Search Results

Search found 19676 results on 788 pages for 'hardware interface'.

Page 154/788 | < Previous Page | 150 151 152 153 154 155 156 157 158 159 160 161  | Next Page >

  • Do 7.2k SATA drives and a hardware raid controller always end with trouble?

    - by xelco52
    I'm reading the FreeNAS userguide and came across the statement: Note that hardware RAID configured as JBOD may still detach disks that do not respond in time; and as such may require TLER/CCTL/ERC-enabled disks to prevent drive dropouts. I'm using a '3Ware 9550SX-8LP RAID Controller' and see quite a few stories of people successfully running raid5 on 7.2k consumer SATA drives without issue. Are detached disks only a theoretical problem, or should I expect this to be a common occurrence?

    Read the article

  • For how long should I expect my hardware to work?

    - by Makach
    I got this old box with windows xp home. It works perfectly, except the occasional blue-screen when shutting down the machine. How long should I expect this, or any, machine to work, when will the hardware start failing and should I worry about silly things like upgrading the os? What is the TTL on HW you purchase today?

    Read the article

  • Should I create a second WAN Interface for a new SSLVPN setup on my Sonicwall 2400?

    - by TheSuperman
    Sonic Wall 2400 I'm setting up a new SSLVPN on our Sonicwall, very new to this. I currently have an exchange server as well, so mail.company.com is directed to our mail server. I'd like to setup a clean link for my low end users, remote.company.com to be for the SSLVPN, but I'm not sure how to do this within the Sonicwall? I setup SSLVPN on port 443. Only 1 WAN setup, on the X1 Interface. We have an A record setup with the same static IP used on the WAN Interface, and is configured for mail.company.com. Should I use a new static IP from our block of usable IP's to create the new Remote.Company.com? If so, I have no idea where to start on this on the Sonicwall? Any suggestions?

    Read the article

  • how to disable to automatic wireless interface up in ubuntu? [closed]

    - by Surjya Narayana Padhi
    On my laptop I have a built in wireless card and I got one external connected via usb. By ifconfig command I saw both the cards connects to internet and gets IP. eth1 - the interface my laptop has in-built wlan1 - I have connected externally via usb. Now I applied "sudo ifconfig eth1 down" so that i can use only wlan1. But this eth1 goes down for sometime and then come up again automatically. So I am not able to test my externally usb connected wifi adapter. Can anyone suggest me way to disable eth1 interface?

    Read the article

  • GPLv2 - Multiple AI chess engines to bypass GPL

    - by Dogbert
    I have gone through a number of GPL-related questions, the most recent being this one: http://stackoverflow.com/questions/3248823/legal-question-about-the-gpl-license-net-dlls/3249001#3249001 I'm trying to see how this would work, so bear with me. I have a simple GUI interface for a game of Chess. It essentially can send/receive commands to/from an external chess engine (ie: Tong, Fruit, etc). The application/GUI is similar in nature to XBoard ( http://www.gnu.org/software/xboard/ ), but was independently designed. After going through a number of threads on this topic, it seems that the FSF considers dynamically linking against a GPLv2 library as a derivative work, and that by doing so, the GPLv2 extends to my proprietary code, and I must release the source to my entire project. Other legal precedents indicate the opposite, and that dynamic linking doesn't cause the "viral" effect of the GPL to propagate to my proprietary code. Since there is no official consensus that can give a "hard-and-fast" answer to the dynamic linking question, would this be an acceptable alternative: I build my chess GUI so that it sends/receives the chess engine AI logic as text commands from an external interface library that I write The interface library I wrote itself is then released under the GPL The interface library is only used to communicate via a generic text pipe to external command-line chess engines The chess engine itself would be built as a command-line utility rather than as a library of any sort, and just sends strings in the Universal Chess Interface of Chess Engine Communication Protocol ( http://en.wikipedia.org/wiki/Chess_Engine_Communication_Protocol ) format. The one "gotcha" is that the interface library should not be specific to one single GPL'ed chess engine, otherwise the entire GUI would be "entirely dependent" on it. So, I just make my interface library so that it is able to connect to any command-line chess engine that uses a specific format, rather than just one unique engine. I could then include pre-built command-line-app versions of any of the chess engines I'm using. Would that sort of approach allow me to do the following: NOT release the source for my UI Release the source of the interface library I built (if necessary) Use one or more chess engines and bundle them as external command-line utilities that ship with a binary version of my UI Thank you.

    Read the article

  • Is "If a method is re-used without changes, put the method in a base class, else create an interface" a good rule-of-thumb?

    - by exizt
    A colleague of mine came up with a rule-of-thumb for choosing between creating a base class or an interface. He says: Imagine every new method that you are about to implement. For each of them, consider this: will this method be implemented by more than one class in exactly this form, without any change? If the answer is "yes", create a base class. In every other situation, create an interface. For example: Consider the classes cat and dog, which extend the class mammal and have a single method pet(). We then add the class alligator, which doesn't extend anything and has a single method slither(). Now, we want to add an eat() method to all of them. If the implementation of eat() method will be exactly the same for cat, dog and alligator, we should create a base class (let's say, animal), which implements this method. However, if it's implementation in alligator differs in the slightest way, we should create an IEat interface and make mammal and alligator implement it. He insists that this method covers all cases, but it seems like over-simplification to me. Is it worth following this rule-of-thumb?

    Read the article

  • If an entity is composed, is it still a god object?

    - by Telastyn
    I am working on a system to configure hardware. Unfortunately, there is tons of variety in the hardware, which means there's a wide variety of capabilities and configurations depending on what specific hardware the software connects to. To deal with this, we're using a Component Based Entity design where the "hardware" class itself is a very thin container for components that are composed at runtime based on what capabilities/configuration are available. This works great, and the design itself has worked well elsewhere (particularly in games). The problem is that all this software does is configure the hardware. As such, almost all of the code is a component of the hardware instance. While the consumer only ever works against the strongly typed interfaces for the components, it could be argued that the class that represents an instance of the hardware is a God Object. If you want to do anything to/with the hardware, you query an interface and work with it. So, even if the components of an object are modular and decoupled well, is their container a God Object and the downsides associated with the anti-pattern?

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

  • Is there a table of OpenGL extensions, versions, and hardware support somewhere?

    - by Thomas
    I'm looking for some resource that can help me decide what OpenGL version my game needs at minimum, and what features to support through extensions. Ideally, a table of the following format: 1.0 1.1 1.2 1.2.1 1.3 ... multitexture - ARB ARB core core texture_float - EXT EXT ARB ARB ... (Not sure about the values I put in, but you get the idea.) The extension specs themselves, at opengl.org, list the minimum OpenGL version they need, so that part is easy. However, many extensions have been accepted and became core standard in subsequent OpenGL versions, but it is very hard to find when that happened. The only way I could find is to compare the full OpenGL standards document for each version. On a related note, I would also very much like to know which extensions/features are supported by which hardware, to help me decide what features I can safely use in my game, and which ones I need to make optional. For example, a big honkin' table like this: MAX_TEXTURE_IMAGE_UNITS MAX_VERTEX_TEXTURE_IMAGE_UNITS ... GeForce 6xxx 8 4 GeForce 7xxx 16 8 ATi x300 8 4 ... (Again, I'm making the values up.) The table could list hardware limitations from glGet but also support for particular extensions, and limitations of such extension support (e.g. what floating-point texture formats are supported in hardware). Any pointers to these or similar resources would be hugely appreciated!

    Read the article

  • Which Android hardware devices should I test on? [closed]

    - by Tchami
    Possible Duplicate: What hardware devices do you test your Android apps on? I'm trying to compile a list of Android hardware devices that it would make sense to buy and test against if you want to target an as broad audience as possible, while still not buying every single Android device out there. I know there's a lot of information regarding screen sizes and Android versions available elsewhere, but: when developing for Android it's not terribly useful to know if the screen size of a device is 480x800 or 320x240, unless you feel like doing the math to convert that into Android "units" (i.e. small, normal, large or xlarge screens, and ldpi, mdpi, hdpi or xhdpi densities). Even knowing the dimensions of a device, you cannot be sure of the actual Android units as there's some overlap, see Range of screens supported in the Android documentation Taking into account the distribution of Platform versions and Screen Sizes and Densities, below is my current list based on information from the Wikipedia article on Comparison of Android devices. I'm fairly sure the information in this list is correct, but I'd welcome any suggestions/changes. Phones | Model | Android Version | Screen Size | Density | | HTC Wildfire | 2.1/2.2 | Normal | mdpi | | HTC Tattoo | 1.6 | Normal | mdpi | | HTC Hero | 2.1 | Normal | mdpi | | HTC Legend | 2.1 | Normal | mdpi | | Sony Ericsson Xperia X8 | 1.6/2.1 | Normal | mdpi | | Motorola Droid | 2.0-2.2 | Normal | hdpi | | Samsung Galaxy S II | 2.3 | Normal | hdpi | | Samsung Galaxy Nexus | 4.0 | Normal | xhdpi | | Samsung Galaxy S III | 4.0 | Normal | xhdpi | **Tablets** | Model | Android Version | Screen Size | Density | | Samsung Galaxy Tab 7" | 2.2 | Large | hdpi | | Samsung Galaxy Tab 10" | 3.0 | X-Large | mdpi | | Asus Transformer Prime | 4.0 | X-Large | mdpi | | Motorola Xoom | 3.1/4.0 | X-Large | mdpi | N.B.: I have seen (and read) other posts on SO on this subject, e.g. Which Android devices should I test against? and What hardware devices do you test your Android apps on? but they don't seem very canonical. Maybe this should be marked community wiki?

    Read the article

  • How do I create interface methods using .tlb types in VS C++?

    - by Steven
    Background: The .TLB file contains interfaces written in language 'X'. I don't have .h, .idl, .tlh, or any other header files - just the .TLB file. Language 'X' does not export compatible .h, .idl, etc. I use the VS wizard to add an ATL simple object to my ATL project. I want to add a method to the interface of my simple ATL object that uses one of the .TLB defined types for a parameter. // Something like the following in the .idl file: interface ISomeInterface : IUnknown { HRESULT SomeMethod([in] ITypeFromTLB* aVal); // ITypeFromTLB declared in .TLB file. }; How can I do this? I'm hoping for a wizard, or a line in the .idl interface declaration that would bring in the .tlb information. midl's include (no .tlb), import (no tlb), and importlib (library only) don't seem to provide a solution (I need proxy/stub to be working, so I cannot put this inside the library declaration with the importlib command). Thanks.

    Read the article

  • Can you cast an object to one that implements an interface? (JAVA)

    - by DDP
    Can you cast an object to one that implements an interface? Right now, I'm building a GUI, and I don't want to rewrite the Confirm/Cancel code (A confirmation pop-up) over and over again. So, what I'm trying to do is write a class that gets passed the class it's used in and tells the class whether or not the user pressed Confirm or Cancel. The class always implements a certain interface. Code: class ConfirmFrame extends JFrame implements ActionListener { JButton confirm = new JButton("Confirm"); JButton cancel = new JButton("Cancel"); Object o; public ConfirmFrame(Object o) { // Irrelevant code here add(confirm); add(cancel); this.o = (/*What goes here?*/)o; } public void actionPerformed( ActionEvent evt) { o.actionPerformed(evt); } } I realize that I'm probably over-complicating things, but now that I've run across this, I really want to know if you can cast an object to another object that implements a certain interface.

    Read the article

  • Visual Studio IDE - how do you quickly find the implementation(s) of an interface's method?

    - by Jess
    Is there a quick way to find all of the implementations of, not references to, an interface's method/property/etc? Here's some sample code: public class SomeClass : IBaseClass { public Int32 GetInt() { return 1; } } public interface IBaseClass { public Int32 GetInt(); } public class SomeOtherClass { ISomeClass _someClass; private TestMethod() { _someClass = new SomeClass(); _someClass.GetInt(); } } I want to quickly get to SomeClass.GetInt() while reviewing SomeOtherClass.TestMethod(). If I right click on _someClass.GetInt() and click 'Go To Definition', it takes me to the interface. If I click 'Find All References', I could potentially see a list of all uses ... not just the classes that implement the GetInt() method. Is there a faster way to find this? Any tips from other developers? We are using D.I. for most of our dependencies, which means that tracing through deeply nested code takes forever.

    Read the article

  • Why are Objective-C instance variables declared in an interface?

    - by Chase
    I'm just getting into Objective-C (Java is my primary OO language). Defining an object's instance variables in the interface instead of the class seems strange. I'm used to an interface being a public API definition with nothing besides method signatures (not counting constants here). Is there some reason that state is defined in an interface (even if it is private) and behaviour is defined in a class. It just seems odd that since objects are state+behavior that the definition would be split into two separate places. Is it a design benefit is some way? A pain in the rear issue that you are just forced to deal with in Objective-C? A non-issue, just different? Any background on why it's done this way? Or can you put object state in a class and I just haven't hit that part in my book yet?

    Read the article

  • What networking hardware do I need in this situation (Fairpoint [ISP] "E-DIA" connection)?

    - by Tegeril
    Right away you'd probably want to say, "Well just ask Fairpoint." I've done that, a number of times in as many different ways I can phrase it and just keep hitting a brick wall where they will not commit to giving any useful information and instead recommend contracting an outside firm and spending a pile of money. Anyway... I'm trying to help a family member out with an office connection that is being setup. I've managed to scrape tiny details here and there from our discussions with the ISP (Fairpoint in Maine) about what is going to be done and what is going to be needed. This is the connection that is being setup: http://www.fairpoint.com/enterprise/vantagepoint/e-dia/index.jsp Information I have been given: Via this connection I can get IPs across different C blocks if that were necessary (it is not) Fairpoint is bringing hardware with them that they claim simply does the conversion from whatever line is coming in the building to ethernet, they have referred to this as the "Fairpoint Netvanta" which I know suggests a line of products that I have looked up, but some (most? all?) of those seems to handle all the routing that I saw. Fairpoint says that I need to bring my own router to sit behind their device. They have literally declined to even suggest products that have worked for other clients in the past and fall back on "any business router works, not a home router." That alone makes my head spin. Detail and clarity hit a brick wall from there. At one moment I got them to cough up that the router I provide needs to be able to do VPN tunneling but they typically fall back to "not a home router" and I was even given "just a business router, Cisco or something, it'll be $500-$1000". Now I know that VPN tunneling routers exist well below that price point and since this connection is going to one machine, possibly two only via ethernet, my desire to purchase networking hardware that over-delivers what I need is not very high. They are literally setting all this up, have provided no configuration details for after they finish, and expect me to just plunk a $500+ router behind it and cross my fingers or contract out to a third party company. If there were other options available for the location, I would have dropped them in a second, but there aren't. The device that is connected requires a static IP and I'm honestly a bit hazy on the necessity of an additional router behind their device and generally a bit over my head. I presume that the router needs to be able to serve external static IPs to its clients, but I really don't know what is going to show up when they come to do the install. This was originally going to be run via an ADSL bridge modem with a range of static IPs (which is easy and is currently setup properly) but the location is too far from the telco to get speeds that we really want for upload and this is also a connection that needs high availability. Any suggestions would be greatly appreciated (I see a number of options in the Cisco Small Business line and other competitors that aren't going to break the bank…), especially if you've worked with Fairpoint before! Thanks for reading my wall of text.

    Read the article

  • What to Do When Windows Won’t Boot

    - by Chris Hoffman
    You turn on your computer one day and Windows refuses to boot — what do you do? “Windows won’t boot” is a common symptom with a variety of causes, so you’ll need to perform some troubleshooting. Modern versions of Windows are better at recovering from this sort of thing. Where Windows XP might have stopped in its tracks when faced with this problem, modern versions of Windows will try to automatically run Startup Repair. First Things First Be sure to think about changes you’ve made recently — did you recently install a new hardware driver, connect a new hardware component to your computer, or open your computer’s case and do something? It’s possible the hardware driver is buggy, the new hardware is incompatible, or that you accidentally unplugged something while working inside your computer. The Computer Won’t Power On At All If your computer won’t power on at all, ensure it’s plugged into a power outlet and that the power connector isn’t loose. If it’s a desktop PC, ensure the power switch on the back of its case — on the power supply — is set to the On position. If it still won’t power on at all, it’s possible you disconnected a power cable inside its case. If you haven’t been messing around inside the case, it’s possible the power supply is dead. In this case, you’ll have to get your computer’s hardware fixed or get a new computer. Be sure to check your computer monitor — if your computer seems to power on but your screen stays black, ensure your monitor is powered on and that the cable connecting it to your computer’s case is plugged in securely at both ends. The Computer Powers On And Says No Bootable Device If your computer is powering on but you get a black screen that says something like “no bootable device” or another sort of “disk error” message, your computer can’t seem to boot from the hard drive that Windows was installed on. Enter your computer’s BIOS or UEFI firmware setup screen and check its boot order setting, ensuring that it’s set to boot from its hard drive. If the hard drive doesn’t appear in the list at all, it’s possible your hard drive has failed and can no longer be booted from. In this case, you may want to insert Windows installation or recovery media and run the Startup Repair operation. This will attempt to make Windows bootable again. For example, if something overwrote your Windows drive’s boot sector, this will repair the boot sector. If the recovery environment won’t load or doesn’t see your hard drive, you likely have a hardware problem. Be sure to check your BIOS or UEFI’s boot order first if the recovery environment won’t load. You can also attempt to manually fix Windows boot loader problems using the fixmbr and fixboot commands. Modern versions of Windows should be able to fix this problem for you with the Startup Repair wizard, so you shouldn’t actually have to run these commands yourself. Windows Freezes or Crashes During Boot If Windows seems to start booting but fails partway through, you may be facing either a software or hardware problem. If it’s a software problem, you may be able to fix it by performing a Startup Repair operation. If you can’t do this from the boot menu, insert a Windows installation disc or recovery disk and use the startup repair tool from there. If this doesn’t help at all, you may want to reinstall Windows or perform a Refresh or Reset on Windows 8. If the computer encounters errors while attempting to perform startup repair or reinstall Windows, or the reinstall process works properly and you encounter the same errors afterwards, you likely have a hardware problem. Windows Starts and Blue Screens or Freezes If Windows crashes or blue-screens on you every time it boots, you may be facing a hardware or software problem. For example, malware or a buggy driver may be loading at boot and causing the crash, or your computer’s hardware may be malfunctioning. To test this, boot your Windows computer in safe mode. In safe mode, Windows won’t load typical hardware drivers or any software that starts automatically at startup. If the computer is stable in safe mode, try uninstalling any recently installed hardware drivers, performing a system restore, and scanning for malware. If you’re lucky, one of these steps may fix your software problem and allow you to boot Windows normally. If your problem isn’t fixed, try reinstalling Windows or performing a Refresh or Reset on Windows 8. This will reset your computer back to its clean, factory-default state. If you’re still experiencing crashes, your computer likely has a hardware problem. Recover Files When Windows Won’t Boot If you have important files that will be lost and want to back them up before reinstalling Windows, you can use a Windows installer disc or Linux live media to recover the files. These run entirely from a CD, DVD, or USB drive and allow you to copy your files to another external media, such as another USB stick or an external hard drive. If you’re incapable of booting a Windows installer disc or Linux live CD, you may need to go into your BIOS or UEFI and change the boot order setting. If even this doesn’t work — or if you can boot from the devices and your computer freezes or you can’t access your hard drive — you likely have a hardware problem. You can try pulling the computer’s hard drive, inserting it into another computer, and recovering your files that way. Following these steps should fix the vast majority of Windows boot issues — at least the ones that are actually fixable. The dark cloud that always hangs over such issues is the possibility that the hard drive or another component in the computer may be failing. Image Credit: Karl-Ludwig G. Poggemann on Flickr, Tzuhsun Hsu on Flickr     

    Read the article

  • C++ destructor problem with boost::scoped_ptr

    - by bb-generation
    I have a question about the following code: #include <iostream> #include <boost/scoped_ptr.hpp> class Interface { }; class A : public Interface { public: A() { std::cout << "A()" << std::endl; } virtual ~A() { std::cout << "~A()" << std::endl; } }; Interface* get_a() { A* a = new A; return a; } int main() { { std::cout << "1" << std::endl; boost::scoped_ptr<Interface> x(get_a()); std::cout << "2" << std::endl; } std::cout << "3" << std::endl; } It creates the following output: 1 A() 2 3 As you can see, it doesn't call the destructor of A. The only way I see to get the destructor of A being called, is to add a destructor for the Interface class like this: virtual ~Interface() { } But I really want to avoid any Implementation in my Interface class and virtual ~Interface() = 0; doesn't work (produces some linker errors complaining about a non existing implementation of ~Interface(). So my question is: What do I have to change in order to make the destructor being called, but (if possible) leave the Interface as an Interface (only abstract methods).

    Read the article

  • Server performance worsened after a hardware upgrade: how should I reconfigure the server?

    - by twick
    I'm running a site on an Ubuntu/Apache/Django/PostgreSQL stack. We upgraded our server recently from 1 processor with 2 Gb total RAM (with 0.5 Gb of that RAM assigned to memcached) to a new server that has 2 processors with 4 Gb total RAM (with 2 Gb of that RAM assigned to memcached). However, when I looked at Google Webmaster Tools, I found out that the average page speed has worsened from 5 seconds to 15 seconds. Why would performance get worse with a hardware upgrade? What should I check and tune? Is this more likely to be a problem with memcached, Apache, Django, or PostgreSQL?

    Read the article

  • Should I host my site on my own hardware for streaming media site?

    - by Reddy S R
    Hi, We are developing a new movie review site, more or less similar to RottenTomatoes. Now since there will be a lot of streaming of movie trailers and we are expecting medium traffic, do you think 3rd party web hosting will cost a lot? Should we rather go for our own hardware server software? We expect around 10GB of streaming to happen per month from 2 - 6 months of web site launch. Less before and more after that period. What do you suggest? Thanks Sridhar Reddy

    Read the article

  • What is the most economic hardware that will run Ubuntu? [closed]

    - by nbolton
    I'm looking to buy the cheapest hardware I can find that will run the latest version of Ubuntu desktop on some sort of usable level (e.g. use of web browser, flash, etc). I guess small form factor would be pretty convenient, so I was looking at Acer Aspire Revo for example, but I'm not sure whether or not it's overpriced. I'd rather pay less for the same thing minus brand name if it's available. Any ideas? On further investigation, it seems I'm looking for a nettop.

    Read the article

  • Restoring the exact state of a linux install to a different laptop with different sized drives and other hardware

    - by user259774
    I have an IBM running a Manjaro install that has already been used and settled into, with packages installed, browser profiles, etc, etc. The drive is 60gb, and it has a swap partition and an ext4 root partition. I need to move this profile to a Toshiba computer with a 320gb drive. How should I go about this? My inclination would be to shut down the toshiba, boot a live linux system, dd the whole 60gb drive to a file, boot the toshiba to a live system, then dd the file to its 320gb drive. Would this work? I know that it wouldn't with windows, but I believe this is an artificially imposed limitation from Microsoft. Is this correct, or is Linux similarly limited? If not, how could I go about this? Would clonezilla work, or would the hardware disparities prevent it from working?

    Read the article

  • What kind of server hardware is roughly necessary to serve website to 10k users?

    - by jcmoney
    I've been looking at VPS's and the specs they offer for entry level setups seems somewhat surprising to me. I'm am new to this topic but many of VPS offer less than 512MB of memory and my laptop has 4GB of memory so I am curious what does it actually take in terms of hardware to serve say 10k users (say 5k daily active users)? I figure a large number of factors can probably sway this a lot but just for benchmarking, say the site is a social networking site written in php using mysql + apache that's not really doing anything unusual like serving lots of media. So essentially a very basic Facebook minus the absurd number of photos and videos. What about 100k users (50k daily active)? 1 million (500k daily active)? Thanks in advance.

    Read the article

  • Is there any software or hardware which lets you stop, slow down, speed up or even reverse time?

    - by tjrobinson
    Obviously I'm talking about time in terms of the PC clock rather than real time. We were testing an application we've developed at work by setting the clock forward and back to simulate different scenarios and I started thinking how useful it would be if you could adjust the rate(?) of the system clock with finer control. So you could make a minute pass in a second or a day pass in 30 seconds and watch how the program you're developing copes with changes in date and time. I'd be interested to hear if anyone knows of any software or hardware which can let you do some or all of the above.

    Read the article

  • How do I diagnose a HP Notebook which has hardware issues?

    - by Rob
    My HP DV6t-2300 recently crashed while using FLV Player. It wouldn't start up after this so I had to do a hardware reset (remove power sources, hold down power button ~15 seconds, put back power sources). After this it would turn on, but start up would freeze in Ubuntu, Windows 7, Ubuntu Recovery Mode, and various Linux Live CDs. The only successful way to boot was in Windows 7 Safe Mode. The HP Customer Service was very polite, but they are trying to blame it on a corrupt operating system which is clearly not the case (since I have tried 4 operating systems and none work). I am thinking it might be the GPU since 1) I was watching movies when it crashed and 2) Windows Safe Mode might not use the dedicated GPU. I already ran Memory and HDD tests and there were no detected errors. Any ideas of what's wrong, or suggestions for tests that I should run in safe mode? Should I try reinstalling Windows 7 to convince HP that it's not the OS?

    Read the article

< Previous Page | 150 151 152 153 154 155 156 157 158 159 160 161  | Next Page >