Search Results

Search found 353 results on 15 pages for 'johnny cox'.

Page 13/15 | < Previous Page | 9 10 11 12 13 14 15  | Next Page >

  • Project Euler 52: Ruby

    - by Ben Griswold
    In my attempt to learn Ruby out in the open, here’s my solution for Project Euler Problem 52.  Compared to Problem 51, this problem was a snap. Brute force and pretty quick… As always, any feedback is welcome. # Euler 52 # http://projecteuler.net/index.php?section=problems&id=52 # It can be seen that the number, 125874, and its double, # 251748, contain exactly the same digits, but in a # different order. # # Find the smallest positive integer, x, such that 2x, 3x, # 4x, 5x, and 6x, contain the same digits. timer_start = Time.now def contains_same_digits?(n) value = (n*2).to_s.split(//).uniq.sort.join 3.upto(6) do |i| return false if (n*i).to_s.split(//).uniq.sort.join != value end true end i = 100_000 answer = 0 while answer == 0 answer = i if contains_same_digits?(i) i+=1 end puts answer puts "Elapsed Time: #{(Time.now - timer_start)*1000} milliseconds"

    Read the article

  • Project Euler 12: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 12.  As always, any feedback is welcome. # Euler 12 # http://projecteuler.net/index.php?section=problems&id=12 # The sequence of triangle numbers is generated by adding # the natural numbers. So the 7th triangle number would be # 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms # would be: # 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... # Let us list the factors of the first seven triangle # numbers: # 1: 1 # 3: 1,3 # 6: 1,2,3,6 # 10: 1,2,5,10 # 15: 1,3,5,15 # 21: 1,3,7,21 # 28: 1,2,4,7,14,28 # We can see that 28 is the first triangle number to have # over five divisors. What is the value of the first # triangle number to have over five hundred divisors? import time start = time.time() from math import sqrt def divisor_count(x): count = 2 # itself and 1 for i in xrange(2, int(sqrt(x)) + 1): if ((x % i) == 0): if (i != sqrt(x)): count += 2 else: count += 1 return count def triangle_generator(): i = 1 while True: yield int(0.5 * i * (i + 1)) i += 1 triangles = triangle_generator() answer = 0 while True: num = triangles.next() if (divisor_count(num) >= 501): answer = num break; print answer print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 17: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 17.  As always, any feedback is welcome. # Euler 17 # http://projecteuler.net/index.php?section=problems&id=17 # If the numbers 1 to 5 are written out in words: # one, two, three, four, five, then there are # 3 + 3 + 5 + 4 + 4 = 19 letters used in total. # If all the numbers from 1 to 1000 (one thousand) # inclusive were written out in words, how many letters # would be used? # # NOTE: Do not count spaces or hyphens. For example, 342 # (three hundred and forty-two) contains 23 letters and # 115 (one hundred and fifteen) contains 20 letters. The # use of "and" when writing out numbers is in compliance # with British usage. import time start = time.time() def to_word(n): h = { 1 : "one", 2 : "two", 3 : "three", 4 : "four", 5 : "five", 6 : "six", 7 : "seven", 8 : "eight", 9 : "nine", 10 : "ten", 11 : "eleven", 12 : "twelve", 13 : "thirteen", 14 : "fourteen", 15 : "fifteen", 16 : "sixteen", 17 : "seventeen", 18 : "eighteen", 19 : "nineteen", 20 : "twenty", 30 : "thirty", 40 : "forty", 50 : "fifty", 60 : "sixty", 70 : "seventy", 80 : "eighty", 90 : "ninety", 100 : "hundred", 1000 : "thousand" } word = "" # Reverse the numbers so position (ones, tens, # hundreds,...) can be easily determined a = [int(x) for x in str(n)[::-1]] # Thousands position if (len(a) == 4 and a[3] != 0): # This can only be one thousand based # on the problem/method constraints word = h[a[3]] + " thousand " # Hundreds position if (len(a) >= 3 and a[2] != 0): word += h[a[2]] + " hundred" # Add "and" string if the tens or ones # position is occupied with a non-zero value. # Note: routine is broken up this way for [my] clarity. if (len(a) >= 2 and a[1] != 0): # catch 10 - 99 word += " and" elif len(a) >= 1 and a[0] != 0: # catch 1 - 9 word += " and" # Tens and ones position tens_position_value = 99 if (len(a) >= 2 and a[1] != 0): # Calculate the tens position value per the # first and second element in array # e.g. (8 * 10) + 1 = 81 tens_position_value = int(a[1]) * 10 + a[0] if tens_position_value <= 20: # If the tens position value is 20 or less # there's an entry in the hash. Use it and there's # no need to consider the ones position word += " " + h[tens_position_value] else: # Determine the tens position word by # dividing by 10 first. E.g. 8 * 10 = h[80] # We will pick up the ones position word later in # the next part of the routine word += " " + h[(a[1] * 10)] if (len(a) >= 1 and a[0] != 0 and tens_position_value > 20): # Deal with ones position where tens position is # greater than 20 or we have a single digit number word += " " + h[a[0]] # Trim the empty spaces off both ends of the string return word.replace(" ","") def to_word_length(n): return len(to_word(n)) print sum([to_word_length(i) for i in xrange(1,1001)]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 19: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 19.  As always, any feedback is welcome. # Euler 19 # http://projecteuler.net/index.php?section=problems&id=19 # You are given the following information, but you may # prefer to do some research for yourself. # # - 1 Jan 1900 was a Monday. # - Thirty days has September, # April, June and November. # All the rest have thirty-one, # Saving February alone, # Which has twenty-eight, rain or shine. # And on leap years, twenty-nine. # - A leap year occurs on any year evenly divisible by 4, # but not on a century unless it is divisible by 400. # # How many Sundays fell on the first of the month during # the twentieth century (1 Jan 1901 to 31 Dec 2000)? import time start = time.time() import datetime sundays = 0 for y in range(1901,2001): for m in range(1,13): # monday == 0, sunday == 6 if datetime.datetime(y,m,1).weekday() == 6: sundays += 1 print sundays print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 2: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 2.  As always, any feedback is welcome. # Euler 2 # http://projecteuler.net/index.php?section=problems&id=2 # Find the sum of all the even-valued terms in the # Fibonacci sequence which do not exceed four million. # Each new term in the Fibonacci sequence is generated # by adding the previous two terms. By starting with 1 # and 2, the first 10 terms will be: # 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... # Find the sum of all the even-valued terms in the # sequence which do not exceed four million. import time start = time.time() total = 0 previous = 0 i = 1 while i <= 4000000: if i % 2 == 0: total +=i # variable swapping removes the need for a temp variable i, previous = previous, previous + i print total print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 11: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 11.  As always, any feedback is welcome. # Euler 11 # http://projecteuler.net/index.php?section=problems&id=11 # What is the greatest product # of four adjacent numbers in any direction (up, down, left, # right, or diagonally) in the 20 x 20 grid? import time start = time.time() grid = [\ [8,02,22,97,38,15,00,40,00,75,04,05,07,78,52,12,50,77,91,8],\ [49,49,99,40,17,81,18,57,60,87,17,40,98,43,69,48,04,56,62,00],\ [81,49,31,73,55,79,14,29,93,71,40,67,53,88,30,03,49,13,36,65],\ [52,70,95,23,04,60,11,42,69,24,68,56,01,32,56,71,37,02,36,91],\ [22,31,16,71,51,67,63,89,41,92,36,54,22,40,40,28,66,33,13,80],\ [24,47,32,60,99,03,45,02,44,75,33,53,78,36,84,20,35,17,12,50],\ [32,98,81,28,64,23,67,10,26,38,40,67,59,54,70,66,18,38,64,70],\ [67,26,20,68,02,62,12,20,95,63,94,39,63,8,40,91,66,49,94,21],\ [24,55,58,05,66,73,99,26,97,17,78,78,96,83,14,88,34,89,63,72],\ [21,36,23,9,75,00,76,44,20,45,35,14,00,61,33,97,34,31,33,95],\ [78,17,53,28,22,75,31,67,15,94,03,80,04,62,16,14,9,53,56,92],\ [16,39,05,42,96,35,31,47,55,58,88,24,00,17,54,24,36,29,85,57],\ [86,56,00,48,35,71,89,07,05,44,44,37,44,60,21,58,51,54,17,58],\ [19,80,81,68,05,94,47,69,28,73,92,13,86,52,17,77,04,89,55,40],\ [04,52,8,83,97,35,99,16,07,97,57,32,16,26,26,79,33,27,98,66],\ [88,36,68,87,57,62,20,72,03,46,33,67,46,55,12,32,63,93,53,69],\ [04,42,16,73,38,25,39,11,24,94,72,18,8,46,29,32,40,62,76,36],\ [20,69,36,41,72,30,23,88,34,62,99,69,82,67,59,85,74,04,36,16],\ [20,73,35,29,78,31,90,01,74,31,49,71,48,86,81,16,23,57,05,54],\ [01,70,54,71,83,51,54,69,16,92,33,48,61,43,52,01,89,19,67,48]] # left and right max, product = 0, 0 for x in range(0,17): for y in xrange(0,20): product = grid[y][x] * grid[y][x+1] * \ grid[y][x+2] * grid[y][x+3] if product > max : max = product # up and down for x in range(0,20): for y in xrange(0,17): product = grid[y][x] * grid[y+1][x] * \ grid[y+2][x] * grid[y+3][x] if product > max : max = product # diagonal right for x in range(0,17): for y in xrange(0,17): product = grid[y][x] * grid[y+1][x+1] * \ grid[y+2][x+2] * grid[y+3][x+3] if product > max: max = product # diagonal left for x in range(0,17): for y in xrange(0,17): product = grid[y][x+3] * grid[y+1][x+2] * \ grid[y+2][x+1] * grid[y+3][x] if product > max : max = product print max print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 16: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 16.  As always, any feedback is welcome. # Euler 16 # http://projecteuler.net/index.php?section=problems&id=16 # 2^15 = 32768 and the sum of its digits is # 3 + 2 + 7 + 6 + 8 = 26. # What is the sum of the digits of the number 2^1000? import time start = time.time() print sum([int(i) for i in str(2**1000)]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 13: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 13.  As always, any feedback is welcome. # Euler 13 # http://projecteuler.net/index.php?section=problems&id=13 # Work out the first ten digits of the sum of the # following one-hundred 50-digit numbers. import time start = time.time() number_string = '\ 37107287533902102798797998220837590246510135740250\ 46376937677490009712648124896970078050417018260538\ 74324986199524741059474233309513058123726617309629\ 91942213363574161572522430563301811072406154908250\ 23067588207539346171171980310421047513778063246676\ 89261670696623633820136378418383684178734361726757\ 28112879812849979408065481931592621691275889832738\ 44274228917432520321923589422876796487670272189318\ 47451445736001306439091167216856844588711603153276\ 70386486105843025439939619828917593665686757934951\ 62176457141856560629502157223196586755079324193331\ 64906352462741904929101432445813822663347944758178\ 92575867718337217661963751590579239728245598838407\ 58203565325359399008402633568948830189458628227828\ 80181199384826282014278194139940567587151170094390\ 35398664372827112653829987240784473053190104293586\ 86515506006295864861532075273371959191420517255829\ 71693888707715466499115593487603532921714970056938\ 54370070576826684624621495650076471787294438377604\ 53282654108756828443191190634694037855217779295145\ 36123272525000296071075082563815656710885258350721\ 45876576172410976447339110607218265236877223636045\ 17423706905851860660448207621209813287860733969412\ 81142660418086830619328460811191061556940512689692\ 51934325451728388641918047049293215058642563049483\ 62467221648435076201727918039944693004732956340691\ 15732444386908125794514089057706229429197107928209\ 55037687525678773091862540744969844508330393682126\ 18336384825330154686196124348767681297534375946515\ 80386287592878490201521685554828717201219257766954\ 78182833757993103614740356856449095527097864797581\ 16726320100436897842553539920931837441497806860984\ 48403098129077791799088218795327364475675590848030\ 87086987551392711854517078544161852424320693150332\ 59959406895756536782107074926966537676326235447210\ 69793950679652694742597709739166693763042633987085\ 41052684708299085211399427365734116182760315001271\ 65378607361501080857009149939512557028198746004375\ 35829035317434717326932123578154982629742552737307\ 94953759765105305946966067683156574377167401875275\ 88902802571733229619176668713819931811048770190271\ 25267680276078003013678680992525463401061632866526\ 36270218540497705585629946580636237993140746255962\ 24074486908231174977792365466257246923322810917141\ 91430288197103288597806669760892938638285025333403\ 34413065578016127815921815005561868836468420090470\ 23053081172816430487623791969842487255036638784583\ 11487696932154902810424020138335124462181441773470\ 63783299490636259666498587618221225225512486764533\ 67720186971698544312419572409913959008952310058822\ 95548255300263520781532296796249481641953868218774\ 76085327132285723110424803456124867697064507995236\ 37774242535411291684276865538926205024910326572967\ 23701913275725675285653248258265463092207058596522\ 29798860272258331913126375147341994889534765745501\ 18495701454879288984856827726077713721403798879715\ 38298203783031473527721580348144513491373226651381\ 34829543829199918180278916522431027392251122869539\ 40957953066405232632538044100059654939159879593635\ 29746152185502371307642255121183693803580388584903\ 41698116222072977186158236678424689157993532961922\ 62467957194401269043877107275048102390895523597457\ 23189706772547915061505504953922979530901129967519\ 86188088225875314529584099251203829009407770775672\ 11306739708304724483816533873502340845647058077308\ 82959174767140363198008187129011875491310547126581\ 97623331044818386269515456334926366572897563400500\ 42846280183517070527831839425882145521227251250327\ 55121603546981200581762165212827652751691296897789\ 32238195734329339946437501907836945765883352399886\ 75506164965184775180738168837861091527357929701337\ 62177842752192623401942399639168044983993173312731\ 32924185707147349566916674687634660915035914677504\ 99518671430235219628894890102423325116913619626622\ 73267460800591547471830798392868535206946944540724\ 76841822524674417161514036427982273348055556214818\ 97142617910342598647204516893989422179826088076852\ 87783646182799346313767754307809363333018982642090\ 10848802521674670883215120185883543223812876952786\ 71329612474782464538636993009049310363619763878039\ 62184073572399794223406235393808339651327408011116\ 66627891981488087797941876876144230030984490851411\ 60661826293682836764744779239180335110989069790714\ 85786944089552990653640447425576083659976645795096\ 66024396409905389607120198219976047599490197230297\ 64913982680032973156037120041377903785566085089252\ 16730939319872750275468906903707539413042652315011\ 94809377245048795150954100921645863754710598436791\ 78639167021187492431995700641917969777599028300699\ 15368713711936614952811305876380278410754449733078\ 40789923115535562561142322423255033685442488917353\ 44889911501440648020369068063960672322193204149535\ 41503128880339536053299340368006977710650566631954\ 81234880673210146739058568557934581403627822703280\ 82616570773948327592232845941706525094512325230608\ 22918802058777319719839450180888072429661980811197\ 77158542502016545090413245809786882778948721859617\ 72107838435069186155435662884062257473692284509516\ 20849603980134001723930671666823555245252804609722\ 53503534226472524250874054075591789781264330331690' total = 0 for i in xrange(0, 100 * 50 - 1, 50): total += int(number_string[i:i+49]) print str(total)[:10] print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 7: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 7.  As always, any feedback is welcome. # Euler 7 # http://projecteuler.net/index.php?section=problems&id=7 # By listing the first six prime numbers: 2, 3, 5, 7, # 11, and 13, we can see that the 6th prime is 13. What # is the 10001st prime number? import time start = time.time() def nthPrime(nth): primes = [2] number = 3 while len(primes) < nth: isPrime = True for prime in primes: if number % prime == 0: isPrime = False break if (prime * prime > number): break if isPrime: primes.append(number) number += 2 return primes[nth - 1] print nthPrime(10001) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 4: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 4.  As always, any feedback is welcome. # Euler 4 # http://projecteuler.net/index.php?section=problems&id=4 # Find the largest palindrome made from the product of # two 3-digit numbers. A palindromic number reads the # same both ways. The largest palindrome made from the # product of two 2-digit numbers is 9009 = 91 x 99. # Find the largest palindrome made from the product of # two 3-digit numbers. import time start = time.time() def isPalindrome(s): return s == s[::-1] max = 0 for i in xrange(100, 999): for j in xrange(i, 999): n = i * j; if (isPalindrome(str(n))): if (n > max): max = n print max print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 6: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 6.  As always, any feedback is welcome. # Euler 6 # http://projecteuler.net/index.php?section=problems&id=6 # Find the difference between the sum of the squares of # the first one hundred natural numbers and the square # of the sum. import time start = time.time() square_of_sums = sum(range(1,101)) ** 2 sum_of_squares = reduce(lambda agg, i: agg+i**2, range(1,101)) print square_of_sums - sum_of_squares print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 20: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 20.  As always, any feedback is welcome. # Euler 20 # http://projecteuler.net/index.php?section=problems&id=20 # n! means n x (n - 1) x ... x 3 x 2 x 1 # Find the sum of digits in 100! import time start = time.time() def factorial(n): if n == 0: return 1 else: return n * factorial(n-1) print sum([int(i) for i in str(factorial(100))]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 3: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 3.  As always, any feedback is welcome. # Euler 3 # http://projecteuler.net/index.php?section=problems&id=3 # The prime factors of 13195 are 5, 7, 13 and 29. # What is the largest prime factor of the number # 600851475143? import time start = time.time() def largest_prime_factor(n): max = n divisor = 2 while (n >= divisor ** 2): if n % divisor == 0: max, n = n, n / divisor else: divisor += 1 return max print largest_prime_factor(600851475143) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 1: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 1.  As always, any feedback is welcome. # Euler 1 # http://projecteuler.net/index.php?section=problems&amp;id=1 # If we list all the natural numbers below 10 that are # multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of # these multiples is 23. Find the sum of all the multiples # of 3 or 5 below 1000. import time start = time.time() print sum([x for x in range(1000) if x % 3== 0 or x % 5== 0]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue') # Also cool def constraint(x): return x % 3 == 0 or x % 5 == 0 print sum(filter(constraint, range(1000)))

    Read the article

  • What's the best Open Php newsletter manager ?

    - by Bilel
    Hi :) I'm looking for a nice newsletter management solution. I tried CCmail a good script but whaere I can't imort usernames !!! I would like to find a system that is able to import Opt-in lists in the following format : John Smith;[email protected];other paramaeters...;[like] ;Male;Age... I will develop my own module if I could find another emailing manager Are you already satisfied with a similar application with a trusted (spam-prevention) emailer ? Thank you :)

    Read the article

  • Algorithm to compare people names to detect identicalness

    - by Pentium10
    I am working on address book synchronization algorithm. I would like to reuse some code if there exists, but couldn't find one yet. Does someone know about an algorithm that will tell me in numbers/float/procent how much two names are identical. Levenstein distance is not good in this approach, as names and our adddress books are matching the begining of each of the name sections. John Smith should match Smith Jon, Jonathan Smith, Johnny Smith

    Read the article

  • Prolog: Error Handling and Find Unique

    - by anotherstat
    Given: fruitid('Apple', 'Granny Smith', 1). fruitid('Apple', 'Cox', 2). fruitid('Pear', 'Bartlett', 3). How would I go about finding only unique items for instance: is_unique(FruitName):- In the example clauses the answer would be Pear. I'm also trying to add error handling to my code, so in this instance if an input is: is_unique(pineapple) How could I catch this and output an error message? Thanks, AS

    Read the article

  • SQL & Linq To SQL Help

    - by cre-johnny07
    I have a table which is some thing like below.. Date ID 2009-07-01 1 2009-07-01 2 2009-07-01 3 2009-08-01 4 2009-08-01 5 2009-08-01 6 2009-09-01 7 2009-09-01 8 2009-10-01 9 2009-10-01 10 2009-11-01 11 .... Now I need to write a query which will show a output like below. Date Start End 2009-07 1 3 2009-08 4 6 2009-09 7 8 ... How can I do this.. Any help would be highly appreciated Thanking In Advance Johnny

    Read the article

  • Efficient way to store tuples in the datastore

    - by Drew Sears
    If I have a pair of floats, is it any more efficient (computationally or storage-wise) to store them as a GeoPtProperty than it would be pickle the tuple and store it as a BlobProperty? If GeoPt is doing something more clever to keep multiple values in a single property, can it be leveraged for arbitrary data? Can I store the tuple ("Johnny", 5) in a single entity property in a similarly efficient manner?

    Read the article

  • IP Micro-outages, telephone micro-outages, and CATV micro-outages

    - by Michael Graff
    This is a long and complicated question, mostly because it has been going on for 2.5 years without a solution in sight. It also is only one-third computer related, the other two-thirds are cable TV and cable-phone related. Background I have COX Communications for a cable provider, and we get Internet, digital cable TV, and digital phone service through them. The Internet is a SB5101 right now, and has been a DPC2100 and SB5120 in the past. Same results. The phone service is provided through a telephone interface mounted on the outside of the house (not classic VoIP) and the CATV is through a Scientific Atlanta receiver without DVR. I do have a TiVo connected to the CATV box. Symptoms The CATV shows "blocking" -- sometimes very very short duration where a few blocks appear on the screen. Sometimes it lasts long enough that the video "pauses" for 2-5 seconds, and rarely but not unseen the audio also fails. The CATV decoder box shows no correctable (FEC) or uncorrectable errors. That is, all BER counters are zero for the video stream. The Internet shows "micro-outages" where it appears that sent packets are not making it out, but I continue to receive packets from local modems. That is, pings stop coming back, but I continue to see modems broadcast for DHCP, and sometimes they ask more than once. The cable modem shows no errors during this time, but cable modems lie like you would not believe. It is actually possible to unplug the coax from the modem for 20 seconds and it reports NO ERRORS to the provider's tools. The phone service cuts out for 1-3 seconds, infrequently. When this happens, I hear NOTHING (not even comfort noise) and the remote side hears a "click" as if I were getting a call waiting message. However, there is no call incoming, other than the one I'm currently on of course. Things SEEM to happen more frequently when the temperature outside swings from cold to warm, so fall/spring seems worse than summer/winter. All micro-outages occur between once or twice a day (which I could ignore) to 10 times per hour. All SNR, signal levels, noise levels, etc. show very close to optimal when measured. COX's diagnosis This is a continual pain for me. Over the last 2.5 years, they have opened, "fixed" something, and closed the tickets. They close it without confirming that it is indeed better, and when I reopen they cannot do that, but instead they open a new ticket and send yet another low-level tech out to do the same signal tests and report that all is OK. I've finally gotten a line tech who has a clue and is motivated enough to pursue this with me. We have tried things like switching the local nodes over to UPS and generator power, but this does not trigger the noise. We have tried replacing all cabling, the tap outside my house, the modem, the CATV decoder -- all without resolution. Recently they have decided it is both my computer or switch, my TiVo, and my phone that are all broken and causing this issue. My debugging steps I spent the worse day of my TV-watching life yesterday and part of today. I watched live TV without the TiVo. I witnessed blocking, but it did "feel different." and was actually more severe. Some days it is better, some days it is worse, so perhaps this was just a very bad day. Today, I connected the TiVo to my DVD player, and ran two very long movies through it. I saw no blocking at all during nearly 6 hours of video. Suggestions? Does anyone have any suggestions on what to do next? I understand perhaps only the IP side can be addressed here, but it is one of the more limiting debugging options.

    Read the article

  • Our wi-fi at work is ridiculously slow, will adding more range extenders improve it?

    - by john
    At work, we have two wireless networks (e.g., Work1 Work2); the Work2 is used downstairs and Work1 is used upstairs. However, both are notoriously slow. The connection is better when we are wired in, but unfortunately due to our building being very old and our company growing very fast, most employees are not seated near the walls where the ethernet cables are. I had Cox, our ISP, run a bandwidth utilization test and it doesn't seem like we are capping out on upstream/downstream, which leads me to believe that it's strictly an issue with the wireless networks (which were implemented before I got there). The wireless networks are both Apple Airport Extremes. Is there anything I can do to improve the situation for everyone? Speeds are extremely slow, and sometimes drops out.

    Read the article

  • Can I run a web site from my home network without jeapordizing other computers on my LAN?

    - by Alchemical
    I have a home LAN with 5 computers and a NAS, all connected to a Linksys router which is connected to my Cox cable modem. I'm interested in having one of my computers run an IIS-based web site and to have it be accessible to the internet with a static IP. However, I do not want o jeapordize the safety of the other computers on my home network! Is there anyway to do this safely, or as safe as possible? I may also like to run an FTP server from this computer. Finally, optionally I would like to allow remote access to this computer from the internet--but it seems to me that that may increase the security risk to the other computers substantially.

    Read the article

  • Wi-Fi connection drops when downloading torrents, but wired connection still works

    - by bryan
    After downloading for an hour or so, the Wi-Fi connection on my tablet stops working; forcing me to restart my router(it basically hangs when trying to connect). This only happens when downloading torrents. WIRED connection on my desktop PC with router still works fine; no issues at all. I tired to lower the number of global connections to 50, but I still have the problem. I have also updated to the latest Linksys firmware. One PC, a tablet and a smartphone. I have COX cable. Please let me know if you need any other info. Thank you!

    Read the article

  • wifi routers and concurrent devices

    - by Joelio
    We have a Linksys WRT54G WiFi router in our office which was working great when we had 5-6 folks. Now on peak days we have 10-15 people, each with a computer, smartphone, etc, and an ooma VOIP device. On average 1-2 times a day I need to go hard reboot the router, and sometimes the border router (Cox-supplied device). I assume this is just because the router cant handle this many concurrent users. So my question is can these consumer routers handle this kind of load? If not, would adding more devices solve the problem, and how close proximity can I put 2 routers without having interference problems (our office area is not that big physically)?

    Read the article

< Previous Page | 9 10 11 12 13 14 15  | Next Page >