into the predicate, then you should keep in mind that this is the index of the item in the sequence you are calling SkipWhile() from, not the index in the original collection.  That is, consider the following: 1: var list = new[] { 1.0, 1.1, 1.2, 2.2, 2.3, 2.4 }; 2:  3: // Get all items < 10, then 4: var whatAmI = list 5: .Skip(2) 6: .SkipWhile((i, x) => i > x); For this example the result above is 2.4, and not 1.2, 2.2, 2.3, 2.4 as some might expect.  The key is knowing what the index is that’s passed to the predicate in SkipWhile().  In the code above, because Skip(2) skips 1.0 and 1.1, the sequence passed to SkipWhile() begins at 1.2 and thus it considers the “index” of 1.2 to be 0 and not 2.  This same logic applies when using any of the extension methods that have an overload that allows you to pass an index into the delegate, such as SkipWhile(), TakeWhile(), Select(), Where(), etc.  It should also be noted, that it’s fine to Skip() more items than exist in the sequence (an empty sequence is the result), or even to Skip(0) which results in the full sequence.  So why would it ever be useful to return Skip(0) deliberately?  One reason might be to return a List<T> as an immutable sequence.  Consider this class: 1: public class MyClass 2: { 3: private List<int> _myList = new List<int>(); 4:  5: // works on surface, but one can cast back to List<int> and mutate the original... 6: public IEnumerable<int> OneWay 7: { 8: get { return _myList; } 9: } 10:  11: // works, but still has Add() etc which throw at runtime if accidentally called 12: public ReadOnlyCollection<int> AnotherWay 13: { 14: get { return new ReadOnlyCollection<int>(_myList); } 15: } 16:  17: // immutable, can't be cast back to List<int>, doesn't have methods that throw at runtime 18: public IEnumerable<int> YetAnotherWay 19: { 20: get { return _myList.Skip(0); } 21: } 22: } This code snippet shows three (among many) ways to return an internal sequence in varying levels of immutability.  Obviously if you just try to return as IEnumerable<T> without doing anything more, there’s always the danger the caller could cast back to List<T> and mutate your internal structure.  You could also return a ReadOnlyCollection<T>, but this still has the mutating methods, they just throw at runtime when called instead of giving compiler errors.  Finally, you can return the internal list as a sequence using Skip(0) which skips no items and just runs an iterator through the list.  The result is an iterator, which cannot be cast back to List<T>.  Of course, there’s many ways to do this (including just cloning the list, etc.) but the point is it illustrates a potential use of using an explicit Skip(0). Take() and TakeWhile() The Take() and TakeWhile() methods can be though of as somewhat of the inverse of Skip() and SkipWhile().  That is, while Skip() ignores the first X items and returns the rest, Take() returns a sequence of the first X items and ignores the rest.  Since they are somewhat of an inverse of each other, it makes sense that their calling signatures are identical (beyond the method name obviously): Take(int count) Returns a sequence containing up to the specified number of items. Anything after the count is ignored. TakeWhile(Func<T, bool> predicate) Returns a sequence containing items as long as the predicate returns true.  Anything from the point the predicate returns false and beyond is ignored. TakeWhile(Func<T, int, bool> predicate) Same as above, but passes not only the item itself to the predicate, but also the index of the item. So, for example, we could do the following: 1: var list = new[] { 1.0, 1.1, 1.2, 2.2, 2.3, 2.4 }; 2:  3: // sequence contains 1.0 and 1.1 4: var firstTwo = list.Take(2); 5:  6: // sequence contains 1.0, 1.1, 1.2 7: var underTwo = list.TakeWhile(i => i < 2.0); The same considerations for SkipWhile() with index apply to TakeWhile() with index, of course.  Using Skip() and Take() for sub-sequences A few weeks back, I talked about The List<T> Range Methods and showed how they could be used to get a sub-list of a List<T>.  This works well if you’re dealing with List<T>, or don’t mind converting to List<T>.  But if you have a simple IEnumerable<T> sequence and want to get a sub-sequence, you can also use Skip() and Take() to much the same effect: 1: var list = new List<double> { 1.0, 1.1, 1.2, 2.2, 2.3, 2.4 }; 2:  3: // results in List<T> containing { 1.2, 2.2, 2.3 } 4: var subList = list.GetRange(2, 3); 5:  6: // results in sequence containing { 1.2, 2.2, 2.3 } 7: var subSequence = list.Skip(2).Take(3); I say “much the same effect” because there are some differences.  First of all GetRange() will throw if the starting index or the count are greater than the number of items in the list, but Skip() and Take() do not.  Also GetRange() is a method off of List<T>, thus it can use direct indexing to get to the items much more efficiently, whereas Skip() and Take() operate on sequences and may actually have to walk through the items they skip to create the resulting sequence.  So each has their pros and cons.  My general rule of thumb is if I’m already working with a List<T> I’ll use GetRange(), but for any plain IEnumerable<T> sequence I’ll tend to prefer Skip() and Take() instead. Summary The Skip() and Take() families of LINQ extension methods are handy for producing sub-sequences from any IEnumerable<T> sequence.  Skip() will ignore the specified number of items and return the rest of the sequence, whereas Take() will return the specified number of items and ignore the rest of the sequence.  Similarly, the SkipWhile() and TakeWhile() methods can be used to skip or take items, respectively, until a given predicate returns false.    Technorati Tags: C#, CSharp, .NET, LINQ, IEnumerable<T>, Skip, Take, SkipWhile, TakeWhile

    Read the article

  • GWT: Best practice for unit testing / mocking JSNI methods?

    - by Epaga
    I have a class which uses JSNI to retrieve JSON data stored in the host page: protected native JsArray<JsonModel> getModels() /*-{ return $wnd.jsonData; }-*/; This method is called, and the data is then translated and process in a different method. How should I unit test this class, since I'm not able to instantiate (or seemingly mock?) JsArray? What is the best way to unit test JSNI methods at all?

    Read the article

  • i want to send 20000 messages from JMeter to JMS Queue through web methods and get/capture responses

    - by sam
    Blockquote Hi i'm trying to post JMS messages to JMS queue through web methods,JNDI. i want to post 20000 messages using one connection. i want to read the responses back once returned by wMethods. i want to capture the request & response for all 20000 messages i'm using JMeter is there any other opensource, easily usable tool available for this testing? thanks in advance. regards, Sam Blockquote

    Read the article

  • Do I need to override the writing methods of NSDocument in subclasses for an application that will o

    - by Abizern
    I think I may be missing the obvious but I'm not sure. The section on subclassing NSDocument in the docs states that subclasses of NSDocument must override one reading and one writing method. If I'm creating a viewer application that will not write anything back, do I still need to override a writing method (returning what, nil?) or can I ignore it and make sure that there are no saving methods that can get called?

    Read the article

  • Can I use a static cache Helper method in a NET MVC controller?

    - by Euston
    I realise there have been a few posts regarding where to add a cache check/update and the separation of concerns between the controller, the model and the caching code. There are two great examples that I have tried to work with but being new to MVC I wonder which one is the cleanest and suits the MVC methodology the best? I know you need to take into account DI and unit testing. Example 1 (Helper method with delegate) ...in controller var myObject = CacheDataHelper.Get(thisID, () => WebServiceServiceWrapper.GetMyObjectBythisID(thisID)); Example 2 (check for cache in model class) in controller var myObject = WebServiceServiceWrapper.GetMyObjectBythisID(thisID)); then in model class.............. if (!CacheDataHelper.Get(cachekey, out myObject)) { //do some repository processing // Add obect to cache CacheDataHelper.Add(myObject, cachekey); } Both use a static cache helper class but the first example uses a method signature with a delegate method passed in that has the name of the repository method being called. If the data is not in cache the method is called and the cache helper class handles the adding or updating to the current cache. In the second example the cache check is part of the repository method with an extra line to call the cache helper add method to update the current cache. Due to my lack of experience and knowledge I am not sure which one is best suited to MVC. I like the idea of calling the cache helper with the delegate method name in order to remove any cache code in the repository but I am not sure if using the static method in the controller is ideal? The second example deals with the above but now there is no separation between the caching check and the repository lookup. Perhaps that is not a problem as you know it requires caching anyway?

    Read the article

< Previous Page | 120 121 122 123 124 125 126 127 128 129 130 131  | Next Page >