Search Results

Search found 6026 results on 242 pages for 'visitor pattern'.

Page 159/242 | < Previous Page | 155 156 157 158 159 160 161 162 163 164 165 166  | Next Page >

  • How to quickly search through a very large list of strings / records on a database

    - by Giorgio
    I have the following problem: I have a database containing more than 2 million records. Each record has a string field X and I want to display a list of records for which field X contains a certain string. Each record is about 500 bytes in size. To make it more concrete: in the GUI of my application I have a text field where I can enter a string. Above the text field I have a table displaying the (first N, e.g. 100) records that match the string in the text field. When I type or delete one character in the text field, the table content must be updated on the fly. I wonder if there is an efficient way of doing this using appropriate index structures and / or caching. As explained above, I only want to display the first N items that match the query. Therefore, for N small enough, it should not be a big issue loading the matching items from the database. Besides, caching items in main memory can make retrieval faster. I think the main problem is how to find the matching items quickly, given the pattern string. Can I rely on some DBMS facilities, or do I have to build some in-memory index myself? Any ideas? EDIT I have run a first experiment. I have split the records into different text files (at most 200 records per file) and put the files in different directories (I used the content of one data field to determine the directory tree). I end up with about 50000 files in about 40000 directories. I have then run Lucene to index the files. Searching for a string with the Lucene demo program is pretty fast. Splitting and indexing took a few minutes: this is totally acceptable for me because it is a static data set that I want to query. The next step is to integrate Lucene in the main program and use the hits returned by Lucene to load the relevant records into main memory.

    Read the article

  • Best practice to collect information from child objects

    - by Markus
    I'm regularly seeing the following pattern: public abstract class BaseItem { BaseItem[] children; // ... public void DoSomethingWithStuff() { StuffCollection collection = new StuffCollection(); foreach(child c : children) c.AddRequiredStuff(collection); // do something with the collection ... } public abstract void AddRequiredStuff(StuffCollection collection); } public class ConcreteItem : BaseItem { // ... public override void AddRequiredStuff(StuffCollection collection) { Stuff stuff; // ... collection.Add(stuff); } } Where I would use something like this, for better information hiding: public abstract class BaseItem { BaseItem[] children; // ... public void DoSomethingWithStuff() { StuffCollection collection = new StuffCollection(); foreach(child c : children) collection.AddRange(c.RequiredStuff()); // do something with the collection ... } public abstract StuffCollection RequiredStuff(); } public class ConcreteItem : BaseItem { // ... public override StuffCollection RequiredStuff() { StuffCollection stuffCollection; Stuff stuff; // ... stuffCollection.Add(stuff); return stuffCollection; } } What are pros and cons of each solution? For me, giving the implementation access to parent's information is some how disconcerting. On the other hand, initializing a new list, just to collect the items is a useless overhead ... What is the better design? How would it change, if DoSomethingWithStuff wouldn't be part of BaseItem but a third class? PS: there might be missing semicolons, or typos; sorry for that! The above code is not meant to be executed, but just for illustration.

    Read the article

  • Are super methods in JavaScript limited to functional inheritance, as per Crockford's book?

    - by kindohm
    In Douglas Crockford's "JavaScript: The Good Parts", he walks through three types of inheritance: classical, prototypal, and functional. In the part on functional inheritance he writes: "The functional pattern also gives us a way to deal with super methods." He then goes on to implement a method named "superior" on all Objects. However, in the way he uses the superior method, it just looks like he is copying the method on the super object for later use: // crockford's code: var coolcat = function(spec) { var that = cat(spec), super_get_name = that.superior('get_name'); that.get_name = function (n) { return 'like ' + super_get_name() + ' baby'; }; return that; }; The original get_name method is copied to super_get_name. I don't get what's so special about functional inheritance that makes this possible. Can't you do this with classical or prototypal inheritance? What's the difference between the code above and the code below: var CoolCat = function(name) { this.name = name; } CoolCat.prototype = new Cat(); CoolCat.prototype.super_get_name = CoolCat.prototype.get_name; CoolCat.prototype.get_name = function (n) { return 'like ' + this.super_get_name() + ' baby'; }; Doesn't this second example provide access to "super methods" too?

    Read the article

  • Why do Google search results include pages disallowed in robots.txt?

    - by Ilmari Karonen
    I have some pages on my site that I want to keep search engines away from, so I disallowed them in my robots.txt file like this: User-Agent: * Disallow: /email Yet I recently noticed that Google still sometimes returns links to those pages in their search results. Why does this happen, and how can I stop it? Background: Several years ago, I made a simple web site for a club a relative of mine was involved in. They wanted to have e-mail links on their pages, so, to try and keep those e-mail addresses from ending up on too many spam lists, instead of using direct mailto: links I made those links point to a simple redirector / address harvester trap script running on my own site. This script would return either a 301 redirect to the actual mailto: URL, or, if it detected a suspicious access pattern, a page containing lots of random fake e-mail addresses and links to more such pages. To keep legitimate search bots away from the trap, I set up the robots.txt rule shown above, disallowing the entire space of both legit redirector links and trap pages. Just recently, however, one of the people in the club searched Google for their own name and was quite surprised when one of the results on the first page was a link to the redirector script, with a title consisting of their e-mail address followed by my name. Of course, they immediately e-mailed me and wanted to know how to get their address out of Google's index. I was quite surprised too, since I had no idea that Google would index such URLs at all, seemingly in violation of my robots.txt rule. I did manage to submit a removal request to Google, and it seems to have worked, but I'd like to know why and how Google is circumventing my robots.txt like that and how to make sure that none of the disallowed pages will show up in their search results. Ps. I actually found out a possible explanation and solution, which I'll post below, while preparing this question, but I thought I'd ask it anyway in case someone else might have the same problem. Please do feel free to post your own answers. I'd also be interested in knowing if other search engines do this too, and whether the same solutions work for them also.

    Read the article

  • what should I read in Windows [closed]

    - by Umesha MS
    I think I am asking generic question. Being a developer in windows what should I read to improve my skills? Do I need to read concepts on need basis or do I need to read concepts well in advance? If I want to read the concepts in advance then what topics do I need to read. (Note : I am a Windows developer. I use c++ programming language, Win32/MFC frame work and I use Visual studio IDE.) Updated: To be more specific when a fresher comes to my team I will ask him to read the following things and I tell him that these are very important. 1)C++ : 1 The C++ Programming Language by Bjarne Stroustrup's 2 Thinking in C++ 2nd Edition by Bruce Eckel 2)Win32/MFC : 1 Programming Applications for Microsoft Windows by Jeffrey Richter 2 windows programming by charles petzold 3 Programming Windows with MFC –by Jeff Prosise For 2 years and above developer I ask them to read 1)Above concepts (C++ and Win32/MFC)are mandate 2)Design Pattern : 1)Gang Of Four. 2)Head first patter. 3)Design princples. But for above 6 years’ experience developer what are the concepts are important.

    Read the article

  • How to populate a private container for unit test?

    - by Sardathrion
    I have a class that defines a private (well, __container to be exact since it is python) container. I am using the information within said container as part of the logic of what the class does and have the ability to add/delete the elements of said container. For unit tests, I need to populate this container with some data. That date depends on the test done and thus putting it all in setUp() would be impractical and bloated -- plus it could add unwanted side effects. Since the data is private, I can only add things via the public interface of the object. This run codes that need not be run during a unit test and in some case is just a copy and paste from another test. Currently, I am mocking the whole container but somehow it does not feel that elegant a solution. Due to Python mocking frame work (mock), this requires the container to be public -- so I can use patch.dict(). I would rather keep that data private. What pattern can one use to still populate the containers without excising the public method so I have data to test with? Is there a way to do this with mock' patch.dict() that I missed?

    Read the article

  • How to avoid the GameManager god object?

    - by lorancou
    I just read an answer to a question about structuring game code. It made me wonder about the ubiquitous GameManager class, and how it often becomes an issue in a production environment. Let me describe this. First, there's prototyping. Nobody cares about writing great code, we just try to get something running to see if the gameplay adds up. Then there's a greenlight, and in an effort to clean things up, somebody writes a GameManager. Probably to hold a bunch of GameStates, maybe to store a few GameObjects, nothing big, really. A cute, little, manager. In the peaceful realm of pre-production, the game is shaping up nicely. Coders have proper nights of sleep and plenty of ideas to architecture the thing with Great Design Patterns. Then production starts and soon, of course, there is crunch time. Balanced diet is long gone, the bug tracker is cracking with issues, people are stressed and the game has to be released yesterday. At that point, usually, the GameManager is a real big mess (to stay polite). The reason for that is simple. After all, when writing a game, well... all the source code is actually here to manage the game. It's easy to just add this little extra feature or bugfix in the GameManager, where everything else is already stored anyway. When time becomes an issue, no way to write a separate class, or to split this giant manager into sub-managers. Of course this is a classical anti-pattern: the god object. It's a bad thing, a pain to merge, a pain to maintain, a pain to understand, a pain to transform. What would you suggest to prevent this from happening?

    Read the article

  • MVC and delegation

    - by timjver
    I am a beginning iOS programmer and use the Model-View-Controller model as a design pattern: my model doesn't know anything about my view (in order to make it compatible with any view), my view doesn't know anything about my model so they interact via my controller. A very usual way for a view to interact with the controller is through delegation: when the user interacts with the app, my view will notify my controller, which can call some methods of my model and update my view, if necessary. However, would it make sense to also make my controller the delegate of my model? I'm not convinced this is the way to go. It could be handy for my model to notify my controller of some process being finished, for example, or to ask for extra input of the user if it doesn't have enough information to complete the task. The downside of this, though, is that my controller would be the delegate for both my controller and my model, so there wouldn't be really a proper way to notify my model of changes in my view, and vice versa. (correct me if I'm wrong.) Conclusion: I don't really think it's a good idea to to have my controller to be the delegate of my model, but just being the delegate of my view would be fine. Is this the way most MVC models handle? Or is there a way to have the controller be the delegate of both the controller and the model, with proper communication between them? Like I said, I'm a beginner, so I want to do such stuff the right way immediately, rather than spending loads of hours on models that won't work anyway. :)

    Read the article

  • Best approach for tracking dependent state

    - by Pace
    Let's pretend I work on a project tracking application. The application is a database backed, server hosted, web application. In this application there are Projects which have many Activities which have many Tasks. A Task has two date fields an originalDueDate and a projectedDueDate. In addition, there are dynamic fields on the Activities and the Projects which indicate whether the Activity or Project is behind schedule based on the projected due dates of the child tasks and various other variables such as remaining buffer time, etc. There are a number of things that can cause the projectedDueDate to change. For example, an employee working on the project may (via a server request) enter in a shipping delay. Alternatively, a site may (via a server request) enter in an unexpected closure. When any of these things occur I need to not only update the projectedDueDate of the Task but also trigger the corresponding Project and Activity to update as well. What is the best way to do this? I've thought of the observer pattern but I don't keep a single copy of all these objects in memory. When a request comes in, I query the Task in from the database, at that point there is no associated Activity in memory that would be a listener. I could remove the ability to query for Tasks and force the application to query first by Project, then by Activity (in context of Project), then by task (in context of Activity) adding the observer relationships at each step but I'm not sure if that is the best way. I could setup a database event listening system so when a Task modified event is dispatched I have a handler which queries for the Activity at that point. I could simply setup a two-way relationship between Task and Activity so that the Task knows about the parent Activity and when the Task updates his state the Task grabs his parent and updates state. Right now I'm stuck considering all the options and am wondering if any single approach (doesn't have to be a listed approach) is jumping out at others as the best approach.

    Read the article

  • Dependency injection: At what point am I allowed to create a new object?

    - by Gaz_Edge
    I am refactoring a PHP application, and I am trying to do has much dependency injection (DI) as possible. I feel like I've got a good grasp of how it works, and I can certainly see my classes becoming a lot leaner and more robust. I'm refactoring so that I can inject a dependency rather than create a new object within the class, but at some point I am going to have to create some objects, that is, use the dreaded new keyword. The problem I have now run into is at what point can I actually create new objects? It's looking like I'll end up at a top level class, creating loads of new objects as there is no where else to go. This feels wrong. I've read some blogs that use factory classes to create all the objects, and then you inject the factory into other classes. You can then call the factory methods, and the factory creates the new object for you. My concern with doing this is now my factory classes are going to be a new free-for-all! I guess this may be OK as they are factory classes, but are there some rules to stick to when using a factory pattern and DI, or am I going way off the mark here?

    Read the article

  • Architecture for dashboard showing aggregated stats [on hold]

    - by soulnafein
    I'd like to know what are common architectural pattern for the following problem. Web application A has information on sales, users, responsiveness score, etc. Some of this information are computationally intensive and or have a complex business logic (e.g. responsiveness score). I'm building a separate application (B) for internal admin tasks that modifies data in web application A and report on data from web application A. For writing I'm planning to use a restful api. E.g. create a new entity, update entity, etc. In application B I'd like to show some graphs and other aggregate data for the previous 12 months. I'm planning to store the aggregate data for each month in redis. Some data should update more often, e.g every 10 minutes. I can think of 3 ways of doing this. A scheduled task in app B that connects to an api of app A that provides some aggregated data. Then app B stores it in Redis and use that to visualise pages. Cons: it makes complex calculation within a web request, requires lot's of work e.g. api server and client, storing, etc., pros: business logic still lives in app A. A scheduled task in app A that aggregates data in an non-web process and stores it directly in Redis to be accessed by app B. A scheduled task in app A that aggregates data in a non-web process and uses an api in app B to save it. I'd like to know if there is a well known architectural solution to this type of problems and if not what are other pros/cons for the solution I've suggested?

    Read the article

  • Hard-drive will randomly fail to load GRUB. Booting a live USB/CD fixes the issue temporarily

    - by Usagi
    I am running 12.04 64-bit and am dual booting with Win7, for full disclosure, although I suspect that has nothing to do with my problem. Occasionally the boot-loader(GRUB) will fail to load and I will be presented with a black screen with a single blinking line. There is no apparent pattern although I suspect there is one and it is related to a program I am running. This has happened to me eight out of ten power cycles now and I can fix it consistently, however, I have no idea why it happens. My current fix is to boot a live CD (I've tried both KNOPPIX and Ubuntu with the same result) and that's it. Somehow booting with the live CD is enough to "wake-up" my hard drive. I then reboot and GRUB magically appears again. So what is going on? Is it possible that a program is corrupting my MBR and the live CD is restoring it? How can I narrow down the possibilities? Thanks. Additional: This is still a problem. I'm convinced now that it is not hardware related as I've spent the last month and several boot cycles on Windows without a hiccup. Recently when I started using Ubuntu again the problem started again. I am more interested in figuring out what is going on rather than actually fixing the problem. Are there any tools, logs, etc. I can use to unravel this mystery?

    Read the article

  • Which are the best ways to organize view hierarchies in GUI interfaces?

    - by none
    I'm currently trying to figure out the best techniques for organizing GUI view hierarchies, that is dividing a window into several panels which are in turn divided into other components. I've given a look to the Composite Design Pattern, but I don't know if I can find better alternatives, so I'd appreciate to know if using the Composite is a good idea, or it would be better looking for some other techniques. I'm currently developing in Java Swing, but I don't think that the framework or the language can have a great impact on this. Any help will be appreciated. ---------EDIT------------ I was currently developing a frame containing three labels, one button and a text field. At the button pressed, the content inside the text field would be searched, and the results written inside the three labels. One of my typical structure would be the following: MainWindow | Main panel | Panel with text field and labels. | Panel with search button Now, as the title explains, I was looking for a suitable way of organizing both the MainPanel and the other two panels. But here came problems, since I'm not sure whether organizing them like attributes or storing inside some data structure (i.e. LinkedList or something like this). Anyway, I don't really think that both my solution are really good, so I'm wondering if there are really better approaches for facing this kind of problems. Hope it helps

    Read the article

  • How should I structure the implementation of turn-based board game rules?

    - by Setzer22
    I'm trying to create a turn-based strategy game on a tilemap. I'm using design by component so far, but I can't find a nice way to fit components into the part I want to ask. I'm struggling with the "game rules" logic. That is, the code that displays the menu, allows the player to select units, and command them, then tells the unit game objects what to do given the player input. The best way I could thing of handling this was using a big state machine, so everything that could be done in a "turn" is handled by this state machine, and the update code of this state machine does different things depending on the state. However, this approach leads to a large amount of code (anything not model-related) going into a big class. Of course I can subdivide this big class into more classes, but it doesn't feel modular and upgradable enough. I'd like to know of better systems to handle this in order to be able to upgrade the game with new rules without having a monstruous if/else chain (or switch / case, for that matter). Any ideas? What specific design pattern other than MVC should I be using?

    Read the article

  • Emailing Service: To or Bcc?

    - by Shelakel
    I'm busy coding a reusable e-mail service for my company. The e-mail service will be doing quite a few things via injection through the strategy pattern (such as handling e-mail send rate throttling, switching between Smtp and AmazonSES or Google AppEngine for e-mail clients when daily quotas are exceeded, send statistics tracking (mostly because it is neccessary in order to stay within quotas) to name a few). Because e-mail sending will need to be throttled and other limitations exist (ex. max recipient quota on AmazonSES limiting recipients to 50 per send), the e-mails typically need to be broken up. From your experience, would it be better to send bulk (multiple recipients per e-mail) or a single e-mail per recipient? The implications of the above would be to send to a 1000 recipients, with a limit of 50 per send, you would send 20 e-mails using BCC in a newsletter scenario. When sending an e-mail per recipient, it would send 1000 e-mails. E-mail sending is asynchronous (due to inherit latency when sending, it's typically only possible to send 5 e-mails per second unless you are using multiple client asynchronously). Edit Just for full disclosure, this service won't be used by or sold to spammers and will as far as possible automatically comply with national and international laws. Closed< Thanks for all the valuable feedback. The concerns regarding compliance towards laws, user experience (generic vs. personalized unsubscribe) and spam regulation via ISP blacklisting does make To the preferred and possibly the only choice when sending system generated e-mails to recipients.

    Read the article

  • Software Architecture: How to divide work to a network of computers?

    - by Morpork
    Imagine a scenario as follows: Lets say you have a central computer which generates a lot of data. This data must go through some processing, which unfortunately takes longer than to generate. In order for the processing to catch up with real time, we plug in more slave computers. Further, we must take into account the possibility of slaves dropping out of the network mid-job as well as additional slaves being added. The central computer should ensure that all jobs are finished to its satisfaction, and that jobs dropped by a slave are retasked to another. The main question is: What approach should I use to achieve this? But perhaps the following would help me arrive at an answer: Is there a name or design pattern to what I am trying to do? What domain of knowledge do I need to achieve the goal of getting these computers to talk to each other? (eg. will a database, which I have some knowledge of, be enough or will this involve sockets, which I have yet to have knowledge of?) Are there any examples of such a system? The main question is a bit general so it would be good to have a starting point/reference point. Note I am assuming constraints of c++ and windows so solutions pointing in that direction would be appreciated.

    Read the article

  • Creating my own PHP framework

    - by onlineapplab.com
    Disclaimer: I don't want to start any flame war so there will not be no name of any framework mentioned. I've been using quite many from the existing PHP frameworks and my experience in each case was similar: everything is nice a the beginning but in the moment you require something non standard you get into lot of problems to fix otherwise simple issues. In case of frameworks following the MVC design pattern there are some issues with the implementation of each layer for example there is a lot of codding used for model and data access with using ORM and presentation is not much more than pure phtml. Some frameworks use their own wrappers for existing PHP functionality and in some cases severely limiting original functionality. Depending on framework you can have additional problems like lack of documentation, slow or non existent development cycle and last but not least speed. While ago I made my own framework which while doing it's job and being used for few different applications after couple of years more of experience with PHP doesn't seem to be perfect piece of codding. I could write my own framework and use additional experience I've gathered during these years to make it better on the other hand I'm aware that there is quite many better programmers working on creating/upgrading existing frameworks. So does it make at all nay sense to write my own PHP framework if there is so many possibilities to choose from?

    Read the article

  • Hide or Show singleton?

    - by Sinker
    Singleton is a common pattern implemented in both native libraries of .NET and Java. You will see it as such: C#: MyClass.Instance Java: MyClass.getInstance() The question is: when writing APIs, is it better to expose the singleton through a property or getter, or should I hide it as much as possible? Here are the alternatives for illustrative purposes: Exposed(C#): private static MyClass instance; public static MyClass Instance { get { if (instance == null) instance = new MyClass(); return instance; } } public void PerformOperation() { ... } Hidden (C#): private static MyClass instance; public static void PerformOperation() { if (instance == null) { instance = new MyClass(); } ... } EDIT: There seems to be a number of detractors of the Singleton design. Great! Please tell me why and what is the better alternative. Here is my scenario: My whole application utilises one logger (log4net/log4j). Whenever, the program has something to log, it utilises the Logger class (e.g. Logger.Instance.Warn(...) or Logger.Instance.Error(...) etc. Should I use Logger.Warn(...) or Logger.Warn(...) instead? If you have an alternative to singletons that addresses my concern, then please write an answer for it. Thank you :)

    Read the article

  • How to handle class dependency with interfaces and implementatons

    - by lealand
    I'm using ObjectAid with Eclipse to generate UML class diagrams for my latest Java project, and I currently have a handful of situations like this, where I have a dependency between two interfaces, as well as one of the implementations of one of the interfaces. Here, foo is the graphics library I'm using. In the previous example, FooCanvas draws ITexture objects to the screen, and both FooCanvas and its interface, ICanvas, take ITexture objects as arguments to their methods. The method in the canvas classes which cause this dependency is the following: void drawTexture(ITexture texture, float x, float y); Additionally, I tried a variation on the method signature using Java's generics: <T extends ITexture> void drawTexture(T texture, float x, float y); The result of this was a class diagram where the only dependencies where between the interfaces and the implementing classes, and no dependency by a canvas object on a texture. I'm not sure if this is more ideal or not. Is the dependency of both the interface and implementation on another interface an expected pattern, or is it typical and/or possible to keep the implementation 'isolated' from its interfaces dependencies? Or is the generic method the ideal solution?

    Read the article

  • If an entity is composed, is it still a god object?

    - by Telastyn
    I am working on a system to configure hardware. Unfortunately, there is tons of variety in the hardware, which means there's a wide variety of capabilities and configurations depending on what specific hardware the software connects to. To deal with this, we're using a Component Based Entity design where the "hardware" class itself is a very thin container for components that are composed at runtime based on what capabilities/configuration are available. This works great, and the design itself has worked well elsewhere (particularly in games). The problem is that all this software does is configure the hardware. As such, almost all of the code is a component of the hardware instance. While the consumer only ever works against the strongly typed interfaces for the components, it could be argued that the class that represents an instance of the hardware is a God Object. If you want to do anything to/with the hardware, you query an interface and work with it. So, even if the components of an object are modular and decoupled well, is their container a God Object and the downsides associated with the anti-pattern?

    Read the article

  • Model View Controller² [closed]

    - by user694971
    I am working on a quite complex web application in Go and I tried to stay in an MVC pattern. However, I ended up having a structure isomorphic to this: /boilerplate The usual boilerplate an application needs to survive in the wilderness /db Layer talking to an SQL DB /helpers Helpers /logic Backend logic, not directly affiliated with any routes, sessions etc. /templates View /web Glue between /logic and /templates. In more dynamic languages the size of /web would be next to zero. But Go doesn't exactly have a RoR integrated so I need a lot of helper structures to feed the templates with data, to process GET/POST parameters and session information. I remember once reading about patterns similar to MVC with one extra letter but Wiki-searching I couldn't find it right now. (BTW currently /logic also contains data retrieval from API services to fill some hash maps; this is no simple task, but that probably belongs into the model, right?) So question: is this structure considered sane? Or does it need some bending to be tagged MVC app?

    Read the article

  • Associate a texture to an object (from a data-model, not graphical point of view).

    - by Raveline
    I'm writing a roguelike where objects and floor can be made of different materials. For instance, let's say we can have a wooden chair, an iron chair, a golden chair, and so on. I've got an Object class (I know, the name is terrible), which is more or less using a composite pattern, and a Material class. Material have different important properties (noise, color...). For the time being, there are 5 different instances of materials, created at the initialization of the game. How would connect an instance of Object with one of the 5 instances of materials ? I see three simple solutions : Using a pointer. Simple and brutal. Using an integer material-id, then get the materials out of a table when engine manipulates the object for various purposes (display, attack analysis, etc.). Not very beautiful, I think, and not very flexible. Using an integer material-id, then get the materials out of a std::map. A bit more flexible, but still not perfect. Do you see other possibilities ? If not, what would you choose (and why) ? Thanks in advance !

    Read the article

  • Dependency Injection: What point am I allowed to create a new object?

    - by Gaz_Edge
    I am refactoring a php application and I am trying to do has much dependency injection as possible. I feel like I've got a good grasp of how it works, and I can certainly see my classes becoming a lot leaner and more robust. Im refactoring so that I can inject a dependency rather than create a new object within the class, but at some point I am going to have to create some objects i.e. use the dreaded new keyword. The problem I have now run into is at what point can I actually create new objects? Its looking like I'll end up at a top level class, creating loads of new objects as there is no where else to go. This feels wrong. I've read some blogs that use factory classes to create all the objects, and then you inject the factory into other classes. You can then call the factory methods, and the factory creates the new object for you. My concern with doing this is now my factory classes are going to be a new free-for-all! I guess this may be ok as they are factory classes, but are there some rules to stick to when using factory pattern and DI, or am I going way off the mark here.

    Read the article

  • Agile Development

    - by James Oloo Onyango
    Alot of literature has and is being written about agile developement and its surrounding philosophies. In my quest to find the best way to express the importance of agile methodologies, i have found Robert C. Martin's "A Satire Of Two Companies" to be both the most concise and thorough! Enjoy the read! Rufus Inc Project Kick Off Your name is Bob. The date is January 3, 2001, and your head still aches from the recent millennial revelry. You are sitting in a conference room with several managers and a group of your peers. You are a project team leader. Your boss is there, and he has brought along all of his team leaders. His boss called the meeting. "We have a new project to develop," says your boss's boss. Call him BB. The points in his hair are so long that they scrape the ceiling. Your boss's points are just starting to grow, but he eagerly awaits the day when he can leave Brylcream stains on the acoustic tiles. BB describes the essence of the new market they have identified and the product they want to develop to exploit this market. "We must have this new project up and working by fourth quarter October 1," BB demands. "Nothing is of higher priority, so we are cancelling your current project." The reaction in the room is stunned silence. Months of work are simply going to be thrown away. Slowly, a murmur of objection begins to circulate around the conference table.   His points give off an evil green glow as BB meets the eyes of everyone in the room. One by one, that insidious stare reduces each attendee to quivering lumps of protoplasm. It is clear that he will brook no discussion on this matter. Once silence has been restored, BB says, "We need to begin immediately. How long will it take you to do the analysis?" You raise your hand. Your boss tries to stop you, but his spitwad misses you and you are unaware of his efforts.   "Sir, we can't tell you how long the analysis will take until we have some requirements." "The requirements document won't be ready for 3 or 4 weeks," BB says, his points vibrating with frustration. "So, pretend that you have the requirements in front of you now. How long will you require for analysis?" No one breathes. Everyone looks around to see whether anyone has some idea. "If analysis goes beyond April 1, we have a problem. Can you finish the analysis by then?" Your boss visibly gathers his courage: "We'll find a way, sir!" His points grow 3 mm, and your headache increases by two Tylenol. "Good." BB smiles. "Now, how long will it take to do the design?" "Sir," you say. Your boss visibly pales. He is clearly worried that his 3 mms are at risk. "Without an analysis, it will not be possible to tell you how long design will take." BB's expression shifts beyond austere.   "PRETEND you have the analysis already!" he says, while fixing you with his vacant, beady little eyes. "How long will it take you to do the design?" Two Tylenol are not going to cut it. Your boss, in a desperate attempt to save his new growth, babbles: "Well, sir, with only six months left to complete the project, design had better take no longer than 3 months."   "I'm glad you agree, Smithers!" BB says, beaming. Your boss relaxes. He knows his points are secure. After a while, he starts lightly humming the Brylcream jingle. BB continues, "So, analysis will be complete by April 1, design will be complete by July 1, and that gives you 3 months to implement the project. This meeting is an example of how well our new consensus and empowerment policies are working. Now, get out there and start working. I'll expect to see TQM plans and QIT assignments on my desk by next week. Oh, and don't forget that your crossfunctional team meetings and reports will be needed for next month's quality audit." "Forget the Tylenol," you think to yourself as you return to your cubicle. "I need bourbon."   Visibly excited, your boss comes over to you and says, "Gosh, what a great meeting. I think we're really going to do some world shaking with this project." You nod in agreement, too disgusted to do anything else. "Oh," your boss continues, "I almost forgot." He hands you a 30-page document. "Remember that the SEI is coming to do an evaluation next week. This is the evaluation guide. You need to read through it, memorize it, and then shred it. It tells you how to answer any questions that the SEI auditors ask you. It also tells you what parts of the building you are allowed to take them to and what parts to avoid. We are determined to be a CMM level 3 organization by June!"   You and your peers start working on the analysis of the new project. This is difficult because you have no requirements. But from the 10-minute introduction given by BB on that fateful morning, you have some idea of what the product is supposed to do.   Corporate process demands that you begin by creating a use case document. You and your team begin enumerating use cases and drawing oval and stick diagrams. Philosophical debates break out among the team members. There is disagreement as to whether certain use cases should be connected with <<extends>> or <<includes>> relationships. Competing models are created, but nobody knows how to evaluate them. The debate continues, effectively paralyzing progress.   After a week, somebody finds the iceberg.com Web site, which recommends disposing entirely of <<extends>> and <<includes>> and replacing them with <<precedes>> and <<uses>>. The documents on this Web site, authored by Don Sengroiux, describes a method known as stalwart-analysis, which claims to be a step-by-step method for translating use cases into design diagrams. More competing use case models are created using this new scheme, but again, people can't agree on how to evaluate them. The thrashing continues. More and more, the use case meetings are driven by emotion rather than by reason. If it weren't for the fact that you don't have requirements, you'd be pretty upset by the lack of progress you are making. The requirements document arrives on February 15. And then again on February 20, 25, and every week thereafter. Each new version contradicts the previous one. Clearly, the marketing folks who are writing the requirements, empowered though they might be, are not finding consensus.   At the same time, several new competing use case templates have been proposed by the various team members. Each template presents its own particularly creative way of delaying progress. The debates rage on. On March 1, Prudence Putrigence, the process proctor, succeeds in integrating all the competing use case forms and templates into a single, all-encompassing form. Just the blank form is 15 pages long. She has managed to include every field that appeared on all the competing templates. She also presents a 159- page document describing how to fill out the use case form. All current use cases must be rewritten according to the new standard.   You marvel to yourself that it now requires 15 pages of fill-in-the-blank and essay questions to answer the question: What should the system do when the user presses Return? The corporate process (authored by L. E. Ott, famed author of "Holistic Analysis: A Progressive Dialectic for Software Engineers") insists that you discover all primary use cases, 87 percent of all secondary use cases, and 36.274 percent of all tertiary use cases before you can complete analysis and enter the design phase. You have no idea what a tertiary use case is. So in an attempt to meet this requirement, you try to get your use case document reviewed by the marketing department, which you hope will know what a tertiary use case is.   Unfortunately, the marketing folks are too busy with sales support to talk to you. Indeed, since the project started, you have not been able to get a single meeting with marketing, which has provided a never-ending stream of changing and contradictory requirements documents.   While one team has been spinning endlessly on the use case document, another team has been working out the domain model. Endless variations of UML documents are pouring out of this team. Every week, the model is reworked.   The team members can't decide whether to use <<interfaces>> or <<types>> in the model. A huge disagreement has been raging on the proper syntax and application of OCL. Others on the team just got back from a 5-day class on catabolism, and have been producing incredibly detailed and arcane diagrams that nobody else can fathom.   On March 27, with one week to go before analysis is to be complete, you have produced a sea of documents and diagrams but are no closer to a cogent analysis of the problem than you were on January 3. **** And then, a miracle happens.   **** On Saturday, April 1, you check your e-mail from home. You see a memo from your boss to BB. It states unequivocally that you are done with the analysis! You phone your boss and complain. "How could you have told BB that we were done with the analysis?" "Have you looked at a calendar lately?" he responds. "It's April 1!" The irony of that date does not escape you. "But we have so much more to think about. So much more to analyze! We haven't even decided whether to use <<extends>> or <<precedes>>!" "Where is your evidence that you are not done?" inquires your boss, impatiently. "Whaaa . . . ." But he cuts you off. "Analysis can go on forever; it has to be stopped at some point. And since this is the date it was scheduled to stop, it has been stopped. Now, on Monday, I want you to gather up all existing analysis materials and put them into a public folder. Release that folder to Prudence so that she can log it in the CM system by Monday afternoon. Then get busy and start designing."   As you hang up the phone, you begin to consider the benefits of keeping a bottle of bourbon in your bottom desk drawer. They threw a party to celebrate the on-time completion of the analysis phase. BB gave a colon-stirring speech on empowerment. And your boss, another 3 mm taller, congratulated his team on the incredible show of unity and teamwork. Finally, the CIO takes the stage to tell everyone that the SEI audit went very well and to thank everyone for studying and shredding the evaluation guides that were passed out. Level 3 now seems assured and will be awarded by June. (Scuttlebutt has it that managers at the level of BB and above are to receive significant bonuses once the SEI awards level 3.)   As the weeks flow by, you and your team work on the design of the system. Of course, you find that the analysis that the design is supposedly based on is flawedno, useless; no, worse than useless. But when you tell your boss that you need to go back and work some more on the analysis to shore up its weaker sections, he simply states, "The analysis phase is over. The only allowable activity is design. Now get back to it."   So, you and your team hack the design as best you can, unsure of whether the requirements have been properly analyzed. Of course, it really doesn't matter much, since the requirements document is still thrashing with weekly revisions, and the marketing department still refuses to meet with you.     The design is a nightmare. Your boss recently misread a book named The Finish Line in which the author, Mark DeThomaso, blithely suggested that design documents should be taken down to code-level detail. "If we are going to be working at that level of detail," you ask, "why don't we simply write the code instead?" "Because then you wouldn't be designing, of course. And the only allowable activity in the design phase is design!" "Besides," he continues, "we have just purchased a companywide license for Dandelion! This tool enables 'Round the Horn Engineering!' You are to transfer all design diagrams into this tool. It will automatically generate our code for us! It will also keep the design diagrams in sync with the code!" Your boss hands you a brightly colored shrinkwrapped box containing the Dandelion distribution. You accept it numbly and shuffle off to your cubicle. Twelve hours, eight crashes, one disk reformatting, and eight shots of 151 later, you finally have the tool installed on your server. You consider the week your team will lose while attending Dandelion training. Then you smile and think, "Any week I'm not here is a good week." Design diagram after design diagram is created by your team. Dandelion makes it very difficult to draw these diagrams. There are dozens and dozens of deeply nested dialog boxes with funny text fields and check boxes that must all be filled in correctly. And then there's the problem of moving classes between packages. At first, these diagram are driven from the use cases. But the requirements are changing so often that the use cases rapidly become meaningless. Debates rage about whether VISITOR or DECORATOR design patterns should be used. One developer refuses to use VISITOR in any form, claiming that it's not a properly object-oriented construct. Someone refuses to use multiple inheritance, since it is the spawn of the devil. Review meetings rapidly degenerate into debates about the meaning of object orientation, the definition of analysis versus design, or when to use aggregation versus association. Midway through the design cycle, the marketing folks announce that they have rethought the focus of the system. Their new requirements document is completely restructured. They have eliminated several major feature areas and replaced them with feature areas that they anticipate customer surveys will show to be more appropriate. You tell your boss that these changes mean that you need to reanalyze and redesign much of the system. But he says, "The analysis phase is system. But he says, "The analysis phase is over. The only allowable activity is design. Now get back to it."   You suggest that it might be better to create a simple prototype to show to the marketing folks and even some potential customers. But your boss says, "The analysis phase is over. The only allowable activity is design. Now get back to it." Hack, hack, hack, hack. You try to create some kind of a design document that might reflect the new requirements documents. However, the revolution of the requirements has not caused them to stop thrashing. Indeed, if anything, the wild oscillations of the requirements document have only increased in frequency and amplitude.   You slog your way through them.   On June 15, the Dandelion database gets corrupted. Apparently, the corruption has been progressive. Small errors in the DB accumulated over the months into bigger and bigger errors. Eventually, the CASE tool just stopped working. Of course, the slowly encroaching corruption is present on all the backups. Calls to the Dandelion technical support line go unanswered for several days. Finally, you receive a brief e-mail from Dandelion, informing you that this is a known problem and that the solution is to purchase the new version, which they promise will be ready some time next quarter, and then reenter all the diagrams by hand.   ****   Then, on July 1 another miracle happens! You are done with the design!   Rather than go to your boss and complain, you stock your middle desk drawer with some vodka.   **** They threw a party to celebrate the on-time completion of the design phase and their graduation to CMM level 3. This time, you find BB's speech so stirring that you have to use the restroom before it begins. New banners and plaques are all over your workplace. They show pictures of eagles and mountain climbers, and they talk about teamwork and empowerment. They read better after a few scotches. That reminds you that you need to clear out your file cabinet to make room for the brandy. You and your team begin to code. But you rapidly discover that the design is lacking in some significant areas. Actually, it's lacking any significance at all. You convene a design session in one of the conference rooms to try to work through some of the nastier problems. But your boss catches you at it and disbands the meeting, saying, "The design phase is over. The only allowable activity is coding. Now get back to it."   ****   The code generated by Dandelion is really hideous. It turns out that you and your team were using association and aggregation the wrong way, after all. All the generated code has to be edited to correct these flaws. Editing this code is extremely difficult because it has been instrumented with ugly comment blocks that have special syntax that Dandelion needs in order to keep the diagrams in sync with the code. If you accidentally alter one of these comments, the diagrams will be regenerated incorrectly. It turns out that "Round the Horn Engineering" requires an awful lot of effort. The more you try to keep the code compatible with Dandelion, the more errors Dandelion generates. In the end, you give up and decide to keep the diagrams up to date manually. A second later, you decide that there's no point in keeping the diagrams up to date at all. Besides, who has time?   Your boss hires a consultant to build tools to count the number of lines of code that are being produced. He puts a big thermometer graph on the wall with the number 1,000,000 on the top. Every day, he extends the red line to show how many lines have been added. Three days after the thermometer appears on the wall, your boss stops you in the hall. "That graph isn't growing quickly enough. We need to have a million lines done by October 1." "We aren't even sh-sh-sure that the proshect will require a m-million linezh," you blather. "We have to have a million lines done by October 1," your boss reiterates. His points have grown again, and the Grecian formula he uses on them creates an aura of authority and competence. "Are you sure your comment blocks are big enough?" Then, in a flash of managerial insight, he says, "I have it! I want you to institute a new policy among the engineers. No line of code is to be longer than 20 characters. Any such line must be split into two or more preferably more. All existing code needs to be reworked to this standard. That'll get our line count up!"   You decide not to tell him that this will require two unscheduled work months. You decide not to tell him anything at all. You decide that intravenous injections of pure ethanol are the only solution. You make the appropriate arrangements. Hack, hack, hack, and hack. You and your team madly code away. By August 1, your boss, frowning at the thermometer on the wall, institutes a mandatory 50-hour workweek.   Hack, hack, hack, and hack. By September 1st, the thermometer is at 1.2 million lines and your boss asks you to write a report describing why you exceeded the coding budget by 20 percent. He institutes mandatory Saturdays and demands that the project be brought back down to a million lines. You start a campaign of remerging lines. Hack, hack, hack, and hack. Tempers are flaring; people are quitting; QA is raining trouble reports down on you. Customers are demanding installation and user manuals; salespeople are demanding advance demonstrations for special customers; the requirements document is still thrashing, the marketing folks are complaining that the product isn't anything like they specified, and the liquor store won't accept your credit card anymore. Something has to give.    On September 15, BB calls a meeting. As he enters the room, his points are emitting clouds of steam. When he speaks, the bass overtones of his carefully manicured voice cause the pit of your stomach to roll over. "The QA manager has told me that this project has less than 50 percent of the required features implemented. He has also informed me that the system crashes all the time, yields wrong results, and is hideously slow. He has also complained that he cannot keep up with the continuous train of daily releases, each more buggy than the last!" He stops for a few seconds, visibly trying to compose himself. "The QA manager estimates that, at this rate of development, we won't be able to ship the product until December!" Actually, you think it's more like March, but you don't say anything. "December!" BB roars with such derision that people duck their heads as though he were pointing an assault rifle at them. "December is absolutely out of the question. Team leaders, I want new estimates on my desk in the morning. I am hereby mandating 65-hour work weeks until this project is complete. And it better be complete by November 1."   As he leaves the conference room, he is heard to mutter: "Empowermentbah!" * * * Your boss is bald; his points are mounted on BB's wall. The fluorescent lights reflecting off his pate momentarily dazzle you. "Do you have anything to drink?" he asks. Having just finished your last bottle of Boone's Farm, you pull a bottle of Thunderbird from your bookshelf and pour it into his coffee mug. "What's it going to take to get this project done? " he asks. "We need to freeze the requirements, analyze them, design them, and then implement them," you say callously. "By November 1?" your boss exclaims incredulously. "No way! Just get back to coding the damned thing." He storms out, scratching his vacant head.   A few days later, you find that your boss has been transferred to the corporate research division. Turnover has skyrocketed. Customers, informed at the last minute that their orders cannot be fulfilled on time, have begun to cancel their orders. Marketing is re-evaluating whether this product aligns with the overall goals of the company. Memos fly, heads roll, policies change, and things are, overall, pretty grim. Finally, by March, after far too many sixty-five hour weeks, a very shaky version of the software is ready. In the field, bug-discovery rates are high, and the technical support staff are at their wits' end, trying to cope with the complaints and demands of the irate customers. Nobody is happy.   In April, BB decides to buy his way out of the problem by licensing a product produced by Rupert Industries and redistributing it. The customers are mollified, the marketing folks are smug, and you are laid off.     Rupert Industries: Project Alpha   Your name is Robert. The date is January 3, 2001. The quiet hours spent with your family this holiday have left you refreshed and ready for work. You are sitting in a conference room with your team of professionals. The manager of the division called the meeting. "We have some ideas for a new project," says the division manager. Call him Russ. He is a high-strung British chap with more energy than a fusion reactor. He is ambitious and driven but understands the value of a team. Russ describes the essence of the new market opportunity the company has identified and introduces you to Jane, the marketing manager, who is responsible for defining the products that will address it. Addressing you, Jane says, "We'd like to start defining our first product offering as soon as possible. When can you and your team meet with me?" You reply, "We'll be done with the current iteration of our project this Friday. We can spare a few hours for you between now and then. After that, we'll take a few people from the team and dedicate them to you. We'll begin hiring their replacements and the new people for your team immediately." "Great," says Russ, "but I want you to understand that it is critical that we have something to exhibit at the trade show coming up this July. If we can't be there with something significant, we'll lose the opportunity."   "I understand," you reply. "I don't yet know what it is that you have in mind, but I'm sure we can have something by July. I just can't tell you what that something will be right now. In any case, you and Jane are going to have complete control over what we developers do, so you can rest assured that by July, you'll have the most important things that can be accomplished in that time ready to exhibit."   Russ nods in satisfaction. He knows how this works. Your team has always kept him advised and allowed him to steer their development. He has the utmost confidence that your team will work on the most important things first and will produce a high-quality product.   * * *   "So, Robert," says Jane at their first meeting, "How does your team feel about being split up?" "We'll miss working with each other," you answer, "but some of us were getting pretty tired of that last project and are looking forward to a change. So, what are you people cooking up?" Jane beams. "You know how much trouble our customers currently have . . ." And she spends a half hour or so describing the problem and possible solution. "OK, wait a second" you respond. "I need to be clear about this." And so you and Jane talk about how this system might work. Some of her ideas aren't fully formed. You suggest possible solutions. She likes some of them. You continue discussing.   During the discussion, as each new topic is addressed, Jane writes user story cards. Each card represents something that the new system has to do. The cards accumulate on the table and are spread out in front of you. Both you and Jane point at them, pick them up, and make notes on them as you discuss the stories. The cards are powerful mnemonic devices that you can use to represent complex ideas that are barely formed.   At the end of the meeting, you say, "OK, I've got a general idea of what you want. I'm going to talk to the team about it. I imagine they'll want to run some experiments with various database structures and presentation formats. Next time we meet, it'll be as a group, and we'll start identifying the most important features of the system."   A week later, your nascent team meets with Jane. They spread the existing user story cards out on the table and begin to get into some of the details of the system. The meeting is very dynamic. Jane presents the stories in the order of their importance. There is much discussion about each one. The developers are concerned about keeping the stories small enough to estimate and test. So they continually ask Jane to split one story into several smaller stories. Jane is concerned that each story have a clear business value and priority, so as she splits them, she makes sure that this stays true.   The stories accumulate on the table. Jane writes them, but the developers make notes on them as needed. Nobody tries to capture everything that is said; the cards are not meant to capture everything but are simply reminders of the conversation.   As the developers become more comfortable with the stories, they begin writing estimates on them. These estimates are crude and budgetary, but they give Jane an idea of what the story will cost.   At the end of the meeting, it is clear that many more stories could be discussed. It is also clear that the most important stories have been addressed and that they represent several months worth of work. Jane closes the meeting by taking the cards with her and promising to have a proposal for the first release in the morning.   * * *   The next morning, you reconvene the meeting. Jane chooses five cards and places them on the table. "According to your estimates, these cards represent about one perfect team-week's worth of work. The last iteration of the previous project managed to get one perfect team-week done in 3 real weeks. If we can get these five stories done in 3 weeks, we'll be able to demonstrate them to Russ. That will make him feel very comfortable about our progress." Jane is pushing it. The sheepish look on her face lets you know that she knows it too. You reply, "Jane, this is a new team, working on a new project. It's a bit presumptuous to expect that our velocity will be the same as the previous team's. However, I met with the team yesterday afternoon, and we all agreed that our initial velocity should, in fact, be set to one perfectweek for every 3 real-weeks. So you've lucked out on this one." "Just remember," you continue, "that the story estimates and the story velocity are very tentative at this point. We'll learn more when we plan the iteration and even more when we implement it."   Jane looks over her glasses at you as if to say "Who's the boss around here, anyway?" and then smiles and says, "Yeah, don't worry. I know the drill by now."Jane then puts 15 more cards on the table. She says, "If we can get all these cards done by the end of March, we can turn the system over to our beta test customers. And we'll get good feedback from them."   You reply, "OK, so we've got our first iteration defined, and we have the stories for the next three iterations after that. These four iterations will make our first release."   "So," says Jane, can you really do these five stories in the next 3 weeks?" "I don't know for sure, Jane," you reply. "Let's break them down into tasks and see what we get."   So Jane, you, and your team spend the next several hours taking each of the five stories that Jane chose for the first iteration and breaking them down into small tasks. The developers quickly realize that some of the tasks can be shared between stories and that other tasks have commonalities that can probably be taken advantage of. It is clear that potential designs are popping into the developers' heads. From time to time, they form little discussion knots and scribble UML diagrams on some cards.   Soon, the whiteboard is filled with the tasks that, once completed, will implement the five stories for this iteration. You start the sign-up process by saying, "OK, let's sign up for these tasks." "I'll take the initial database generation." Says Pete. "That's what I did on the last project, and this doesn't look very different. I estimate it at two of my perfect workdays." "OK, well, then, I'll take the login screen," says Joe. "Aw, darn," says Elaine, the junior member of the team, "I've never done a GUI, and kinda wanted to try that one."   "Ah, the impatience of youth," Joe says sagely, with a wink in your direction. "You can assist me with it, young Jedi." To Jane: "I think it'll take me about three of my perfect workdays."   One by one, the developers sign up for tasks and estimate them in terms of their own perfect workdays. Both you and Jane know that it is best to let the developers volunteer for tasks than to assign the tasks to them. You also know full well that you daren't challenge any of the developers' estimates. You know these people, and you trust them. You know that they are going to do the very best they can.   The developers know that they can't sign up for more perfect workdays than they finished in the last iteration they worked on. Once each developer has filled his or her schedule for the iteration, they stop signing up for tasks.   Eventually, all the developers have stopped signing up for tasks. But, of course, tasks are still left on the board.   "I was worried that that might happen," you say, "OK, there's only one thing to do, Jane. We've got too much to do in this iteration. What stories or tasks can we remove?" Jane sighs. She knows that this is the only option. Working overtime at the beginning of a project is insane, and projects where she's tried it have not fared well.   So Jane starts to remove the least-important functionality. "Well, we really don't need the login screen just yet. We can simply start the system in the logged-in state." "Rats!" cries Elaine. "I really wanted to do that." "Patience, grasshopper." says Joe. "Those who wait for the bees to leave the hive will not have lips too swollen to relish the honey." Elaine looks confused. Everyone looks confused. "So . . .," Jane continues, "I think we can also do away with . . ." And so, bit by bit, the list of tasks shrinks. Developers who lose a task sign up for one of the remaining ones.   The negotiation is not painless. Several times, Jane exhibits obvious frustration and impatience. Once, when tensions are especially high, Elaine volunteers, "I'll work extra hard to make up some of the missing time." You are about to correct her when, fortunately, Joe looks her in the eye and says, "When once you proceed down the dark path, forever will it dominate your destiny."   In the end, an iteration acceptable to Jane is reached. It's not what Jane wanted. Indeed, it is significantly less. But it's something the team feels that can be achieved in the next 3 weeks.   And, after all, it still addresses the most important things that Jane wanted in the iteration. "So, Jane," you say when things had quieted down a bit, "when can we expect acceptance tests from you?" Jane sighs. This is the other side of the coin. For every story the development team implements,   Jane must supply a suite of acceptance tests that prove that it works. And the team needs these long before the end of the iteration, since they will certainly point out differences in the way Jane and the developers imagine the system's behaviour.   "I'll get you some example test scripts today," Jane promises. "I'll add to them every day after that. You'll have the entire suite by the middle of the iteration."   * * *   The iteration begins on Monday morning with a flurry of Class, Responsibilities, Collaborators sessions. By midmorning, all the developers have assembled into pairs and are rapidly coding away. "And now, my young apprentice," Joe says to Elaine, "you shall learn the mysteries of test-first design!"   "Wow, that sounds pretty rad," Elaine replies. "How do you do it?" Joe beams. It's clear that he has been anticipating this moment. "OK, what does the code do right now?" "Huh?" replied Elaine, "It doesn't do anything at all; there is no code."   "So, consider our task; can you think of something the code should do?" "Sure," Elaine said with youthful assurance, "First, it should connect to the database." "And thereupon, what must needs be required to connecteth the database?" "You sure talk weird," laughed Elaine. "I think we'd have to get the database object from some registry and call the Connect() method. "Ah, astute young wizard. Thou perceives correctly that we requireth an object within which we can cacheth the database object." "Is 'cacheth' really a word?" "It is when I say it! So, what test can we write that we know the database registry should pass?" Elaine sighs. She knows she'll just have to play along. "We should be able to create a database object and pass it to the registry in a Store() method. And then we should be able to pull it out of the registry with a Get() method and make sure it's the same object." "Oh, well said, my prepubescent sprite!" "Hay!" "So, now, let's write a test function that proves your case." "But shouldn't we write the database object and registry object first?" "Ah, you've much to learn, my young impatient one. Just write the test first." "But it won't even compile!" "Are you sure? What if it did?" "Uh . . ." "Just write the test, Elaine. Trust me." And so Joe, Elaine, and all the other developers began to code their tasks, one test case at a time. The room in which they worked was abuzz with the conversations between the pairs. The murmur was punctuated by an occasional high five when a pair managed to finish a task or a difficult test case.   As development proceeded, the developers changed partners once or twice a day. Each developer got to see what all the others were doing, and so knowledge of the code spread generally throughout the team.   Whenever a pair finished something significant whether a whole task or simply an important part of a task they integrated what they had with the rest of the system. Thus, the code base grew daily, and integration difficulties were minimized.   The developers communicated with Jane on a daily basis. They'd go to her whenever they had a question about the functionality of the system or the interpretation of an acceptance test case.   Jane, good as her word, supplied the team with a steady stream of acceptance test scripts. The team read these carefully and thereby gained a much better understanding of what Jane expected the system to do. By the beginning of the second week, there was enough functionality to demonstrate to Jane. She watched eagerly as the demonstration passed test case after test case. "This is really cool," Jane said as the demonstration finally ended. "But this doesn't seem like one-third of the tasks. Is your velocity slower than anticipated?"   You grimace. You'd been waiting for a good time to mention this to Jane but now she was forcing the issue. "Yes, unfortunately, we are going more slowly than we had expected. The new application server we are using is turning out to be a pain to configure. Also, it takes forever to reboot, and we have to reboot it whenever we make even the slightest change to its configuration."   Jane eyes you with suspicion. The stress of last Monday's negotiations had still not entirely dissipated. She says, "And what does this mean to our schedule? We can't slip it again, we just can't. Russ will have a fit! He'll haul us all into the woodshed and ream us some new ones."   You look Jane right in the eyes. There's no pleasant way to give someone news like this. So you just blurt out, "Look, if things keep going like they're going, we're not going to be done with everything by next Friday. Now it's possible that we'll figure out a way to go faster. But, frankly, I wouldn't depend on that. You should start thinking about one or two tasks that could be removed from the iteration without ruining the demonstration for Russ. Come hell or high water, we are going to give that demonstration on Friday, and I don't think you want us to choose which tasks to omit."   "Aw forchrisakes!" Jane barely manages to stifle yelling that last word as she stalks away, shaking her head. Not for the first time, you say to yourself, "Nobody ever promised me project management would be easy." You are pretty sure it won't be the last time, either.   Actually, things went a bit better than you had hoped. The team did, in fact, have to drop one task from the iteration, but Jane had chosen wisely, and the demonstration for Russ went without a hitch. Russ was not impressed with the progress, but neither was he dismayed. He simply said, "This is pretty good. But remember, we have to be able to demonstrate this system at the trade show in July, and at this rate, it doesn't look like you'll have all that much to show." Jane, whose attitude had improved dramatically with the completion of the iteration, responded to Russ by saying, "Russ, this team is working hard, and well. When July comes around, I am confident that we'll have something significant to demonstrate. It won't be everything, and some of it may be smoke and mirrors, but we'll have something."   Painful though the last iteration was, it had calibrated your velocity numbers. The next iteration went much better. Not because your team got more done than in the last iteration but simply because the team didn't have to remove any tasks or stories in the middle of the iteration.   By the start of the fourth iteration, a natural rhythm has been established. Jane, you, and the team know exactly what to expect from one another. The team is running hard, but the pace is sustainable. You are confident that the team can keep up this pace for a year or more.   The number of surprises in the schedule diminishes to near zero; however, the number of surprises in the requirements does not. Jane and Russ frequently look over the growing system and make recommendations or changes to the existing functionality. But all parties realize that these changes take time and must be scheduled. So the changes do not cause anyone's expectations to be violated. In March, there is a major demonstration of the system to the board of directors. The system is very limited and is not yet in a form good enough to take to the trade show, but progress is steady, and the board is reasonably impressed.   The second release goes even more smoothly than the first. By now, the team has figured out a way to automate Jane's acceptance test scripts. The team has also refactored the design of the system to the point that it is really easy to add new features and change old ones. The second release was done by the end of June and was taken to the trade show. It had less in it than Jane and Russ would have liked, but it did demonstrate the most important features of the system. Although customers at the trade show noticed that certain features were missing, they were very impressed overall. You, Russ, and Jane all returned from the trade show with smiles on your faces. You all felt as though this project was a winner.   Indeed, many months later, you are contacted by Rufus Inc. That company had been working on a system like this for its internal operations. Rufus has canceled the development of that system after a death-march project and is negotiating to license your technology for its environment.   Indeed, things are looking up!

    Read the article

  • varnish3, mod_geoip with apache2 using mod_rewrite and mod_rpaf

    - by mursalat
    I am maintaining a website with 3 different versions of the site, with 3 different languages, handles with a single system written in php, which takes in environment variables based on the domain name that is being accessed. These are the three sites: myshop.com : english international version myshop.eu : european version of site myshop.ru : russian version of the site when myshop.com is accessed from russia it is to be redirected to myshop.ru, and any country from europe accesses myshop.com, is redirected to myshop.eu, and international visitors stay at myshop.com, although they can go to the country specific site. All these redirections for the country is done using GeoIP apache2 mod in order to determine the country code, which is used in a RewriteCondition to state a RewriteRule, there are some exceptions of IPs that do not do the rewrite for, basically the IPs of the developer's PCs. The site has been doing just fine, until we decided to setup varnish to give the site a boost, it really did give it a great boost, but the country specific rewrites has become buggy. What started to happen is that a russian visitor can go to myshop.com and won't be redirected, until he clicks a random link (perhaps a link not cached by varnish yet) and the user is redirected to their specific country. For that i setup mod_rpaf, and for exceptions to the rewrite rule (for the developer's ip), i used this RewriteCond %{HTTP:X-FORWARDED-FOR} !^43\.43\.43\.43, and i restarted varnish and apache2, it worked for a while, then it messed up again. And whole day i have been doing changes however i have little no clue as to what's going on, sometimes it works, and sometimes it doesn't, and sometimes it half works, etc... As for geoip, i used a php to check the $_SERVER variable, and here is the general idea of the output [HTTP_X_FORWARDED_FOR] => 43.43.43.44 [HTTP_X_VARNISH] => 1705675599 [SERVER_ADDR] => 127.0.0.1 [SERVER_PORT] => 80 [REMOTE_ADDR] => 43.43.43.44 [GEOIP_ADDR] => 43.43.43.44 [GEOIP_CONTINENT_CODE] => EU [GEOIP_COUNTRY_CODE] => FR [GEOIP_COUNTRY_NAME] => France Now, thanks to the "random" redirects, i hardly have a clue as to what is going on, so can you guys please give me some ideas as to what tools to use to debug this? I have tried to see the redirect logs, but they really dont show much, and varnishlog isn't helping much either - although i must admit i am no professional at varnish. I believe the problem is with varnish trying to cache the url, and thus apache redirects are not being done properly, however visits the site first has a redirect, and based on that other users are served the content, depending on from where the user was when the cache was last updated, is it correct? if so, how can i solve the problem? Also, i have the option of using geoip redirects on varnish3 instead of using apache2 to do the redirects, is that what the best practice is? Any suggestion as to debugging this or to fix this would be helpful! thnx!

    Read the article

< Previous Page | 155 156 157 158 159 160 161 162 163 164 165 166  | Next Page >