Search Results

Search found 10318 results on 413 pages for 'computed column'.

Page 160/413 | < Previous Page | 156 157 158 159 160 161 162 163 164 165 166 167  | Next Page >

  • How to calculate Bradford Factors with Excel 2007?

    - by pnuts
    Bradford Factors are used by some to measure the significance of absenteeism and are computed for each individual as S squared * D where S is the number of spells (continuous periods of absence) and D is the sum of the days. The calculation is often made over a rolling 52 weeks. Commercial HR software often has the facility to calculate these factors but a Google search indicates quite a lot of interest without any free solutions. Using units of half a day and including any non-working days in each spell, how does one calculate the factors using Excel 2007?

    Read the article

  • Routing Essentials

    - by zharvey
    I'm a programmer trying to fill a big hole in my understanding of networking basics. I've been reading a good book (Networking Bible by Sosinki) but I have been finding that there is a lot of "assumed" information contained, where terms/concepts are thrown at the reader without a proper introduction to them. I understand that a "route" is a path through a network. But I am struggling with visualizing some routing-based concepts. Namely: How do routes actually manifest themselves in the hardware? Are they just a list of IP addresses that get computed at the network layer, and then executed by the transport? What kind of data exists in a so-caleld routing table? Is a routing-table just the mechanism for holding these lists of IP address (read above)? What are the performance pros/cons for having a static route, as opposed to a dynamic route?

    Read the article

  • Can Excel show a formula and its result simultaneously?

    - by nhinkle
    I know that it's possible in Excel to toggle between displaying values and displaying formulas. I'm required to turn in assignments for a statistics class as a printed Excel sheet showing both the formula and the result. Right now the instructor makes us either copy the formula and paste it as text next to the computed value, or copy the value and paste it next to the formula. This is very inefficient, prone to error (if you change the formula or values after doing the copy-paste), and generally a waste of time. Is there any way to have Excel show the formula and its value in the same cell? If not, is there any function which will display the formula from a referenced cell as plain text, e.g. =showformula(A1) which would print out =sum(A2:A5) instead of 25 (if those were the formula and value of cell A1)? I'm using Excel 2010, but a general answer that works for any recent edition of Excel would be nice.

    Read the article

  • Problem with SLATEC routine usage with gfortran

    - by user39461
    I am trying to compute the Bessel function of the second kind (Bessel_y) using the SLATEC's Amos library available on Netlib. Here is the SLATEC code I use. Below I have pasted my test program that calls SLATEC routine CBESY. PROGRAM BESSELTEST IMPLICIT NONE REAL:: FNU INTEGER, PARAMETER :: N = 2, KODE = 1 COMPLEX,ALLOCATABLE :: CWRK (:), CY (:) COMPLEX:: Z, ci INTEGER :: NZ, IERR ALLOCATE(CWRK(N), CY(N)) ci = cmplx (0.0, 1.0) FNU = 0.0e0 Z = CMPLX(0.3e0, 0.4e0) CALL CBESY(Z, FNU, KODE, N, CY, NZ, CWRK, IERR) WRITE(*,*) 'CY: ', CY WRITE(*,*) 'IERR: ', IERR STOP END PROGRAM And here is the output of the above program: CY: ( 5.78591091E-39, 5.80327020E-39) ( 0.0000000 , 0.0000000 ) IERR: 4 Ierr = 4 meaning there is some problem with the input itself. To be precise, the IERR = 4 means the following as per the header info in CBESY.f file: ! IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA- ! TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI- ! CANCE BY ARGUMENT REDUCTION Clearly, CABS(Z) (which is 0.50) or FNU + N - 1 (which is 1.0) are not too large but still the routine CBESY throws the error message number 4 as above. The CY array should have following values for the argument given in above code: CY(1) = -0.4983 + 0.6700i CY(2) = -1.0149 + 0.9485i These values are computed using Matlab. I can't figure out what's the problem when I call CBESY from SLATEC library. Any clues? Much thanks for the suggestions/help. PS: if it is of any help, I used gfortran to compile, link and then create the SLATEC library file ( the .a file ) which I keep in the same directory as my test program above. shell command to execute above code: gfortran -c BesselTest.f95 gfortran -o a *.o libslatec.a a GD.

    Read the article

  • Optimizing Solaris 11 SHA-1 on Intel Processors

    - by danx
    SHA-1 is a "hash" or "digest" operation that produces a 160 bit (20 byte) checksum value on arbitrary data, such as a file. It is intended to uniquely identify text and to verify it hasn't been modified. Max Locktyukhin and others at Intel have improved the performance of the SHA-1 digest algorithm using multiple techniques. This code has been incorporated into Solaris 11 and is available in the Solaris Crypto Framework via the libmd(3LIB), the industry-standard libpkcs11(3LIB) library, and Solaris kernel module sha1. The optimized code is used automatically on systems with a x86 CPU supporting SSSE3 (Intel Supplemental SSSE3). Intel microprocessor architectures that support SSSE3 include Nehalem, Westmere, Sandy Bridge microprocessor families. Further optimizations are available for microprocessors that support AVX (such as Sandy Bridge). Although SHA-1 is considered obsolete because of weaknesses found in the SHA-1 algorithm—NIST recommends using at least SHA-256, SHA-1 is still widely used and will be with us for awhile more. Collisions (the same SHA-1 result for two different inputs) can be found with moderate effort. SHA-1 is used heavily though in SSL/TLS, for example. And SHA-1 is stronger than the older MD5 digest algorithm, another digest option defined in SSL/TLS. Optimizations Review SHA-1 operates by reading an arbitrary amount of data. The data is read in 512 bit (64 byte) blocks (the last block is padded in a specific way to ensure it's a full 64 bytes). Each 64 byte block has 80 "rounds" of calculations (consisting of a mixture of "ROTATE-LEFT", "AND", and "XOR") applied to the block. Each round produces a 32-bit intermediate result, called W[i]. Here's what each round operates: The first 16 rounds, rounds 0 to 15, read the 512 bit block 32 bits at-a-time. These 32 bits is used as input to the round. The remaining rounds, rounds 16 to 79, use the results from the previous rounds as input. Specifically for round i it XORs the results of rounds i-3, i-8, i-14, and i-16 and rotates the result left 1 bit. The remaining calculations for the round is a series of AND, XOR, and ROTATE-LEFT operators on the 32-bit input and some constants. The 32-bit result is saved as W[i] for round i. The 32-bit result of the final round, W[79], is the SHA-1 checksum. Optimization: Vectorization The first 16 rounds can be vectorized (computed in parallel) because they don't depend on the output of a previous round. As for the remaining rounds, because of step 2 above, computing round i depends on the results of round i-3, W[i-3], one can vectorize 3 rounds at-a-time. Max Locktyukhin found through simple factoring, explained in detail in his article referenced below, that the dependencies of round i on the results of rounds i-3, i-8, i-14, and i-16 can be replaced instead with dependencies on the results of rounds i-6, i-16, i-28, and i-32. That is, instead of initializing intermediate result W[i] with: W[i] = (W[i-3] XOR W[i-8] XOR W[i-14] XOR W[i-16]) ROTATE-LEFT 1 Initialize W[i] as follows: W[i] = (W[i-6] XOR W[i-16] XOR W[i-28] XOR W[i-32]) ROTATE-LEFT 2 That means that 6 rounds could be vectorized at once, with no additional calculations, instead of just 3! This optimization is independent of Intel or any other microprocessor architecture, although the microprocessor has to support vectorization to use it, and exploits one of the weaknesses of SHA-1. Optimization: SSSE3 Intel SSSE3 makes use of 16 %xmm registers, each 128 bits wide. The 4 32-bit inputs to a round, W[i-6], W[i-16], W[i-28], W[i-32], all fit in one %xmm register. The following code snippet, from Max Locktyukhin's article, converted to ATT assembly syntax, computes 4 rounds in parallel with just a dozen or so SSSE3 instructions: movdqa W_minus_04, W_TMP pxor W_minus_28, W // W equals W[i-32:i-29] before XOR // W = W[i-32:i-29] ^ W[i-28:i-25] palignr $8, W_minus_08, W_TMP // W_TMP = W[i-6:i-3], combined from // W[i-4:i-1] and W[i-8:i-5] vectors pxor W_minus_16, W // W = (W[i-32:i-29] ^ W[i-28:i-25]) ^ W[i-16:i-13] pxor W_TMP, W // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) movdqa W, W_TMP // 4 dwords in W are rotated left by 2 psrld $30, W // rotate left by 2 W = (W >> 30) | (W << 2) pslld $2, W_TMP por W, W_TMP movdqa W_TMP, W // four new W values W[i:i+3] are now calculated paddd (K_XMM), W_TMP // adding 4 current round's values of K movdqa W_TMP, (WK(i)) // storing for downstream GPR instructions to read A window of the 32 previous results, W[i-1] to W[i-32] is saved in memory on the stack. This is best illustrated with a chart. Without vectorization, computing the rounds is like this (each "R" represents 1 round of SHA-1 computation): RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR With vectorization, 4 rounds can be computed in parallel: RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR Optimization: AVX The new "Sandy Bridge" microprocessor architecture, which supports AVX, allows another interesting optimization. SSSE3 instructions have two operands, a input and an output. AVX allows three operands, two inputs and an output. In many cases two SSSE3 instructions can be combined into one AVX instruction. The difference is best illustrated with an example. Consider these two instructions from the snippet above: pxor W_minus_16, W // W = (W[i-32:i-29] ^ W[i-28:i-25]) ^ W[i-16:i-13] pxor W_TMP, W // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) With AVX they can be combined in one instruction: vpxor W_minus_16, W, W_TMP // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) This optimization is also in Solaris, although Sandy Bridge-based systems aren't widely available yet. As an exercise for the reader, AVX also has 256-bit media registers, %ymm0 - %ymm15 (a superset of 128-bit %xmm0 - %xmm15). Can %ymm registers be used to parallelize the code even more? Optimization: Solaris-specific In addition to using the Intel code described above, I performed other minor optimizations to the Solaris SHA-1 code: Increased the digest(1) and mac(1) command's buffer size from 4K to 64K, as previously done for decrypt(1) and encrypt(1). This size is well suited for ZFS file systems, but helps for other file systems as well. Optimized encode functions, which byte swap the input and output data, to copy/byte-swap 4 or 8 bytes at-a-time instead of 1 byte-at-a-time. Enhanced the Solaris mdb(1) and kmdb(1) debuggers to display all 16 %xmm and %ymm registers (mdb "$x" command). Previously they only displayed the first 8 that are available in 32-bit mode. Can't optimize if you can't debug :-). Changed the SHA-1 code to allow processing in "chunks" greater than 2 Gigabytes (64-bits) Performance I measured performance on a Sun Ultra 27 (which has a Nehalem-class Xeon 5500 Intel W3570 microprocessor @3.2GHz). Turbo mode is disabled for consistent performance measurement. Graphs are better than words and numbers, so here they are: The first graph shows the Solaris digest(1) command before and after the optimizations discussed here, contained in libmd(3LIB). I ran the digest command on a half GByte file in swapfs (/tmp) and execution time decreased from 1.35 seconds to 0.98 seconds. The second graph shows the the results of an internal microbenchmark that uses the Solaris libpkcs11(3LIB) library. The operations are on a 128 byte buffer with 10,000 iterations. The results show operations increased from 320,000 to 416,000 operations per second. Finally the third graph shows the results of an internal kernel microbenchmark that uses the Solaris /kernel/crypto/amd64/sha1 module. The operations are on a 64Kbyte buffer with 100 iterations. third graph shows the results of an internal kernel microbenchmark that uses the Solaris /kernel/crypto/amd64/sha1 module. The operations are on a 64Kbyte buffer with 100 iterations. The results show for 1 kernel thread, operations increased from 410 to 600 MBytes/second. For 8 kernel threads, operations increase from 1540 to 1940 MBytes/second. Availability This code is in Solaris 11 FCS. It is available in the 64-bit libmd(3LIB) library for 64-bit programs and is in the Solaris kernel. You must be running hardware that supports Intel's SSSE3 instructions (for example, Intel Nehalem, Westmere, or Sandy Bridge microprocessor architectures). The easiest way to determine if SSSE3 is available is with the isainfo(1) command. For example, nehalem $ isainfo -v $ isainfo -v 64-bit amd64 applications sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu If the output also shows "avx", the Solaris executes the even-more optimized 3-operand AVX instructions for SHA-1 mentioned above: sandybridge $ isainfo -v 64-bit amd64 applications avx xsave pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications avx xsave pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this code. Solaris libraries and kernel automatically determine if it's running on SSSE3 or AVX-capable machines and execute the correctly-tuned code for that microprocessor. Summary The Solaris 11 Crypto Framework, via the sha1 kernel module and libmd(3LIB) and libpkcs11(3LIB) libraries, incorporated a useful SHA-1 optimization from Intel for SSSE3-capable microprocessors. As with other Solaris optimizations, they come automatically "under the hood" with the current Solaris release. References "Improving the Performance of the Secure Hash Algorithm (SHA-1)" by Max Locktyukhin (Intel, March 2010). The source for these SHA-1 optimizations used in Solaris "SHA-1", Wikipedia Good overview of SHA-1 FIPS 180-1 SHA-1 standard (FIPS, 1995) NIST Comments on Cryptanalytic Attacks on SHA-1 (2005, revised 2006)

    Read the article

  • SQL User Group Events coming - Cambridge, Leeds, Manchester and Edinburgh

    - by tonyrogerson
    Neil Hambly and myself are presenting next week in Cambridge, Neil will be showing us how to use tools at hand to determine the current activity on your database servers and I'll be doing a talk around Disaster Recovery and High Availability and the options we have at hand.The User Group is growing in size and spread, there is a Southampton event planned for the 9th Dec - make sure you keep your eyes peeled for more details - the best place is the UK SQL Server User Group LinkedIn area.Want removing from this email list? Then just reply with remove please on the subject line.Cambridge SQL UG - 25th Nov, EveningEvening Meeting, More info and registerNeil Hambly on Determining the current activity of your Database Servers, Product demo from Red-Gate, Tony Rogerson on HA/DR/Scalability(Backup/Recovery options - clustering, mirroring, log shipping; scaling considerations etc.)Leeds SQL UG - 8th Dec, EveningEvening Meeting, More info and registerNeil Hambly will be talking about Index Views and Computed Columns for Performance, Tony Rogerson will be showing some advanced T-SQL techniques.Manchester SQL UG - 9th Dec, EveningEvening Meeting, More info and registerEnd of year wrap up, networking, drinks, some discussions - more info to follow soon.Edinburgh SQL UG - 9th Dec, EveningEvening Meeting, More info and registerSatya Jayanty will give an X factor for a DBAs life and Tony Rogerson will talk about SQL Server internals.Many thanks,Tony Rogerson, SQL Server MVPUK SQL Server User Grouphttp://sqlserverfaq.com

    Read the article

  • Do you think that exposure to BASIC can mutilate your mind? [closed]

    - by bigown
    It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration -- Edsger W. Dijkstra I have deep respect to Dijkstra but I don't agree with everything he said/wrote. I disagree specially with this quote on linked paper wrote 35 years ago about the Dartmouth BASIC implementation. Many of my coworkers or friends programmers started with BASIC, questions below have answers that indicate many programmers had their first experience on programming at BASIC. AFAIK many good programmers started at BASIC programming. I'm not talking about Visual Basic or other "modern" dialects of BASIC running on machines full of resources. I'm talking about old times BASIC running on "toy" computer, that the programmer had to worry about saving small numbers that need not be calculated as a string to save a measly byte because the computer had only a few hundreds of them, or have to use computed goto for lack of a more powerful feature, and many other things which require the programmer to think much before doing something and forcing the programmer to be creative. If you had experience with old time BASIC on a machine with limited resources (have in mind that a simple micro-controller today has much more resources than a computer in 1975, do you think that BASIC help your mind to find better solutions, to think like an engineer or BASIC drag you to dark side of programming and mutilated you mentally? Is good to learn a programming language running on a computer full of resources where the novice programmer can do all wrong and the program runs without big problems? Or is it better to learn where the programmer can't go wrong? What can you say about the BASIC have helped you to be a better/worse programmer? Would you teach old BASIC running on a 2KB (virtual) machine to a coming programmer? Sure, only exposure to BASIC is bad. Maybe you share my opinion that modern BASIC doesn't help too much because modern BASIC, as long other programming languages, gives facilities which allow the programmer doesn't think deeper. Additional information: Why BASIC?

    Read the article

  • What is the kd tree intersection logic?

    - by bobobobo
    I'm trying to figure out how to implement a KD tree. On page 322 of "Real time collision detection" by Ericson The text section is included below in case Google book preview doesn't let you see it the time you click the link text section Relevant section: The basic idea behind intersecting a ray or directed line segment with a k-d tree is straightforward. The line is intersected against the node's splitting plane, and the t value of intersection is computed. If t is within the interval of the line, 0 <= t <= tmax, the line straddles the plane and both children of the tree are recursively descended. If not, only the side containing the segment origin is recursively visited. So here's what I have: (open image in new tab if you can't see the lettering) The logical tree Here the orange ray is going thru the 3d scene. The x's represent intersection with a plane. From the LEFT, the ray hits: The front face of the scene's enclosing cube, The (1) splitting plane The (2.2) splitting plane The right side of the scene's enclosing cube But here's what would happen, naively following Ericson's basic description above: Test against splitting plane (1). Ray hits splitting plane (1), so left and right children of splitting plane (1) are included in next test. Test against splitting plane (2.1). Ray actually hits that plane, (way off to the right) so both children are included in next level of tests. (This is counter-intuitive - shouldn't only the bottom node be included in subsequent tests) Can some one describe what happens when the orange ray goes through the scene correctly?

    Read the article

  • How common is it to submit papers to journals or conferences outside of academia?

    - by Furry
    I worked in academia a few years, but more on the D-side of R&D. The race for papers never appealed to me and I'm a practical not theoretical type, but I do like reading papers on certain topics (e.g. Google Papers, NLP, FB papers, ...) a lot. How common is it that normally working developers submit papers to conferences or even journals? It seems to be somewhat common in certain companies (it's not common or encouraged in mine). Do journals or conferences even take papers by an academic nobody (BSc) under consideration? I ask, because I have a few rough ideas and I would just like to bring them into form, one way or the other. Bonus question: Is there a list of CS (in the widest sense) conferences/journals with short descriptions? PS (Four out of five researchers I met published quite some fluffy stuff for my taste. I am no expert, but those people told me sometimes themselves, that the implementation does not matter, just the idea and the presentation. I always wondered about that. I probably could write about ideas all day long (not instantly but with a bit of preparation), but the implementation and the practical part is the really hard part, that academia just does not like to be concerned with. Also many papers actually scream: I was written so the publication list of my author gets longer - which is a waste of time for everyone, and often a waste of tax money, too. When I think of CS-ish papers, I think of running implementations or actual data, like e.g. Google's Map Reduce, Serving Large-scale Batch Computed Data with Project Voldemort or the like.)

    Read the article

  • Rotating a view of a chunked 2d tilemap

    - by Danie Clawson
    I'm working on a top-down (oblique) tile-based engine. I would like for the tiles to have a definable height in the world, with Characters being occluded by them, etc. This has led to a desire to be able to "rotate" the view of the world, even though I'm using all hand-drawn graphics and blitting. Therefor, I need to rotate the actual world itself, or change how the Camera traverses these arrays. How can, or should, I create individual rotations of 90 degrees, when I have multi-dimensional arrays? Is it faster to actually rotate the array, to access it differently, or to create pre-computed accessor(?) arrays, something like how my chunks work? How can I rotate an individual chunk, or set of chunks? Currently I establish my tile grid like this (tile height not included): function Surface(WIDTH, HEIGHT) { WIDTH = Math.max(WIDTH-(WIDTH%TPC), TPC); HEIGHT = Math.max(HEIGHT-(HEIGHT%TPC), TPC); this.tiles = []; this.chunks = []; //Establish tiles for(var x = 0; x < WIDTH; x++) { var col = [], ch_x = Math.floor(x/TPC); if(!this.chunks[ch_x]) this.chunks.push([]); for(var y = 0; y < HEIGHT; y++) { var tile = new Tile(x, y), ch_y = Math.floor(y/TPC); if(!this.chunks[ch_x][ch_y]) this.chunks[ch_x].push([]); this.chunks[ch_x][ch_y].push(tile); col.push(tile); } this.tiles.push(col); } }; Even some basic advice on my data struct would be much appreciated.

    Read the article

  • Is NAN suitable for communicating that an invalid parameter was involved in a calculation?

    - by Arman
    I am currently working on a numerical processing system that will be deployed in a performance-critical environment. It takes inputs in the form of numerical arrays (these use the eigen library, but for the purpose of this question that's perhaps immaterial), and performs some range of numerical computations (matrix products, concatenations, etc.) to produce outputs. All arrays are allocated statically and their sizes are known at compile time. However, some of the inputs may be invalid. In these exceptional cases, we still want the code to be computed and we still want outputs not "polluted" by invalid values to be used. To give an example, let's take the following trivial example (this is pseudo-code): Matrix a = {1, 2, NAN, 4}; // this is the "input" matrix Scalar b = 2; Matrix output = b * a; // this results in {2, 4, NAN, 8} The idea here is that 2, 4 and 8 are usable values, but the NAN should signal to the receipient of the data that that entry was involved in an operation that involved an invalid value, and should be discarded (this will be detected via a std::isfinite(value) check before the value is used). Is this a sound way of communicating and propagating unusable values, given that performance is critical and heap allocation is not an option (and neither are other resource-consuming constructs such as boost::optional or pointers)? Are there better ways of doing this? At this point I'm quite happy with the current setup but I was hoping to get some fresh ideas or productive criticism of the current implementation.

    Read the article

  • Partial recalculation of visibility on a 2D uniform grid

    - by Martin Källman
    Problem Imagine that we have a 2D uniform grid of dimensions N x N. For this grid we have also pre-computed a visibility look-up table, e.g. with DDA, which answers the boolean query is cell X visible from cell Y? The look-up table is a complete graph KN of the cells V in the grid, with each edge E being a binary value denoting the visibility between its vertices. Question If any given cell has its visibility modified, is it possible to extract the subset Edelta of edges which must have their visibility recomputed due to the change, so as to avoid a full-on recomputation for the entire grid? (Which is N(N-1) / 2 or N2 depending on the implementation) Update If is not possible to solve thi in closed form, then maintaining a separate mapping of each cell and every cell pair who's line intersects said cell might also be an option. This obviously consumes more memory, but the data is static. The increased memory requirement could be reduced by introducing a hierarchy, subdividing the grid into smaller parts, and by doing so the above mapping can be reused for each sub-grid. This would come at a cost in terms of increased computation relative to the number of subdivisions; also requiring a resumable ray-casting algorithm.

    Read the article

  • How lookaheads are propagated in "channel" method of building LALR parser?

    - by greenoldman
    The method is described in Dragon Book, however I read about it in ""Parsing Techniques" by D.Grune and C.J.H.Jacobs". I start from my understanding of building channels for NFA: channels are built once, they are like water channels with current you "drop" lookahead symbols in right places (sources) of the channel, and they propagate with "current" when symbol propagates, there are no barriers (the only sufficient things for propagation are presence of channel and direction/current); i.e. lookahead cannot just die out of the blue Is that right? If I am correct, then eof lookahead should be present in all states, because the source of it is the start production, and all other production states are reachable from start state. How the DFA is made out of this NFA is not perfectly clear for me -- the authors of the mentioned book write about preserving channels, but I see no purpose, if you propagated lookaheads. If the channels have to be preserved, are they cut off from the source if the DFA state does not include source NFA state? I assume no -- the channels still runs between DFA states, not only within given DFA state. In the effect eof should still be present in all items in all states. But when you take a look at DFA presented in book (pdf is from errata): DFA for LALR (fig. 9.34 in the book, p.301) you will see there are items without eof in lookahead. The grammar for this DFA is: S -> E E -> E - T E -> T T -> ( E ) T -> n So how it was computed, when eof was dropped, and on what condition? Update It is textual pdf, so two interesting states (in DFA; # is eof): State 1: S--- >•E[#] E--- >•E-T[#-] E--- >•T[#-] T--- >•n[#-] T--- >•(E)[#-] State 6: T--- >(•E)[#-)] E--- >•E-T[-)] E--- >•T[-)] T--- >•n[-)] T--- >•(E)[-)] Arc from 1 to 6 is labeled (.

    Read the article

  • learn the programming language for computing functions about integers

    - by asd
    Hi I know something about Pascal, Mathematica and Matlab, but I dont have any idea about C,C++,C# languages. I want to learn one of the languages that they they are fast and exact to compute some arithmetic functions for large numbers(for example larger than $10^3000$). I asked somebody and he said he used C++ and he said I computed this sequence in less than 10 min. I want to know C, C++, C# and visual kind of theses programs and know which is better for my goal. Let $f$ be an arithmetic function and A={k1,k2,...,kn} are integers in increasing order. Now I want to start with k1 and compare f(ki) with f(k1). If f(ki)f(k1), put ki as k1. Now start with ki, and compare f(kj) with f(ki), for ji. If f(kj)f(ki), put kj as ki, and repeat this procedure. At the end we will have a sub sequence B={L1,...,Lm} of A by this property: f(L(i+1))f(L(i)), for any 1<=i<=m-1 I have written a code for this program with Mathematica, and it take some hours to compute f of ki's or the set B for large numbers. For example, let f is the divisor function of integers. Do you know how to write the code for my purpose in Mathematica or Matlab. Mathematica is preferable.

    Read the article

  • Where to place the R code for R+Sweave+LaTeX workflow

    - by claytontstanley
    I spent the last week learning 3 new tools: R, Sweave, and LaTeX. One question that came to my mind though when working through my first project: Where do I place the majority of the R code? The tutorials that I read online placed the majority of the R code in the LaTeX .Rnw file. However, I find having a bunch of R calculations in the LaTeX file distracting. What I do find extremely helpful (of course) is to call out to R code in the LaTeX file and embed the result. So the workflow I've been using is to place 99% of my R code in my .R file. I run that file first, save a bunch of calculations as objects, and output the .Rout file once finished (to save the work). Then when running Sweave, I load up that .Rout file, so that I have the majority of my calculations already completed and in the Sweave R session. Then my LaTeX callouts to R are quite simple: Just give me the XTable stored in 'res.table', or give me the result of an already-computed calculation stored in the variable 'res'. So I push towards the minimal amount of R code in the LaTex file possible, to achieve the desired result (embedding stats results in the LaTeX writeup). Does anyone have any experience with this approach? I'm just worried I might run into trouble further down the line, when I start really trying to load up and leverage this workflow.

    Read the article

  • Performing client-side OAuth authorized Twitter API calls versus server side, how much of a difference is there in terms of performance?

    - by Terence Ponce
    I'm working on a Twitter application in Ruby on Rails. One of the biggest arguments that I have with other people on the project is the method of calling the Twitter API. Before, everything was done on the server: OAuth login, updating the user's Twitter data, and retrieving tweets. Retrieving tweets was the heaviest thing to do since we don't store the tweets in our database, so viewing the tweets means that we have to call the API every time. One of the people in the project suggested that we call the tweets through Javascript instead to lessen the load on the server. We used GET search, which, correct me if I'm wrong, will be removed when v1.0 becomes completely deprecated, but that really isn't a concern now. When the Twitter API has migrated completely to v1.1 (again, correct me if I'm wrong), every calls to the API must be authenticated, so we have to authenticate our Javascript requests to the API. As said here: We don't support or recommend performing OAuth directly through Javascript -- it's insecure and puts your application at risk. The only acceptable way to perform it is if you kept all keys and secrets server-side, computed the OAuth signatures and parameters server side, then issued the request client-side from the server-generated OAuth values. If we do exactly what Twitter suggests, the only difference between this and doing everything server-side is that our server won't have to contact the Twitter API anymore every time the user wants to view tweets. Here's how I would picture what's happening every time the user makes a request: If we do it through Javascript, it would be harder on my part because I would have to create the signatures manually for every request, but I will gladly do it if the boost in performance is worth all the trouble. Doing it through Ruby on Rails would be very easy since the Twitter gem does most of the grunt work already, so I'm really encouraging the other people in the project to agree with me. Is the difference in performance trivial or is it significant enough to switch to Javascript?

    Read the article

  • How to notify client about updated UpdatePanel content on server side

    - by csh1981
    I have a problem with UpdatePanel.Update() which works initially but then stops. I have tumbled with this problem for some time and some background is needed so please read ahead. I have an ASP.net application in which I have a subpage that display computed information in graphs. Each graph is embedded in an UpdatePanel. The graph is a user control that uses the standard asp:Chart for display. My task is to enable this page with AJAX capabilities so the page is responsive during postbacks. When I access this page from another page, during the initial page rendering, I use a wait dialog for each graph and a pageload event on the client side. In the client event, a hidden button is clicked which a server event handles (the hidden button is inside an UpdatePanel so the postback is asynchronous). Each graph is computed and the UpdatePanels are in turn updated with the Chart content. This is done using UpdatePanel.Update. And it is successful. However, I also have some RadioButtons on the page. These are dynamically created. The purpose of them is to switch graph type --- to show the same data in a different way. Same type of time consuming computation is needed in order to do so. I subscribe on each RadioButton's OnCheckedChanged event and the postback is asynchronous since the radiobuttons are inside an UpdatePanel. In the server event handler I determine the type of graph and use this as an input to the Chart control. I then remove the old Chart control from my Panel and adds new Chart and then I call UpdatePanel.Update(). But with no success. Nothing happens, no errors, nothing. Why is this?? I think this is strange because if I compute every Chart data in the initial rendering instead of using the "Wait dialog"-solution described earlier then I can select graph types successfully and all subsequent AJAX requests work as intended. Also, the same code (computing the chart, removal, and adding the Chart control to Panel and UpdatePanel.Update()) is hit during the initial rendering of the page, and it works only the first time. Here is the method that computes the graph and adds it to the panel and update the UpdatePanel: public void UpdateGraph(GraphType type, GraphMapper mapper) { //Panel is the content of UpdatePanelGraph's Panel.Controls.Clear(); chart = new Chart(type, mapper); //Computation happens inside here panel.Controls.Add(chart); //UpdatePanelGraph is in UpdateMode Conditional and has //ChildrenAsTriggers set to false UpdatePanelGraph.Update(); } I really need a way for these radiobuttons to work, possible using some clientside JavaScript or another way of handling things on the server side. I have thought about using a JavaScript postback call on the UpdatePanel instead of the UpdatePanel.Update(). However, the issue I have here is how to notify the client side when the server side is finished with computing the graph? An plausible explanation of the strange behavior is also much appreciated. Any help appreciated, thanks

    Read the article

  • Japanese Multiplication simulation - is a program actually capable of improving calculation speed?

    - by jt0dd
    On SuperUser, I asked a (possibly silly) question about processors using mathematical shortcuts and would like to have a look at the possibility at the software application of that concept. I'd like to write a simulation of Japanese Multiplication to get benchmarks on large calculations utilizing the shortcut vs traditional CPU multiplication. I'm curious as to whether it makes sense to try this. My Question: I'd like to know whether or not a software math shortcut, as described above is actually a shortcut at all. This is a question of programming concept. By utilizing the simulation of Japanese Multiplication, is a program actually capable of improving calculation speed? Or am I doomed from the start? The answer to this question isn't required to determine whether or not the experiment will succeed, but rather whether or not it's logically possible for such a thing to occur in any program, using this concept as an example. My theory is that since addition is computed faster than multiplication, a simulation of Japanese multiplication may actually allow a program to multiply (large) numbers faster than the CPU arithmetic unit can. I think this would be a very interesting finding, if it proves to be true. If, in the multiplication of numbers of any immense size, the shortcut were to calculate the result via less instructions (or faster) than traditional ALU multiplication, I would consider the experiment a success.

    Read the article

  • XNA hlsl tex2D() only reads 3 channels from normal maps and specular maps

    - by cubrman
    Our engine uses deferred rendering and at the main draw phase gathers plenty of data from the objects it draws. In order to save on tex2D calls, we packed our objects' specular maps with all sorts of data, so three out of four channels are already taken. To make it clear: I am talking about the assets that come with the models and are stored in their material's Specular Level channel, not about the RenderTarget. So now I need another information to be stored in the alpha channel, but I cannot make the shader to read it properly! Nomatter what I write into alpha it ends up being 1 (255)! I tried: saving the textures in PNG/TGA formats. turning off pre-computed alpha in model's properties. Out of every texture available to me (we use Diffuse map, Normal Map and Specular Map) I was only able to read alpha successfully from the Diffuse Map! Here is how I add specular and normal maps to my model's material in the content processor: if (geometry.Material.Textures.ContainsKey(normalMapKey)) { ExternalReference<TextureContent> texRef = geometry.Material.Textures[normalMapKey]; geometry.Material.Textures.Remove("NormalMap"); geometry.Material.Textures.Add("NormalMap", texRef); } ... foreach (KeyValuePair<String, ExternalReference<TextureContent>> texture in material.Textures) { if ((texture.Key == "Texture") || (texture.Key == "NormalMap") || (texture.Key == "SpecularMap")) mat.Textures.Add(texture.Key, texture.Value); } In the shader I obviously use: float4 data = tex2D(specularMapSampler, TexCoords); so data.a is always 1 in my case, could you suggest a reason?

    Read the article

  • Best Terminology for a particular php-based site architecture? [closed]

    - by hen3ry
    For a site... o whose overall look-and-feel is generated by one php page ("index.php"). o in which "index.php" provides for all pages served the following required components: The DOCTYPE, opening html tag, the head section, the opening body tag, the end-body tag, and end-html tag. o which uses computed hierarchical navigation menus within "index.php" to offer visitors access to the site content. o in which all content is stored in individual files that contain "headerless html". (The DOCTYPE, etc. etc. being being provided by "index.php" as described above.) Q1: what term best describes this architecture? I'm seeking a concise descriptor that is useful in conversation and definitive as a search term, in whole-web searches, and searching here on Pro Webmasters. Q2: what term best describes the individual content files? Same general goals for the descriptor as above. As you see above, I couldn't avoid using the term "headerless html", my best choice. But this term does not seem to be in general use. I've found some people use this term to describe such as my content files, but others use it quite differently.

    Read the article

  • Java code optimization leads to numerical inaccuracies and errors

    - by rano
    I'm trying to implement a version of the Fuzzy C-Means algorithm in Java and I'm trying to do some optimization by computing just once everything that can be computed just once. This is an iterative algorithm and regarding the updating of a matrix, the clusters x pixels membership matrix U, this is the update rule I want to optimize: where the x are the element of a matrix X (pixels x features) and v belongs to the matrix V (clusters x features). And m is a parameter that ranges from 1.1 to infinity. The distance used is the euclidean norm. If I had to implement this formula in a banal way I'd do: for(int i = 0; i < X.length; i++) { int count = 0; for(int j = 0; j < V.length; j++) { double num = D[i][j]; double sumTerms = 0; for(int k = 0; k < V.length; k++) { double thisDistance = D[i][k]; sumTerms += Math.pow(num / thisDistance, (1.0 / (m - 1.0))); } U[i][j] = (float) (1f / sumTerms); } } In this way some optimization is already done, I precomputed all the possible squared distances between X and V and stored them in a matrix D but that is not enough, since I'm cycling througn the elements of V two times resulting in two nested loops. Looking at the formula the numerator of the fraction is independent of the sum so I can compute numerator and denominator independently and the denominator can be computed just once for each pixel. So I came to a solution like this: int nClusters = V.length; double exp = (1.0 / (m - 1.0)); for(int i = 0; i < X.length; i++) { int count = 0; for(int j = 0; j < nClusters; j++) { double distance = D[i][j]; double denominator = D[i][nClusters]; double numerator = Math.pow(distance, exp); U[i][j] = (float) (1f / (numerator * denominator)); } } Where I precomputed the denominator into an additional column of the matrix D while I was computing the distances: for (int i = 0; i < X.length; i++) { for (int j = 0; j < V.length; j++) { double sum = 0; for (int k = 0; k < nDims; k++) { final double d = X[i][k] - V[j][k]; sum += d * d; } D[i][j] = sum; D[i][B.length] += Math.pow(1 / D[i][j], exp); } } By doing so I encounter numerical differences between the 'banal' computation and the second one that leads to different numerical value in U (not in the first iterates but soon enough). I guess that the problem is that exponentiate very small numbers to high values (the elements of U can range from 0.0 to 1.0 and exp , for m = 1.1, is 10) leads to ver y small values, whereas by dividing the numerator and the denominator and THEN exponentiating the result seems to be better numerically. The problem is it involves much more operations. Am I doing something wrong? Is there a possible solution to get both the code optimized and numerically stable? Any suggestion or criticism will be appreciated.

    Read the article

  • snapping an angle to the closest cardinal direction

    - by Josh E
    I'm developing a 2D sprite-based game, and I'm finding that I'm having trouble with making the sprites rotate correctly. In a nutshell, I've got spritesheets for each of 5 directions (the other 3 come from just flipping the sprite horizontally), and I need to clamp the velocity/rotation of the sprite to one of those directions. My sprite class has a pre-computed list of radians corresponding to the cardinal directions like this: protected readonly List<float> CardinalDirections = new List<float> { MathHelper.PiOver4, MathHelper.PiOver2, MathHelper.PiOver2 + MathHelper.PiOver4, MathHelper.Pi, -MathHelper.PiOver4, -MathHelper.PiOver2, -MathHelper.PiOver2 + -MathHelper.PiOver4, -MathHelper.Pi, }; Here's the positional update code: if (velocity == Vector2.Zero) return; var rot = ((float)Math.Atan2(velocity.Y, velocity.X)); TurretRotation = SnapPositionToGrid(rot); var snappedX = (float)Math.Cos(TurretRotation); var snappedY = (float)Math.Sin(TurretRotation); var rotVector = new Vector2(snappedX, snappedY); velocity *= rotVector; //...snip private float SnapPositionToGrid(float rotationToSnap) { if (rotationToSnap == 0) return 0.0f; var targetRotation = CardinalDirections.First(x => (x - rotationToSnap >= -0.01 && x - rotationToSnap <= 0.01)); return (float)Math.Round(targetRotation, 3); } What am I doing wrong here? I know that the SnapPositionToGrid method is far from what it needs to be - the .First(..) call is on purpose so that it throws on no match, but I have no idea how I would go about accomplishing this, and unfortunately, Google hasn't helped too much either. Am I thinking about this the wrong way, or is the answer staring at me in the face?

    Read the article

  • Mouse Speed in GLUT and OpenGL?

    - by CroCo
    I would like to simulate a point that moves in 2D. The input should be the speed of the mouse, so the new position will be computed as following new_position = old_position + delta_time*mouse_velocity As far as I know in GLUT there is no function to acquire the current speed of the mouse between each frame. What I've done so far to compute the delta_time as following void Display() { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glColor3f(1.0f, 0.0f, 0.0f); static int delta_t, current_t, previous_t; current_t = glutGet(GLUT_ELAPSED_TIME); delta_t = current_t - previous_t; std::cout << delta_t << std::endl; previous_t = current_t; glutSwapBuffers(); } Where should I start from here? (Note: I have to get the speed of the mouse because I'm modeling a system) Edit: Based on the above code, delta_time fluctuates so much 34 19 2 20 1 20 0 16 1 1 10 21 0 13 1 19 34 0 13 0 6 1 14 Why does this happen?

    Read the article

  • Creating movement path displays in a top-down 2d RTS

    - by nihohit
    My game is a top-down 2d RTS coded in C# using SFML's libraries. I want that during unit selection, a unit will display it's movement path on the map. Currently, after the path is computed as a list of directions ({left, up,down, down, down, left}, as an example), it's sent to the graphical component to create it's UI equivalent, and here I'm having some problems. current, these I've checked three ways to do it: compute the size of the image (in the example above it'll be a 3*2 rectangle) and create an invisible rectangle, and then go over the directions list and mark each spot with a visible point, so as to get a continous line. This system is slightly problematic because of the amount of large images that I need to save, but mostly because I have a lot of fine detail onscreen, and a continous line obstructs the view. again, compute the size of the image, but now create several (let's say 4) invisible images of that size, and then instead of a single continous line I'll switch between the four images, in each will appear only a fourth of the spots, in a way which creates a path animation. This is nicer on the eye, but here the memory demands, and the amount of time needed to compute each such image-loop is significant. Just create a list of single markers, each on a different spot on the path. This is very quick & easy on memory, but too sparse. Is there a simple or resource-light system to create path-animations?

    Read the article

  • Context switches much slower in new linux kernels

    - by Michael Goldshteyn
    We are looking to upgrade the OS on our servers from Ubuntu 10.04 LTS to Ubuntu 12.04 LTS. Unfortunately, it seems that the latency to run a thread that has become runnable has significantly increased from the 2.6 kernel to the 3.2 kernel. In fact the latency numbers we are getting are hard to believe. Let me be more specific about the test. We have a program that has two threads. The first thread gets the current time (in ticks using RDTSC) and then signals a condition variable once a second. The second thread waits on the condition variable and wakes up when it is signaled. It then gets the current time (in ticks using RDTSC). The difference between the time in the second thread and the time in the first thread is computed and displayed on the console. After this the second thread waits on the condition variable once more. So, we get a thread to thread signaling latency measurement once a second as a result. In linux 2.6.32, this latency is somewhere on the order of 2.8-3.5 us, which is reasonable. In linux 3.2.0, this latency is somewhere on the order of 40-100 us. I have excluded any differences in hardware between the two host hosts. They run on identical hardware (dual socket X5687 {Westmere-EP} processors running at 3.6 GHz with hyperthreading, speedstep and all C states turned off). We are changing the affinity to run both threads on physical cores of the same socket (i.e., the first thread is run on Core 0 and the second thread is run on Core 1), so there is no bouncing of threads on cores or bouncing/communication between sockets. The only difference between the two hosts is that one is running Ubuntu 10.04 LTS with kernel 2.6.32-28 (the fast context switch box) and the other is running the latest Ubuntu 12.04 LTS with kernel 3.2.0-23 (the slow context switch box). Have there been any changes in the kernel that could account for this ridiculous slow down in how long it takes for a thread to be scheduled to run?

    Read the article

< Previous Page | 156 157 158 159 160 161 162 163 164 165 166 167  | Next Page >