Search Results

Search found 333 results on 14 pages for 'transformations'.

Page 14/14 | < Previous Page | 10 11 12 13 14 

  • CodePlex Daily Summary for Monday, October 31, 2011

    CodePlex Daily Summary for Monday, October 31, 2011Popular ReleasesWindows Workflow Foundation on Codeplex: Microsoft.Activities v1.8.8: Microsoft.Activities Overview How do I install Microsoft.Activities? Updates in this release9318Technical Analysis Engine for .NET: Technical Analysis Engine 1.24: New features in the 1.24 release: - Added MFI indicatorPROFIT: 1.1.0.102: Removed Attributes from agent and extensions Updated Modules with last data Added Elite T2 and T4 modules Modified sensor strength calculation to reflect ECCM module changesBF3Rcon.NET: BF3Rcon 3.0: This release is targeted for RCON documentation based on R3. Everything should be beta stable, but it's alpha because I haven't been able to fully test it. When a stable release is ready, a proper changelog will be kept. Important Edit: There's one method that will keep this from working in Mono. GeneratePasswordHash uses void HashAlgorithm.Dispose(), which isn't in Mono. This will have to be changed to Clear() in the next release. If anyone needs a Mono version of this immediately, you can...BoxWorld: BoxWorld_2011.10.30: BoxWorld - 8.0.1110.30 This is the initial release of BoxWorld. I'd recommend downloading the installer as it contains the compiled code and everything all nicely contained. By default, you end up with this directory structure: C:\Program Files\ViperWorks\BoxWorld C:\Program Files\ViperWorks\BoxWorld\Data C:\Program Files\ViperWorks\BoxWorld\Interface C:\Program Files\ViperWorks\BoxWorld\Source In the root you have the compiled EXE files, one for the main release, one for the LITE release ...VidCoder: 1.2.1: Fixed a couple regressions: video encoder was blank in queue and crashes with the High Profile preset when opening the Settings window. Fixed problem with auto-update introduced in 1.2.0. If you have 1.2.0 you will need to update manually to get this.Home Access Plus+: v7.6: This download now (31/10/11 6pm) includes the v7.6.1031.1800 patch Changes: New Download Routing Handler: Support for Pausing/Resuming Downloads Should fix OfficeOpenXML files when you download and it corrupts Update MyFiles ALPHA: Updated Layout of some elements on the tiles Details View Added with a table Update Booking System: Fixed some issues found since the v7.5 release Added support for spaces in Resource names Fixed some issues with the Booking System Admin page Added SI...Koober: Koober - The Ebook Creator 0.2: The official release of Koober as Open source. Koober is a ebook creator for Windows, and Koob Reader is the reader.patterns & practices: Enterprise Library Contrib: Enterprise Library Contrib - 5.0 (Oct 2011): This release of Enterprise Library Contrib is based on the Microsoft patterns & practices Enterprise Library 5.0 core and contains the following: Common extensionsTypeConfigurationElement<T> - A Polymorphic Configuration Element without having to be part of a PolymorphicConfigurationElementCollection. AnonymousConfigurationElement - A Configuration element that can be uniquely identified without having to define its name explicitly. Data Access Application Block extensionsMySql Provider - ...Network Monitor Open Source Parsers: Network Monitor Parsers 3.4.2748: The Network Monitor Parsers packages contain parsers for more than 400 network protocols, including RFC based public protocols and protocols for Microsoft products defined in the Microsoft Open Specifications for Windows and SQL Server. NetworkMonitor_Parsers.msi is the base parser package which defines parsers for commonly used public protocols and protocols for Microsoft Windows. In this release, NetowrkMonitor_Parsers.msi continues to improve quality and fix bugs. It has included the fo...WriteableBitmapEx: WriteableBitmapEx 0.9.8.5: Added a Rotate method for arbitrary angles (RotateFree). Provided by montago. See http://writeablebitmapex.codeplex.com/workitem/15214 Added Nokola's anti-aliased line drawing implementation. http://nokola.com/blog/post/2010/10/14/Anti-aliased-Lines-And-Optimizing-Code-for-Windows-Phone-7e28093First-Look.aspx Updated the Windows Phone project to WP 7.1 Mango. Added an extension file for the Windows Phone specific extensions and added the SaveToMediaLibrary extension including support fo...Duckworth Lewis Professional Edition Calculator: DLcalc 3.0: DLcalc 3.0 can perform Duckworth/Lewis Professional Edition calculations 100% accurately. It also produces over-by-over and ball-by-ball PAR score tables.Media Companion: MC 3.420b Weekly: Ensure .NET 4.0 Full Framework is installed. (Available from http://www.microsoft.com/download/en/details.aspx?id=17718) Ensure the NFO ID fix is applied when transitioning from versions prior to 3.416b. (Details here) Movies Fixed: Fanart and poster scraping issues TV Shows (Re)Added: Rebuild single show Fixed: Issue when shows are moved from original location Ability to handle " for actor nicknames Crash when episode name contains "<" (does not scrape yet) Clears fanart when switch...patterns & practices - Unity: Unity 3.0 for .NET4.5 Preview: The Unity 3.0.1026.0 Preview enables Unity to work on .NET 4.5 with both the WinRT and desktop profiles. The major changes include: Unity projects updated to target .NET 4.5. Dynamic build plans modified to use compiled lambda expressions instead of Reflection.Emit Converting reflection to use the new TypeInfo for reflection. Projects updated to work with the Microsoft Visual Studio 2011 Preview Notes/Known Issues: The Microsoft.Practices.Unity.UnityServiceLocator class cannot be use...Managed Extensibility Framework: MEF 2 Preview 4: Detailed information on this release is available on the BCL team blog.AcDown????? - Anime&Comic Downloader: AcDown????? v3.6: ?? ● AcDown??????????、??????,??????????????????????,???????Acfun、Bilibili、???、???、???、Tucao.cc、SF???、?????80????,???????????、?????????。 ● AcDown???????????????????????????,???,???????????????????。 ● AcDown???????C#??,????.NET Framework 2.0??。?????"Acfun?????"。 ????32??64? Windows XP/Vista/7 ????????????? ??:????????Windows XP???,?????????.NET Framework 2.0???(x86)?.NET Framework 2.0???(x64),?????"?????????"??? ??????????????,??????????: ??"AcDown?????"????????? ?? v3.6?? ??“????”...Path Copy Copy: 8.0: New version that mostly adds lots of requested features: 11340 11339 11338 11337 This version also features a more elaborate Settings UI that has several tabs. I tried to add some notes to better explain the use and purpose of the various options. The Path Copy Copy documentation is also on the way, both to explain how to develop custom plugins and to explain how to pre-configure options if you're a network admin. Stay tuned.MVC Controls Toolkit: Mvc Controls Toolkit 1.5.0: Added: The new Client Blocks feaure of Views A new "move" js method for the TreeViews The NewHtmlCreated js event to the DataGrid Improved the ChoiceList structure that now allows also the selection list of a dropdown to be chosen with a lambda expression Improved the AcceptViewHintAttribute controller filter. Now a client can specify not only the name of a View or Partial View it prefers, but also to receive just the rough data in Json format. Now the the SMinimum and SMaximum par...Free SharePoint Master Pages: Buried Alive (Halloween) Theme: Release Notes *Created for Halloween, you will find theme file, custom css file and images. *Created by Al Roome @AlstarRoome Features: Custom styling for web part Custom background *Screenshot https://s3.amazonaws.com/kkhipple/post/sharepoint-showcase-halloween.pngNicAudio: NicAudio 2.0.5: Minor change to accept special DTS stereo modes (LtRt, AB,...)New ProjectsagsXMPP-facebook: This is a fork of agsXMPP library (http://www.ag-software.de/agsxmpp-sdk/) that brings support for X-FACEBOOK-PLATFORM SASL mechanism. Tags: xmpp, facebook, chat, agsxmpp, .net, C#Azure Toss: With the booming of personal devices (such as iPad and Windows 8 tablets) and cloud-based services (such as Azure and iCloud), we are entering an era of highly connected yet very loosely coupled applications and services. As ISVs and application developers, you’ll find your applications need to communicate with many other applications and services in a “non-binding” way - there are no hard commitments among the applications and services to work together. Instead, services and features are dis...Backup MS Outlook: Console program to copy all active (usage) pst files from default Microsoft Outlook to backup folder. It's stripped down and modified version of the program backupmymail.codeplex.com. Program to copy file using VSS (Volume shadow service) through hobocopy(c) program.BoxWorld: Welcome to BoxWorld. Also known as Sokoban. This application/game was designed as an experiment really! I remember playing this game on my graphing calculator many years ago. And even with this, it's not so much as the game as it was making the game.com-binbin-reader: rss reader Priority Inbox Spam Custom CssLink control for the wiki pages of a SharePoint 2010 team site: Replace the native CssLink by this custom control for removing the OOTB RTE styles in a wiki page of SharePoint 2010 Foundation. This custom control wraps the native one in order to remove the link to the OOTB corev4.css that remains in the wiki pages while using an alternate CSS. Droppoint: Drop your file to sharepointEvents&Handlers: Implementing example for events and handlers in CLR via C#KIVA AIP for C# 4: A C#4 API implementation of the KIVA API found at http://build.kiva.org/apiKKScada: KKScada is a scada projectKoober: Koober is a .NET framework based visually appealing Ebook creator for Windows. It has a pre defined format using SQLite database as book files. Lighter: Text to Braille: Lighter is an extensible and flexible Thai/English and further language translation to Braille format.Lynx Toolkit: A collection of small command line developer tools.Michael's Code: this is michael's code.Passwords Thief: Sometimes you need to see what is behind asteriks in password edit box. It will help you to resolve this problem. PET@runtime: PET@runtime provides additional components to PET, especially for supporting PET outcomes at project execution time in several tools, e.g. Word or TFS.ProduzioneWebFlora: cascascaResources Over MVC: Resources Over MVC provides extensions for ASP.Net MVC to support the typical features of a REST web service. These include support for multiple representations, encodings and a number of ways of overloading POST. Regardless of your opinion of what makes a RESTful service, these can help.Servelat Pieces: Servelat Pieces is a collection of reusable bits of code that can make you Silverlight development easier. You'll be able to simplify the code which consumed server-side WCF services. It may greatly simplify your Sillverlight unit testing experience.Silverlight Sphere Control: This is a Silverlight spherical selection control that I built that uses the projection transformations in Silverlight. It includes several modes (including random, rows, columns, vertical carousel, horizontal carousel, and checkered) and events. Upon selecting one of the elements (which are arranged in a spherical pattern, hence the name), the sphere rotates until the control is at the front face of the sphere. Events are available to hook into (on element selected, rotation finished,...WinRT File Based Database: This database is based on a file system in Windows 8 and is using WinRT (Windows Runtime) in Windows 8 environment and thus can be used for Metro style applications. It includes simple, yet effective API that allows you to create tables based on classes. xianshihai--nothing to display: nothing to display

    Read the article

  • Problems with SAT Collision Detection

    - by DJ AzKai
    I'm doing a project in one of my modules for college in C++ with SFML and I was hoping someone may be able to help me. I'm using a vector of squares and triangles and I am using the SAT collision detection method to see if objects collide and to make the objects respond to the collision appropriately using the MTV(minimum translation vector) Below is my code: //from the main method int main(){ // Create the main window sf::RenderWindow App(sf::VideoMode(800, 600, 32), "SFML OpenGL"); // Create a clock for measuring time elapsed sf::Clock Clock; srand(time(0)); //prepare OpenGL surface for HSR glClearDepth(1.f); glClearColor(0.3f, 0.3f, 0.3f, 0.f); //background colour glEnable(GL_DEPTH_TEST); glDepthMask(GL_TRUE); //// Setup a perspective projection & Camera position glMatrixMode(GL_PROJECTION); glLoadIdentity(); //set up a 3D Perspective View volume //gluPerspective(90.f, 1.f, 1.f, 300.0f);//fov, aspect, zNear, zFar //set up a orthographic projection same size as window //this mease the vertex coordinates are in pixel space glOrtho(0,800,0,600,0,1); // use pixel coordinates // Finally, display rendered frame on screen vector<BouncingThing*> triangles; for(int i = 0; i < 10; i++) { //instantiate each triangle; triangles.push_back(new BouncingTriangle(Vector2f(rand() % 700, rand() % 500), 3)); } vector<BouncingThing*> boxes; for(int i = 0; i < 10; i++) { //instantiate each box; boxes.push_back(new BouncingBox(Vector2f(rand() % 700, rand() % 500), 4)); } CollisionDetection * b = new CollisionDetection(); // Start game loop while (App.isOpen()) { // Process events sf::Event Event; while (App.pollEvent(Event)) { // Close window : exit if (Event.type == sf::Event::Closed) App.close(); // Escape key : exit if ((Event.type == sf::Event::KeyPressed) && (Event.key.code == sf::Keyboard::Escape)) App.close(); } //Prepare for drawing // Clear color and depth buffer glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Apply some transformations glMatrixMode(GL_MODELVIEW); glLoadIdentity(); for(int i = 0; i < 10; i++) { triangles[i]->draw(); boxes[i]->draw(); triangles[i]->update(Vector2f(800,600)); boxes[i]->draw(); boxes[i]->update(Vector2f(800,600)); } for(int j = 0; j < 10; j++) { for(int i = 0; i < 10; i++) { triangles[j]->setCollision(b->CheckCollision(*(triangles[j]),*(boxes[i]))); } } for(int j = 0; j < 10; j++) { for(int i = 0; i < 10; i++) { boxes[j]->setCollision(b->CheckCollision(*(boxes[j]),*(triangles[i]))); } } for(int i = 0; i < triangles.size(); i++) { for(int j = i + 1; j < triangles.size(); j ++) { triangles[j]->setCollision(b->CheckCollision(*(triangles[j]),*(triangles[i]))); } } for(int i = 0; i < triangles.size(); i++) { for(int j = i + 1; j < triangles.size(); j ++) { boxes[j]->setCollision(b->CheckCollision(*(boxes[j]),*(boxes[i]))); } } App.display(); } return EXIT_SUCCESS; } (ignore this line) //from the BouncingThing.cpp BouncingThing::BouncingThing(Vector2f position, int noSides) : pos(position), pi(3.14), radius(3.14), nSides(noSides) { collided = false; if(nSides ==3) { Vector2f vert1 = Vector2f(-12.0f,-12.0f); Vector2f vert2 = Vector2f(0.0f, 12.0f); Vector2f vert3 = Vector2f(12.0f,-12.0f); verts.push_back(vert1); verts.push_back(vert2); verts.push_back(vert3); } else if(nSides == 4) { Vector2f vert1 = Vector2f(-12.0f,12.0f); Vector2f vert2 = Vector2f(12.0f, 12.0f); Vector2f vert3 = Vector2f(12.0f,-12.0f); Vector2f vert4 = Vector2f(-12.0f, -12.0f); verts.push_back(vert1); verts.push_back(vert2); verts.push_back(vert3); verts.push_back(vert4); } velocity.x = ((rand() % 5 + 1) / 3) + 1; velocity.y = ((rand() % 5 + 1) / 3 ) +1; } void BouncingThing::update(Vector2f screenSize) { Transform t; t.rotate(0); for(int i=0;i< verts.size(); i++) { verts[i]=t.transformPoint(verts[i]); } if(pos.x >= screenSize.x || pos.x <= 0) { velocity.x *= -1; } if(pos.y >= screenSize.y || pos.y <= 0) { velocity.y *= -1; } if(collided) { //velocity.x *= -1; //velocity.y *= -1; collided = false; } pos += velocity; } void BouncingThing::setCollision(bool x){ collided = x; } void BouncingThing::draw() { glBegin(GL_POLYGON); glColor3f(0,1,0); for(int i = 0; i < verts.size(); i++) { glVertex2f(pos.x + verts[i].x,pos.y + verts[i].y); } glEnd(); } vector<Vector2f> BouncingThing::getNormals() { vector<Vector2f> normalVerts; if(nSides == 3) { Vector2f ab = Vector2f((verts[1].x + pos.x) - (verts[0].x + pos.x), (verts[1].y + pos.y) - (verts[0].y + pos.y)); ab = flip(ab); ab.x *= -1; normalVerts.push_back(ab); Vector2f bc = Vector2f((verts[2].x + pos.x) - (verts[1].x + pos.x), (verts[2].y + pos.y) - (verts[1].y + pos.y)); bc = flip(bc); bc.x *= -1; normalVerts.push_back(bc); Vector2f ac = Vector2f((verts[2].x + pos.x) - (verts[0].x + pos.x), (verts[2].y + pos.y) - (verts[0].y + pos.y)); ac = flip(ac); ac.x *= -1; normalVerts.push_back(ac); return normalVerts; } if(nSides ==4) { Vector2f ab = Vector2f((verts[1].x + pos.x) - (verts[0].x + pos.x), (verts[1].y + pos.y) - (verts[0].y + pos.y)); ab = flip(ab); ab.x *= -1; normalVerts.push_back(ab); Vector2f bc = Vector2f((verts[2].x + pos.x) - (verts[1].x + pos.x), (verts[2].y + pos.y) - (verts[1].y + pos.y)); bc = flip(bc); bc.x *= -1; normalVerts.push_back(bc); return normalVerts; } } Vector2f BouncingThing::flip(Vector2f v){ float vyTemp = v.x; float vxTemp = v.y * -1; return Vector2f(vxTemp, vyTemp); } (Ignore this line) CollisionDetection::CollisionDetection() { } vector<float> CollisionDetection::bubbleSort(vector<float> w) { int temp; bool finished = false; while (!finished) { finished = true; for (int i = 0; i < w.size()-1; i++) { if (w[i] > w[i+1]) { temp = w[i]; w[i] = w[i+1]; w[i+1] = temp; finished=false; } } } return w; } class Vector{ public: //static int dp_count; static float dot(sf::Vector2f a,sf::Vector2f b){ //dp_count++; return a.x*b.x+a.y*b.y; } static float length(sf::Vector2f a){ return sqrt(a.x*a.x+a.y*a.y); } static Vector2f add(Vector2f a, Vector2f b) { return Vector2f(a.x + b.y, a.y + b.y); } static sf::Vector2f getNormal(sf::Vector2f a,sf::Vector2f b){ sf::Vector2f n; n=a-b; n/=Vector::length(n);//normalise float x=n.x; n.x=n.y; n.y=-x; return n; } }; bool CollisionDetection::CheckCollision(BouncingThing & x, BouncingThing & y) { vector<Vector2f> xVerts = x.getVerts(); vector<Vector2f> yVerts = y.getVerts(); vector<Vector2f> xNormals = x.getNormals(); vector<Vector2f> yNormals = y.getNormals(); int size; vector<float> xRange; vector<float> yRange; for(int j = 0; j < xNormals.size(); j++) { Vector p; for(int i = 0; i < xVerts.size(); i++) { xRange.push_back(p.dot(xNormals[j], Vector2f(xVerts[i].x, xVerts[i].x))); } for(int i = 0; i < yVerts.size(); i++) { yRange.push_back(p.dot(xNormals[j], Vector2f(yVerts[i].x , yVerts[i].y))); } yRange = bubbleSort(yRange); xRange = bubbleSort(xRange); if(xRange[xRange.size() - 1] < yRange[0] || yRange[yRange.size() - 1] < xRange[0]) { return false; } float x3 = Min(xRange[0], yRange[0]); float y3 = Max(xRange[xRange.size() - 1], yRange[yRange.size() - 1]); float length = Max(x3, y3) - Min(x3, y3); } for(int j = 0; j < yNormals.size(); j++) { Vector p; for(int i = 0; i < xVerts.size(); i++) { xRange.push_back(p.dot(yNormals[j], xVerts[i])); } for(int i = 0; i < yVerts.size(); i++) { yRange.push_back(p.dot(yNormals[j], yVerts[i])); } yRange = bubbleSort(yRange); xRange = bubbleSort(xRange); if(xRange[xRange.size() - 1] < yRange[0] || yRange[yRange.size() - 1] < xRange[0]) { return false; } } return true; } float CollisionDetection::Min(float min, float max) { if(max < min) { min = max; } else return min; } float CollisionDetection::Max(float min, float max) { if(min > max) { max = min; } else return min; } On the screen the objects will freeze for a small amount of time before moving off again. However the problem is is that when this happens there are no collisions actually happening and I would really love to find out where the flaw is in the code. If you need any more information/code please don't hesitate to ask and I'll reply as soon as possible Regards, AzKai

    Read the article

  • Build Environment setup - Using .net, java, hudson, and ruby - Could really use a critique

    - by Jeff D
    I'm trying to figure out the best way to stitch together a fast, repeatable, unbreakable build process for the following environment. I've got a plan for how to do it, but I'd really appreciate a critique. (I'd also appreciate some sample code, but more on that later) Ecosystem - Logical: Website - asp.net MVC 2, .net 3.5, Visual Studio 2010. IIS 6, Facebook iframe application application. This website/facebook app uses a few services. An internal search api, an internal read/write api, facebook, and an IP geolocation service. More details on these below Internal search api - .net, restful, built using old school .ashx handlers. The api uses lucene, and a sql server database behind the scenes. My project won't touch the lucene code, but does potentially touch the database and the web services. internal read/write api - java, restful, running on Tomcat Facebook web services A mocking site that emulates the internal read/write api, and parts of the facebook api Hudson - Runs unit tests on checkin, and creates some installers that behave inconsistently. Ecosystem - Physical: All of these machines can talk to one another, except for Hudson. Hudson can't see any of the target machines. So code must be pulled, rather than pushed. (Security thing) 1. Web Server - Holds the website, and the read/write api. (The api itself writes to a replicated sql server environment). 2. Search Server - Houses the search api. 3. Hudson Server - Does not have permissions to push to any environment. They have to pull. 4. Lucene Server 5. Database Server Problem I've been trying to set this site up to run in a stress environment, but the number of setup steps, the amount of time it takes to update a component, the black-box nature of the current installers, and the time it takes to generate data into the test system is absolutely destroying my productivity. I tweak one setting, have to redeploy, restart in a certain order, resetup some of the settings, and rebuild test data. Errors result in headscratching, and then basically starting over. Very bad. This problem is complicated further by my stress testing. I need to be able to turn on and off different external components, so that I can effectively determine the scalability of each piece. I've got strategies in place for how to do that for each dependency, but it further complicates my setup strategy, because now each component has 2 options. A mock version, or a real version. Configurations everywhere must be updated accordingly. Goals Fast - I want to drop this from a 20 minute exercise when things go perfectly, to a 3 minute one Stupid simple - I want to tell the environment what to do with as few commands as possible, and not have to remember how to stitch the environments together Repeatable - I want the script to be idempotent. Kind of a corollary to the Stupid Simple thing. The Plan So Far Here's what I've come up with so far, and what I've come looking for feedback on: Use VisualStudio's new web.config transformations to permit easily altering configs based on envrionment. This solution isn't really sufficient though. I will leave web.config set up to let the site run locally, but when deploying elsewhere, I have as many as 6 different possible outputs for the stress environment alone (because of the mocks of the various dependencies), let alone the settings for prod, QA, and dev. Each of these would then require it's own setup, or a setup that would then post-process the configs. So I'm currently leaning toward just having the dev version, and a version that converts key configuration values into a ruby string interpolation syntax. ({#VAR_NAME} kinda thing) Create a ruby script for each server that is essentially a bootstrapping script. That is to say, it will do nothing but load the ruby code that does the 'real' work from hudson/subversion, so that the script's functionality can evolve with the application, making it easy to build the site at any point in time by reference the appropriate version of the script. So in a nutshell, this script loads another script, and runs it. The 'real' ruby script will then accept commandline parameters that describe how the environment should look. From there, 1 configuration file can be used, and ruby will download the current installers, run them, post-process the configs, restart IIS/Tomcat, and kick off any data setup code that is needed. So that's it. I'm in a real time crunch to get this site stress-tested, so any feedback that you think could abbreviate the time this might take would be appreciated. That includes a shameless request for sample ruby code. I've not gotten too much further than puts "Hello World". :-) Just guidance would be helpful. Is this something that Rake would be useful for? How would you recommend I write tests for this animal? (I use interfaces and automocking frameworks to mock out things like http requests in .net. With ducktyping, it seems that this might be easier, but I don't know how to tell my code to use a fake duck in test, but a real one in practice) Thanks all. Sorry for such such a long-winded, open-ended question.

    Read the article

  • Access Qry Questions

    - by kralco626
    It was suggested that I repost this questions as I didn't do a very good job discribing my issue the first time. (http://stackoverflow.com/questions/2921286/access-question) THE SITUATION: I have inspections from many months of many years. Sometimes there is more than one inspection in a month, sometimes there is no inspection. However, the report that is desired by the clients requires that I have EXACTLY ONE record per month for the time frame they request the report. They understand the data issues and have stated that if there is more than one inspection in a month to take the latest one. If the is not an inspection for that month, go back in time untill you find one and use that one. So a sample of the data is as follows: (I am including many records because I was told I did not include enough data on my last try) equip_id month year runtime date 1 5 2008 400 5/10/2008 12:34 PM 1 7 2008 500 7/12/2008 1:45 PM 1 8 2008 600 8/20/2008 1:12 PM 1 8 2008 605 8/30/2008 8:00 AM 1 1 2010 2000 1/12/2010 2:00 PM 1 3 2010 2200 3/24/2010 10:00 AM 2 7 2009 1000 7/20/2009 8:00 AM 2 10 2009 1400 10/14/2009 9:00 AM 2 1 2010 1600 1/15/2010 1:00 PM 2 1 2010 1610 1/30/2010 4:00 PM 2 3 2010 1800 3/15/2010 1:00PM After all the transformations to the data are done, it should look like this: equip_id month year runtime date 1 5 2008 400 5/10/2008 12:34 PM 1 6 2008 400 5/10/2008 12:34 PM 1 7 2008 500 7/12/2008 1:45 PM 1 8 2008 605 8/30/2008 8:00 AM 1 9 2008 605 8/30/2008 8:00 AM 1 10 2008 605 8/30/2008 8:00 AM 1 11 2008 605 8/30/2008 8:00 AM 1 12 2008 605 8/30/2008 8:00 AM 1 1 2009 605 8/30/2008 8:00 AM 1 2 2009 605 8/30/2008 8:00 AM 1 3 2009 605 8/30/2008 8:00 AM 1 4 2009 605 8/30/2008 8:00 AM 1 5 2009 605 8/30/2008 8:00 AM 1 6 2009 605 8/30/2008 8:00 AM 1 7 2009 605 8/30/2008 8:00 AM 1 8 2009 605 8/30/2008 8:00 AM 1 9 2009 605 8/30/2008 8:00 AM 1 10 2009 605 8/30/2008 8:00 AM 1 11 2009 605 8/30/2008 8:00 AM 1 12 2009 605 8/30/2008 8:00 AM 1 1 2010 2000 1/12/2010 2:00 PM 1 2 2010 2000 1/12/2010 2:00 PM 1 3 2010 2200 3/24/2010 10:00 AM 2 7 2009 1000 7/20/2009 8:00 AM 2 8 2009 1000 7/20/2009 8:00 AM 2 9 2009 1000 7/20/2009 8:00 AM 2 10 2009 1400 10/14/2009 9:00 AM 2 11 2009 1400 10/14/2009 9:00 AM 2 12 2009 1400 10/14/2009 9:00 AM 2 1 2010 1610 1/30/2010 4:00 PM 2 2 2010 1610 1/30/2010 4:00 PM 2 3 2010 1800 3/15/2010 1:00PM I think that this is the most accurate dipiction of the problem that I can give. I will now say what I have tried. Although if someone else has a better approach, I am perfectly willing to throw away what I have done and do it differently... STEP 1: create a query that removes the duplicates from the data. Ie. only one record per equip_id for each month/year, keeping the latest one. (done successfully) STEP 2: create a table of the date ranges the client wants the report for. (This is done dynamically at runtime) This table two field, Month and Year. So if the client wants a report from FEb 2008 to March 2010 the table would look like: Month Year 2 2008 3 2008 . . . 12 2008 1 2009 . . . 12 2009 1 2010 2 2010 3 2010 I then left joined this table with my query from step 1. So now I have a record for every month and every year that they want the report for, with nulls(or blanks) or sometimes 0s (not sure why, access is weird, but sometiems they are nulls and sumtimes they are 0s...) for the runtimes that are not avaiable. I don't particurally like this solution, but ill do it if i have to. (this is also done successfully) STEP 3: Fill in the missing runtime values. This I HAVE NOT done successfully. Note that if the request range for the report is feb 2008 to march 2010 and the oldest record for a particular equip_id is say june 2008, it is O.K. for the runtimes to be null (or zeros) for feb - may 2008. I am working with the following query for this step: SELECT equip_id as e_id,year,month, (select top 1 runhours from qry_1_c_One_Record_per_Month a where a.equip_id = e_id order by year,month) FROM qry_1_c_One_Record_per_Month where runhours is null or runhours = 0; UNION SELECT equip_id, year, month, runhours FROM qry_1_c_One_Record_per_Month WHERE .runhours Is Not Null And runhours <> 0 However I clearly can't check the a.equip_id = e_id ... so i don't have anyway to make sure i'm looking at the correct equip_id SUMMARY: So like i said i'm willing to throw away any part, or all of what I tried. Just trying to give everyone a complete picture. I REALLY apreciate ANY help! Thanks so much in advance!

    Read the article

  • Tips on Migrating from AquaLogic .NET Accelerator to WebCenter WSRP Producer for .NET

    - by user647124
    This year I embarked on a journey to migrate a group of ASP.NET web applications developed to integrate with WebLogic Portal 9.2 via the AquaLogic® Interaction .NET Application Accelerator 1.0 to instead use the Oracle WebCenter WSRP Producer for .NET and integrated with WebLogic Portal 10.3.4. It has been a very winding path and this blog entry is intended to share both the lessons learned and relevant approaches that led to those learnings. Like most journeys of discovery, it was not a direct path, and there are notes to let you know when it is practical to skip a section if you are in a hurry to get from here to there. For the Curious From the perspective of necessity, this section would be better at the end. If it were there, though, it would probably be read by far fewer people, including those that are actually interested in these types of sections. Those in a hurry may skip past and be none the worst for it in dealing with the hands-on bits of performing a migration from .NET Accelerator to WSRP Producer. For others who want to talk about why they did what they did after they did it, or just want to know for themselves, enjoy. A Brief (and edited) History of the WSRP for .NET Technologies (as Relevant to the this Post) Note: This section is for those who are curious about why the migration path is not as simple as many other Oracle technologies. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The currently deployed architecture that was to be migrated and upgraded achieved initial integration between .NET and J2EE over the WSRP protocol through the use of The AquaLogic Interaction .NET Application Accelerator. The .NET Accelerator allowed the applications that were written in ASP.NET and deployed on a Microsoft Internet Information Server (IIS) to interact with a WebLogic Portal application deployed on a WebLogic (J2EE application) Server (both version 9.2, the state of the art at the time of its creation). At the time this architectural decision for the application was made, both the AquaLogic and WebLogic brands were owned by BEA Systems. The AquaLogic brand included products acquired by BEA through the acquisition of Plumtree, whose flagship product was a portal platform available in both J2EE and .NET versions. As part of this dual technology support an adaptor was created to facilitate the use of WSRP as a communication protocol where customers wished to integrate components from both versions of the Plumtree portal. The adapter evolved over several product generations to include a broad array of both standard and proprietary WSRP integration capabilities. Later, BEA Systems was acquired by Oracle. Over the course of several years Oracle has acquired a large number of portal applications and has taken the strategic direction to migrate users of these myriad (and formerly competitive) products to the Oracle WebCenter technology stack. As part of Oracle’s strategic technology roadmap, older portal products are being schedule for end of life, including the portal products that were part of the BEA acquisition. The .NET Accelerator has been modified over a very long period of time with features driven by users of that product and developed under three different vendors (each a direct competitor in the same solution space prior to merger). The Oracle WebCenter WSRP Producer for .NET was introduced much more recently with the key objective to specifically address the needs of the WebCenter customers developing solutions accessible through both J2EE and .NET platforms utilizing the WSRP specifications. The Oracle Product Development Team also provides these insights on the drivers for developing the WSRP Producer: ***************************************** Support for ASP.NET AJAX. Controls using the ASP.NET AJAX script manager do not function properly in the Application Accelerator for .NET. Support 2 way SSL in WLP. This was not possible with the proxy/bridge set up in the existing Application Accelerator for .NET. Allow developers to code portlets (Web Parts) using the .NET framework rather than a proprietary framework. Developers had to use the Application Accelerator for .NET plug-ins to Visual Studio to manage preferences and profile data. This is now replaced with the .NET Framework Personalization (for preferences) and Profile providers. The WSRP Producer for .NET was created as a new way of developing .NET portlets. It was never designed to be an upgrade path for the Application Accelerator for .NET. .NET developers would create new .NET portlets with the WSRP Producer for .NET and leave any existing .NET portlets running in the Application Accelerator for .NET. ***************************************** The advantage to creating a new solution for WSRP is a product that is far easier for Oracle to maintain and support which in turn improves quality, reliability and maintainability for their customers. No changes to J2EE applications consuming the WSRP portlets previously rendered by the.NET Accelerator is required to migrate from the Aqualogic WSRP solution. For some customers using the .NET Accelerator the challenge is adapting their current .NET applications to work with the WSRP Producer (or any other WSRP adapter as they are proprietary by nature). Part of this adaptation is the need to deploy the .NET applications as a child to the WSRP producer web application as root. Differences between .NET Accelerator and WSRP Producer Note: This section is for those who are curious about why the migration is not as pluggable as something such as changing security providers in WebLogic Server. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The basic terminology used to describe the participating applications in a WSRP environment are the same when applied to either the .NET Accelerator or the WSRP Producer: Producer and Consumer. In both cases the .NET application serves as what is referred to as a WSRP environment as the Producer. The difference lies in how the two adapters create the WSRP translation of the .NET application. The .NET Accelerator, as the name implies, is meant to serve as a quick way of adding WSRP capability to a .NET application. As such, at a high level, the .NET Accelerator behaves as a proxy for requests between the .NET application and the WSRP Consumer. A WSRP request is sent from the consumer to the .NET Accelerator, the.NET Accelerator transforms this request into an ASP.NET request, receives the response, then transforms the response into a WSRP response. The .NET Accelerator is deployed as a stand-alone application on IIS. The WSRP Producer is deployed as a parent application on IIS and all ASP.NET modules that will be made available over WSRP are deployed as children of the WSRP Producer application. In this manner, the WSRP Producer acts more as a Request Filter than a proxy in the WSRP transactions between Producer and Consumer. Highly Recommended Enabling Logging Note: You can skip this section now, but you will most likely want to come back to it later, so why not just read it now? Logging is very helpful in tracking down the causes of any anomalies during testing of migrated portlets. To enable the WSRP Producer logging, update the Application_Start method in the Global.asax.cs for your .NET application by adding log4net.Config.XmlConfigurator.Configure(); IIS logs will usually (in a standard configuration) be in a sub folder under C:\WINDOWS\system32\LogFiles\W3SVC. WSRP Producer logs will be found at C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\Logs\WSRPProducer.log InputTrace.webinfo and OutputTrace.webinfo are located under C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault and can be useful in debugging issues related to markup transformations. Things You Must Do Merge Web.Config Note: If you have been skipping all the sections that you can, now is the time to stop and pay attention J Because the existing .NET application will become a sub-application to the WSRP Producer, you will want to merge required settings from the existing Web.Config to the one in the WSRP Producer. Use the WSRP Producer Master Page The Master Page installed for the WSRP Producer provides common, hiddenform fields and JavaScripts to facilitate portlet instance management and display configuration when the child page is being rendered over WSRP. You add the Master Page by including it in the <@ Page declaration with MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" . You then replace: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > <HTML> <HEAD> With <asp:Content ID="ContentHead1" ContentPlaceHolderID="wsrphead" Runat="Server"> And </HEAD> <body> <form id="theForm" method="post" runat="server"> With </asp:Content> <asp:Content ID="ContentBody1" ContentPlaceHolderID="Main" Runat="Server"> And finally </form> </body> </HTML> With </asp:Content> In the event you already use Master Pages, adapt your existing Master Pages to be sub masters. See Nested ASP.NET Master Pages for a detailed reference of how to do this. It Happened to Me, It Might Happen to You…Or Not Watch for Use of Session or Request in OnInit In the event the .NET application being modified has pages developed to assume the user has been authenticated in an earlier page request there may be direct or indirect references in the OnInit method to request or session objects that may not have been created yet. This will vary from application to application, so the recommended approach is to test first. If there is an issue with a page running as a WSRP portlet then check for potential references in the OnInit method (including references by methods called within OnInit) to session or request objects. If there are, the simplest solution is to create a new method and then call that method once the necessary object(s) is fully available. I find doing this at the start of the Page_Load method to be the simplest solution. Case Sensitivity .NET languages are not case sensitive, but Java is. This means it is possible to have many variations of SRC= and src= or .JPG and .jpg. The preferred solution is to make these mark up instances all lower case in your .NET application. This will allow the default Rewriter rules in wsrp-producer.xml to work as is. If this is not practical, then make duplicates of any rules where an issue is occurring due to upper or mixed case usage in the .NET application markup and match the case in use with the duplicate rule. For example: <RewriterRule> <LookFor>(href=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> May need to be duplicated as: <RewriterRule> <LookFor>(HREF=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> While it is possible to write a regular expression that will handle mixed case usage, it would be long and strenous to test and maintain, so the recommendation is to use duplicate rules. Is it Still Relative? Some .NET applications base relative paths with a fixed root location. With the introduction of the WSRP Producer, the root has moved up one level. References to ~/ will need to be updated to ~/portlets and many ../ paths will need another ../ in front. I Can See You But I Can’t Find You This issue was first discovered while debugging modules with code that referenced the form on a page from the code-behind by name and/or id. The initial error presented itself as run-time error that was difficult to interpret over WSRP but seemed clear when run as straight ASP.NET as it indicated that the object with the form name did not exist. Since the form name was no longer valid after implementing the WSRP Master Page, the likely fix seemed to simply update the references in the code. However, as the WSRP Master Page is external to the code, a compile time error resulted: Error      155         The name 'form1' does not exist in the current context                C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\portlets\legacywebsite\module\Screens \Reporting.aspx.cs                51           52           legacywebsite.module Much hair-pulling research later it was discovered that it was the use of the FindControl method causing the issue. FindControl doesn’t work quite as expected once a Master Page has been introduced as the controls become embedded in controls, require a recursion to find them that is not part of the FindControl method. In code where the page form is referenced by name, there are two steps to the solution. First, the form needs to be referenced in code generically with Page.Form. For example, this: ToggleControl ctrl = new ToggleControl(frmManualEntry, FunctionLibrary.ParseArrayLst(userObj.Roles)); Becomes this: ToggleControl ctrl = new ToggleControl(Page.Form, FunctionLibrary.ParseArrayLst(userObj.Roles)); Generally the form id is referenced in most ASP.NET applications as a path to a control on the form. To reach the control once a MasterPage has been added requires an additional method to recurse through the controls collections within the form and find the control ID. The following method (found at Rick Strahl's Web Log) corrects this very nicely: public static Control FindControlRecursive(Control Root, string Id) { if (Root.ID == Id) return Root; foreach (Control Ctl in Root.Controls) { Control FoundCtl = FindControlRecursive(Ctl, Id); if (FoundCtl != null) return FoundCtl; } return null; } Where the form name is not referenced, simply using the FindControlRecursive method in place of FindControl will be all that is necessary. Following the second part of the example referenced earlier, the method called with Page.Form changes its value extraction code block from this: Label lblErrMsg = (Label)frmRef.FindControl("lblBRMsg" To this: Label lblErrMsg = (Label) FunctionLibrary.FindControlRecursive(frmRef, "lblBRMsg" The Master That Won’t Step Aside In most migrations it is preferable to make as few changes as possible. In one case I ran across an existing Master Page that would not function as a sub-Master Page. While it would probably have been educational to trace down why, the expedient process of updating it to take the place of the WSRP Master Page is the route I took. The changes are highlighted below: … <asp:ContentPlaceHolder ID="wsrphead" runat="server"></asp:ContentPlaceHolder> </head> <body leftMargin="0" topMargin="0"> <form id="TheForm" runat="server"> <input type="hidden" name="key" id="key" value="" /> <input type="hidden" name="formactionurl" id="formactionurl" value="" /> <input type="hidden" name="handle" id="handle" value="" /> <asp:ScriptManager ID="ScriptManager1" runat="server" EnablePartialRendering="true" > </asp:ScriptManager> This approach did not work for all existing Master Pages, but fortunately all of the other existing Master Pages I have run across worked fine as a sub-Master to the WSRP Master Page. Moving On In Enterprise Portals, even after you get everything working, the work is not finished. Next you need to get it where everyone will work with it. Migration Planning Providing that the server where IIS is running is adequately sized, it is possible to run both the .NET Accelerator and the WSRP Producer on the same server during the upgrade process. The upgrade can be performed incrementally, i.e., one portlet at a time, if server administration processes support it. Those processes would include the ability to manage a second producer in the consuming portal and to change over individual portlet instances from one provider to the other. If processes or requirements demand that all portlets be cut over at the same time, it needs to be determined if this cut over should include a new producer, updating all of the portlets in the consumer, or if the WSRP Producer portlet configuration must maintain the naming conventions used by the .NET Accelerator and simply change the WSRP end point configured in the consumer. In some enterprises it may even be necessary to maintain the same WSDL end point, at which point the IIS configuration will be where the updates occur. The downside to such a requirement is that it makes rolling back very difficult, should the need arise. Location, Location, Location Not everyone wants the web application to have the descriptively obvious wsrpdefault location, or needs to create a second WSRP site on the same server. The instructions below are from the product team and, while targeted towards making a second site, will work for creating a site with a different name and then remove the old site. You can also change just the name in IIS. Manually Creating a WSRP Producer Site Instructions (NOTE: all executables used are the same ones used by the installer and “wsrpdev” will be the name of the new instance): 1. Copy C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault to C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev. 2. Bring up a command window as an administrator 3. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\IISAppAccelSiteCreator.exe install WSRPProducers wsrpdev "C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev" 8678 2.0.50727 4. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev "NETWORK SERVICE" 3 1 5. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev EVERYONE 1 1 6. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\1.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev 7. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\2.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev Tests: 1. Bring up a browser on the host itself and go to http://localhost:8678/wsrpdev/wsdl/1.0/WSRPService.wsdl and make sure that the URLs in the XML returned include the wsrpdev changes you made in step 6. 2. Bring up a browser on the host itself and see if the default sample comes up: http://localhost:8678/wsrpdev/portlets/ASPNET_AJAX_sample/default.aspx 3. Register the producer in WLP and test the portlet. Changing the Port used by WSRP Producer The pre-configured port for the WSRP Producer is 8678. You can change this port by updating both the IIS configuration and C:\Oracle\Middleware\WSRPProducerForDotNet\[WSRP_APP_NAME]\wsdl\1.0\WSRPService.wsdl. Do You Need to Migrate? Oracle Premier Support ended in November of 2010 for AquaLogic Interaction .NET Application Accelerator 1.x and Extended Support ends in November 2012 (see http://www.oracle.com/us/support/lifetime-support/lifetime-support-software-342730.html for other related dates). This means that integration with products released after November of 2010 is not supported. If having such support is the policy within your enterprise, you do indeed need to migrate. If changes in your enterprise cause your current solution with the .NET Accelerator to no longer function properly, you may need to migrate. Migration is a choice, and if the goals of your enterprise are to take full advantage of newer technologies then migration is certainly one activity you should be planning for.

    Read the article

  • Atmospheric scattering OpenGL 3.3

    - by user1419305
    Im currently trying to convert a shader by Sean O'Neil to version 330 so i can try it out in a application im writing. Im having some issues with deprecated functions, so i replaced them, but im almost completely new to glsl, so i probably did a mistake somewhere. Original shaders can be found here: http://www.gamedev.net/topic/592043-solved-trying-to-use-atmospheric-scattering-oneill-2004-but-get-black-sphere/ My horrible attempt at converting them: Vertex Shader: #version 330 core layout(location = 0) in vec3 vertexPosition_modelspace; //layout(location = 1) in vec2 vertexUV; layout(location = 2) in vec3 vertexNormal_modelspace; uniform vec3 v3CameraPos; uniform vec3 v3LightPos; uniform vec3 v3InvWavelength; uniform float fCameraHeight; uniform float fCameraHeight2; uniform float fOuterRadius; uniform float fOuterRadius2; uniform float fInnerRadius; uniform float fInnerRadius2; uniform float fKrESun; uniform float fKmESun; uniform float fKr4PI; uniform float fKm4PI; uniform float fScale; uniform float fScaleDepth; uniform float fScaleOverScaleDepth; // passing in matrixes for transformations uniform mat4 MVP; uniform mat4 V; uniform mat4 M; const int nSamples = 4; const float fSamples = 4.0; out vec3 v3Direction; out vec4 gg_FrontColor; out vec4 gg_FrontSecondaryColor; float scale(float fCos) { float x = 1.0 - fCos; return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25)))); } void main(void) { vec3 v3Pos = vertexPosition_modelspace; vec3 v3Ray = v3Pos - v3CameraPos; float fFar = length(v3Ray); v3Ray /= fFar; vec3 v3Start = v3CameraPos; float fHeight = length(v3Start); float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fCameraHeight)); float fStartAngle = dot(v3Ray, v3Start) / fHeight; float fStartOffset = fDepth*scale(fStartAngle); float fSampleLength = fFar / fSamples; float fScaledLength = fSampleLength * fScale; vec3 v3SampleRay = v3Ray * fSampleLength; vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5; vec3 v3FrontColor = vec3(0.0, 0.0, 0.0); for(int i=0; i<nSamples; i++) { float fHeight = length(v3SamplePoint); float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight)); float fLightAngle = dot(v3LightPos, v3SamplePoint) / fHeight; float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight; float fScatter = (fStartOffset + fDepth*(scale(fLightAngle) - scale(fCameraAngle))); vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI)); v3FrontColor += v3Attenuate * (fDepth * fScaledLength); v3SamplePoint += v3SampleRay; } gg_FrontSecondaryColor.rgb = v3FrontColor * fKmESun; gg_FrontColor.rgb = v3FrontColor * (v3InvWavelength * fKrESun); gl_Position = MVP * vec4(vertexPosition_modelspace,1); v3Direction = v3CameraPos - v3Pos; } Fragment Shader: #version 330 core uniform vec3 v3LightPos; uniform float g; uniform float g2; in vec3 v3Direction; out vec4 FragColor; in vec4 gg_FrontColor; in vec4 gg_FrontSecondaryColor; void main (void) { float fCos = dot(v3LightPos, v3Direction) / length(v3Direction); float fMiePhase = 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos*fCos) / pow(1.0 + g2 - 2.0*g*fCos, 1.5); FragColor = gg_FrontColor + fMiePhase * gg_FrontSecondaryColor; FragColor.a = FragColor.b; } I wrote a function to render a sphere, and im trying to render this shader onto a inverted version of it, the sphere works completely fine, with normals and all. My problem is that the sphere gets rendered all black, so the shader is not working. This is how i'm trying to render the atmosphere inside my main rendering loop. glUseProgram(programAtmosphere); glBindTexture(GL_TEXTURE_2D, 0); //###################### glUniform3f(v3CameraPos, getPlayerPos().x, getPlayerPos().y, getPlayerPos().z); glUniform3f(v3LightPos, lightPos.x / sqrt(lightPos.x * lightPos.x + lightPos.y * lightPos.y), lightPos.y / sqrt(lightPos.x * lightPos.x + lightPos.y * lightPos.y), 0); glUniform3f(v3InvWavelength, 1.0 / pow(0.650, 4.0), 1.0 / pow(0.570, 4.0), 1.0 / pow(0.475, 4.0)); glUniform1fARB(fCameraHeight, 1); glUniform1fARB(fCameraHeight2, 1); glUniform1fARB(fInnerRadius, 6350); glUniform1fARB(fInnerRadius2, 6350 * 6350); glUniform1fARB(fOuterRadius, 6450); glUniform1fARB(fOuterRadius2, 6450 * 6450); glUniform1fARB(fKrESun, 0.0025 * 20.0); glUniform1fARB(fKmESun, 0.0015 * 20.0); glUniform1fARB(fKr4PI, 0.0025 * 4.0 * 3.141592653); glUniform1fARB(fKm4PI, 0.0015 * 4.0 * 3.141592653); glUniform1fARB(fScale, 1.0 / (6450 - 6350)); glUniform1fARB(fScaleDepth, 0.25); glUniform1fARB(fScaleOverScaleDepth, 4.0 / (6450 - 6350)); glUniform1fARB(g, -0.85); glUniform1f(g2, -0.85 * -0.85); // vertices glEnableVertexAttribArray(0); glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer[1]); glVertexAttribPointer( 0, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? 0, // stride (void*)0 // array buffer offset ); // normals glEnableVertexAttribArray(2); glBindBuffer(GL_ARRAY_BUFFER, normalbuffer[1]); glVertexAttribPointer( 2, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? 0, // stride (void*)0 // array buffer offset ); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer[1]); glUniformMatrix4fv(ModelMatrixAT, 1, GL_FALSE, &ModelMatrix[0][0]); glUniformMatrix4fv(ViewMatrixAT, 1, GL_FALSE, &ViewMatrix[0][0]); glUniformMatrix4fv(ModelViewPAT, 1, GL_FALSE, &MVP[0][0]); // Draw the triangles glDrawElements( GL_TRIANGLES, // mode cubeIndices[1], // count GL_UNSIGNED_SHORT, // type (void*)0 // element array buffer offset ); Any ideas?

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

< Previous Page | 10 11 12 13 14