Search Results

Search found 1458 results on 59 pages for 'protect from forgery'.

Page 13/59 | < Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >

  • How do I make sure the web developer I hire will not steal my idea?

    - by Greg McNulty
    So I have a great idea for a new website. However, not the time to develop it. I would like to hire a person or company to design it for me. What steps do I need to take, to protect my idea? Where and how do people protect website ideas in general? Also, how easy is it for someone to tweak the idea and make it legally heir own? Is a patent enough to protect such a thing, idea. Are there different levels or types of protection? Thank You.

    Read the article

  • Function to hide sloppy phone numbers..

    - by Frank Malina
    I need to hide phone numbers (and maybe other contact details) in user generated content to protect my users from anonymous web. Input is very random, therefore I'd be looking to replace anything that looks like a phone number (e.g.: string of 3 or more numbers) with just dots, and also perhaps remove some exotic notations of e-mail addresses. What is the best way to do this? Nice and slick, reusable. Give away your secret regexes. Write in any language. Except perhaps COBOL :) function privacy($str){ // protect phone numbers // protect e-mail addresses // protect web addresses }

    Read the article

  • protecting my web page and folder from external using .htaccess and .htpassword in php

    - by Testadmin
    Hai I want to protect a folder (protect) and the files inside that folder. I have created a .htaccess file and put the following code. AuthName "Myfolder" AuthType Basic AuthUserFile url/protect/.htpasswd Require valid-user Also created a .htpassword file which contain username:password When I run my URL http://localhost/url/protect, I got a pop up asking username and password, I entered username as username and password as password. After that I got an error page "server error 500" "The server encountered an internal error and was unable to complete your request. Either the server is overloaded or there was an error in a CGI script. If you think this is a server error, please contact the webmaster." Why this happened?. Any thing wrong here? Anything needs to see my pages under the folder. Please give me the answer.

    Read the article

  • Protecting Data from Users

    What is the best way to prevent unintended updates or deletes in a table? The small changes may not be so hard to recover from, but what if every record in the table underwent a change? How can you protect users from themselves and how do you protect yourself from you?

    Read the article

  • Beware: Upgrade to ASP.NET MVC 2.0 with care if you use AntiForgeryToken

    - by James Crowley
    If you're thinking of upgrading to MVC 2.0, and you take advantage of the AntiForgeryToken support then be careful - you can easily kick out all active visitors after the upgrade until they restart their browser. Why's this?For the anti forgery validation to take place, ASP.NET MVC uses a session cookie called "__RequestVerificationToken_Lw__". This gets checked for and de-serialized on any page where there is an AntiForgeryToken() call. However, the format of this validation cookie has apparently changed between MVC 1.0 and MVC 2.0. What this means is that when you make to switch on your production server to MVC 2.0, suddenly all your visitors session cookies are invalid, resulting in calls to AntiForgeryToken() throwing exceptions (even on a standard GET request) when de-serializing it: [InvalidCastException: Unable to cast object of type 'System.Web.UI.Triplet' to type 'System.Object[]'.]   System.Web.Mvc.AntiForgeryDataSerializer.Deserialize(String serializedToken) +104[HttpAntiForgeryException (0x80004005): A required anti-forgery token was not supplied or was invalid.]   System.Web.Mvc.AntiForgeryDataSerializer.Deserialize(String serializedToken) +368   System.Web.Mvc.HtmlHelper.GetAntiForgeryTokenAndSetCookie(String salt, String domain, String path) +209   System.Web.Mvc.HtmlHelper.AntiForgeryToken(String salt, String domain, String path) +16   System.Web.Mvc.HtmlHelper.AntiForgeryToken() +10  <snip> So you've just kicked all your active users out of your site with exceptions until they think to restart their browser (to clear the session cookies). The only work around for now is to either write some code that wipes this cookie - or disable use of AntiForgeryToken() in your MVC 2.0 site until you're confident all session cookies will have expired. That in itself isn't very straightforward, given how frequently people tend to hibernate/standby their machines - the session cookie will only clear once the browser has been shut down and re-opened. Hope this helps someone out there!

    Read the article

  • Autodetect/mount SDCards and run script for them on Linux

    - by Brendan
    Hey Everyone, I'm currently running SME Server, and need to have a script run upon the attachment of SD Cards to my server. The script itself works fine (it copies the contents of the cards), but the automounting and execution of the script is where I'm having issues. The I have a USB hub consisting of 10 USB ports; that shows up as: [root@server ~]# lsusb Bus 004 Device 002: ID 0000:0000 Bus 004 Device 001: ID 0000:0000 Bus 003 Device 001: ID 0000:0000 Bus 002 Device 001: ID 0000:0000 Bus 001 Device 055: ID 1a40:0101 TERMINUS TECHNOLOGY INC. Bus 001 Device 051: ID 1a40:0101 TERMINUS TECHNOLOGY INC. Bus 001 Device 050: ID 1a40:0101 TERMINUS TECHNOLOGY INC. Bus 001 Device 001: ID 0000:0000 (The hub is the TERMINUS TECHNOLOGY INC entries) As I cannot plug SD Cards directly into the server; I use a USB to SD card attachement (10 of them) plugged into the hub to read the cards. Upon pluggig the 10 attachments (without cards) into the hub; lsusb yields the following: [root@server ~]# lsusb Bus 004 Device 002: ID 0000:0000 Bus 004 Device 001: ID 0000:0000 Bus 003 Device 001: ID 0000:0000 Bus 002 Device 001: ID 0000:0000 Bus 001 Device 073: ID 05e3:0723 Genesys Logic, Inc. Bus 001 Device 072: ID 05e3:0723 Genesys Logic, Inc. Bus 001 Device 071: ID 05e3:0723 Genesys Logic, Inc. Bus 001 Device 070: ID 05e3:0723 Genesys Logic, Inc. Bus 001 Device 069: ID 05e3:0723 Genesys Logic, Inc. Bus 001 Device 068: ID 05e3:0723 Genesys Logic, Inc. Bus 001 Device 067: ID 05e3:0723 Genesys Logic, Inc. Bus 001 Device 066: ID 05e3:0723 Genesys Logic, Inc. Bus 001 Device 065: ID 05e3:0723 Genesys Logic, Inc. Bus 001 Device 064: ID 05e3:0723 Genesys Logic, Inc. Bus 001 Device 055: ID 1a40:0101 TERMINUS TECHNOLOGY INC. Bus 001 Device 051: ID 1a40:0101 TERMINUS TECHNOLOGY INC. Bus 001 Device 050: ID 1a40:0101 TERMINUS TECHNOLOGY INC. Bus 001 Device 001: ID 0000:0000 As you can see, the readers are the "Gensys Logic, Inc" entries. Plugging in an SD card to a reader doesn't affect lsusb (it reads exactly as above), however my system recognises the cards fine; as indicated by dmesg: Attached scsi generic sg11 at scsi54, channel 0, id 0, lun 0, type 0 USB Mass Storage device found at 73 SCSI device sdd: 31388672 512-byte hdwr sectors (16071 MB) sdd: Write Protect is on sdd: Mode Sense: 03 00 80 00 sdd: assuming drive cache: write through SCSI device sdd: 31388672 512-byte hdwr sectors (16071 MB) sdd: Write Protect is on sdd: Mode Sense: 03 00 80 00 sdd: assuming drive cache: write through sdd: sdd1 SCSI device sdd: 31388672 512-byte hdwr sectors (16071 MB) sdd: Write Protect is on sdd: Mode Sense: 03 00 80 00 sdd: assuming drive cache: write through SCSI device sdd: 31388672 512-byte hdwr sectors (16071 MB) sdd: Write Protect is on sdd: Mode Sense: 03 00 80 00 sdd: assuming drive cache: write through sdd: sdd1 SCSI device sdd: 31388672 512-byte hdwr sectors (16071 MB) sdd: Write Protect is on sdd: Mode Sense: 03 00 80 00 sdd: assuming drive cache: write through SCSI device sdd: 31388672 512-byte hdwr sectors (16071 MB) sdd: Write Protect is on sdd: Mode Sense: 03 00 80 00 sdd: assuming drive cache: write through sdd: sdd1 If I manually mount sdd1 (mount /dev/sdd1 /somedirectory/) this works fine. What I'm really after is a solution that automounts each of the cards as they are inputted into the reader; and executes a script for them (this will involve copying their contents to another directory). My problem is that I don't know how to do this; I don't think udev will work as the USB devices don't change; if I could somehow get udev working with /dev/disk/by-path/ however I think this is doable (it seems to keep constant entries). ls /dev/disk returns: pci-0000:00:1d.7-usb-0:4.1.1.1:1.0-scsi-0:0:0:0 pci-0000:00:1d.7-usb-0:4.1.1.2:1.0-scsi-0:0:0:0 pci-0000:00:1d.7-usb-0:4.1.1.3:1.0-scsi-0:0:0:0 pci-0000:00:1d.7-usb-0:4.1.1.4:1.0-scsi-0:0:0:0 pci-0000:00:1d.7-usb-0:4.1.2:1.0-scsi-0:0:0:0 pci-0000:00:1d.7-usb-0:4.1.3:1.0-scsi-0:0:0:0 pci-0000:00:1d.7-usb-0:4.1.4:1.0-scsi-0:0:0:0 pci-0000:00:1d.7-usb-0:4.2:1.0-scsi-0:0:0:0 pci-0000:00:1d.7-usb-0:4.3:1.0-scsi-0:0:0:0 pci-0000:00:1d.7-usb-0:4.4:1.0-scsi-0:0:0:0 pci-0000:00:1d.7-usb-0:4.4:1.0-scsi-0:0:0:0-part1 pci-0000:0b:01.0-scsi-0:0:1:0 pci-0000:0b:01.0-scsi-0:0:1:0-part1 pci-0000:0b:01.0-scsi-0:0:1:0-part2 From above, we can see I have only one card plugged into the reader (pci-0000:00:1d.7-usb-0:4.4:1.0-scsi-0:0:0:0-part1). Going mount /dev/disk/by-path/pci-0000\:00\:1d.7-usb-0\:4.4\:1.0-scsi-0\:0\:0\:0-part1 Works and places the card under /media/usbdisk/, however: mount /dev/disk/by-path/pci-0000\:00\:1d.7-usb-0\:4.4\:1.0-scsi-0\:0\:0\:0-part1 slot1/ doesn't work, and returns "mount: can't get address for /dev/disk/by-path/pci-0000" Any ideas and solutions would be great, I've seen the knowledge of a lot of the guys on here before so I'm hopeful someone can help me out. Thanks

    Read the article

  • Mysql Encryption and Key managment

    - by microchasm
    I am developing a local intranet system in PHP/MySQL to manage our client data. It seems that the best practice would be to encrypt the sensitive data on the MYSQL server as it is being entered. I am not clear, though, on what would be the best way to do this while still having the data readily accessible. It seems like a tough question to answer: where is the key(s) stored? How to best protect the key? If the key is stored on each users' machine, how to protect it if the machine is exploited? If the key is exploited, how to change the key? If the key is to be stored in the db, how to protect it there? How would users access it? If anyone could point me in the right direction, or give some tips I'd be very grateful. Thanks.

    Read the article

  • Copyrights, Trademarks, Patents - Oh My!

    - by kennedysteve
    Good references when looking to see if someone really legally owns a name, copyright, etc. Copyrights = http://cocatalog.loc.gov/ Trademarks = http://tess2.uspto.gov Patents = http://patft.uspto.gov/ Website Address = http://www.internic.net/whois.html   Copyright Copyright, a form of intellectual property law, protects original works of authorship including literary, dramatic, musical, and artistic works, such as poetry, novels, movies, songs, computer software, and architecture. Copyright does not protect facts, ideas, systems, or methods of operation, although it may protect the way these things are expressed.   Trademark A trademark protects words, phrases, symbols, or designs identifying the source of the goods or services of one party and distinguishing them from those of others.   Patents Set of exclusive rights to an inventor for a limited period of time in exchange for a public disclosure of an invention.   Website Address (aka "Domain name") The core portion of a website name (such as "apple.com" or "msn.com") of a web site, which is uniquely registered to an individual or company (also found to the right of the @ sign in an email address such as "[email protected]".)   Side note #1. LLC Company Names appear to be registered and maintained by state only. If you want to reserve a LLC name nation wide, you may have to register with each state.   Side note #2. The copyright office's FAQ has a question called "How do I protect my sighting of Elvis?". No kidding. Check it out. http://www.

    Read the article

  • PDFtk Password Protection Help

    - by Dave W.
    I am using Ubuntu 11.10 and am looking for a solution to password protect a bunch of pdf files in a directory in batch. I came across PDFtk and it looks like it might do what I need, but I've reviewed the command line PDFtk examples and can't figure out if there is a way to do it in batch without having to individually specify the output file name for every file. I'm hoping a command-line guru can take a look at the PDFtk syntax and tell me if there is some trick / command that will allow me to password protect a directory of pdf files (e.g., *.pdf) and overwrite the existing files using the same name, or consistently rename the individual output files without having to specify each output name individually. Here's a link to the PDFtk command line examples page: http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/ Thanks for your help. I think I've answered my own question. Here's a bash script that appears to do the trick. I'd welcome help evaluating why the code I've commented out doesn't work... #!/bin/bash # Created by Dave, 2012-02-23 # This script uses PDFtk to password protect every PDF file # in the directory specified. The script creates a directory named "protected_[DATE]" # to hold the password protected version of the files. # # I'm using the "user_pw" parameter, # which means no one will be able to open or view the file without # the password. # # PDFtk must be installed for this script to work. # # Usage: ./protect_with_pdftk.bsh [FILE(S)] # [FILE(S)] can use wildcard expansion (e.g., *.pdf) # This part isn't working.... ignore. The goal is to avoid errors if the # directory to be created already exists by only attempting to create # it if it doesn't exists # #TARGET_DIR="protected_$(date +%F)" #if [ -d "$TARGET_DIR" ] #then #echo # echo "$TARGET_DIR directory exists!" #else #echo # echo "$TARGET_DIR directory does not exist!" #fi # mkdir protected_$(date +%F) for i in *pdf ; do pdftk "$i" output "./protected_$(date +%F)/$i" user_pw [PASSWORD]; done echo "Complete. Output is in the directory: ./protected_$(date +%F)"

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • Obfuscation is not a panacea

    - by simonc
    So, you want to obfuscate your .NET application. My question to you is: Why? What are your aims when your obfuscate your application? To protect your IP & algorithms? Prevent crackers from breaking your licensing? Your boss says you need to? To give you a warm fuzzy feeling inside? Obfuscating code correctly can be tricky, it can break your app if applied incorrectly, it can cause problems down the line. Let me be clear - there are some very good reasons why you would want to obfuscate your .NET application. However, you shouldn't be obfuscating for the sake of obfuscating. Security through Obfuscation? Once your application has been installed on a user’s computer, you no longer control it. If they do not want to pay for your application, then nothing can stop them from cracking it, even if the time cost to them is much greater than the cost of actually paying for it. Some people will not pay for software, even if it takes them a month to crack a $30 app. And once it is cracked, there is nothing stopping them from putting the result up on the internet. There should be nothing suprising about this; there is no software protection available for general-purpose computers that cannot be cracked by a sufficiently determined attacker. Only by completely controlling the entire stack – software, hardware, and the internet connection, can you have even a chance to be uncrackable. And even then, someone somewhere will still have a go, and probably succeed. Even high-end cryptoprocessors have known vulnerabilities that can be exploited by someone with a scanning electron microscope and lots of free time. So, then, why use obfuscation? Well, the primary reason is to protect your IP. What obfuscation is very good at is hiding the overall structure of your program, so that it’s very hard to figure out what exactly the code is doing at any one time, what context it is running in, and how it fits in with the rest of the application; all of which you need to do to understand how the application operates. This is completely different to cracking an application, where you simply have to find a single toggle that determines whether the application is licensed or not, and flip it without the rest of the application noticing. However, again, there are limitations. An obfuscated application still has to run in the same way, and do the same thing, as the original unobfuscated application. This means that some of the protections applied to the obfuscated assembly have to be undone at runtime, else it would not run on the CLR and do the same thing. And, again, since we don’t control the environment the application is run on, there is nothing stopping a user from undoing those protections manually, and reversing some of the obfuscation. It’s a perpetual arms race, and it always will be. We have plenty of ideas lined about new protections, and the new protections added in SA 6.6 (method parent obfuscation and a new control flow obfuscation level) are specifically designed to be harder to reverse and reconstruct the original structure. So then, by all means, obfuscate your application if you want to protect the algorithms and what the application does. That’s what SmartAssembly is designed to do. But make sure you are clear what a .NET obfuscator can and cannot protect you against, and don’t expect your obfuscated application to be uncrackable. Someone, somewhere, will crack your application if they want to and they don’t have anything better to do with their time. The best we can do is dissuade the casual crackers and make it much more difficult for the serious ones. Cross posted from Simple Talk.

    Read the article

  • protecting an application against hardware failure [on hold]

    - by alex
    I have an application for which I am looking for a way to protect against hardware and software (operating system ) failure. Cluster seems OK but the storage become the single point of failure and also I do not have a SAN. Can you please tell me if there are other ways to protect the application? Periodically this application is updated and changes should be replicated automatically to the second server.

    Read the article

  • Is free security software as good as paid security software?

    - by Tester101
    I mostly use free security solutions to protect my home PC, but I wonder if I would get better protection from a paid solution. I prefer the free software, since I can have multiple applications protecting against different threats. With paid software I feel like I have to choose just one, and hope it can protect against everything. Is it worth it to pay for security when there are free options?

    Read the article

  • Tweeple some general questions about twitter

    - by Peter
    1) If I tweet to someone who is not my friend/follower does he receive my tweets? What if I select 'protect my tweets' option in my profile? 2) Can someone who is not my friend/follower send me a tweet? What if I select 'protect my tweets' option in my profile?

    Read the article

  • Allow a new line anywhere in the regex?

    - by Scott Chamberlain
    I am having a find a replace in a bunch of RTF documents, The basic pattern I need is \{(?:\\\*)?\\field\\fldlock\{\\\*\\fldinst ?MERGEFIELD ?((?:\\.*?)?[\w\[\]]+?)(?:\\.*?)?\}(?:\{\\fldrslt\})?\} However I then found out there could potentialy be a newline before each slash, so it turned in to this. \{(?:\s*\\\*)?\s*\\field\s*\\fldlock\s*\{\s*\\\*\s*\\fldinst\s*MERGEFIELD\s*((?:\\.*?)?[\w\[\]]+?(?:\s*\\.*?)?)?\s*\}(?:\s*\{\s*\\fldrslt\s*\})?\s*\} But then I hit this it fails fees totaling $\protect {\field\fldlock{\*\fldinst MERGEFIELD ENTEROUTSTANDINGVETERINARYF EES}}\plain\f0\fs24\prot Is there way have to have it match a new line anywhere in the search too without adding (?:\r?\n)? everywhere? EDIT To clear up confusion on the new lines. I need to keep the newlines in the document, I only want to remove the newlines if they are inside my match, so in the final example I posted it should replace fees totaling $\protect {\field\fldlock{\*\fldinst MERGEFIELD ENTEROUTSTANDINGVETERINARYF EES}}\plain\f0\fs24\prot with fees totaling $\protect ENTEROUTSTANDINGVETERINARYFEES\plain\f0\fs24\prot

    Read the article

  • Daily tech links for .net and related technologies - May 26-29, 2010

    - by SanjeevAgarwal
    Daily tech links for .net and related technologies - May 26-29, 2010 Web Development Porting MVC Music Store to Raven: StoreController - Ayende Building a Store Locator ASP.NET Application Using Google Maps API - Scott Mitchell Anti-Forgery Request Recipes For ASP.NET MVC And AJAX - Dixin How to Localize an ASP.NET MVC Application - Michael Ceranski Tekpub ASP.NET MVC 2 Starter Site 0.5 Released - Rob Conery How to use Google Data API in ASP.NET MVC. Part 2 - Mahdi jQuery.validate and Html.ValidationSummary...(read more)

    Read the article

  • Daily tech links for .net and related technologies - June 1-3, 2010

    - by SanjeevAgarwal
    Daily tech links for .net and related technologies - June 1-3, 2010 Web Development Anti-Forgery Request Recipes For ASP.NET MVC And AJAX - Dixin ASP.NET MVC 2 Localization Complete Guide - Alex Adamyan Dynamically Structured ViewModels in ASP.NET MVC - Keith Brown ASP.NET MVC Time Planner is available at CodePlex - Gunnar Peipman Part 2 – A Cascading Hierarchical Field Template & Filter for Dynamic Data - Steve SharePoint Server 2010 Enterprise Content Management Resources - Andrew Connell Web...(read more)

    Read the article

  • Multiple vulnerabilities in Samba

    - by chandan
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2011-2522 Cross-Site Request Forgery (CSRF) vulnerability 6.8 Samba Solaris 10 SPARC: 119757-21 X86: 119758-21 Solaris 9 Contact Support CVE-2011-2694 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability 2.6 This notification describes vulnerabilities fixed in third-party components that are included in Sun's product distribution.Information about vulnerabilities affecting Oracle Sun products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • Dotfuscator Deep Dive with WP7

    - by Bil Simser
    I thought I would share some experience with code obfuscation (specifically the Dotfuscator product) and Windows Phone 7 apps. These days twitter is a buzz with black hat and white operations coming out about how the marketplace is insecure and Microsoft failed, blah, blah, blah. So it’s that much more important to protect your intellectual property. You should protect it no matter what when releasing apps into the wild but more so when someone is paying for them. You want to protect the time and effort that went into your code and have some comfort that the casual hacker isn’t going to usurp your next best thing. Enter code obfuscation. Code obfuscation is one tool that can help protect your IP. Basically it goes into your compiled assemblies, rewrites things at an IL level (like renaming methods and classes and hiding logic flow) and rewrites it back so that the assembly or executable is still fully functional but prying eyes using a tool like ILDASM or Reflector can’t see what’s going on.  You can read more about code obfuscation here on Wikipedia. A word to the wise. Code obfuscation isn’t 100% secure. More so on the WP7 platform where the OS expects certain things to be as they were meant to be. So don’t expect 100% obfuscation of every class and every method and every property. It’s just not going to happen. What this does do is give you some level of protection but don’t put all your eggs in one basket and call it done. Like I said, this is just one step in the process. There are a few tools out there that provide code obfuscation and support the Windows Phone 7 platform (see links to other tools at the end of this post). One such tool is Dotfuscator from PreEmptive solutions. The thing about Dotfuscator is that they’ve struck a deal with Microsoft to provide a *free* copy of their commercial product for Windows Phone 7. The only drawback is that it only runs until March 31, 2010. However it’s a good place to start and the focus of this article. Getting Started When you fire up Dotfuscator you’re presented with a dialog to start a new project or load a previous one. We’ll start with a new project. You’re then looking at a somewhat blank screen that shows an Input tab (among others) and you’re probably wondering what to do? Click on the folder icon (first one) and browse to where your xap file is. At this point you can save the project and click on the arrow to start the process. Bam! You’re done. Right? Think again. The program did indeed run and create a new version of your xap (doing it’s thing and rewriting back your *obfuscated* assemblies) but let’s take a look at the assembly in Reflector to see the end result. Remember a xap file is really just a glorified zip file (or cab file if you prefer). When you ran Dotfuscator for the first time with the default settings you’ll see it created a new version of your xap in a folder under “My Documents” called “Dotfuscated” (you can configure the output directory in settings). Here’s the new xap file. Since a xap is just a zip, rename it to .cab or .zip or something and open it with your favorite unarchive program (I use WinRar but it doesn’t matter as long as it can unzip files). If you already have the xap file associated with your unarchive tool the rename isn’t needed. Once renamed extract the contents of the xap to your hard drive: Now you’ll have a folder with the contents of the xap file extracted: Double click or load up your assembly (WindowsPhoneDataBoundApplication1.dll in the example) in Reflector and let’s see the results: Hmm. That doesn’t look right. I can see all the methods and the code is all there for my LoadData method I wanted to protect. Product failure. Let’s return it for a refund. Hold your horses. We need to check out the settings in the program first. Remember when we loaded up our xap file. It started us on the Input tab but there was a settings tab before that. Wonder what it does? Here’s the default settings: Renaming Taking a closer look, all of the settings in Feature are disabled. WTF? Yeah, it leaves me scratching my head why an obfuscator by default doesn’t obfuscate. However it’s a simple fix to change these settings. Let’s enable Renaming as it sounds like a good start. Renaming obscures code by renaming methods and fields to names that are not understandable. Great. Run the tool again and go through the process of unzipping the updated xap and let’s take a look in Reflector again at our project. This looks a lot better. Lots of methods named a, b, c, d, etc. That’ll help slow hackers down a bit. What about our logic that we spent days weeks on? Let’s take a look at the LoadData method: What gives? We have renaming enabled but all of our code is still there. If you look through all your methods you’ll find it’s still sitting there out in the open. Control Flow Back to the settings page again. Let’s enable Control Flow now. Control Flow obfuscation synthesizes branching, conditional, and iterative constructs (such as if, for, and while) that produce valid executable logic, but yield non-deterministic semantic results when decompilation is attempted. In other words, the code runs as before, but decompilers cannot reproduce the original code. Do the dance again and let’s see the results in Reflector. Ahh, that’s better. Methods renamed *and* nobody can look at our LoadData method now. Life is good. More than Minimum This is the bare minimum to obfuscate your xap to at least a somewhat comfortable level. However I did find that while this worked in my Hello World demo, it didn’t work on one of my real world apps. I had to do some extra tweaking with that. Below are the screens that I used on one app that worked. I’m not sure what it was about the app that the approach above didn’t work with (maybe the extra assembly?) but it works and I’m happy with it. YMMV. Remember to test your obfuscated app on your device first before submitting to ensure you haven’t obfuscated the obfuscator. settings tab: rename tab: string encryption tab: premark tab: A few final notes Play with the settings and keep bumping up the bar to try to get as much obfuscation as you can. The more the better but remember you can overdo it. Always (always, always, always) deploy your obfuscated xap to your device and test it before submitting to the marketplace. I didn’t and got rejected because I had gone overboard with the obfuscation so the app wouldn’t launch at all. Not everything is going to be obfuscated. Specifically I don’t see a way to obfuscate auto properties and a few other language features. Again, if you crank the settings up you might hide these but I haven’t spent a lot of time optimizing the process. Some people might say to obfuscate your xaml using string encryption but again, test, test, test. Xaml is picky so too much obfuscation (or any) might disable your app or produce odd rendering effets. Remember, obfuscation is not 100% secure! Don’t rely on it as a sole way of protecting your assets. Other Tools Dotfuscator is one just product and isn’t the end-all be-all to obfuscation so check out others below. For example, Crypto can make it so Reflector doesn’t even recognize the app as a .NET one and won’t open it. Others can encrypt resources and Xaml markup files. Here are some other obfuscators that support the Windows Phone 7 platform. Feel free to give them a try and let people know your experience with them! Dotfuscator Windows Phone Edition Crypto Obfuscator for .NET DeepSea Obfuscation

    Read the article

  • Transparent Data Encryption Helps Customers Address Regulatory Compliance

    - by Troy Kitch
    Regulations such as the Payment Card Industry Data Security Standards (PCI DSS), U.S. state security breach notification laws, HIPAA HITECH and more, call for the use of data encryption or redaction to protect sensitive personally identifiable information (PII). From the outset, Oracle has delivered the industry's most advanced technology to safeguard data where it lives—in the database. Oracle provides a comprehensive portfolio of security solutions to ensure data privacy, protect against insider threats, and enable regulatory compliance for both Oracle and non-Oracle Databases. Organizations worldwide rely on Oracle Database Security solutions to help address industry and government regulatory compliance. Specifically, Oracle Advanced Security helps organizations like Educational Testing Service, TransUnion Interactive, Orbitz, and the National Marrow Donor Program comply with privacy and regulatory mandates by transparently encrypting sensitive information such as credit cards, social security numbers, and personally identifiable information (PII). By encrypting data at rest and whenever it leaves the database over the network or via backups, Oracle Advanced Security provides organizations the most cost-effective solution for comprehensive data protection. Watch the video and learn why organizations choose Oracle Advanced Security with transparent data encryption.

    Read the article

  • DIY Camera Carrier Turns any Bag into a Camera Bag

    - by Jason Fitzpatrick
    The biggest problem with camera bags is that they look like camera bags and thus become a perfect target for thieves. This DIY camera carrier lets you slip a lens and camera holder into any bag to help conceal and protect your gear. The project comes to us courtesy of Joy, a designer and crafter, and her adventures in making a DIY camera carrier to help protect her camera while carrying it discretely in her purse. You’ll need some basic sewing skills and access to a sewing machine; to follow along check out the link below and adjust the dimensions of her design to fit your bag. Camera Carrier Insert Tutorial [via Apartment Therapy] HTG Explains: Is ReadyBoost Worth Using? HTG Explains: What The Windows Event Viewer Is and How You Can Use It HTG Explains: How Windows Uses The Task Scheduler for System Tasks

    Read the article

  • How to Access Your Router If You Forget the Password

    - by Chris Hoffman
    Routers protect their web interfaces, where you can configure their networking, parental control, and port forwarding settings, with a username and password. These default passwords can be changed to protect the router’s settings. If you’ve forgotten a router’s password – or if you acquired a used router and don’t know its password – there’s a way to reset the password. You may also be able to forward ports without knowing the password. Image Credit: tnarik on Flickr How to Access Your Router If You Forget the Password Secure Yourself by Using Two-Step Verification on These 16 Web Services How to Fix a Stuck Pixel on an LCD Monitor

    Read the article

< Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >