Search Results

Search found 22721 results on 909 pages for 'block level storage'.

Page 129/909 | < Previous Page | 125 126 127 128 129 130 131 132 133 134 135 136  | Next Page >

  • Alternatives to Pessimistic Locking in Cluster Applications

    - by amphibient
    I am researching alternatives to database-level pessimistic locking to achieve transaction isolation in a cluster of Java applications going against the same database. Synchronizing concurrent access in the application tier is clearly not a solution in the present configuration because the same database transaction can be invoked from multiple JVMs concurrently. Currently, we are subject to occasional race conditions which, due to the optimistic locking we have in place via Hibernate, cause a StaleObjectStateException exception and data loss. I have a moderately large transaction within the scope of my refactoring project. Let's describe it as updating one top-level table row and then making various related inserts and/or updates to several of its child entities. I would like to insure exclusive access to the top-level table row and all of the children to be affected but I would like to stay away from pessimistic locking at the database level for performance reasons mostly. We use Hibernate for ORM. Does it make sense to start a single (perhaps synchronous) message queue application into which this method could be moved to insure synchronized access as opposed to each cluster node using its own, which is a clear race condition hazard? I am mentioning this approach even though I am not confident in it because both the top-level table row and its children could also be updated from other system calls, not just the mentioned transaction. So I am seeking to design a solution where the top-level table row and its children will all somehow be pseudo-locked (exclusive transaction isolation) but at the application and not the database level. I am open to ideas and suggestions, I understand this is not a very cut and dried challenge.

    Read the article

  • Feature Updates to the Windows Azure Portal

    - by Clint Edmonson
    Lots of activity over at the Windows Azure portal this weekend, including some exciting new features and major improvements to existing features. Here are the highlights: Support for Managing Co-administrators Set up account co-administrators to allow others to share service management duties for each Azure subscription Import/Export support for SQL Databases Export existing SQL Azure databases to blob storage using SQL Server 2012’s BACPAC format. Create a new SQL Azure database from an existing BACPAC stored in blob storage Storage Container Management and Access Control Create blob storage containers directly within the portal Edit their public/private access settings Drill into storage containers and see the blobs contained within them Improved Cloud Service Status Notifications Detailed health status information about cloud services and roles as they transition between states Virtual Machine Experience Enhancements Option to automatically delete corresponding VHD files from blob storage when deleting VM disks Service Bus Management and Monitoring Ability to create and manage service bus Namespaces, Queues, Topics, Relays and Subscriptions Rich monitoring of Topics, Queues, and Subscriptions with detailed and customizable dashboard metrics Entity status (Topic, Queue, or Subscription) can be changed interactively via dashboard Direct links to the Access Control Services (ACS) namespaces when working with service bus access keys Media Services Monitoring Support Monitor encoding jobs that are queued for processing as well as active, failed and queued tasks for encoding jobs The above features are all now live in production and available to use immediately.  If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using them today. Stay tuned to my twitter feed for Windows Azure announcements, updates, and links: @clinted Reference ID: P7VVJCM38V8R

    Read the article

  • Query a Log4Net-database

    - by pinhack
    So if you use Log4Net to log into a database (i.e. using the AdoNetAppender), how can you conveniently get an overview of what has happend ? Well, you could try the following Query ( T-SQL ):   SELECT convert(varchar(10),LogDB.Date,121) as Datum, LogDB.Level, LogDB.Logger,COUNT(LogDB.Logger) as Counter From Log4Net.dbo.Log as LogDB  where Level <> 'DEBUG' AND convert(varchar(10),LogDB.Date,121) like '2010-03-25' GROUP BY convert(varchar(10),LogDB.Date,121),LogDB.Level,LogDB.Logger ORDER BY counter desc This query will give you the number of events by the Logger at a specified date - and it's easy to customize, just adjust the Date and the Level to your needs. You need a bit more information than that? How about this query:  Select  convert(varchar(10),LogDB.Date,121) as Datum,LogDB.Level,LogDB.Message,LogDB.Logger ,count(LogDB.Message) as counter From Log4Net.dbo.Log as LogDB where Level <> 'DEBUG' AND convert(varchar(10),LogDB.Date,121) like '2010-03-25' GROUP BY convert(varchar(10),LogDB.Date,121),LogDB.Level,LogDB.Message,LogDB.Logger ORDER BY counter desc Similar to the first one, but inclusive the Message - which will return a much larger resultset.

    Read the article

  • Splitting a tetris game apart - where to put time-management?

    - by nightcracker
    I am creating a tetris game in C++ & SDL, and I'm trying to do it "good" by making it object-oriented and keeping scopes small. So far I have the following structure: A main with some lowlevel SDL set up and handling input A game class that keeps track of score and provides the interface for main (move block down, etc) A map class that keeps track of the current game field, which blocks are where. Used by the game class. A block class that consists of the current falling block, used by game. A renderer class abstracting low level SDL to a format where you render "tetris blocks". Used by map and block. Now I have a though time where to place the time-management of this game. For example, where should be decided when a block bumps the bottom of the screen how long it takes the current block locks in place and a new block spawns? I also have an other unrelated question, is there some place where you can find some standard data on tetris like standard score tables, rulesets, timings, etc?

    Read the article

  • Splitting a tetris game apart - where to put time-management?

    - by nightcracker
    I am creating a tetris game in C++ & SDL, and I'm trying to do it "good" by making it object-oriented and keeping scopes small. So far I have the following structure: A main with some lowlevel SDL set up and handling input A game class that keeps track of score and provides the interface for main (move block down, etc) A map class that keeps track of the current game field, which blocks are where. Used by the game class. A block class that consists of the current falling block, used by game. A renderer class abstracting low level SDL to a format where you render "tetris blocks". Used by map and block. Now I have a though time where to place the time-management of this game. For example, where should be decided when a block bumps the bottom of the screen how long it takes the current block locks in place and a new block spawns? I also have an other unrelated question, is there some place where you can find some standard data on tetris like standard score tables, rulesets, timings, etc?

    Read the article

  • Dynamic object creation with HashMap

    - by Salor
    I want to use a HashMap to dynamically create objects based on the key. I have a Random Map Generator that stores the maps in 3D Arrays of Type Integer[][][]. Upon creation of the actual map I iterate through this array and based on the Integer I want to create the right block. Example: Integer[][][] map ... map[6][6][6] = 3; 3 is a Earth-Block and now I want to initialize a new Block of this type and give it the right coordinates. Currently I store my Bindings from Integer to Class in a HashMap(Integer, String) and create my objects like that: int id = array[x][y][z]; String block_name = Blocks.map.get(id); Block block = (Block) Class.forName(block_name).newInstance(); block.setPosition(x,y,z); But I want to avoid newInstance() if possible. I've never worked that dynamically with Java before and I couldn't find a solution like changing the HashMap to (Integer, Class) or something. I just need to create a new Object based upon the Integer. Any ideas/solutions? Thanks in advance and have a wonderful day!

    Read the article

  • How to get data out of a Maxtor Shared Storage II that fails to boot?

    - by Jonik
    I've got a Maxtor Shared Storage II (RAID1 mode) which has developed some hardware failure, apparently: it fails to boot properly and is unreachable via network. When powering it on, it keeps making clunking/chirping disk noise and then sort of resets itself (with a flash of orange light in the usually-green LEDs); it then repeats this as if stuck in a loop. In fact, even the power button does nothing now – the only way I can affect the device at all is to plug in or pull out the power cord! (To be clear, I've come to regard this piece of garbage (which cost about 460 €) as my worst tech purchase ever. Even before this failure I had encountered many annoyances about the drive: 1) the software to manage it is rather crappy; 2) it is way noisier that what this type of device should be; 3) when your Mac comes out of sleep, Maxtor's "EasyManage" cannot re-mount the drive automatically.) Anyway, the question at hand is how to get my data out of it? As a very concrete first step, is there a way to open this thing without breaking the plastic casing into pieces? It is far from obvious to me how to get beyond this stage; it opens a little from one end but not from the other. If I somehow got the disks out, I could try mounting the disk(s) on one of the Macs or Linux boxes I have available (although I don't know yet if I'd need some adapters for that). (NB: for the purposes of this question, never mind any warranty or replacement issues – that's secondary to recovering the data.)

    Read the article

  • Why does my simple Raid 1 backup storage perform really slow sometimes?

    - by randomguy
    I bought 2x Samsung F3 EcoGreen 2TB hard disks to make a backup storage. I put them in Raid 1 (mirror) mode. Made a single partition and formatted it to NTFS, running Windows 7. For some reason, accessing the drive's contents (simply by navigating folders) is sometimes really slow. Like opening D:/photos/ can sometimes take several seconds before it starts showing any of the folder's contents. Same applies for other folders. What could be causing this and what could I do to improve the performance? I remember that there was an option somewhere inside Windows to choose fast access but less reliable persistence operations (read/write). It was a tick inside some dialog. At the time, it felt like a good idea to take the tick away from the option and get more reliable persistence but slower access, but now I'm regretting. I'm unable to find this dialog.. I've looked hard. I don't know, if it would make any difference. Oh, and I've ran scan disk and defrag on the drive. No errors and speed isn't improved.

    Read the article

  • SQL SERVER – Simple Example of Snapshot Isolation – Reduce the Blocking Transactions

    - by pinaldave
    To learn any technology and move to a more advanced level, it is very important to understand the fundamentals of the subject first. Today, we will be talking about something which has been quite introduced a long time ago but not properly explored when it comes to the isolation level. Snapshot Isolation was introduced in SQL Server in 2005. However, the reality is that there are still many software shops which are using the SQL Server 2000, and therefore cannot be able to maintain the Snapshot Isolation. Many software shops have upgraded to the later version of the SQL Server, but their respective developers have not spend enough time to upgrade themselves with the latest technology. “It works!” is a very common answer of many when they are asked about utilizing the new technology, instead of backward compatibility commands. In one of the recent consultation project, I had same experience when developers have “heard about it” but have no idea about snapshot isolation. They were thinking it is the same as Snapshot Replication – which is plain wrong. This is the same demo I am including here which I have created for them. In Snapshot Isolation, the updated row versions for each transaction are maintained in TempDB. Once a transaction has begun, it ignores all the newer rows inserted or updated in the table. Let us examine this example which shows the simple demonstration. This transaction works on optimistic concurrency model. Since reading a certain transaction does not block writing transaction, it also does not block the reading transaction, which reduced the blocking. First, enable database to work with Snapshot Isolation. Additionally, check the existing values in the table from HumanResources.Shift. ALTER DATABASE AdventureWorks SET ALLOW_SNAPSHOT_ISOLATION ON GO SELECT ModifiedDate FROM HumanResources.Shift GO Now, we will need two different sessions to prove this example. First Session: Set Transaction level isolation to snapshot and begin the transaction. Update the column “ModifiedDate” to today’s date. -- Session 1 SET TRANSACTION ISOLATION LEVEL SNAPSHOT BEGIN TRAN UPDATE HumanResources.Shift SET ModifiedDate = GETDATE() GO Please note that we have not yet been committed to the transaction. Now, open the second session and run the following “SELECT” statement. Then, check the values of the table. Please pay attention on setting the Isolation level for the second one as “Snapshot” at the same time when we already start the transaction using BEGIN TRAN. -- Session 2 SET TRANSACTION ISOLATION LEVEL SNAPSHOT BEGIN TRAN SELECT ModifiedDate FROM HumanResources.Shift GO You will notice that the values in the table are still original values. They have not been modified yet. Once again, go back to session 1 and begin the transaction. -- Session 1 COMMIT After that, go back to Session 2 and see the values of the table. -- Session 2 SELECT ModifiedDate FROM HumanResources.Shift GO You will notice that the values are yet not changed and they are still the same old values which were there right in the beginning of the session. Now, let us commit the transaction in the session 2. Once committed, run the same SELECT statement once more and see what the result is. -- Session 2 COMMIT SELECT ModifiedDate FROM HumanResources.Shift GO You will notice that it now reflects the new updated value. I hope that this example is clear enough as it would give you good idea how the Snapshot Isolation level works. There is much more to write about an extra level, READ_COMMITTED_SNAPSHOT, which we will be discussing in another post soon. If you wish to use this transaction’s Isolation level in your production database, I would appreciate your comments about their performance on your servers. I have included here the complete script used in this example for your quick reference. ALTER DATABASE AdventureWorks SET ALLOW_SNAPSHOT_ISOLATION ON GO SELECT ModifiedDate FROM HumanResources.Shift GO -- Session 1 SET TRANSACTION ISOLATION LEVEL SNAPSHOT BEGIN TRAN UPDATE HumanResources.Shift SET ModifiedDate = GETDATE() GO -- Session 2 SET TRANSACTION ISOLATION LEVEL SNAPSHOT BEGIN TRAN SELECT ModifiedDate FROM HumanResources.Shift GO -- Session 1 COMMIT -- Session 2 SELECT ModifiedDate FROM HumanResources.Shift GO -- Session 2 COMMIT SELECT ModifiedDate FROM HumanResources.Shift GO Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Transaction Isolation

    Read the article

  • SQL SERVER – Simple Example of Snapshot Isolation – Reduce the Blocking Transactions

    - by pinaldave
    To learn any technology and move to a more advanced level, it is very important to understand the fundamentals of the subject first. Today, we will be talking about something which has been quite introduced a long time ago but not properly explored when it comes to the isolation level. Snapshot Isolation was introduced in SQL Server in 2005. However, the reality is that there are still many software shops which are using the SQL Server 2000, and therefore cannot be able to maintain the Snapshot Isolation. Many software shops have upgraded to the later version of the SQL Server, but their respective developers have not spend enough time to upgrade themselves with the latest technology. “It works!” is a very common answer of many when they are asked about utilizing the new technology, instead of backward compatibility commands. In one of the recent consultation project, I had same experience when developers have “heard about it” but have no idea about snapshot isolation. They were thinking it is the same as Snapshot Replication – which is plain wrong. This is the same demo I am including here which I have created for them. In Snapshot Isolation, the updated row versions for each transaction are maintained in TempDB. Once a transaction has begun, it ignores all the newer rows inserted or updated in the table. Let us examine this example which shows the simple demonstration. This transaction works on optimistic concurrency model. Since reading a certain transaction does not block writing transaction, it also does not block the reading transaction, which reduced the blocking. First, enable database to work with Snapshot Isolation. Additionally, check the existing values in the table from HumanResources.Shift. ALTER DATABASE AdventureWorks SET ALLOW_SNAPSHOT_ISOLATION ON GO SELECT ModifiedDate FROM HumanResources.Shift GO Now, we will need two different sessions to prove this example. First Session: Set Transaction level isolation to snapshot and begin the transaction. Update the column “ModifiedDate” to today’s date. -- Session 1 SET TRANSACTION ISOLATION LEVEL SNAPSHOT BEGIN TRAN UPDATE HumanResources.Shift SET ModifiedDate = GETDATE() GO Please note that we have not yet been committed to the transaction. Now, open the second session and run the following “SELECT” statement. Then, check the values of the table. Please pay attention on setting the Isolation level for the second one as “Snapshot” at the same time when we already start the transaction using BEGIN TRAN. -- Session 2 SET TRANSACTION ISOLATION LEVEL SNAPSHOT BEGIN TRAN SELECT ModifiedDate FROM HumanResources.Shift GO You will notice that the values in the table are still original values. They have not been modified yet. Once again, go back to session 1 and begin the transaction. -- Session 1 COMMIT After that, go back to Session 2 and see the values of the table. -- Session 2 SELECT ModifiedDate FROM HumanResources.Shift GO You will notice that the values are yet not changed and they are still the same old values which were there right in the beginning of the session. Now, let us commit the transaction in the session 2. Once committed, run the same SELECT statement once more and see what the result is. -- Session 2 COMMIT SELECT ModifiedDate FROM HumanResources.Shift GO You will notice that it now reflects the new updated value. I hope that this example is clear enough as it would give you good idea how the Snapshot Isolation level works. There is much more to write about an extra level, READ_COMMITTED_SNAPSHOT, which we will be discussing in another post soon. If you wish to use this transaction’s Isolation level in your production database, I would appreciate your comments about their performance on your servers. I have included here the complete script used in this example for your quick reference. ALTER DATABASE AdventureWorks SET ALLOW_SNAPSHOT_ISOLATION ON GO SELECT ModifiedDate FROM HumanResources.Shift GO -- Session 1 SET TRANSACTION ISOLATION LEVEL SNAPSHOT BEGIN TRAN UPDATE HumanResources.Shift SET ModifiedDate = GETDATE() GO -- Session 2 SET TRANSACTION ISOLATION LEVEL SNAPSHOT BEGIN TRAN SELECT ModifiedDate FROM HumanResources.Shift GO -- Session 1 COMMIT -- Session 2 SELECT ModifiedDate FROM HumanResources.Shift GO -- Session 2 COMMIT SELECT ModifiedDate FROM HumanResources.Shift GO Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Transaction Isolation

    Read the article

  • What kind of storage with two-way replication for multi site C# application?

    - by twk
    Hi I have a web-based system written using asp.net backed by mssql. A synchronized replica of this system is to be run on mobile locations and must be available regardless of the state of the connection to the main system (few hours long interruptions happens). For now I am using a copy of the main web application and a copy of the mssql server with merge replication to the main system. This works unreliably, and setting the replication is a pain. The amount of data the system contains is not huge, so I can migrate to different storage type. For the new version of this system I would like to implement a new replication system. I am considering migration to db4o for storage with it's replication support. I am thinking about other possible solutions like couchdb which had native replication support. I would like to stay with C#. Could you recommend a way to go for such a distributed environment? PS. Master-Slave replication is not an option: any side must be allowed to add/update data.

    Read the article

  • How to design data storage for partitioned tagging system?

    - by Morgan Cheng
    How to design data storage for huge tagging system (like digg or delicious)? There is already discussion about it, but it is about centralized database. Since the data is supposed to grow, we'll need to partition the data into multiple shards soon or later. So, the question turns to be: How to design data storage for partitioned tagging system? The tagging system basically has 3 tables: Item (item_id, item_content) Tag (tag_id, tag_title) TagMapping(map_id, tag_id, item_id) That works fine for finding all items for given tag and finding all tags for given item, if the table is stored in one database instance. If we need to partition the data into multiple database instances, it is not that easy. For table Item, we can partition its content with its key item_id. For table Tag, we can partition its content with its key tag_id. For example, we want to partition table Tag into K databases. We can simply choose number (tag_id % K) database to store given tag. But, how to partition table TagMapping? The TagMapping table represents the many-to-many relationship. I can only image to have duplication. That is, same content of TagMappping has two copies. One is partitioned with tag_id and the other is partitioned with item_id. In scenario to find tags for given item, we use partition with tag_id. If scenario to find items for given tag, we use partition with item_id. As a result, there is data redundancy. And, the application level should keep the consistency of all tables. It looks hard. Is there any better solution to solve this many-to-many partition problem?

    Read the article

  • Are C++ exceptions sufficient to implement thread-local storage?

    - by Potatoswatter
    I was commenting on an answer that thread-local storage is nice and recalled another informative discussion about exceptions where I supposed The only special thing about the execution environment within the throw block is that the exception object is referenced by rethrow. Putting two and two together, wouldn't executing an entire thread inside a function-catch-block of its main function imbue it with thread-local storage? It seems to work fine: #include <iostream> #include <pthread.h> using namespace std; struct thlocal { string name; thlocal( string const &n ) : name(n) {} }; thlocal &get_thread() { try { throw; } catch( thlocal &local ) { return local; } } void print_thread() { cerr << get_thread().name << endl; } void *kid( void *local_v ) try { thlocal &local = * static_cast< thlocal * >( local_v ); throw local; } catch( thlocal & ) { print_thread(); return NULL; } int main() try { thlocal local( "main" ); throw local; } catch( thlocal & ) { print_thread(); pthread_t th; thlocal kid_local( "kid" ); pthread_create( &th, NULL, &kid, &kid_local ); pthread_join( th, NULL ); print_thread(); return 0; } Is this novel or well-characterized? Was my initial premise correct? What kind of overhead does get_thread incur in, say, GCC and VC++? It would require throwing only exceptions derived from struct thlocal, but altogether this doesn't feel like an unproductive insomnia-ridden Sunday morning…

    Read the article

  • What privilege level is required on a Windows client workstation on an ActiveDomain to break file lo

    - by Mike Burton
    I'm not sure if I should be asking this here or on StackOverflow, but here goes: I'm part of a team maintaining a document management application, and I'm trying to figure out Windows file locking permissions. We use a utility somebody downloaded years ago called psunlock to remotely close all locks on a file. We recently discovered that this does not work across different domains on our VPN. A little bit of digging lead me to the samba manual's discussion of file locking. I still don't really "get it", though. Does anyone have any insight to share into how the process of locking and breaking locks on files works in a network context? My thinking is that privileges are required both on the file appliance and on the client workstations which hold locks. Is that accurate? Can anyone give a more specific version? Ideally I'm looking for something along the lines of A user must have privilege level X in order to break locks held from a client workstation. In practice I'd be happy with a hotlink to a good white paper on the subject.

    Read the article

  • Why does Windows Firewall want to block Google Chrome today?

    - by hippietrail
    I've been using the same public Wi-Fi (staying in a guesthouse) for over a week now. But this morning for the first time I got this puzzling warning from Windows Firewall: Why does Windows Firewall want to block one of the world's most popular web browsers today after being fine with it for years, and being fine with it on this connection for a week? Could it hinge on the words, some features? If so could it be something like a rare or new feature of Chrome that uses a different HTTP port? And if so why doesn't the security alert tell me any more about it? Or could it be a known bug in Windows Firewall? Or perhaps a known virus etc attaching itself to Google Chrome? Or is there a chance it's related to "Other browser makers follow Google's lead, revoke rogue certificates"? I haven't restarted Chrome for days and have downloaded but not installed a Windows update from a few days ago. So I'm not sure what may have managed to change on my machine since yesterday.

    Read the article

  • Downmix surround to Dolby Pro-Logic at the OS/driver level in Windows 7?

    - by davr
    First off, I'm talking about Dolby Pro-Logic, a really old tech for encoding 4 audio channels (L/R/C/SR) into two analog outputs, and then extracting them again. It was used in surround sound systems in the last century. I have a modern PC that can output 5.1 analog audio (Three outputs on the back carry six channels of audio). But I have a really old surround sound reciever that only has a two-channel, L/R input, which it extracts 4 channels of audio from, and outputs to 5.1 speakers. What I want is some way for the OS, Windows 7, to act as if I really had 5.1 audio channels available, so applications produce surround audio, but before outputting it out of the back of my PC, apply Dolby Pro-Logic matrix encoding so that it outputs over only two channels. These two channels would then get sent to my receiver via a RCA cable, which would decode it again and drive the surround speakers. Is anything like this possible? I'm pretty sure I could do it at an application / codec level, but I'm looking for something that I just have to set once.

    Read the article

  • Nginx Server Block Not Working? - Already running other vhosts just this one not working

    - by daveaspinall
    Im running a Debian 6 LEMP server with multiple virtual hosts and everything has been fine for 5 or so sites. But I've just tried adding another but for some reason it's just not working. By not working I mean in Chrome I get the "Oops! Google Chrome could not connect to subdomain.domain.net" error. I've changed the domain for security to subdomain.example.com and the IP is masked. Hosts file (I have multiple sub domains): xxx.xxx.xx.xxx *.example.com *.example Server Block: server { listen 80; server_name subdomain.example.com; access_log /srv/www/subdomain.example.com/logs/access.log; error_log /srv/www/subdomain.example.com/logs/error.log; root /srv/www/subdomain.example.com/public_html; location / { index index.html index.htm index.php; } location ~ \.php$ { include fastcgi_params; fastcgi_pass 127.0.0.1:9000; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name; } } I've created the system link to the file in the /etc/nginx/sites-enabled/ directory and restarted/reloaded nginx. DNS seems fine: # ping -c 2 subdomain PING subdomain.example.com (xxx.xxx.xx.xxx) 56(84) bytes of data. 64 bytes from www.example.com (xxx.xxx.xx.xxx): icmp_req=1 ttl=64 time=0.035 ms 64 bytes from www.example.com (xxx.xxx.xx.xxx): icmp_req=2 ttl=64 time=0.048 ms Checking the file with cURL works: # curl http://subdomain.example.com HTML - OK Emptied browser cache but still no dice. Anything I'm missing? Like I mentioned, I have a few sites running fine on the server currently so php-fpm etc etc are working. Any help would be much appreciated! Cheers, Dave

    Read the article

  • Is there a way to do a sector level copy/clone from one hard drive to another?

    - by irrational John
    Without going into distracting details, I'm attempting to duplicate the contents of the 500GB drive in my MacBook to another 500GB drive. But this is turning out to be an unexpected hassle because the drive contains both the OS X partition and an NTFS partition with Win 7 via Apple's Boot Camp. With the exception of Clonezilla, the tools I have looked at so far all have some limitation. The Mac tools don't want to deal with the NTFS partition. The Windows tools are totally clueless about either the HFS+ partition and/or the hybrid MBR/GPT Boot Camp partitioning. Clonezilla looked like it would do what I want but apparently I can't figure out how to use it. After doing what I thought was a sector to sector copy I found that only the NTFS partition had been migrated. The others were apparently empty. (And frankly, I'm not positive Clonezilla migrated the partition table correctly either). Note: It takes over 2 hours using SATA to read/write all sectors with these drives. So I'm not up for using trial & error to narrow in on the right combination of Clonezilla options to use. I'm beginning to think that maybe the answer is to boot Linux (probably Ubuntu) and then use some ancient BSD command. Trouble is I don't know what command (or parameters to use) in order to do a sector level copy from one drive to another. As far as I know the drives have the same number of sectors so this should be trivial. Sigh.

    Read the article

  • Is there a Mac utility that does low level drive integrity check and repair?

    - by Puzzled Late at Night
    The PGP Whole Disk Encryption for Mac OS X Quick Start User Guide version 10.0 contains the following remarks: PGP Corporation deliberately takes a conservative stance when encrypting drives, to prevent loss of data. It is not uncommon to encounter Cyclic Redundancy Check (CRC) errors while encrypting a hard disk. If PGP WDE encounters a hard drive with bad sectors, PGP WDE will, by default, pause the encryption process. This pause allows you to remedy the problem before continuing with the encryption process, thus avoiding potential disk corruption and lost data. To avoid disruption during encryption, PGP Corporation recommends that you start with a healthy disk by correcting any disk errors prior to encrypting. and As a best practice, before you attempt to use PGP WDE, use a third-party scan disk utility that has the ability to perform a low-level integrity check and repair any inconsistencies with the drive that could lead to CRC errors. These software applications can correct errors that would otherwise disrupt encryption. The PGP WDE Windows user guide suggests SpinRite or Norton Disk Doctor. What recourse do I have on the Mac?

    Read the article

  • write a batch file to copy files from one folder to another folder

    - by user73628
    I am having a storage folder on network in which all users will store their active data on a server now that server is going to be replaced by new one due to place problem so I need to copy sub folders files from the old server storage folder to new server storage folder. I have below ex: from \Oldeserver\storage\data & files to \New server\storage\data & files.

    Read the article

  • Oracle Systems and Solutions at OpenWorld Tokyo 2012

    - by ferhat
    Oracle OpenWorld Tokyo and JavaOne Tokyo will start next week April 4th. We will cover Oracle systems and Oracle Optimized Solutions in several keynote talks and general sessions. Full schedule can be found here. Come by the DemoGrounds to learn more about mission critical integration and optimization of complete Oracle stack. Our Oracle Optimized Solutions experts will be at hand to discuss 1-1 several of Oracle's systems solutions and technologies. Oracle Optimized Solutions are proven blueprints that eliminate integration guesswork by combing best in class hardware and software components to deliver complete system architectures that are fully tested, and include documented best practices that reduce integration risks and deliver better application performance. And because they are highly flexible by design, Oracle Optimized Solutions can be implemented as an end-to-end solution or easily adapted into existing environments. Oracle Optimized Solutions, Servers,  Storage, and Oracle Solaris  Sessions, Keynotes, and General Session Talks DAY TIME TITLE Notes Session Wednesday  April 4 9:00 - 11:15 Keynote: ENGINEERED FOR INNOVATION - Engineered Systems Mark Hurd,  President, Oracle Takao Endo, President & CEO, Oracle Corporation Japan John Fowler, EVP of Systems, Oracle Ed Screven, Chief Corporate Architect, Oracle English Session K1-01 11:50 - 12:35 Simplifying IT: Transforming the Data Center with Oracle's Engineered Systems Robert Shimp, Group VP, Product Marketing, Oracle English Session S1-01 15:20 - 16:05 Introducing Tiered Storage Solution for low cost Big Data Archiving S1-33 16:30 - 17:15 Simplifying IT - IT System Consolidation that also Accelerates Business Agility S1-42 Thursday  April 5 9:30 - 11:15 Keynote: Extreme Innovation Larry Ellison, Chief Executive Officer, Oracle English Session K2-01 11:50 - 13:20 General Session: Server and Storage Systems Strategy John Fowler, EVP of Systems, Oracle English Session G2-01 16:30 - 17:15 Top 5 Reasons why ZFS Storage appliance is "The cloud storage" by SAKURA Internet Inc L2-04 16:30 - 17:15 The UNIX based Exa* Performance IT Integration Platform - SPARC SuperCluster S2-42 17:40 - 18:25 Full stack solutions of hardware and software with SPARC SuperCluster and Oracle E-Business Suite  to minimize the business cost while maximizing the agility, performance, and availability S2-53 Friday April 6 9:30 - 11:15 Keynote: Oracle Fusion Applications & Cloud Robert Shimp, Group VP, Product Marketing Anthony Lye, Senior VP English Session K3-01 11:50 - 12:35 IT at Oracle: The Art of IT Transformation to Enable Business Growth English Session S3-02 13:00-13:45 ZFS Storagge Appliance: Architecture of high efficient and high performance S3-13 14:10 - 14:55 Why "Niko Niko doga" chose ZFS Storage Appliance to support their growing requirements and storage infrastructure By DWANGO Co, Ltd. S3-21 15:20 - 16:05 Osaka University: Lower TCO and higher flexibility for student study by Virtual Desktop By Osaka University S3-33 Oracle Developer Sessions with Oracle Systems and Oracle Solaris DAY TIME TITLE Notes LOCATION Friday April 6 13:00 - 13:45 Oracle Solaris 11 Developers D3-03 13:00 - 14:30 Oracle Solaris Tuning Contest Hands-On Lab D3-04 14:00 - 14:35 How to build high performance and high security Oracle Database environment with Oracle SPARC/Solaris English Session D3-13 15:00 - 15:45 IT Assets preservation and constructive migration with Oracle Solaris virtualization D3-24 16:00 - 17:30 The best packaging system for cloud environment - Creating an IPS package D3-34 Follow Oracle Infrared at Twitter, Facebook, Google+, and LinkedIn  to catch the latest news, developments, announcements, and inside views from  Oracle Optimized Solutions.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • How to implement an experience system?

    - by Roflcoptr
    I'm currently writing a small game that is based on earning experiences when killing enemies. As usual, each level requires more experience gain than the level before, and on higher levels killing enemies awards more experience. But I have problem balancing this system. Are there any prebuild algorithms that help to caculate how the experience curve required for each level should look like? And how much experience an average enemy on a specific level should provide?

    Read the article

  • Domain Models (PHP)

    - by Calum Bulmer
    I have been programming in PHP for several years and have, in the past, adopted methods of my own to handle data within my applications. I have built my own MVC, in the past, and have a reasonable understanding of OOP within php but I know my implementation needs some serious work. In the past I have used an is-a relationship between a model and a database table. I now know after doing some research that this is not really the best way forward. As far as I understand it I should create models that don't really care about the underlying database (or whatever storage mechanism is to be used) but only care about their actions and their data. From this I have established that I can create models of lets say for example a Person an this person object could have some Children (human children) that are also Person objects held in an array (with addPerson and removePerson methods, accepting a Person object). I could then create a PersonMapper that I could use to get a Person with a specific 'id', or to save a Person. This could then lookup the relationship data in a lookup table and create the associated child objects for the Person that has been requested (if there are any) and likewise save the data in the lookup table on the save command. This is now pushing the limits to my knowledge..... What if I wanted to model a building with different levels and different rooms within those levels? What if I wanted to place some items in those rooms? Would I create a class for building, level, room and item with the following structure. building can have 1 or many level objects held in an array level can have 1 or many room objects held in an array room can have 1 or many item objects held in an array and mappers for each class with higher level mappers using the child mappers to populate the arrays (either on request of the top level object or lazy load on request) This seems to tightly couple the different objects albeit in one direction (ie. a floor does not need to be in a building but a building can have levels) Is this the correct way to go about things? Within the view I am wanting to show a building with an option to select a level and then show the level with an option to select a room etc.. but I may also want to show a tree like structure of items in the building and what level and room they are in. I hope this makes sense. I am just struggling with the concept of nesting objects within each other when the general concept of oop seems to be to separate things. If someone can help it would be really useful. Many thanks

    Read the article

  • Common Areas For Securing Web Services

    The only way to truly keep a web service secure is to host it on a web server and then turn off the server. In real life no web service is 100% secure but there are methodologies for increasing the security around web services. In order for consumers of a web service they must adhere to the service’s Service-Level Agreement (SLA).  An SLA is a digital contract between a web service and its consumer. This contract defines what methods and protocols must be used to access the web service along with the defined data formats for sending and receiving data through the service. If either part does not abide by the contract then the service will not be accessible for consumption. Common areas for securing web services: Universal Discovery Description Integration  (UDDI) Web Service Description Language  (WSDL) Application Level Network Level “UDDI is a specification for maintaining standardized directories of information about web services, recording their capabilities, location and requirements in a universally recognized format.” (UDDI, 2010) WSDL on the other hand is a standardized format for defining a web service. A WSDL describes the allowable methods for accessing the web service along with what operations it performs. Web services in the Application Level can control access to what data is available by implementing its own security through various methodologies but the most common method is to have a consumer pass in a token along with a system identifier so that they system can validate the users access to any data or actions that they may be requesting. Security restrictions can also be applied to the host web server of the service by restricting access to the site by IP address or login credentials. Furthermore, companies can also block access to a service by using firewall rules and only allowing access to specific services on certain ports coming from specific IP addresses. This last methodology may require consumers to obtain a static IP address and then register it with the web service host so that they will be provide access to the information they wish to obtain. It is important to note that these areas can be secured in any combination based on the security level tolerance dictated by the publisher of the web service. This being said, the bare minimum security implantation must be in the Application Level within the web service itself. Typically I create a security layer within a web services exposed Internet that requires a consumer identifier and a consumer token. This information is then used to authenticate the requesting consumer before the actual request is performed. Refernece:UDDI. (2010). Retrieved 11 13, 2011, from LooselyCoupled.com: http://www.looselycoupled.com/glossary/UDDIService-Level Agreement (SLA). (n.d.). Retrieved 11 13, 2011, from SearchITChannel: http://searchitchannel.techtarget.com/definition/service-level-agreement

    Read the article

< Previous Page | 125 126 127 128 129 130 131 132 133 134 135 136  | Next Page >