Search Results

Search found 28279 results on 1132 pages for 'syntax case'.

Page 135/1132 | < Previous Page | 131 132 133 134 135 136 137 138 139 140 141 142  | Next Page >

  • How to clean and simplify this code?

    - by alkalim
    After thinking about This Question and giving an answer to it I wanted to do more about that to train myself. So I wrote a function which will calc the length of an given function. Th given php-file has to start at the beginning of the needed function. Example: If the function is in a big phpfile with lots of functions, like /* lots of functions */ function f_interesting($arg) { /* function */ } /* lots of other functions */ then $part3 of my function will require to begin like that (after the starting-{ of the interesting function): /* function */ } /* lots of other functions */ Now that's not the problem, but I would like to know if there are an cleaner or simplier ways to do this. Here's my function: (I already cleaned a lot of testing-echo-commands) (The idea behind it is explained here) function f_analysis ($part3) { if(isset($part3)) { $char_array = str_split($part3); //get array of chars $end_key = false; //length of function $depth = 0; //How much of unclosed '{' $in_sstr = false; //is next char inside in ''-String? $in_dstr = false; //is nect char inside an ""-String? $in_sl_comment = false; //inside an //-comment? $in_ml_comment = false; //inside an /* */-comment? $may_comment = false; //was the last char an '/' which can start a comment? $may_ml_comment_end = false; //was the last char an '*' which may end a /**/-comment? foreach($char_array as $key=>$char) { if($in_sstr) { if ($char == "'") { $in_sstr = false; } } else if($in_dstr) { if($char == '"') { $in_dstr = false; } } else if($in_sl_comment) { if($char == "\n") { $in_sl_comment = false; } } else if($in_ml_comment) { if($may_ml_comment_end) { $may_ml_comment_end = false; if($char == '/') { $in_ml_comment = false; } } if($char == '*') { $may_ml_comment_end = true; } } else if ($may_comment) { if($char == '/') { $in_sl_comment = true; } else if($char == '*') { $in_ml_comment = true; } $may_comment = false; } else { switch ($char) { case '{': $depth++; break; case '}': $depth--; break; case '/': $may_comment = true; break; case '"': $in_dstr = true; break; case "'": $in_sstr = true; break; } } if($depth < 0) { $last_key = $key; break; } } } else echo '<br>$part3 of f_analysis not set!'; return ($last_key===false) ? false : $last_key+1; //will be false or the length of the function }

    Read the article

  • OpenGL, problems with GL_MODELVIEW GL_PROJECTION...

    - by Marcos Roriz
    Guys, I'm trying to finish up my homework but I'm having some problems here on these models on openGL... any Idea why is my draw not happening? One thing that strange is that if I change to gluPerspective it works.. #include <GL/glut.h> #include <stdlib.h> #include <stdio.h> static int shoulder = 0; static int elbow = 0; void init(void) { glClearColor(1.0, 1.0, 1.0, 0.0); } void display(void) { glClear(GL_COLOR_BUFFER_BIT); glPushMatrix(); /* BASE */ glRotatef((GLfloat) shoulder, 0.0, 0.0, 1.0); glTranslatef(1.0, 0.0, 0.0); glPushMatrix(); //glScalef(2.0, 0.4, 1.0); glBegin(GL_QUADS); glColor3f(0, 0, 0); glVertex2f(0.0, 0.0); glVertex2f(0.0, 10.0); glVertex2f(10.0, 10.0); glVertex2f(10.0, 0.0); glEnd(); glPopMatrix(); glPopMatrix(); glutSwapBuffers(); } void reshape(int w, int h) { glViewport(0, 0, (GLsizei) w, (GLsizei) h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho((GLfloat)-w/2, (GLfloat)w/2, (GLfloat)-h/2, (GLfloat)h/2, -1.0, 1.0); // modo de projecao ortogonal glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glTranslatef(0.0, 0.0, -5.0); } void keyboard(unsigned char key, int x, int y) { switch (key) { case 's': shoulder = (shoulder + 5) % 360; glutPostRedisplay(); break; case 'S': shoulder = (shoulder - 5) % 360; glutPostRedisplay(); break; case 'e': elbow = (elbow + 5) % 360; glutPostRedisplay(); break; case 'E': elbow = (elbow - 5) % 360; glutPostRedisplay(); break; case 27: exit(0); break; default: break; } } int main(int argc, char** argv) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB); glutInitWindowSize(800, 400); glutInitWindowPosition(100, 100); glutCreateWindow(argv[0]); init(); glutDisplayFunc(display); glutReshapeFunc(reshape); glutKeyboardFunc(keyboard); glutMainLoop(); return 0; }

    Read the article

  • UITableViewCell separator line disappears on scroll

    - by iconso
    I'm trying to have a separator cell with a custom image. I did try something like that: In my cellForRowAtIndexPath: NSString *cellIdentifier = [NSString stringWithFormat:@"identifier"]; UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:cellIdentifier]; if (cell == nil) { cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle reuseIdentifier:cellIdentifier]; } cell.textLabel.font = [UIFont fontWithName:@"Helvetica" size:19]; cell.textLabel.text = [self.menuItems objectAtIndex:indexPath.row]; cell.textLabel.textColor = [UIColor colorWithRed:128/255.0f green:129/255.0f blue:132/255.0f alpha:1.0f]; cell.backgroundColor = [UIColor whiteColor]; UIImageView *imagView = [[UIImageView alloc] initWithImage:[UIImage imageNamed:@"reaL.png"]]; imagView.frame = CGRectMake(0, cellHeight, cellWidth, 1); [cell.contentView addSubview:imagView]; switch (indexPath.row) { case 0: cell.imageView.image = [self imageWithImage:[UIImage imageNamed:@"img1.png"] scaledToSize:CGSizeMake(27, 27)]; cell.imageView.highlightedImage = [self imageWithImage:[UIImage imageNamed:@"route.png"] scaledToSize:CGSizeMake(27, 27)]; break; case 1: cell.imageView.image = [self imageWithImage:[UIImage imageNamed:@"img.png"] scaledToSize:CGSizeMake(27, 27)]; cell.imageView.highlightedImage = [self imageWithImage:[UIImage imageNamed:@"money.png"] scaledToSize:CGSizeMake(27, 27)]; break; case 2: cell.imageView.image = [self imageWithImage:[UIImage imageNamed:@"auto.png"] scaledToSize:CGSizeMake(27, 27)]; cell.imageView.highlightedImage = [self imageWithImage:[UIImage imageNamed:@"cars.png"] scaledToSize:CGSizeMake(27, 27)]; break; case 3: cell.imageView.image = [self imageWithImage:[UIImage imageNamed:@"impostazioni.png"] scaledToSize:CGSizeMake(27, 27)]; cell.imageView.highlightedImage = [self imageWithImage:[UIImage imageNamed:@"impostazioni.png"] scaledToSize:CGSizeMake(27, 27)]; // cell.imageView.contentMode = UIViewContentModeScaleAspectFill; break; case 4: cell.imageView.image = [self imageWithImage:[UIImage imageNamed:@"info.png"] scaledToSize:CGSizeMake(27, 27)]; cell.imageView.highlightedImage = [self imageWithImage:[UIImage imageNamed:@"info.png"] scaledToSize:CGSizeMake(27, 27)]; break; default: break; } return cell; When I lunch the app everything is good, but when I scroll the the table, or when I select a cell the separator lines disappear. How I can have a permanent custom line separator?

    Read the article

  • Sending tweets using Android

    - by Saranya.R
    I want to send a tweet from Android.I have executed the following code.But I am not bale to send any tweets.Avtually the button I created is not working.Can anybody tel me wats the prob? This is my code.. package samplecode.sampleapp.sampletwidgitpublicintent; import android.app.Activity; import android.content.ActivityNotFoundException; import android.content.Intent; import android.os.Bundle; import android.view.View; import android.view.View.OnClickListener; import android.widget.Button; import android.os.Bundle; public class TwidgitPublicIntent extends Activity implements OnClickListener { private static final int TWIDGIT_REQUEST_CODE = 2564; /** Called when the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); ((Button)findViewById(R.id.tweet_button)).setOnClickListener(this); ((Button)findViewById(R.id.mention_button)).setOnClickListener(this); ((Button)findViewById(R.id.retweet_button)).setOnClickListener(this); ((Button)findViewById(R.id.message_button)).setOnClickListener(this); } public void onClick(View v) { switch(v.getId()) { case R.id.tweet_button: // Standard tweet Intent tIntent = new Intent("com.disretrospect.twidgit.TWEET"); tIntent.putExtra("com.disretrospect.twidgit.extras.MESSAGE", "_message_in_here_"); try { this.startActivityForResult(tIntent, TWIDGIT_REQUEST_CODE); } catch (ActivityNotFoundException e) { // If Twidgit is not installed } break; case R.id.mention_button: // Mention Intent mIntent = new Intent("com.disretrospect.twidgit.MENTION"); mIntent.putExtra("com.disretrospect.twidgit.extras.TO", "_username_to_xmention_"); mIntent.putExtra("com.disretrospect.twidgit.extras.MESSAGE", "_message_in_here_"); try { this.startActivityForResult(mIntent, TWIDGIT_REQUEST_CODE); } catch (ActivityNotFoundException e) { // If Twidgit is not installed } break; case R.id.retweet_button: // Retweet a tweet Intent rtIntent = new Intent("com.disretrospect.twidgit.RETWEET"); rtIntent.putExtra("com.disretrospect.twidgit.extras.MESSAGE", "_message_in_here_"); rtIntent.putExtra("com.disretrospect.twidgit.extras.VIA", "_original_author_of_tweet_name_"); try { this.startActivityForResult(rtIntent, TWIDGIT_REQUEST_CODE); } catch (ActivityNotFoundException e) { // If Twidgit is not installed } break; case R.id.message_button: // Send DM Intent dmIntent = new Intent("com.disretrospect.twidgit.DIRECT_MESSAGE"); dmIntent.putExtra("com.disretrospect.twidgit.extras.TO", "_username_to_send_dm_to_"); dmIntent.putExtra("com.disretrospect.twidgit.extras.MESSAGE", "_message_in_here_"); try { this.startActivityForResult(dmIntent, TWIDGIT_REQUEST_CODE); } catch (ActivityNotFoundException e) { // If Twidgit is not installed } break; } } @Override protected void onActivityResult(int requestCode, int resultCode, Intent data) { super.onActivityResult(requestCode, resultCode, data); // Check result code if(resultCode == Activity.RESULT_OK) { // Check requestCode switch(requestCode) { case TWIDGIT_REQUEST_CODE: // Handle successful return break; } } else if(resultCode == Activity.RESULT_CANCELED){ // Handle canceled activity } } }

    Read the article

  • QTreeView incorrectly displays the SpinBox if item is checkable and when using QWindowsStyle

    - by Sharraz
    Hello, I'm having a problem with a QTreeView in my program: The SpinBox used to edit the double value of a checkable item is displayed incorrectly when using the Windows style. Only the up and down buttons of the SpinBox can be seen, but not any value. The following example code is able to reproduce the problem: #include <QtGui> class Model : public QAbstractItemModel { public: Model() : checked(false), number(0) {} Qt::ItemFlags flags(const QModelIndex & index) const { return Qt::ItemIsEnabled | Qt::ItemIsEditable | Qt::ItemIsSelectable | Qt::ItemIsUserCheckable; } QVariant data(const QModelIndex &index, int role) const { switch (role) { case Qt::DisplayRole: case Qt::EditRole: return QVariant(number); case Qt::CheckStateRole: return QVariant(checked ? Qt::Checked : Qt::Unchecked); } return QVariant(); } QVariant headerData(int section, Qt::Orientation orientation, int role) const { return QVariant(); } int rowCount(const QModelIndex &parent) const { return parent.isValid() ? 0 : 1; } int columnCount(const QModelIndex &parent) const { return parent.isValid() ? 0 : 1; } bool setData(const QModelIndex &index, const QVariant &value, int role) { switch (role) { case Qt::EditRole: number = value.toDouble(); emit dataChanged(index, index); return true; case Qt::CheckStateRole: checked = value.toInt(); emit dataChanged(index, index); return true; } return false; } QModelIndex index(int row, int column, const QModelIndex &parent) const { if (!row && !column && !parent.isValid()) return createIndex(0, 0); return QModelIndex(); } QModelIndex parent(const QModelIndex &child) const { return QModelIndex(); } private: bool checked; double number; }; int main(int argc, char *argv[]) { QApplication app(argc, argv); QApplication::setStyle(new QWindowsStyle()); QTreeView tree; tree.setModel(new Model()); tree.show(); return app.exec(); } The problems seems to have something to do with the checkbox. If Qt::ItemIsUserCheckable is removed, the SpinBox will be displayed correctly. If the number is replaced by a longer one like 0.01, it can be seen partially. Any idea how this problem can be solved? Do I use the checkbox correctly? Greets, Sharraz

    Read the article

  • Big O Complexity of a method

    - by timeNomad
    I have this method: public static int what(String str, char start, char end) { int count=0; for(int i=0;i<str.length(); i++) { if(str.charAt(i) == start) { for(int j=i+1;j<str.length(); j++) { if(str.charAt(j) == end) count++; } } } return count; } What I need to find is: 1) What is it doing? Answer: counting the total number of end occurrences after EACH (or is it? Not specified in the assignment, point 3 depends on this) start. 2) What is its complexity? Answer: the first loops iterates over the string completely, so it's at least O(n), the second loop executes only if start char is found and even then partially (index at which start was found + 1). Although, big O is all about worst case no? So in the worst case, start is the 1st char & the inner iteration iterates over the string n-1 times, the -1 is a constant so it's n. But, the inner loop won't be executed every outer iteration pass, statistically, but since big O is about worst case, is it correct to say the complexity of it is O(n^2)? Ignoring any constants and the fact that in 99.99% of times the inner loop won't execute every outer loop pass. 3) Rewrite it so that complexity is lower. What I'm not sure of is whether start occurs at most once or more, if once at most, then method can be rewritten using one loop (having a flag indicating whether start has been encountered and from there on incrementing count at each end occurrence), yielding a complexity of O(n). In case though, that start can appear multiple times, which most likely it is, because assignment is of a Java course and I don't think they would make such ambiguity. Solving, in this case, is not possible using one loop... WAIT! Yes it is..! Just have a variable, say, inc to be incremented each time start is encountered & used to increment count each time end is encountered after the 1st start was found: inc = 0, count = 0 if (current char == start) inc++ if (inc > 0 && current char == end) count += inc This would also yield a complexity of O(n)? Because there is only 1 loop. Yes I realize I wrote a lot hehe, but what I also realized is that I understand a lot better by forming my thoughts into words...

    Read the article

  • pointer to preallocated memory as an input parameter and have the function fill it

    - by djones2010
    test code: void modify_it(char * mystuff) { char test[7] = "123456"; //last element is null i presume for c style strings here. //static char test[] = "123123"; //when i do this i thought i should be able to gain access to this bit of memory when the function is destroyed but that does not seem to be the case. //char * test = new char[7]; //this is also creating memory on stack and not the heap i reckon and gets destroyed once the function is done with. strcpy_s(mystuff,7,test); //this does the job as long as memory for mystuff has been allocated outside the function. mystuff = test; //this does not work. I know with c style strings you can't just do string assignments they have to be actually copied. in this case I was using this in conjunction with static char test thinking by having it as static the memory would not get destroyed and i can then simply point mystuff to test and be done with it. i would later have address the memory cleanup in the main function. but anyway this never worked. } int main(void) { char * mystuff = new char [7]; //allocate memory on heap where the pointer will point cool(mystuff); std::string test_case(mystuff); std::cout<<test_case.c_str(); //this is the only way i know how to use cout by making it into a string c++ string. delete [] mystuff; return 0; } in the case, of a static array in the function why would it not work. in the case, when i allocated memory using new in the function does it get created on the stack or heap? in the case, i have string which needs to be copied into a char * form. everything i see usually requires const char* instead of just char*. I know i could use reference to take care of this easy. Or char ** to send in the pointer and do it that way. But i just wanted to know if I could do it with just char *. Anyway your thoughts and comments plus any examples would be very helpful.

    Read the article

  • Creating a dynamic, extensible C# Expando Object

    - by Rick Strahl
    I love dynamic functionality in a strongly typed language because it offers us the best of both worlds. In C# (or any of the main .NET languages) we now have the dynamic type that provides a host of dynamic features for the static C# language. One place where I've found dynamic to be incredibly useful is in building extensible types or types that expose traditionally non-object data (like dictionaries) in easier to use and more readable syntax. I wrote about a couple of these for accessing old school ADO.NET DataRows and DataReaders more easily for example. These classes are dynamic wrappers that provide easier syntax and auto-type conversions which greatly simplifies code clutter and increases clarity in existing code. ExpandoObject in .NET 4.0 Another great use case for dynamic objects is the ability to create extensible objects - objects that start out with a set of static members and then can add additional properties and even methods dynamically. The .NET 4.0 framework actually includes an ExpandoObject class which provides a very dynamic object that allows you to add properties and methods on the fly and then access them again. For example with ExpandoObject you can do stuff like this:dynamic expand = new ExpandoObject(); expand.Name = "Rick"; expand.HelloWorld = (Func<string, string>) ((string name) => { return "Hello " + name; }); Console.WriteLine(expand.Name); Console.WriteLine(expand.HelloWorld("Dufus")); Internally ExpandoObject uses a Dictionary like structure and interface to store properties and methods and then allows you to add and access properties and methods easily. As cool as ExpandoObject is it has a few shortcomings too: It's a sealed type so you can't use it as a base class It only works off 'properties' in the internal Dictionary - you can't expose existing type data It doesn't serialize to XML or with DataContractSerializer/DataContractJsonSerializer Expando - A truly extensible Object ExpandoObject is nice if you just need a dynamic container for a dictionary like structure. However, if you want to build an extensible object that starts out with a set of strongly typed properties and then allows you to extend it, ExpandoObject does not work because it's a sealed class that can't be inherited. I started thinking about this very scenario for one of my applications I'm building for a customer. In this system we are connecting to various different user stores. Each user store has the same basic requirements for username, password, name etc. But then each store also has a number of extended properties that is available to each application. In the real world scenario the data is loaded from the database in a data reader and the known properties are assigned from the known fields in the database. All unknown fields are then 'added' to the expando object dynamically. In the past I've done this very thing with a separate property - Properties - just like I do for this class. But the property and dictionary syntax is not ideal and tedious to work with. I started thinking about how to represent these extra property structures. One way certainly would be to add a Dictionary, or an ExpandoObject to hold all those extra properties. But wouldn't it be nice if the application could actually extend an existing object that looks something like this as you can with the Expando object:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } } and then simply start extending the properties of this object dynamically? Using the Expando object I describe later you can now do the following:[TestMethod] public void UserExampleTest() { var user = new User(); // Set strongly typed properties user.Email = "[email protected]"; user.Password = "nonya123"; user.Name = "Rickochet"; user.Active = true; // Now add dynamic properties dynamic duser = user; duser.Entered = DateTime.Now; duser.Accesses = 1; // you can also add dynamic props via indexer user["NickName"] = "AntiSocialX"; duser["WebSite"] = "http://www.west-wind.com/weblog"; // Access strong type through dynamic ref Assert.AreEqual(user.Name,duser.Name); // Access strong type through indexer Assert.AreEqual(user.Password,user["Password"]); // access dyanmically added value through indexer Assert.AreEqual(duser.Entered,user["Entered"]); // access index added value through dynamic Assert.AreEqual(user["NickName"],duser.NickName); // loop through all properties dynamic AND strong type properties (true) foreach (var prop in user.GetProperties(true)) { object val = prop.Value; if (val == null) val = "null"; Console.WriteLine(prop.Key + ": " + val.ToString()); } } As you can see this code somewhat blurs the line between a static and dynamic type. You start with a strongly typed object that has a fixed set of properties. You can then cast the object to dynamic (as I discussed in my last post) and add additional properties to the object. You can also use an indexer to add dynamic properties to the object. To access the strongly typed properties you can use either the strongly typed instance, the indexer or the dynamic cast of the object. Personally I think it's kinda cool to have an easy way to access strongly typed properties by string which can make some data scenarios much easier. To access the 'dynamically added' properties you can use either the indexer on the strongly typed object, or property syntax on the dynamic cast. Using the dynamic type allows all three modes to work on both strongly typed and dynamic properties. Finally you can iterate over all properties, both dynamic and strongly typed if you chose. Lots of flexibility. Note also that by default the Expando object works against the (this) instance meaning it extends the current object. You can also pass in a separate instance to the constructor in which case that object will be used to iterate over to find properties rather than this. Using this approach provides some really interesting functionality when use the dynamic type. To use this we have to add an explicit constructor to the Expando subclass:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } public User() : base() { } // only required if you want to mix in seperate instance public User(object instance) : base(instance) { } } to allow the instance to be passed. When you do you can now do:[TestMethod] public void ExpandoMixinTest() { // have Expando work on Addresses var user = new User( new Address() ); // cast to dynamicAccessToPropertyTest dynamic duser = user; // Set strongly typed properties duser.Email = "[email protected]"; user.Password = "nonya123"; // Set properties on address object duser.Address = "32 Kaiea"; //duser.Phone = "808-123-2131"; // set dynamic properties duser.NonExistantProperty = "This works too"; // shows default value Address.Phone value Console.WriteLine(duser.Phone); } Using the dynamic cast in this case allows you to access *three* different 'objects': The strong type properties, the dynamically added properties in the dictionary and the properties of the instance passed in! Effectively this gives you a way to simulate multiple inheritance (which is scary - so be very careful with this, but you can do it). How Expando works Behind the scenes Expando is a DynamicObject subclass as I discussed in my last post. By implementing a few of DynamicObject's methods you can basically create a type that can trap 'property missing' and 'method missing' operations. When you access a non-existant property a known method is fired that our code can intercept and provide a value for. Internally Expando uses a custom dictionary implementation to hold the dynamic properties you might add to your expandable object. Let's look at code first. The code for the Expando type is straight forward and given what it provides relatively short. Here it is.using System; using System.Collections.Generic; using System.Linq; using System.Dynamic; using System.Reflection; namespace Westwind.Utilities.Dynamic { /// <summary> /// Class that provides extensible properties and methods. This /// dynamic object stores 'extra' properties in a dictionary or /// checks the actual properties of the instance. /// /// This means you can subclass this expando and retrieve either /// native properties or properties from values in the dictionary. /// /// This type allows you three ways to access its properties: /// /// Directly: any explicitly declared properties are accessible /// Dynamic: dynamic cast allows access to dictionary and native properties/methods /// Dictionary: Any of the extended properties are accessible via IDictionary interface /// </summary> [Serializable] public class Expando : DynamicObject, IDynamicMetaObjectProvider { /// <summary> /// Instance of object passed in /// </summary> object Instance; /// <summary> /// Cached type of the instance /// </summary> Type InstanceType; PropertyInfo[] InstancePropertyInfo { get { if (_InstancePropertyInfo == null && Instance != null) _InstancePropertyInfo = Instance.GetType().GetProperties(BindingFlags.Instance | BindingFlags.Public | BindingFlags.DeclaredOnly); return _InstancePropertyInfo; } } PropertyInfo[] _InstancePropertyInfo; /// <summary> /// String Dictionary that contains the extra dynamic values /// stored on this object/instance /// </summary> /// <remarks>Using PropertyBag to support XML Serialization of the dictionary</remarks> public PropertyBag Properties = new PropertyBag(); //public Dictionary<string,object> Properties = new Dictionary<string, object>(); /// <summary> /// This constructor just works off the internal dictionary and any /// public properties of this object. /// /// Note you can subclass Expando. /// </summary> public Expando() { Initialize(this); } /// <summary> /// Allows passing in an existing instance variable to 'extend'. /// </summary> /// <remarks> /// You can pass in null here if you don't want to /// check native properties and only check the Dictionary! /// </remarks> /// <param name="instance"></param> public Expando(object instance) { Initialize(instance); } protected virtual void Initialize(object instance) { Instance = instance; if (instance != null) InstanceType = instance.GetType(); } /// <summary> /// Try to retrieve a member by name first from instance properties /// followed by the collection entries. /// </summary> /// <param name="binder"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; // first check the Properties collection for member if (Properties.Keys.Contains(binder.Name)) { result = Properties[binder.Name]; return true; } // Next check for Public properties via Reflection if (Instance != null) { try { return GetProperty(Instance, binder.Name, out result); } catch { } } // failed to retrieve a property result = null; return false; } /// <summary> /// Property setter implementation tries to retrieve value from instance /// first then into this object /// </summary> /// <param name="binder"></param> /// <param name="value"></param> /// <returns></returns> public override bool TrySetMember(SetMemberBinder binder, object value) { // first check to see if there's a native property to set if (Instance != null) { try { bool result = SetProperty(Instance, binder.Name, value); if (result) return true; } catch { } } // no match - set or add to dictionary Properties[binder.Name] = value; return true; } /// <summary> /// Dynamic invocation method. Currently allows only for Reflection based /// operation (no ability to add methods dynamically). /// </summary> /// <param name="binder"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result) { if (Instance != null) { try { // check instance passed in for methods to invoke if (InvokeMethod(Instance, binder.Name, args, out result)) return true; } catch { } } result = null; return false; } /// <summary> /// Reflection Helper method to retrieve a property /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="result"></param> /// <returns></returns> protected bool GetProperty(object instance, string name, out object result) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.GetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { result = ((PropertyInfo)mi).GetValue(instance,null); return true; } } result = null; return false; } /// <summary> /// Reflection helper method to set a property value /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="value"></param> /// <returns></returns> protected bool SetProperty(object instance, string name, object value) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.SetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { ((PropertyInfo)mi).SetValue(Instance, value, null); return true; } } return false; } /// <summary> /// Reflection helper method to invoke a method /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> protected bool InvokeMethod(object instance, string name, object[] args, out object result) { if (instance == null) instance = this; // Look at the instanceType var miArray = InstanceType.GetMember(name, BindingFlags.InvokeMethod | BindingFlags.Public | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0] as MethodInfo; result = mi.Invoke(Instance, args); return true; } result = null; return false; } /// <summary> /// Convenience method that provides a string Indexer /// to the Properties collection AND the strongly typed /// properties of the object by name. /// /// // dynamic /// exp["Address"] = "112 nowhere lane"; /// // strong /// var name = exp["StronglyTypedProperty"] as string; /// </summary> /// <remarks> /// The getter checks the Properties dictionary first /// then looks in PropertyInfo for properties. /// The setter checks the instance properties before /// checking the Properties dictionary. /// </remarks> /// <param name="key"></param> /// /// <returns></returns> public object this[string key] { get { try { // try to get from properties collection first return Properties[key]; } catch (KeyNotFoundException ex) { // try reflection on instanceType object result = null; if (GetProperty(Instance, key, out result)) return result; // nope doesn't exist throw; } } set { if (Properties.ContainsKey(key)) { Properties[key] = value; return; } // check instance for existance of type first var miArray = InstanceType.GetMember(key, BindingFlags.Public | BindingFlags.GetProperty); if (miArray != null && miArray.Length > 0) SetProperty(Instance, key, value); else Properties[key] = value; } } /// <summary> /// Returns and the properties of /// </summary> /// <param name="includeProperties"></param> /// <returns></returns> public IEnumerable<KeyValuePair<string,object>> GetProperties(bool includeInstanceProperties = false) { if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) yield return new KeyValuePair<string, object>(prop.Name, prop.GetValue(Instance, null)); } foreach (var key in this.Properties.Keys) yield return new KeyValuePair<string, object>(key, this.Properties[key]); } /// <summary> /// Checks whether a property exists in the Property collection /// or as a property on the instance /// </summary> /// <param name="item"></param> /// <returns></returns> public bool Contains(KeyValuePair<string, object> item, bool includeInstanceProperties = false) { bool res = Properties.ContainsKey(item.Key); if (res) return true; if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) { if (prop.Name == item.Key) return true; } } return false; } } } Although the Expando class supports an indexer, it doesn't actually implement IDictionary or even IEnumerable. It only provides the indexer and Contains() and GetProperties() methods, that work against the Properties dictionary AND the internal instance. The reason for not implementing IDictionary is that a) it doesn't add much value since you can access the Properties dictionary directly and that b) I wanted to keep the interface to class very lean so that it can serve as an entity type if desired. Implementing these IDictionary (or even IEnumerable) causes LINQ extension methods to pop up on the type which obscures the property interface and would only confuse the purpose of the type. IDictionary and IEnumerable are also problematic for XML and JSON Serialization - the XML Serializer doesn't serialize IDictionary<string,object>, nor does the DataContractSerializer. The JavaScriptSerializer does serialize, but it treats the entire object like a dictionary and doesn't serialize the strongly typed properties of the type, only the dictionary values which is also not desirable. Hence the decision to stick with only implementing the indexer to support the user["CustomProperty"] functionality and leaving iteration functions to the publicly exposed Properties dictionary. Note that the Dictionary used here is a custom PropertyBag class I created to allow for serialization to work. One important aspect for my apps is that whatever custom properties get added they have to be accessible to AJAX clients since the particular app I'm working on is a SIngle Page Web app where most of the Web access is through JSON AJAX calls. PropertyBag can serialize to XML and one way serialize to JSON using the JavaScript serializer (not the DCS serializers though). The key components that make Expando work in this code are the Properties Dictionary and the TryGetMember() and TrySetMember() methods. The Properties collection is public so if you choose you can explicitly access the collection to get better performance or to manipulate the members in internal code (like loading up dynamic values form a database). Notice that TryGetMember() and TrySetMember() both work against the dictionary AND the internal instance to retrieve and set properties. This means that user["Name"] works against native properties of the object as does user["Name"] = "RogaDugDog". What's your Use Case? This is still an early prototype but I've plugged it into one of my customer's applications and so far it's working very well. The key features for me were the ability to easily extend the type with values coming from a database and exposing those values in a nice and easy to use manner. I'm also finding that using this type of object for ViewModels works very well to add custom properties to view models. I suspect there will be lots of uses for this - I've been using the extra dictionary approach to extensibility for years - using a dynamic type to make the syntax cleaner is just a bonus here. What can you think of to use this for? Resources Source Code and Tests (GitHub) Also integrated in Westwind.Utilities of the West Wind Web Toolkit West Wind Utilities NuGet© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET  Dynamic Types   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Tips on Migrating from AquaLogic .NET Accelerator to WebCenter WSRP Producer for .NET

    - by user647124
    This year I embarked on a journey to migrate a group of ASP.NET web applications developed to integrate with WebLogic Portal 9.2 via the AquaLogic® Interaction .NET Application Accelerator 1.0 to instead use the Oracle WebCenter WSRP Producer for .NET and integrated with WebLogic Portal 10.3.4. It has been a very winding path and this blog entry is intended to share both the lessons learned and relevant approaches that led to those learnings. Like most journeys of discovery, it was not a direct path, and there are notes to let you know when it is practical to skip a section if you are in a hurry to get from here to there. For the Curious From the perspective of necessity, this section would be better at the end. If it were there, though, it would probably be read by far fewer people, including those that are actually interested in these types of sections. Those in a hurry may skip past and be none the worst for it in dealing with the hands-on bits of performing a migration from .NET Accelerator to WSRP Producer. For others who want to talk about why they did what they did after they did it, or just want to know for themselves, enjoy. A Brief (and edited) History of the WSRP for .NET Technologies (as Relevant to the this Post) Note: This section is for those who are curious about why the migration path is not as simple as many other Oracle technologies. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The currently deployed architecture that was to be migrated and upgraded achieved initial integration between .NET and J2EE over the WSRP protocol through the use of The AquaLogic Interaction .NET Application Accelerator. The .NET Accelerator allowed the applications that were written in ASP.NET and deployed on a Microsoft Internet Information Server (IIS) to interact with a WebLogic Portal application deployed on a WebLogic (J2EE application) Server (both version 9.2, the state of the art at the time of its creation). At the time this architectural decision for the application was made, both the AquaLogic and WebLogic brands were owned by BEA Systems. The AquaLogic brand included products acquired by BEA through the acquisition of Plumtree, whose flagship product was a portal platform available in both J2EE and .NET versions. As part of this dual technology support an adaptor was created to facilitate the use of WSRP as a communication protocol where customers wished to integrate components from both versions of the Plumtree portal. The adapter evolved over several product generations to include a broad array of both standard and proprietary WSRP integration capabilities. Later, BEA Systems was acquired by Oracle. Over the course of several years Oracle has acquired a large number of portal applications and has taken the strategic direction to migrate users of these myriad (and formerly competitive) products to the Oracle WebCenter technology stack. As part of Oracle’s strategic technology roadmap, older portal products are being schedule for end of life, including the portal products that were part of the BEA acquisition. The .NET Accelerator has been modified over a very long period of time with features driven by users of that product and developed under three different vendors (each a direct competitor in the same solution space prior to merger). The Oracle WebCenter WSRP Producer for .NET was introduced much more recently with the key objective to specifically address the needs of the WebCenter customers developing solutions accessible through both J2EE and .NET platforms utilizing the WSRP specifications. The Oracle Product Development Team also provides these insights on the drivers for developing the WSRP Producer: ***************************************** Support for ASP.NET AJAX. Controls using the ASP.NET AJAX script manager do not function properly in the Application Accelerator for .NET. Support 2 way SSL in WLP. This was not possible with the proxy/bridge set up in the existing Application Accelerator for .NET. Allow developers to code portlets (Web Parts) using the .NET framework rather than a proprietary framework. Developers had to use the Application Accelerator for .NET plug-ins to Visual Studio to manage preferences and profile data. This is now replaced with the .NET Framework Personalization (for preferences) and Profile providers. The WSRP Producer for .NET was created as a new way of developing .NET portlets. It was never designed to be an upgrade path for the Application Accelerator for .NET. .NET developers would create new .NET portlets with the WSRP Producer for .NET and leave any existing .NET portlets running in the Application Accelerator for .NET. ***************************************** The advantage to creating a new solution for WSRP is a product that is far easier for Oracle to maintain and support which in turn improves quality, reliability and maintainability for their customers. No changes to J2EE applications consuming the WSRP portlets previously rendered by the.NET Accelerator is required to migrate from the Aqualogic WSRP solution. For some customers using the .NET Accelerator the challenge is adapting their current .NET applications to work with the WSRP Producer (or any other WSRP adapter as they are proprietary by nature). Part of this adaptation is the need to deploy the .NET applications as a child to the WSRP producer web application as root. Differences between .NET Accelerator and WSRP Producer Note: This section is for those who are curious about why the migration is not as pluggable as something such as changing security providers in WebLogic Server. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The basic terminology used to describe the participating applications in a WSRP environment are the same when applied to either the .NET Accelerator or the WSRP Producer: Producer and Consumer. In both cases the .NET application serves as what is referred to as a WSRP environment as the Producer. The difference lies in how the two adapters create the WSRP translation of the .NET application. The .NET Accelerator, as the name implies, is meant to serve as a quick way of adding WSRP capability to a .NET application. As such, at a high level, the .NET Accelerator behaves as a proxy for requests between the .NET application and the WSRP Consumer. A WSRP request is sent from the consumer to the .NET Accelerator, the.NET Accelerator transforms this request into an ASP.NET request, receives the response, then transforms the response into a WSRP response. The .NET Accelerator is deployed as a stand-alone application on IIS. The WSRP Producer is deployed as a parent application on IIS and all ASP.NET modules that will be made available over WSRP are deployed as children of the WSRP Producer application. In this manner, the WSRP Producer acts more as a Request Filter than a proxy in the WSRP transactions between Producer and Consumer. Highly Recommended Enabling Logging Note: You can skip this section now, but you will most likely want to come back to it later, so why not just read it now? Logging is very helpful in tracking down the causes of any anomalies during testing of migrated portlets. To enable the WSRP Producer logging, update the Application_Start method in the Global.asax.cs for your .NET application by adding log4net.Config.XmlConfigurator.Configure(); IIS logs will usually (in a standard configuration) be in a sub folder under C:\WINDOWS\system32\LogFiles\W3SVC. WSRP Producer logs will be found at C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\Logs\WSRPProducer.log InputTrace.webinfo and OutputTrace.webinfo are located under C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault and can be useful in debugging issues related to markup transformations. Things You Must Do Merge Web.Config Note: If you have been skipping all the sections that you can, now is the time to stop and pay attention J Because the existing .NET application will become a sub-application to the WSRP Producer, you will want to merge required settings from the existing Web.Config to the one in the WSRP Producer. Use the WSRP Producer Master Page The Master Page installed for the WSRP Producer provides common, hiddenform fields and JavaScripts to facilitate portlet instance management and display configuration when the child page is being rendered over WSRP. You add the Master Page by including it in the <@ Page declaration with MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" . You then replace: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > <HTML> <HEAD> With <asp:Content ID="ContentHead1" ContentPlaceHolderID="wsrphead" Runat="Server"> And </HEAD> <body> <form id="theForm" method="post" runat="server"> With </asp:Content> <asp:Content ID="ContentBody1" ContentPlaceHolderID="Main" Runat="Server"> And finally </form> </body> </HTML> With </asp:Content> In the event you already use Master Pages, adapt your existing Master Pages to be sub masters. See Nested ASP.NET Master Pages for a detailed reference of how to do this. It Happened to Me, It Might Happen to You…Or Not Watch for Use of Session or Request in OnInit In the event the .NET application being modified has pages developed to assume the user has been authenticated in an earlier page request there may be direct or indirect references in the OnInit method to request or session objects that may not have been created yet. This will vary from application to application, so the recommended approach is to test first. If there is an issue with a page running as a WSRP portlet then check for potential references in the OnInit method (including references by methods called within OnInit) to session or request objects. If there are, the simplest solution is to create a new method and then call that method once the necessary object(s) is fully available. I find doing this at the start of the Page_Load method to be the simplest solution. Case Sensitivity .NET languages are not case sensitive, but Java is. This means it is possible to have many variations of SRC= and src= or .JPG and .jpg. The preferred solution is to make these mark up instances all lower case in your .NET application. This will allow the default Rewriter rules in wsrp-producer.xml to work as is. If this is not practical, then make duplicates of any rules where an issue is occurring due to upper or mixed case usage in the .NET application markup and match the case in use with the duplicate rule. For example: <RewriterRule> <LookFor>(href=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> May need to be duplicated as: <RewriterRule> <LookFor>(HREF=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> While it is possible to write a regular expression that will handle mixed case usage, it would be long and strenous to test and maintain, so the recommendation is to use duplicate rules. Is it Still Relative? Some .NET applications base relative paths with a fixed root location. With the introduction of the WSRP Producer, the root has moved up one level. References to ~/ will need to be updated to ~/portlets and many ../ paths will need another ../ in front. I Can See You But I Can’t Find You This issue was first discovered while debugging modules with code that referenced the form on a page from the code-behind by name and/or id. The initial error presented itself as run-time error that was difficult to interpret over WSRP but seemed clear when run as straight ASP.NET as it indicated that the object with the form name did not exist. Since the form name was no longer valid after implementing the WSRP Master Page, the likely fix seemed to simply update the references in the code. However, as the WSRP Master Page is external to the code, a compile time error resulted: Error      155         The name 'form1' does not exist in the current context                C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\portlets\legacywebsite\module\Screens \Reporting.aspx.cs                51           52           legacywebsite.module Much hair-pulling research later it was discovered that it was the use of the FindControl method causing the issue. FindControl doesn’t work quite as expected once a Master Page has been introduced as the controls become embedded in controls, require a recursion to find them that is not part of the FindControl method. In code where the page form is referenced by name, there are two steps to the solution. First, the form needs to be referenced in code generically with Page.Form. For example, this: ToggleControl ctrl = new ToggleControl(frmManualEntry, FunctionLibrary.ParseArrayLst(userObj.Roles)); Becomes this: ToggleControl ctrl = new ToggleControl(Page.Form, FunctionLibrary.ParseArrayLst(userObj.Roles)); Generally the form id is referenced in most ASP.NET applications as a path to a control on the form. To reach the control once a MasterPage has been added requires an additional method to recurse through the controls collections within the form and find the control ID. The following method (found at Rick Strahl's Web Log) corrects this very nicely: public static Control FindControlRecursive(Control Root, string Id) { if (Root.ID == Id) return Root; foreach (Control Ctl in Root.Controls) { Control FoundCtl = FindControlRecursive(Ctl, Id); if (FoundCtl != null) return FoundCtl; } return null; } Where the form name is not referenced, simply using the FindControlRecursive method in place of FindControl will be all that is necessary. Following the second part of the example referenced earlier, the method called with Page.Form changes its value extraction code block from this: Label lblErrMsg = (Label)frmRef.FindControl("lblBRMsg" To this: Label lblErrMsg = (Label) FunctionLibrary.FindControlRecursive(frmRef, "lblBRMsg" The Master That Won’t Step Aside In most migrations it is preferable to make as few changes as possible. In one case I ran across an existing Master Page that would not function as a sub-Master Page. While it would probably have been educational to trace down why, the expedient process of updating it to take the place of the WSRP Master Page is the route I took. The changes are highlighted below: … <asp:ContentPlaceHolder ID="wsrphead" runat="server"></asp:ContentPlaceHolder> </head> <body leftMargin="0" topMargin="0"> <form id="TheForm" runat="server"> <input type="hidden" name="key" id="key" value="" /> <input type="hidden" name="formactionurl" id="formactionurl" value="" /> <input type="hidden" name="handle" id="handle" value="" /> <asp:ScriptManager ID="ScriptManager1" runat="server" EnablePartialRendering="true" > </asp:ScriptManager> This approach did not work for all existing Master Pages, but fortunately all of the other existing Master Pages I have run across worked fine as a sub-Master to the WSRP Master Page. Moving On In Enterprise Portals, even after you get everything working, the work is not finished. Next you need to get it where everyone will work with it. Migration Planning Providing that the server where IIS is running is adequately sized, it is possible to run both the .NET Accelerator and the WSRP Producer on the same server during the upgrade process. The upgrade can be performed incrementally, i.e., one portlet at a time, if server administration processes support it. Those processes would include the ability to manage a second producer in the consuming portal and to change over individual portlet instances from one provider to the other. If processes or requirements demand that all portlets be cut over at the same time, it needs to be determined if this cut over should include a new producer, updating all of the portlets in the consumer, or if the WSRP Producer portlet configuration must maintain the naming conventions used by the .NET Accelerator and simply change the WSRP end point configured in the consumer. In some enterprises it may even be necessary to maintain the same WSDL end point, at which point the IIS configuration will be where the updates occur. The downside to such a requirement is that it makes rolling back very difficult, should the need arise. Location, Location, Location Not everyone wants the web application to have the descriptively obvious wsrpdefault location, or needs to create a second WSRP site on the same server. The instructions below are from the product team and, while targeted towards making a second site, will work for creating a site with a different name and then remove the old site. You can also change just the name in IIS. Manually Creating a WSRP Producer Site Instructions (NOTE: all executables used are the same ones used by the installer and “wsrpdev” will be the name of the new instance): 1. Copy C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault to C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev. 2. Bring up a command window as an administrator 3. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\IISAppAccelSiteCreator.exe install WSRPProducers wsrpdev "C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev" 8678 2.0.50727 4. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev "NETWORK SERVICE" 3 1 5. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev EVERYONE 1 1 6. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\1.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev 7. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\2.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev Tests: 1. Bring up a browser on the host itself and go to http://localhost:8678/wsrpdev/wsdl/1.0/WSRPService.wsdl and make sure that the URLs in the XML returned include the wsrpdev changes you made in step 6. 2. Bring up a browser on the host itself and see if the default sample comes up: http://localhost:8678/wsrpdev/portlets/ASPNET_AJAX_sample/default.aspx 3. Register the producer in WLP and test the portlet. Changing the Port used by WSRP Producer The pre-configured port for the WSRP Producer is 8678. You can change this port by updating both the IIS configuration and C:\Oracle\Middleware\WSRPProducerForDotNet\[WSRP_APP_NAME]\wsdl\1.0\WSRPService.wsdl. Do You Need to Migrate? Oracle Premier Support ended in November of 2010 for AquaLogic Interaction .NET Application Accelerator 1.x and Extended Support ends in November 2012 (see http://www.oracle.com/us/support/lifetime-support/lifetime-support-software-342730.html for other related dates). This means that integration with products released after November of 2010 is not supported. If having such support is the policy within your enterprise, you do indeed need to migrate. If changes in your enterprise cause your current solution with the .NET Accelerator to no longer function properly, you may need to migrate. Migration is a choice, and if the goals of your enterprise are to take full advantage of newer technologies then migration is certainly one activity you should be planning for.

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

  • Nagging As A Strategy For Better Linking: -z guidance

    - by user9154181
    The link-editor (ld) in Solaris 11 has a new feature that we call guidance that is intended to help you build better objects. The basic idea behind guidance is that if (and only if) you request it, the link-editor will issue messages suggesting better options and other changes you might make to your ld command to get better results. You can choose to take the advice, or you can disable specific types of guidance while acting on others. In some ways, this works like an experienced friend leaning over your shoulder and giving you advice — you're free to take it or leave it as you see fit, but you get nudged to do a better job than you might have otherwise. We use guidance to build the core Solaris OS, and it has proven to be useful, both in improving our objects, and in making sure that regressions don't creep back in later. In this article, I'm going to describe the evolution in thinking and design that led to the implementation of the -z guidance option, as well as give a brief description of how it works. The guidance feature issues non-fatal warnings. However, experience shows that once developers get used to ignoring warnings, it is inevitable that real problems will be lost in the noise and ignored or missed. This is why we have a zero tolerance policy against build noise in the core Solaris OS. In order to get maximum benefit from -z guidance while maintaining this policy, I added the -z fatal-warnings option at the same time. Much of the material presented here is adapted from the arc case: PSARC 2010/312 Link-editor guidance The History Of Unfortunate Link-Editor Defaults The Solaris link-editor is one of the oldest Unix commands. It stands to reason that this would be true — in order to write an operating system, you need the ability to compile and link code. The original link-editor (ld) had defaults that made sense at the time. As new features were needed, command line option switches were added to let the user use them, while maintaining backward compatibility for those who didn't. Backward compatibility is always a concern in system design, but is particularly important in the case of the tool chain (compilers, linker, and related tools), since it is a basic building block for the entire system. Over the years, applications have grown in size and complexity. Important concepts like dynamic linking that didn't exist in the original Unix system were invented. Object file formats changed. In the case of System V Release 4 Unix derivatives like Solaris, the ELF (Extensible Linking Format) was adopted. Since then, the ELF system has evolved to provide tools needed to manage today's larger and more complex environments. Features such as lazy loading, and direct bindings have been added. In an ideal world, many of these options would be defaults, with rarely used options that allow the user to turn them off. However, the reality is exactly the reverse: For backward compatibility, these features are all options that must be explicitly turned on by the user. This has led to a situation in which most applications do not take advantage of the many improvements that have been made in linking over the last 20 years. If their code seems to link and run without issue, what motivation does a developer have to read a complex manpage, absorb the information provided, choose the features that matter for their application, and apply them? Experience shows that only the most motivated and diligent programmers will make that effort. We know that most programs would be improved if we could just get you to use the various whizzy features that we provide, but the defaults conspire against us. We have long wanted to do something to make it easier for our users to use the linkers more effectively. There have been many conversations over the years regarding this issue, and how to address it. They always break down along the following lines: Change ld Defaults Since the world would be a better place the newer ld features were the defaults, why not change things to make it so? This idea is simple, elegant, and impossible. Doing so would break a large number of existing applications, including those of ISVs, big customers, and a plethora of existing open source packages. In each case, the owner of that code may choose to follow our lead and fix their code, or they may view it as an invitation to reconsider their commitment to our platform. Backward compatibility, and our installed base of working software, is one of our greatest assets, and not something to be lightly put at risk. Breaking backward compatibility at this level of the system is likely to do more harm than good. But, it sure is tempting. New Link-Editor One might create a new linker command, not called 'ld', leaving the old command as it is. The new one could use the same code as ld, but would offer only modern options, with the proper defaults for features such as direct binding. The resulting link-editor would be a pleasure to use. However, the approach is doomed to niche status. There is a vast pile of exiting code in the world built around the existing ld command, that reaches back to the 1970's. ld use is embedded in large and unknown numbers of makefiles, and is used by name by compilers that execute it. A Unix link-editor that is not named ld will not find a majority audience no matter how good it might be. Finally, a new linker command will eventually cease to be new, and will accumulate its own burden of backward compatibility issues. An Option To Make ld Do The Right Things Automatically This line of reasoning is best summarized by a CR filed in 2005, entitled 6239804 make it easier for ld(1) to do what's best The idea is to have a '-z best' option that unchains ld from its backward compatibility commitment, and allows it to turn on the "best" set of features, as determined by the authors of ld. The specific set of features enabled by -z best would be subject to change over time, as requirements change. This idea is more realistic than the other two, but was never implemented because it has some important issues that we could never answer to our satisfaction: The -z best proposal assumes that the user can turn it on, and trust it to select good options without the user needing to be aware of the options being applied. This is a fallacy. Features such as direct bindings require the user to do some analysis to ensure that the resulting program will still operate properly. A user who is willing to do the work to verify that what -z best does will be OK for their application is capable of turning on those features directly, and therefore gains little added benefit from -z best. The intent is that when a user opts into -z best, that they understand that z best is subject to sometimes incompatible evolution. Experience teaches us that this won't work. People will use this feature, the meaning of -z best will change, code that used to build will fail, and then there will be complaints and demands to retract the change. When (not if) this occurs, we will of course defend our actions, and point at the disclaimer. We'll win some of those debates, and lose others. Ultimately, we'll end up with -z best2 (-z better), or other compromises, and our goal of simplifying the world will have failed. The -z best idea rolls up a set of features that may or may not be related to each other into a unit that must be taken wholesale, or not at all. It could be that only a subset of what it does is compatible with a given application, in which case the user is expected to abandon -z best and instead set the options that apply to their application directly. In doing so, they lose one of the benefits of -z best, that if you use it, future versions of ld may choose a different set of options, and automatically improve the object through the act of rebuilding it. I drew two conclusions from the above history: For a link-editor, backward compatibility is vital. If a given command line linked your application 10 years ago, you have every reason to expect that it will link today, assuming that the libraries you're linking against are still available and compatible with their previous interfaces. For an application of any size or complexity, there is no substitute for the work involved in examining the code and determining which linker options apply and which do not. These options are largely orthogonal to each other, and it can be reasonable not to use any or all of them, depending on the situation, even in modern applications. It is a mistake to tie them together. The idea for -z guidance came from consideration of these points. By decoupling the advice from the act of taking the advice, we can retain the good aspects of -z best while avoiding its pitfalls: -z guidance gives advice, but the decision to take that advice remains with the user who must evaluate its merit and make a decision to take it or not. As such, we are free to change the specific guidance given in future releases of ld, without breaking existing applications. The only fallout from this will be some new warnings in the build output, which can be ignored or dealt with at the user's convenience. It does not couple the various features given into a single "take it or leave it" option, meaning that there will never be a need to offer "-zguidance2", or other such variants as things change over time. Guidance has the potential to be our final word on this subject. The user is given the flexibility to disable specific categories of guidance without losing the benefit of others, including those that might be added to future versions of the system. Although -z fatal-warnings stands on its own as a useful feature, it is of particular interest in combination with -z guidance. Used together, the guidance turns from advice to hard requirement: The user must either make the suggested change, or explicitly reject the advice by specifying a guidance exception token, in order to get a build. This is valuable in environments with high coding standards. ld Command Line Options The guidance effort resulted in new link-editor options for guidance and for turning warnings into fatal errors. Before I reproduce that text here, I'd like to highlight the strategic decisions embedded in the guidance feature: In order to get guidance, you have to opt in. We hope you will opt in, and believe you'll get better objects if you do, but our default mode of operation will continue as it always has, with full backward compatibility, and without judgement. Guidance suggestions always offers specific advice, and not vague generalizations. You can disable some guidance without turning off the entire feature. When you get guidance warnings, you can choose to take the advice, or you can specify a keyword to disable guidance for just that category. This allows you to get guidance for things that are useful to you, without being bothered about things that you've already considered and dismissed. As the world changes, we will add new guidance to steer you in the right direction. All such new guidance will come with a keyword that let's you turn it off. In order to facilitate building your code on different versions of Solaris, we quietly ignore any guidance keywords we don't recognize, assuming that they are intended for newer versions of the link-editor. If you want to see what guidance tokens ld does and does not recognize on your system, you can use the ld debugging feature as follows: % ld -Dargs -z guidance=foo,nodefs debug: debug: Solaris Linkers: 5.11-1.2275 debug: debug: arg[1] option=-D: option-argument: args debug: arg[2] option=-z: option-argument: guidance=foo,nodefs debug: warning: unrecognized -z guidance item: foo The -z fatal-warning option is straightforward, and generally useful in environments with strict coding standards. Note that the GNU ld already had this feature, and we accept their option names as synonyms: -z fatal-warnings | nofatal-warnings --fatal-warnings | --no-fatal-warnings The -z fatal-warnings and the --fatal-warnings option cause the link-editor to treat warnings as fatal errors. The -z nofatal-warnings and the --no-fatal-warnings option cause the link-editor to treat warnings as non-fatal. This is the default behavior. The -z guidance option is defined as follows: -z guidance[=item1,item2,...] Provide guidance messages to suggest ld options that can improve the quality of the resulting object, or which are otherwise considered to be beneficial. The specific guidance offered is subject to change over time as the system evolves. Obsolete guidance offered by older versions of ld may be dropped in new versions. Similarly, new guidance may be added to new versions of ld. Guidance therefore always represents current best practices. It is possible to enable guidance, while preventing specific guidance messages, by providing a list of item tokens, representing the class of guidance to be suppressed. In this way, unwanted advice can be suppressed without losing the benefit of other guidance. Unrecognized item tokens are quietly ignored by ld, allowing a given ld command line to be executed on a variety of older or newer versions of Solaris. The guidance offered by the current version of ld, and the item tokens used to disable these messages, are as follows. Specify Required Dependencies Dynamic executables and shared objects should explicitly define all of the dependencies they require. Guidance recommends the use of the -z defs option, should any symbol references remain unsatisfied when building dynamic objects. This guidance can be disabled with -z guidance=nodefs. Do Not Specify Non-Required Dependencies Dynamic executables and shared objects should not define any dependencies that do not satisfy the symbol references made by the dynamic object. Guidance recommends that unused dependencies be removed. This guidance can be disabled with -z guidance=nounused. Lazy Loading Dependencies should be identified for lazy loading. Guidance recommends the use of the -z lazyload option should any dependency be processed before either a -z lazyload or -z nolazyload option is encountered. This guidance can be disabled with -z guidance=nolazyload. Direct Bindings Dependencies should be referenced with direct bindings. Guidance recommends the use of the -B direct, or -z direct options should any dependency be processed before either of these options, or the -z nodirect option is encountered. This guidance can be disabled with -z guidance=nodirect. Pure Text Segment Dynamic objects should not contain relocations to non-writable, allocable sections. Guidance recommends compiling objects with Position Independent Code (PIC) should any relocations against the text segment remain, and neither the -z textwarn or -z textoff options are encountered. This guidance can be disabled with -z guidance=notext. Mapfile Syntax All mapfiles should use the version 2 mapfile syntax. Guidance recommends the use of the version 2 syntax should any mapfiles be encountered that use the version 1 syntax. This guidance can be disabled with -z guidance=nomapfile. Library Search Path Inappropriate dependencies that are encountered by ld are quietly ignored. For example, a 32-bit dependency that is encountered when generating a 64-bit object is ignored. These dependencies can result from incorrect search path settings, such as supplying an incorrect -L option. Although benign, this dependency processing is wasteful, and might hide a build problem that should be solved. Guidance recommends the removal of any inappropriate dependencies. This guidance can be disabled with -z guidance=nolibpath. In addition, -z guidance=noall can be used to entirely disable the guidance feature. See Chapter 7, Link-Editor Quick Reference, in the Linker and Libraries Guide for more information on guidance and advice for building better objects. Example The following example demonstrates how the guidance feature is intended to work. We will build a shared object that has a variety of shortcomings: Does not specify all it's dependencies Specifies dependencies it does not use Does not use direct bindings Uses a version 1 mapfile Contains relocations to the readonly allocable text (not PIC) This scenario is sadly very common — many shared objects have one or more of these issues. % cat hello.c #include <stdio.h> #include <unistd.h> void hello(void) { printf("hello user %d\n", getpid()); } % cat mapfile.v1 # This version 1 mapfile will trigger a guidance message % cc hello.c -o hello.so -G -M mapfile.v1 -lelf As you can see, the operation completes without error, resulting in a usable object. However, turning on guidance reveals a number of things that could be better: % cc hello.c -o hello.so -G -M mapfile.v1 -lelf -zguidance ld: guidance: version 2 mapfile syntax recommended: mapfile.v1 ld: guidance: -z lazyload option recommended before first dependency ld: guidance: -B direct or -z direct option recommended before first dependency Undefined first referenced symbol in file getpid hello.o (symbol belongs to implicit dependency /lib/libc.so.1) printf hello.o (symbol belongs to implicit dependency /lib/libc.so.1) ld: warning: symbol referencing errors ld: guidance: -z defs option recommended for shared objects ld: guidance: removal of unused dependency recommended: libelf.so.1 warning: Text relocation remains referenced against symbol offset in file .rodata1 (section) 0xa hello.o getpid 0x4 hello.o printf 0xf hello.o ld: guidance: position independent (PIC) code recommended for shared objects ld: guidance: see ld(1) -z guidance for more information Given the explicit advice in the above guidance messages, it is relatively easy to modify the example to do the right things: % cat mapfile.v2 # This version 2 mapfile will not trigger a guidance message $mapfile_version 2 % cc hello.c -o hello.so -Kpic -G -Bdirect -M mapfile.v2 -lc -zguidance There are situations in which the guidance does not fit the object being built. For instance, you want to build an object without direct bindings: % cc -Kpic hello.c -o hello.so -G -M mapfile.v2 -lc -zguidance ld: guidance: -B direct or -z direct option recommended before first dependency ld: guidance: see ld(1) -z guidance for more information It is easy to disable that specific guidance warning without losing the overall benefit from allowing the remainder of the guidance feature to operate: % cc -Kpic hello.c -o hello.so -G -M mapfile.v2 -lc -zguidance=nodirect Conclusions The linking guidelines enforced by the ld guidance feature correspond rather directly to our standards for building the core Solaris OS. I'm sure that comes as no surprise. It only makes sense that we would want to build our own product as well as we know how. Solaris is usually the first significant test for any new linker feature. We now enable guidance by default for all builds, and the effect has been very positive. Guidance helps us find suboptimal objects more quickly. Programmers get concrete advice for what to change instead of vague generalities. Even in the cases where we override the guidance, the makefile rules to do so serve as documentation of the fact. Deciding to use guidance is likely to cause some up front work for most code, as it forces you to consider using new features such as direct bindings. Such investigation is worthwhile, but does not come for free. However, the guidance suggestions offer a structured and straightforward way to tackle modernizing your objects, and once that work is done, for keeping them that way. The investment is often worth it, and will replay you in terms of better performance and fewer problems. I hope that you find guidance to be as useful as we have.

    Read the article

  • Informed TDD &ndash; Kata &ldquo;To Roman Numerals&rdquo;

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/05/28/informed-tdd-ndash-kata-ldquoto-roman-numeralsrdquo.aspxIn a comment on my article on what I call Informed TDD (ITDD) reader gustav asked how this approach would apply to the kata “To Roman Numerals”. And whether ITDD wasn´t a violation of TDD´s principle of leaving out “advanced topics like mocks”. I like to respond with this article to his questions. There´s more to say than fits into a commentary. Mocks and TDD I don´t see in how far TDD is avoiding or opposed to mocks. TDD and mocks are orthogonal. TDD is about pocess, mocks are about structure and costs. Maybe by moving forward in tiny red+green+refactor steps less need arises for mocks. But then… if the functionality you need to implement requires “expensive” resource access you can´t avoid using mocks. Because you don´t want to constantly run all your tests against the real resource. True, in ITDD mocks seem to be in almost inflationary use. That´s not what you usually see in TDD demonstrations. However, there´s a reason for that as I tried to explain. I don´t use mocks as proxies for “expensive” resource. Rather they are stand-ins for functionality not yet implemented. They allow me to get a test green on a high level of abstraction. That way I can move forward in a top-down fashion. But if you think of mocks as “advanced” or if you don´t want to use a tool like JustMock, then you don´t need to use mocks. You just need to stand the sight of red tests for a little longer ;-) Let me show you what I mean by that by doing a kata. ITDD for “To Roman Numerals” gustav asked for the kata “To Roman Numerals”. I won´t explain the requirements again. You can find descriptions and TDD demonstrations all over the internet, like this one from Corey Haines. Now here is, how I would do this kata differently. 1. Analyse A demonstration of TDD should never skip the analysis phase. It should be made explicit. The requirements should be formalized and acceptance test cases should be compiled. “Formalization” in this case to me means describing the API of the required functionality. “[D]esign a program to work with Roman numerals” like written in this “requirement document” is not enough to start software development. Coding should only begin, if the interface between the “system under development” and its context is clear. If this interface is not readily recognizable from the requirements, it has to be developed first. Exploration of interface alternatives might be in order. It might be necessary to show several interface mock-ups to the customer – even if that´s you fellow developer. Designing the interface is a task of it´s own. It should not be mixed with implementing the required functionality behind the interface. Unfortunately, though, this happens quite often in TDD demonstrations. TDD is used to explore the API and implement it at the same time. To me that´s a violation of the Single Responsibility Principle (SRP) which not only should hold for software functional units but also for tasks or activities. In the case of this kata the API fortunately is obvious. Just one function is needed: string ToRoman(int arabic). And it lives in a class ArabicRomanConversions. Now what about acceptance test cases? There are hardly any stated in the kata descriptions. Roman numerals are explained, but no specific test cases from the point of view of a customer. So I just “invent” some acceptance test cases by picking roman numerals from a wikipedia article. They are supposed to be just “typical examples” without special meaning. Given the acceptance test cases I then try to develop an understanding of the problem domain. I´ll spare you that. The domain is trivial and is explain in almost all kata descriptions. How roman numerals are built is not difficult to understand. What´s more difficult, though, might be to find an efficient solution to convert into them automatically. 2. Solve The usual TDD demonstration skips a solution finding phase. Like the interface exploration it´s mixed in with the implementation. But I don´t think this is how it should be done. I even think this is not how it really works for the people demonstrating TDD. They´re simplifying their true software development process because they want to show a streamlined TDD process. I doubt this is helping anybody. Before you code you better have a plan what to code. This does not mean you have to do “Big Design Up-Front”. It just means: Have a clear picture of the logical solution in your head before you start to build a physical solution (code). Evidently such a solution can only be as good as your understanding of the problem. If that´s limited your solution will be limited, too. Fortunately, in the case of this kata your understanding does not need to be limited. Thus the logical solution does not need to be limited or preliminary or tentative. That does not mean you need to know every line of code in advance. It just means you know the rough structure of your implementation beforehand. Because it should mirror the process described by the logical or conceptual solution. Here´s my solution approach: The arabic “encoding” of numbers represents them as an ordered set of powers of 10. Each digit is a factor to multiply a power of ten with. The “encoding” 123 is the short form for a set like this: {1*10^2, 2*10^1, 3*10^0}. And the number is the sum of the set members. The roman “encoding” is different. There is no base (like 10 for arabic numbers), there are just digits of different value, and they have to be written in descending order. The “encoding” XVI is short for [10, 5, 1]. And the number is still the sum of the members of this list. The roman “encoding” thus is simpler than the arabic. Each “digit” can be taken at face value. No multiplication with a base required. But what about IV which looks like a contradiction to the above rule? It is not – if you accept roman “digits” not to be limited to be single characters only. Usually I, V, X, L, C, D, M are viewed as “digits”, and IV, IX etc. are viewed as nuisances preventing a simple solution. All looks different, though, once IV, IX etc. are taken as “digits”. Then MCMLIV is just a sum: M+CM+L+IV which is 1000+900+50+4. Whereas before it would have been understood as M-C+M+L-I+V – which is more difficult because here some “digits” get subtracted. Here´s the list of roman “digits” with their values: {1, I}, {4, IV}, {5, V}, {9, IX}, {10, X}, {40, XL}, {50, L}, {90, XC}, {100, C}, {400, CD}, {500, D}, {900, CM}, {1000, M} Since I take IV, IX etc. as “digits” translating an arabic number becomes trivial. I just need to find the values of the roman “digits” making up the number, e.g. 1954 is made up of 1000, 900, 50, and 4. I call those “digits” factors. If I move from the highest factor (M=1000) to the lowest (I=1) then translation is a two phase process: Find all the factors Translate the factors found Compile the roman representation Translation is just a look-up. Finding, though, needs some calculation: Find the highest remaining factor fitting in the value Remember and subtract it from the value Repeat with remaining value and remaining factors Please note: This is just an algorithm. It´s not code, even though it might be close. Being so close to code in my solution approach is due to the triviality of the problem. In more realistic examples the conceptual solution would be on a higher level of abstraction. With this solution in hand I finally can do what TDD advocates: find and prioritize test cases. As I can see from the small process description above, there are two aspects to test: Test the translation Test the compilation Test finding the factors Testing the translation primarily means to check if the map of factors and digits is comprehensive. That´s simple, even though it might be tedious. Testing the compilation is trivial. Testing factor finding, though, is a tad more complicated. I can think of several steps: First check, if an arabic number equal to a factor is processed correctly (e.g. 1000=M). Then check if an arabic number consisting of two consecutive factors (e.g. 1900=[M,CM]) is processed correctly. Then check, if a number consisting of the same factor twice is processed correctly (e.g. 2000=[M,M]). Finally check, if an arabic number consisting of non-consecutive factors (e.g. 1400=[M,CD]) is processed correctly. I feel I can start an implementation now. If something becomes more complicated than expected I can slow down and repeat this process. 3. Implement First I write a test for the acceptance test cases. It´s red because there´s no implementation even of the API. That´s in conformance with “TDD lore”, I´d say: Next I implement the API: The acceptance test now is formally correct, but still red of course. This will not change even now that I zoom in. Because my goal is not to most quickly satisfy these tests, but to implement my solution in a stepwise manner. That I do by “faking” it: I just “assume” three functions to represent the transformation process of my solution: My hypothesis is that those three functions in conjunction produce correct results on the API-level. I just have to implement them correctly. That´s what I´m trying now – one by one. I start with a simple “detail function”: Translate(). And I start with all the test cases in the obvious equivalence partition: As you can see I dare to test a private method. Yes. That´s a white box test. But as you´ll see it won´t make my tests brittle. It serves a purpose right here and now: it lets me focus on getting one aspect of my solution right. Here´s the implementation to satisfy the test: It´s as simple as possible. Right how TDD wants me to do it: KISS. Now for the second equivalence partition: translating multiple factors. (It´a pattern: if you need to do something repeatedly separate the tests for doing it once and doing it multiple times.) In this partition I just need a single test case, I guess. Stepping up from a single translation to multiple translations is no rocket science: Usually I would have implemented the final code right away. Splitting it in two steps is just for “educational purposes” here. How small your implementation steps are is a matter of your programming competency. Some “see” the final code right away before their mental eye – others need to work their way towards it. Having two tests I find more important. Now for the next low hanging fruit: compilation. It´s even simpler than translation. A single test is enough, I guess. And normally I would not even have bothered to write that one, because the implementation is so simple. I don´t need to test .NET framework functionality. But again: if it serves the educational purpose… Finally the most complicated part of the solution: finding the factors. There are several equivalence partitions. But still I decide to write just a single test, since the structure of the test data is the same for all partitions: Again, I´m faking the implementation first: I focus on just the first test case. No looping yet. Faking lets me stay on a high level of abstraction. I can write down the implementation of the solution without bothering myself with details of how to actually accomplish the feat. That´s left for a drill down with a test of the fake function: There are two main equivalence partitions, I guess: either the first factor is appropriate or some next. The implementation seems easy. Both test cases are green. (Of course this only works on the premise that there´s always a matching factor. Which is the case since the smallest factor is 1.) And the first of the equivalence partitions on the higher level also is satisfied: Great, I can move on. Now for more than a single factor: Interestingly not just one test becomes green now, but all of them. Great! You might say, then I must have done not the simplest thing possible. And I would reply: I don´t care. I did the most obvious thing. But I also find this loop very simple. Even simpler than a recursion of which I had thought briefly during the problem solving phase. And by the way: Also the acceptance tests went green: Mission accomplished. At least functionality wise. Now I´ve to tidy up things a bit. TDD calls for refactoring. Not uch refactoring is needed, because I wrote the code in top-down fashion. I faked it until I made it. I endured red tests on higher levels while lower levels weren´t perfected yet. But this way I saved myself from refactoring tediousness. At the end, though, some refactoring is required. But maybe in a different way than you would expect. That´s why I rather call it “cleanup”. First I remove duplication. There are two places where factors are defined: in Translate() and in Find_factors(). So I factor the map out into a class constant. Which leads to a small conversion in Find_factors(): And now for the big cleanup: I remove all tests of private methods. They are scaffolding tests to me. They only have temporary value. They are brittle. Only acceptance tests need to remain. However, I carry over the single “digit” tests from Translate() to the acceptance test. I find them valuable to keep, since the other acceptance tests only exercise a subset of all roman “digits”. This then is my final test class: And this is the final production code: Test coverage as reported by NCrunch is 100%: Reflexion Is this the smallest possible code base for this kata? Sure not. You´ll find more concise solutions on the internet. But LOC are of relatively little concern – as long as I can understand the code quickly. So called “elegant” code, however, often is not easy to understand. The same goes for KISS code – especially if left unrefactored, as it is often the case. That´s why I progressed from requirements to final code the way I did. I first understood and solved the problem on a conceptual level. Then I implemented it top down according to my design. I also could have implemented it bottom-up, since I knew some bottom of the solution. That´s the leaves of the functional decomposition tree. Where things became fuzzy, since the design did not cover any more details as with Find_factors(), I repeated the process in the small, so to speak: fake some top level, endure red high level tests, while first solving a simpler problem. Using scaffolding tests (to be thrown away at the end) brought two advantages: Encapsulation of the implementation details was not compromised. Naturally private methods could stay private. I did not need to make them internal or public just to be able to test them. I was able to write focused tests for small aspects of the solution. No need to test everything through the solution root, the API. The bottom line thus for me is: Informed TDD produces cleaner code in a systematic way. It conforms to core principles of programming: Single Responsibility Principle and/or Separation of Concerns. Distinct roles in development – being a researcher, being an engineer, being a craftsman – are represented as different phases. First find what, what there is. Then devise a solution. Then code the solution, manifest the solution in code. Writing tests first is a good practice. But it should not be taken dogmatic. And above all it should not be overloaded with purposes. And finally: moving from top to bottom through a design produces refactored code right away. Clean code thus almost is inevitable – and not left to a refactoring step at the end which is skipped often for different reasons.   PS: Yes, I have done this kata several times. But that has only an impact on the time needed for phases 1 and 2. I won´t skip them because of that. And there are no shortcuts during implementation because of that.

    Read the article

  • Installing XP through USB-flash disc

    - by Crazy Buddy
    I don't know whether this could be asked here... So, Pardon me for this. Probably, this is based on My laptop and a contradiction to this question asked already here... I tried to format my "government-provided" laptop (No CD-drive). I thought those IT guys are proving that they're too smart..! I have the Windows XP CD right now. I didn't like to stick with some home-made OS from our Government. So, I used another laptop to format the govt. thing and tried to install XP (As I didn't have enough bills to invest on Windows 7 or 8). Case 1: First, I allowed WinSetupFromUSB 1.0 beta 8 to deal with the flash disk. I wondered for the first time that XP text-screen appeared. Using the first part, I formatted my laptop. It started to copy files, entered into the next part, and completed the installation. I started my PC for the first time. XP splash screen appeared. Suddenly, a blue screen flashed and disappeared (I can't even read what it says). Rebooted and arrived at the screen, "Start Windows Normally". It happens and happens still - like an infinite loop :-) Case 2: Next, I used Rufus 1.2.0 to transfer files to my Flash and it screwed everything out. Even if I used Flash to boot, it arrives to the same screen "Start Windows normally". It doesn't show any response of Flash being inserted. Then I recognized that, It's simply copies everything to the flash disk. Case 3: Then, I started with Novicorp WinToFlash (giving utmost priority to this site). I booted with the disk. I entered into the first part - "Text mode". Some lines started running like that "Press F6 if you..." like that. The last thing I saw was, "Setup is starting Windows..." Suddenly a blue screen appeared like this captured one. I've a suspicion that the same screen appears again & again in first case. Man, I'm dead. Case 4: For the sake of my last hope, I used WinSetupFromUSB 0.1.1. I was shocked on arriving at a screen which says something "GRUB4DOS" like that and some commands like {command line, reboot, halt, \find menu.lst} and when I go inside those "find" options, I see "Error:15 - File not found". Googling provided some commands to mount SETUPLDR.BIN file in the "grub" thing which also proved unsuccessful... Some sites say that Factory reset uses only some function keys. A guy said that it's F11 for lenovo. Screw him. It's all a waste-of-time. But, I think SE would help me out. Is our government IT guys doin' this to me? Are they Soooo smart to spark some blue screen in front of me to freak me out? Any suggestions or new (useful) USB transferring things would be appreciated. It's very urgent. So, It'd be better if you guys pay some attention in debugging and help me out..? Thanks for your time guys :-)

    Read the article

  • Using PHP to connect to RADIUS works on one server but not another

    - by JDS
    I have a fleet of webservers that server a LAMP webapp broken into multiple customer apps by virtualhost/domain. The platform is Ubuntu 10.04 VM + PHP 5.3 + Apache 2.2.14, on top of VMware ESX (v4 I think). This stuff's not too important, though -- I'm just setting up the background. I have one customer that connects to a RADIUS server for authentication. We've found that the app responds as if some number of web servers are configured correctly and some are not. i.e. Apparently random authentication failures or successes, with no rhyme or reason. I did a lot of analysis of our fleet, and resolved it down to the differences between two specific web servers. I'll call them "A" and "B". "A" works. "B" does not. "Works" means "connects to and gets authentication data successfully from the RADIUS server". Ultimately, I'm looking for one thing that is different, and I've exhausted everything that I can come up with, so, looking for something else. Here are things I've looked at PHP package versions (all from Ubuntu repos). These are exactly the same across servers. PECL package. There are no PECL packages that aren't installed by apt. Other libraries or packages. Nothing that was network-related or RADIUS-related was different among servers. (There were some minor package differences, though.) Network or hosting environment. I found that some of the working servers were on the same physical environment as some not-working ones (i.e. same ESX containers). So, probably, the physical network layer is not the problem. Test case. I created a test case as follows. It works on the working servers, and fails on the not-working servers, very consistently. <?php $radius = radius_auth_open(); $username = 'theusername'; $password = 'thepassword'; $hostname = '12.34.56.78'; $radius_secret = '39wmmvxghg'; if (! radius_add_server($radius,$hostname,0,$radius_secret,5,3)) { die('Radius Error 1: ' . radius_strerror($radius) . "\n"); } if (! radius_create_request($radius,RADIUS_ACCESS_REQUEST)) { die('Radius Error 2: ' . radius_strerror($radius) . "\n"); } radius_put_attr($radius,RADIUS_USER_NAME,$username); radius_put_attr($radius,RADIUS_USER_PASSWORD,$password); switch (radius_send_request($radius)) { case RADIUS_ACCESS_ACCEPT: echo 'GOOD LOGIN'; break; case RADIUS_ACCESS_REJECT: echo 'BAD LOGIN'; break; case RADIUS_ACCESS_CHALLENGE: echo 'CHALLENGE REQUESTED'; break; default: die('Radius Error 3: ' . radius_strerror($radius) . "\n"); } ?>

    Read the article

  • Removing the XML Formatter from ASP.NET Web API Applications

    - by Rick Strahl
    ASP.NET Web API's default output format is supposed to be JSON, but when I access my Web APIs using the browser address bar I'm always seeing an XML result instead. When working on AJAX application I like to test many of my AJAX APIs with the browser while working on them. While I can't debug all requests this way, GET requests are easy to test in the browser especially if you have JSON viewing options set up in your various browsers. If I preview a Web API request in most browsers I get an XML response like this: Why is that? Web API checks the HTTP Accept headers of a request to determine what type of output it should return by looking for content typed that it has formatters registered for. This automatic negotiation is one of the great features of Web API because it makes it easy and transparent to request different kinds of output from the server. In the case of browsers it turns out that most send Accept headers that look like this (Chrome in this case): Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Web API inspects the entire list of headers from left to right (plus the quality/priority flag q=) and tries to find a media type that matches its list of supported media types in the list of formatters registered. In this case it matches application/xml to the Xml formatter and so that's what gets returned and displayed. To verify that Web API indeed defaults to JSON output by default you can open the request in Fiddler and pop it into the Request Composer, remove the application/xml header and see that the output returned comes back in JSON instead. An accept header like this: Accept: text/html,application/xhtml+xml,*/*;q=0.9 or leaving the Accept header out altogether should give you a JSON response. Interestingly enough Internet Explorer 9 also displays JSON because it doesn't include an application/xml Accept header: Accept: text/html, application/xhtml+xml, */* which for once actually seems more sensible. Removing the XML Formatter We can't easily change the browser Accept headers (actually you can by delving into the config but it's a bit of a hassle), so can we change the behavior on the server? When working on AJAX applications I tend to not be interested in XML results and I always want to see JSON results at least during development. Web API uses a collection of formatters and you can go through this list and remove the ones you don't want to use - in this case the XmlMediaTypeFormatter. To do this you can work with the HttpConfiguration object and the static GlobalConfiguration object used to configure it: protected void Application_Start(object sender, EventArgs e) { // Action based routing (used for RPC calls) RouteTable.Routes.MapHttpRoute( name: "StockApi", routeTemplate: "stocks/{action}/{symbol}", defaults: new { symbol = RouteParameter.Optional, controller = "StockApi" } ); // WebApi Configuration to hook up formatters and message handlers RegisterApis(GlobalConfiguration.Configuration); } public static void RegisterApis(HttpConfiguration config) { // remove default Xml handler var matches = config.Formatters .Where(f = f.SupportedMediaTypes .Where(m = m.MediaType.ToString() == "application/xml" || m.MediaType.ToString() == "text/xml") .Count() 0) .ToList() ; foreach (var match in matches) config.Formatters.Remove(match); } } That LINQ code is quite a mouthful of nested collections, but it does the trick to remove the formatter based on the content type. You can also look for the specific formatter (XmlMediatTypeFormatter) by its type name which is simpler, but it's better to search for the supported types as this will work even if there are other custom formatters added. Once removed, now the browser request results in a JSON response: It's a simple solution to a small debugging task that's made my life easier. Maybe you find it useful too…© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api  ASP.NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • SQL SERVER – Puzzle – Statistics are not Updated but are Created Once

    - by pinaldave
    After having excellent response to my quiz – Why SELECT * throws an error but SELECT COUNT(*) does not?I have decided to ask another puzzling question to all of you. I am running this test on SQL Server 2008 R2. Here is the quick scenario about my setup. Create Table Insert 1000 Records Check the Statistics Now insert 10 times more 10,000 indexes Check the Statistics – it will be NOT updated Note: Auto Update Statistics and Auto Create Statistics for database is TRUE Expected Result – Statistics should be updated – SQL SERVER – When are Statistics Updated – What triggers Statistics to Update Now the question is why the statistics are not updated? The common answer is – we can update the statistics ourselves using UPDATE STATISTICS TableName WITH FULLSCAN, ALL However, the solution I am looking is where statistics should be updated automatically based on algorithm mentioned here. Now the solution is to ____________________. Vinod Kumar is not allowed to take participate over here as he is the one who has helped me to build this puzzle. I will publish the solution on next week. Please leave a comment and if your comment consist valid answer, I will publish with due credit. Here is the script to reproduce the scenario which I mentioned. -- Execution Plans Difference -- Create Sample Database CREATE DATABASE SampleDB GO USE SampleDB GO -- Create Table CREATE TABLE ExecTable (ID INT, FirstName VARCHAR(100), LastName VARCHAR(100), City VARCHAR(100)) GO -- Insert One Thousand Records -- INSERT 1 INSERT INTO ExecTable (ID,FirstName,LastName,City) SELECT TOP 1000 ROW_NUMBER() OVER (ORDER BY a.name) RowID, 'Bob', CASE WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%2 = 1 THEN 'Smith' ELSE 'Brown' END, CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%20 = 1 THEN 'New York' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 5 THEN 'San Marino' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 3 THEN 'Los Angeles' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 7 THEN 'La Cinega' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 13 THEN 'San Diego' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 17 THEN 'Las Vegas' ELSE 'Houston' END FROM sys.all_objects a CROSS JOIN sys.all_objects b GO -- Display statistics of the table - none listed sp_helpstats N'ExecTable', 'ALL' GO -- Select Statement SELECT FirstName, LastName, City FROM ExecTable WHERE City  = 'New York' GO -- Display statistics of the table sp_helpstats N'ExecTable', 'ALL' GO -- Replace your Statistics over here -- NOTE: Replace your _WA_Sys with stats from above query DBCC SHOW_STATISTICS('ExecTable', _WA_Sys_00000004_7D78A4E7); GO -------------------------------------------------------------- -- Round 2 -- Insert Ten Thousand Records -- INSERT 2 INSERT INTO ExecTable (ID,FirstName,LastName,City) SELECT TOP 10000 ROW_NUMBER() OVER (ORDER BY a.name) RowID, 'Bob', CASE WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%2 = 1 THEN 'Smith' ELSE 'Brown' END, CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%20 = 1 THEN 'New York' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 5 THEN 'San Marino' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 3 THEN 'Los Angeles' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 7 THEN 'La Cinega' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 13 THEN 'San Diego' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 17 THEN 'Las Vegas' ELSE 'Houston' END FROM sys.all_objects a CROSS JOIN sys.all_objects b GO -- Select Statement SELECT FirstName, LastName, City FROM ExecTable WHERE City  = 'New York' GO -- Display statistics of the table sp_helpstats N'ExecTable', 'ALL' GO -- Replace your Statistics over here -- NOTE: Replace your _WA_Sys with stats from above query DBCC SHOW_STATISTICS('ExecTable', _WA_Sys_00000004_7D78A4E7); GO -- You will notice that Statistics are still updated with 1000 rows -- Clean up Database DROP TABLE ExecTable GO USE MASTER GO ALTER DATABASE SampleDB SET SINGLE_USER WITH ROLLBACK IMMEDIATE; GO DROP DATABASE SampleDB GO Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Index, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: SQL Statistics, Statistics

    Read the article

  • Would using a self-signed SSL certificate be appropriate in this scenario?

    - by Kevin Y
    Now I realize this topic has been discussed in a few questions before (specifically this one), but I'm still a little confused about the implications of using a self-signed certificate, and how I would be affected by doing so in this case. After reading various sources, I'm still a little confused about the exact details of using one. The biggest problem with a self-signed certificate, is a man-in-the-middle attack. Even if you are 100% sure that you are on the correct website and you completely trust the site (your email server for example), you could have someone intercept the connection and present you with their own self-signed certificate. You would think that you are using a secure connection with your email server but you are really using a secure connection to an attacker's email server. – SSL Shopper So somebody could switch out my self-signed certificate with their own, and I wouldn't be able to detect it? The way this site phrases it, it makes it sound worse to install a self-signed certificate than to leave your site without a certificate at all. Self-signed certificates cannot (by nature) be revoked, which may allow an attacker who has already gained access to monitor and inject data into a connection to spoof an identity if a private key has been compromised. CAs on the other hand have the ability to revoke a compromised certificate if alerted, which prevents its further use. - Wikipedia Does this mean that the only way someone could switch out their own certificate for mine is for them to find out the private key? I suppose this is more secure, but I'm still slightly confused about what exactly results from using a self-signed certificate. Is the only issue that obnoxious security warning that pops up in your browser when directed to the site, or is there more to it? Now in my case, I want to add the an SSL certificate to a minuscule Wordpress blog I run that I don't expect anyone else will read anytime soon; I mainly started it to get into the habit of blogging, and to learn more about the process of administrating a site (ex. what to do in situations like this one). Whenever I go to the login page and there's an HTTP:// instead of HTTPS://, I cringe a little. Submitting my password feels like I'm shouting my password out loud with hundreds of people listening. I don't plan on adding any other authors to the site, so I am the only person who would ever need to login. This isn't a site I'm trying to get page views from, or one that handles e-commerce or any sensitive info like that, simply my username and password to login with. One of the concerns (that I've gathered so far) of a self-signed certificate is that non-technical users might be scared by the security warning, but this would not be an issue in my case. TL;DR: If scaring visitors away isn't a concern (which it isn't in my case), is it acceptable to use a self-signed certificate for the purpose of encrypting my Wordpress blog's password, or are there added security issues I should be aware of? Essentially, I'm wondering whether adding a self-signed certificate will be safer than leaving my login page the way it is now, or if it adds the potential for more security breaches than leaving it sans-SSL.

    Read the article

  • C# 4 Named Parameters for Overload Resolution

    - by Steve Michelotti
    C# 4 is getting a new feature called named parameters. Although this is a stand-alone feature, it is often used in conjunction with optional parameters. Last week when I was giving a presentation on C# 4, I got a question on a scenario regarding overload resolution that I had not considered before which yielded interesting results. Before I describe the scenario, a little background first. Named parameters is a well documented feature that works like this: suppose you have a method defined like this: 1: void DoWork(int num, string message = "Hello") 2: { 3: Console.WriteLine("Inside DoWork() - num: {0}, message: {1}", num, message); 4: } This enables you to call the method with any of these: 1: DoWork(21); 2: DoWork(num: 21); 3: DoWork(21, "abc"); 4: DoWork(num: 21, message: "abc"); and the corresponding results will be: Inside DoWork() - num: 21, message: Hello Inside DoWork() - num: 21, message: Hello Inside DoWork() - num: 21, message: abc Inside DoWork() - num: 21, message: abc This is all pretty straight forward and well-documented. What is slightly more interesting is how resolution is handled with method overloads. Suppose we had a second overload for DoWork() that looked like this: 1: void DoWork(object num) 2: { 3: Console.WriteLine("Inside second overload: " + num); 4: } The first rule applied for method overload resolution in this case is that it looks for the most strongly-type match first.  Hence, since the second overload has System.Object as the parameter rather than Int32, this second overload will never be called for any of the 4 method calls above.  But suppose the method overload looked like this: 1: void DoWork(int num) 2: { 3: Console.WriteLine("Inside second overload: " + num); 4: } In this case, both overloads have the first parameter as Int32 so they both fulfill the first rule equally.  In this case the overload with the optional parameters will be ignored if the parameters are not specified. Therefore, the same 4 method calls from above would result in: Inside second overload: 21 Inside second overload: 21 Inside DoWork() - num: 21, message: abc Inside DoWork() - num: 21, message: abc Even all this is pretty well documented. However, we can now consider the very interesting scenario I was presented with. The question was what happens if you change the parameter name in one of the overloads.  For example, what happens if you change the parameter *name* for the second overload like this: 1: void DoWork(int num2) 2: { 3: Console.WriteLine("Inside second overload: " + num2); 4: } In this case, the first 2 method calls will yield *different* results: 1: DoWork(21); 2: DoWork(num: 21); results in: Inside second overload: 21 Inside DoWork() - num: 21, message: Hello We know the first method call will go to the second overload because of normal method overload resolution rules which ignore the optional parameters.  But for the second call, even though all the same rules apply, the compiler will allow you to specify a named parameter which, in effect, overrides the typical rules and directs the call to the first overload. Keep in mind this would only work if the method overloads had different parameter names for the same types (which in itself is weird). But it is a situation I had not considered before and it is one in which you should be aware of the rules that the C# 4 compiler applies.

    Read the article

  • How to create Checkboxes that act like Radio buttons with Jquery

    - by hmloo
    I have a post here to show code examples for check/uncheck all checkbox with Jquery. This time I will implement another request that the user should only be able to check at most one of the checkboxes, it's behave like radio buttons. There are 2 cases. Case 1 shows function that has little difference with radio button. It allows the user to deselect checkbox. Case 2 is same as radio button. Case 1 <head id="Head1" runat="server"> <title></title> <script src="Scripts/jquery-1.4.1.min.js" type="text/javascript"></script> <style type="text/css"> .cbRowItem {display:block;} </style> <script type="text/javascript"> $(document).ready(function() { var $chk = $('input:checkbox .cbRowItem'); $chk.click(function() { $chk.not(this).removeAttr('checked'); }); }); </script> </head> <body> <form id="form1" runat="server"> <div style="display:block;"> <asp:CheckBox id="CheckBox1" runat="server" class="cbRowItem" Text = "CheckBox 1"/> <asp:CheckBox id="CheckBox2" runat="server" class="cbRowItem" Text = "CheckBox 2"/> <asp:CheckBox id="CheckBox3" runat="server" class="cbRowItem" Text = "CheckBox 3"/> <asp:CheckBox id="CheckBox4" runat="server" class="cbRowItem" Text = "CheckBox 4"/> </div> </form> </body> </html> Case 2 <head id="Head1" runat="server"> <title></title> <script src="Scripts/jquery-1.4.1.min.js" type="text/javascript"></script> <style type="text/css"> .cbRowItem {display:block;} </style> <script type="text/javascript"> $(document).ready(function() { var $chk = $('input:checkbox .cbRowItem'); $chk.click(function() { $chk.removeAttr('checked'); $(this).attr('checked', 'checked'); }); }); </script> </head> <body> <form id="form1" runat="server"> <div style="display:block;"> <asp:CheckBox id="CheckBox1" runat="server" class="cbRowItem" Text = "CheckBox 1"/> <asp:CheckBox id="CheckBox2" runat="server" class="cbRowItem" Text = "CheckBox 2"/> <asp:CheckBox id="CheckBox3" runat="server" class="cbRowItem" Text = "CheckBox 3"/> <asp:CheckBox id="CheckBox4" runat="server" class="cbRowItem" Text = "CheckBox 4"/> </div> </form> </body> </html>

    Read the article

  • Part 7: EBS Modifications and Flagged Files in R12

    - by volker.eckardt(at)oracle.com
    Let me, based on my previous blog, explain the procedure of flagged files a bit better and facilitate the same with screenshots. Flagged files is a concept within the Oracle eBusiness Suite (EBS) release 12, where you flag a standard deployment file, let’s say a Forms file, a Package or a Java class file. When you run the patch analyse, the list of flagged files will be checked and in case one of these files gets patched, the analyse report will tell you. Note: This functionality is also available in release 11, here it is implemented and known as “applcust.txt”. You can flag as many files as you want, in whatever relationship they are with your customizations. In addition to the flag itself you can add a comment. You should use this comment to point to your customization reference (here XXAR_RPT_066 or XXAP_CUST_030). Consider the following two cases: You have created your own report, based on a standard report. In this case you will flag the report file itself, and the key views used. When a patch updates one of these files, you will be informed and can initiate a proper review and testing. (ex.: first line for ARXCTA.rdf) You have created an extensive personalization and because it is business critical you like to be informed if the page definition gets updated. In this case you register the PG.xml file as flagged file. (ex.: second line below for CreateExtBankAcctPG.xml) The menu path to register flagged files is the following: (R) System Administrator > (M) Oracle Applications Manager > Site Map > Maintenance > Register Flagged Files     Your DBA should now run the Patch Analyse every time he is going to apply a new patch. (R) System Administrator > (M) Oracle Applications Manager > Patch Wizard > Task “Recommend/Analyze Patches” The screenshot above shows the impact summary. For this blog entry the number “2” titled “Flagged Files Changed“ is in our focus. When you click the “2” you will get a similar screen like the first in this blog, showing you exactly the files which will get patched if you continue and apply this patch in this environment right now. Note: It is also shown that just 20% of all patch files will get applied. This situation might be different in case your environments are on a different patch level. For sure also the customization impact might then be different. The flagging step can be done directly in the Oracle Applications Manager.  Our developers are responsible for. To transport such a flag+comment we use a FNDLOAD script. It is suggested to put the flagged files data file directly into your CEMLI patch. Herewith the flagged files registration will be executed right at the same time when the patch gets applied. Process Steps: Developer: Builds CEMLI Reviews code and identifies key standard objects referenced Determines standard object files and flags them Creates FNDLOAD file and adds the same to the CEMLI patch DBA: Executes for every new Oracle standard patch the patch analyse in a representative environment Checks and retrieves the flagged files and comments Sends flagged file list back to development team for analyse / retest Developer: Analyses / Updates / Retests effected CEMLIs Prerequisite: The patch analyse has to be executed in an environment where flagged files have been registered. (If you run the patch analyse in a vanilla or outdated environment (compared to your PROD), the analyse will not be so helpful!) When to start with Flagged files? Start right now utilizing this feature. It is an invest to improve the production stability and fulfil your SLA!   Summary Flagged Files is a very helpful EBS R12 technique when analysing patches. Implement a procedure within your development process to maintain such flags. Let the DBA run the patch analyse in an environment with a similar patch and customization level as your current production.   Related Links: EBS Patching Procedures - Chapter 2-13 - Registered Flagged Files

    Read the article

  • T-SQL (SCD) Slowly Changing Dimension Type 2 using a merge statement

    - by AtulThakor
    Working on stored procedure recently which loads records into a data warehouse I found that the existing record was being expired using an update statement followed by an insert to add the new active record. Playing around with the merge statement you can actually expire the current record and insert a new record within one clean statement. This is how the statement works, we do the normal merge statement to insert a record when there is no match, if we match the record we update the existing record by expiring it and deactivating. At the end of the merge statement we use the output statement to output the staging values for the update,  we wrap the whole merge statement within an insert statement and add new rows for the records which we inserted. I’ve added the full script at the bottom so you can paste it and play around.   1: INSERT INTO ExampleFactUpdate 2: (PolicyID, 3: Status) 4: SELECT -- these columns are returned from the output statement 5: PolicyID, 6: Status 7: FROM 8: ( 9: -- merge statement on unique id in this case Policy_ID 10: MERGE dbo.ExampleFactUpdate dp 11: USING dbo.ExampleStag s 12: ON dp.PolicyID = s.PolicyID 13: WHEN NOT MATCHED THEN -- when we cant match the record we insert a new record record and this is all that happens 14: INSERT (PolicyID,Status) 15: VALUES (s.PolicyID, s.Status) 16: WHEN MATCHED --if it already exists 17: AND ExpiryDate IS NULL -- and the Expiry Date is null 18: THEN 19: UPDATE 20: SET 21: dp.ExpiryDate = getdate(), --we set the expiry on the existing record 22: dp.Active = 0 -- and deactivate the existing record 23: OUTPUT $Action MergeAction, s.PolicyID, s.Status -- the output statement returns a merge action which can 24: ) MergeOutput -- be insert/update/delete, on our example where a record has been updated (or expired in our case 25: WHERE -- we'll filter using a where clause 26: MergeAction = 'Update'; -- here   Complete source for example 1: if OBJECT_ID('ExampleFactUpdate') > 0 2: drop table ExampleFactUpdate 3:  4: Create Table ExampleFactUpdate( 5: ID int identity(1,1), 3: go 6: PolicyID varchar(100), 7: Status varchar(100), 8: EffectiveDate datetime default getdate(), 9: ExpiryDate datetime, 10: Active bit default 1 11: ) 12:  13:  14: insert into ExampleFactUpdate( 15: PolicyID, 16: Status) 17: select 18: 1, 19: 'Live' 20:  21: /*Create Staging Table*/ 22: if OBJECT_ID('ExampleStag') > 0 23: drop table ExampleStag 24: go 25:  26: /*Create example fact table */ 27: Create Table ExampleStag( 28: PolicyID varchar(100), 29: Status varchar(100)) 30:  31: --add some data 32: insert into ExampleStag( 33: PolicyID, 34: Status) 35: select 36: 1, 37: 'Lapsed' 38: union all 39: select 40: 2, 41: 'Quote' 42:  43: select * 44: from ExampleFactUpdate 45:  46: select * 47: from ExampleStag 48:  49:  50: INSERT INTO ExampleFactUpdate 51: (PolicyID, 52: Status) 53: SELECT -- these columns are returned from the output statement 54: PolicyID, 55: Status 56: FROM 57: ( 58: -- merge statement on unique id in this case Policy_ID 59: MERGE dbo.ExampleFactUpdate dp 60: USING dbo.ExampleStag s 61: ON dp.PolicyID = s.PolicyID 62: WHEN NOT MATCHED THEN -- when we cant match the record we insert a new record record and this is all that happens 63: INSERT (PolicyID,Status) 64: VALUES (s.PolicyID, s.Status) 65: WHEN MATCHED --if it already exists 66: AND ExpiryDate IS NULL -- and the Expiry Date is null 67: THEN 68: UPDATE 69: SET 70: dp.ExpiryDate = getdate(), --we set the expiry on the existing record 71: dp.Active = 0 -- and deactivate the existing record 72: OUTPUT $Action MergeAction, s.PolicyID, s.Status -- the output statement returns a merge action which can 73: ) MergeOutput -- be insert/update/delete, on our example where a record has been updated (or expired in our case 74: WHERE -- we'll filter using a where clause 75: MergeAction = 'Update'; -- here 76:  77:  78: select * 79: from ExampleFactUpdate 80: 

    Read the article

  • Generate texture for a heightmap

    - by James
    I've recently been trying to blend multiple textures based on the height at different points in a heightmap. However i've been getting poor results. I decided to backtrack and just attempt to recreate one single texture from an SDL_Surface (i'm using SDL) and just send that into opengl. I'll put my code for creating the texture and reading the colour values. It is a 24bit TGA i'm loading, and i've confirmed that the rest of my code works because i was able to send the surfaces pixels directly to my createTextureFromData function and it drew fine. struct RGBColour { RGBColour() : r(0), g(0), b(0) {} RGBColour(unsigned char red, unsigned char green, unsigned char blue) : r(red), g(green), b(blue) {} unsigned char r; unsigned char g; unsigned char b; }; // main loading code SDLSurfaceReader* reader = new SDLSurfaceReader(m_renderer); reader->readSurface("images/grass.tga"); // new texture unsigned char* newTexture = new unsigned char[reader->m_surface->w * reader->m_surface->h * 3 * reader->m_surface->w]; for (int y = 0; y < reader->m_surface->h; y++) { for (int x = 0; x < reader->m_surface->w; x += 3) { int index = (y * reader->m_surface->w) + x; RGBColour colour = reader->getColourAt(x, y); newTexture[index] = colour.r; newTexture[index + 1] = colour.g; newTexture[index + 2] = colour.b; } } unsigned int id = m_renderer->createTextureFromData(newTexture, reader->m_surface->w, reader->m_surface->h, RGB); // functions for reading pixels RGBColour SDLSurfaceReader::getColourAt(int x, int y) { Uint32 pixel; Uint8 red, green, blue; RGBColour rgb; pixel = getPixel(m_surface, x, y); SDL_LockSurface(m_surface); SDL_GetRGB(pixel, m_surface->format, &red, &green, &blue); SDL_UnlockSurface(m_surface); rgb.r = red; rgb.b = blue; rgb.g = green; return rgb; } // this function taken from SDL documentation // http://www.libsdl.org/cgi/docwiki.cgi/Introduction_to_SDL_Video#getpixel Uint32 SDLSurfaceReader::getPixel(SDL_Surface* surface, int x, int y) { int bpp = m_surface->format->BytesPerPixel; Uint8 *p = (Uint8*)m_surface->pixels + y * m_surface->pitch + x * bpp; switch (bpp) { case 1: return *p; case 2: return *(Uint16*)p; case 3: if (SDL_BYTEORDER == SDL_BIG_ENDIAN) return p[0] << 16 | p[1] << 8 | p[2]; else return p[0] | p[1] << 8 | p[2] << 16; case 4: return *(Uint32*)p; default: return 0; } } I've been stumped at this, and I need help badly! Thanks so much for any advice.

    Read the article

  • Ops Center 12c - Update - Provisioning Solaris on x86 Using a Card-Based NIC

    - by scottdickson
    Last week, I posted a blog describing how to use Ops Center to provision Solaris over the network via a NIC on a card rather than the built-in NIC.  Really, that was all about how to install Solaris on a SPARC system.  This week, we'll look at how to do the same thing for an x86-based server. Really, the overall process is exactly the same, at least for Solaris 11, with only minor updates. We will focus on Solaris 11 for this blog.  Once I verify that the same approach works for Solaris 10, I will provide another update. Booting Solaris 11 on x86 Just as before, in order to configure the server for network boot across a card-based NIC, it is necessary to declare the asset to associate the additional MACs with the server.  You likely will need to access the server console via the ILOM to figure out the MAC and to get a good idea of the network instance number.  The simplest way to find both of these is to start a network boot using the desired NIC and see where it appears in the list of network interfaces and what MAC is used when it tries to boot.  Go to the ILOM for the server.  Reset the server and start the console.  When the BIOS loads, select the boot menu, usually with Ctrl-P.  This will give you a menu of devices to boot from, including all of the NICs.  Select the NIC you want to boot from.  Its position in the list is a good indication of what network number Solaris will give the device. In this case, we want to boot from the 5th interface (GB_4, net4).  Pick it and start the boot processes.  When it starts to boot, you will see the MAC address for the interface Once you have the network instance and the MAC, go through the same process of declaring the asset as in the SPARC case.  This associates the additional network interface with the server.. Creating an OS Provisioning Plan The simplest way to do the boot via an alternate interface on an x86 system is to do a manual boot.  Update the OS provisioning profile as in the SPARC case to reflect the fact that we are booting from a different interface.  Update, in this case, the network boot device to be GB_4/net4, or the device corresponding to your network instance number.  Configure the profile to support manual network boot by checking the box for manual boot in the OS Provisioning profile. Booting the System Once you have created a profile and plan to support booting from the additional NIC, we are ready to install the server. Again, from the ILOM, reset the system and start the console.  When the BIOS loads, select boot from the Boot Menu as above.  Select the network interface from the list as before and start the boot process.  When the grub bootloader loads, the default boot image is the Solaris Text Installer.  On the grub menu, select Automated Installer and Ops Center takes over from there. Lessons The key lesson from all of this is that Ops Center is a valuable tool for provisioning servers whether they are connected via built-in network interfaces or via high-speed NICs on cards.  This is great news for modern datacenters using converged network infrastructures.  The process works for both SPARC and x86 Solaris installations.  And it's easy and repeatable.

    Read the article

  • Collision 2D Quads

    - by Vico Pelaez
    I want to detect collision between two 2D squares, one square is static and the other one moves according to keyboard arrows. I have implemented some code, however nothing happens when they overlap each other and what I tried to achieve in the code was to detect an overlapping between them. I think I am either not understanding the concept really well or that because one of the squares is moving this is not working. Please I would really appreciate your help. Thank you! float x1=0.05 ,Y1=0.05; float x2=0.05 ,Y2=0.05; float posX1 =0.5, posY1 = 0.5; float movX2 = 0.0 , movY2 = 0.0; struct box{ int width=0.1; int heigth=0.1; }; void init(){ glClearColor(0.0, 0.0, 0.0, 0.0); glColor3f(1.0, 1.0, 1.0); } void quad1(){ glTranslatef(posX1, posY1, 0.0); glBegin(GL_POLYGON); glColor3f(0.5, 1.0, 0.5); glVertex2f(-x1, -Y1); glVertex2f(-x1, Y1); glVertex2f(x1,Y1); glVertex2f(x1,-Y1); glEnd(); } void quad2(){ glMatrixMode(GL_PROJECTION); glLoadIdentity(); glPushMatrix(); glTranslatef(movX2, movY2, 0.0); glBegin(GL_POLYGON); glColor3f(1.5, 1.0, 0.5); glVertex2f(-x2, -Y2); glVertex2f(-x2, Y2); glVertex2f(x2,Y2); glVertex2f(x2,-Y2); glEnd(); glPopMatrix(); } void reset(){ //Reset position of square??? movX2 = 0.0; movY2 = 0.0; collisionB = false; } bool collision(box A, box B){ int leftA, leftB; int rightA, rightB; int topA, topB; int bottomA, bottomB; //Calculate the sides of box A leftA = x1; rightA = x1 + A.width; topA = Y1; bottomA = Y1 + A.heigth; //Calculate the sides of box B leftB = x2; rightB = x2 + B.width; topB = Y1; bottomB = Y1+ B.heigth ; if( bottomA <= topB ) return false; if( topA >= bottomB ) return false; if( rightA <= leftB ) return false; if( leftA >= rightB ) return false; return true; } float move_unit = 0.1; void keyboardown(int key, int x, int y) { switch (key){ case GLUT_KEY_UP: movY2 += move_unit; break; case GLUT_KEY_RIGHT: movX2 += move_unit; break; case GLUT_KEY_LEFT: movX2 -= move_unit; break; case GLUT_KEY_DOWN: movY2 -= move_unit; break; default: break; } glutPostRedisplay(); } void display(){ glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_PROJECTION); glLoadIdentity(); cuad1(); if (!collision) { cuad2(); } else{ reset(); } glFlush(); } int main(int argc, char** argv){ glutInit(&argc, argv); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); glutInitWindowSize(500,500); glutInitWindowPosition(0, 0); glutCreateWindow("Collision Practice"); glutSpecialFunc(keyboardown); glutDisplayFunc(display); init(); glutMainLoop(); }

    Read the article

< Previous Page | 131 132 133 134 135 136 137 138 139 140 141 142  | Next Page >