Search Results

Search found 14486 results on 580 pages for 'python idle'.

Page 160/580 | < Previous Page | 156 157 158 159 160 161 162 163 164 165 166 167  | Next Page >

  • Python: Count lines and differentiate between them

    - by Mister X
    I'm using an application that gives a timed output based on how many times something is done in a minute, and I wish to manually take the output (copy paste) and have my program, and I wish to count how many times each minute it is done. An example output is this: 13:48 An event happened. 13:48 Another event happened. 13:49 A new event happened. 13:49 A random event happened. 13:49 An event happened. So, the program would need to understand that 2 things happened at 13:48, and 3 at 13:49. I'm not sure how the information would be stored, but I need to average them after, to determine an average of how often it happens. Sorry for being so complicated!

    Read the article

  • Get the last '/' or '\\' character in Python

    - by wowus
    If I have a string that looks like either ./A/B/c.d OR .\A\B\c.d How do I get just the "./A/B/" part? The direction of the slashes can be the same as they are passed. This problem kinda boils down to: How do I get the last of a specific character in a string? Basically, I want the path of a file without the file part of it.

    Read the article

  • strip spaces in python.

    - by Richard
    ok I know that this should be simple... anyways say: line = "$W5M5A,100527,142500,730301c44892fd1c,2,686.5 4,333.96,0,0,28.6,123,75,-0.4,1.4*49" I want to strip out the spaces. I thought you would just do this line = line.strip() but now line is still '$W5M5A,100527,142500,730301c44892fd1c,2,686.5 4,333.96,0,0,28.6,123,75,-0.4,1.4*49' instead of '$W5M5A,100527,142500,730301c44892fd1c,2,686.54,333.96,0,0,28.6,123,75,-0.4,1.4*49' any thoughts?

    Read the article

  • I have an Errno 13 Permission denied with subprocess in python

    - by wDroter
    The line with the issue is ret=subprocess.call(shlex.split(cmd)) cmd = /usr/share/java -cp pig-hadoop-conf-Simpsons:lib/pig-0.8.1-cdh3u1-core.jar:lib/hadoop-core-0.20.2-cdh3u1.jar org.apache.pig.Main -param func=cat -param from =foo.txt -x mapreduce fsFunc.pig The error is. File "./run_pig.py", line 157, in process ret=subprocess.call(shlex.split(cmd)) File "/usr/lib/python2.7/subprocess.py", line 493, in call return Popen(*popenargs, **kwargs).wait() File "/usr/lib/python2.7/subprocess.py", line 679, in __init__ errread, errwrite) File "/usr/lib/python2.7/subprocess.py", line 1249, in _execute_child raise child_exception OSError: [Errno 13] Permission denied Let me know if any more info is needed. Any help is appreciated. Thanks.

    Read the article

  • Python: How do sets work

    - by Guy
    I have a list of objects which I want to turn into a set. My objects contain a few fields that some of which are o.id and o.area. I want two objects to be equal if these two fields are the same. ie: o1==o2 if and only if o1.area==o2.area and o1.id==o2.id. I tried over-writing __eq__ and __cmp__ but I get the error: TypeError: unhashable instance. What should I over-write?

    Read the article

  • filtering elements from list of lists in Python?

    - by user248237
    I want to filter elements from a list of lists, and iterate over the elements of each element using a lambda. For example, given the list: a = [[1,2,3],[4,5,6]] suppose that I want to keep only elements where the sum of the list is greater than N. I tried writing: filter(lambda x, y, z: x + y + z >= N, a) but I get the error: <lambda>() takes exactly 3 arguments (1 given) How can I iterate while assigning values of each element to x, y, and z? Something like zip, but for arbitrarily long lists. thanks, p.s. I know I can write this using: filter(lambda x: sum(x)..., a) but that's not the point, imagine that these were not numbers but arbitrary elements and I wanted to assign their values to variable names.

    Read the article

  • Python unicode search not giving correct answer

    - by user1318912
    I am trying to search hindi words contained one line per file in file-1 and find them in lines in file-2. I have to print the line numbers with the number of words found. This is the code: import codecs hypernyms = codecs.open("hindi_hypernym.txt", "r", "utf-8").readlines() words = codecs.open("hypernyms_en2hi.txt", "r", "utf-8").readlines() count_arr = [] for counter, line in enumerate(hypernyms): count_arr.append(0) for word in words: if line.find(word) >=0: count_arr[counter] +=1 for iterator, count in enumerate(count_arr): if count>0: print iterator, ' ', count This is finding some words, but ignoring some others The input files are: File-1: ???? ??????? File-2: ???????, ????-???? ?????-???, ?????-???, ?????_???, ?????_??? ????_????, ????-????, ???????_???? ????-???? This gives output: 0 1 3 1 Clearly, it is ignoring ??????? and searching for ???? only. I have tried with other inputs as well. It only searches for one word. Any idea how to correct this?

    Read the article

  • Python - pickling fails for numpy.void objects

    - by I82Much
    >>> idmapfile = open("idmap", mode="w") >>> pickle.dump(idMap, idmapfile) >>> idmapfile.close() >>> idmapfile = open("idmap") >>> unpickled = pickle.load(idmapfile) >>> unpickled == idMap False idMap[1] {1537: (552, 1, 1537, 17.793827056884766, 3), 1540: (4220, 1, 1540, 19.31205940246582, 3), 1544: (592, 1, 1544, 18.129131317138672, 3), 1675: (529, 1, 1675, 18.347782135009766, 3), 1550: (4048, 1, 1550, 19.31205940246582, 3), 1424: (1528, 1, 1424, 19.744396209716797, 3), 1681: (1265, 1, 1681, 19.596025466918945, 3), 1560: (3457, 1, 1560, 20.530569076538086, 3), 1690: (477, 1, 1690, 17.395542144775391, 3), 1691: (554, 1, 1691, 13.446117401123047, 3), 1436: (3010, 1, 1436, 19.596025466918945, 3), 1434: (3183, 1, 1434, 19.744396209716797, 3), 1441: (3570, 1, 1441, 20.589576721191406, 3), 1435: (476, 1, 1435, 19.640911102294922, 3), 1444: (527, 1, 1444, 17.98480224609375, 3), 1478: (1897, 1, 1478, 19.596025466918945, 3), 1575: (614, 1, 1575, 19.371648788452148, 3), 1586: (2189, 1, 1586, 19.31205940246582, 3), 1716: (3470, 1, 1716, 19.158674240112305, 3), 1590: (2278, 1, 1590, 19.596025466918945, 3), 1463: (991, 1, 1463, 19.31205940246582, 3), 1594: (1890, 1, 1594, 19.596025466918945, 3), 1467: (1087, 1, 1467, 19.31205940246582, 3), 1596: (3759, 1, 1596, 19.744396209716797, 3), 1602: (3011, 1, 1602, 20.530569076538086, 3), 1547: (490, 1, 1547, 17.994071960449219, 3), 1605: (658, 1, 1605, 19.31205940246582, 3), 1606: (1794, 1, 1606, 16.964881896972656, 3), 1719: (1826, 1, 1719, 19.596025466918945, 3), 1617: (583, 1, 1617, 11.894925117492676, 3), 1492: (3441, 1, 1492, 20.500667572021484, 3), 1622: (3215, 1, 1622, 19.31205940246582, 3), 1628: (2761, 1, 1628, 19.744396209716797, 3), 1502: (1563, 1, 1502, 19.596025466918945, 3), 1632: (1108, 1, 1632, 15.457141876220703, 3), 1468: (3779, 1, 1468, 19.596025466918945, 3), 1642: (3970, 1, 1642, 19.744396209716797, 3), 1518: (612, 1, 1518, 18.570245742797852, 3), 1647: (854, 1, 1647, 16.964881896972656, 3), 1650: (2099, 1, 1650, 20.439058303833008, 3), 1651: (540, 1, 1651, 18.552841186523438, 3), 1653: (613, 1, 1653, 19.237197875976563, 3), 1532: (537, 1, 1532, 18.885730743408203, 3)} >>> unpickled[1] {1537: (64880, 1638, 56700, -1.0808743559293829e+18, 152), 1540: (64904, 1638, 0, 0.0, 0), 1544: (54472, 1490, 0, 0.0, 0), 1675: (6464, 1509, 0, 0.0, 0), 1550: (43592, 1510, 0, 0.0, 0), 1424: (43616, 1510, 0, 0.0, 0), 1681: (0, 0, 0, 0.0, 0), 1560: (400, 152, 400, 2.1299736657737219e-43, 0), 1690: (408, 152, 408, 2.7201111331839077e+26, 34), 1435: (424, 152, 61512, 1.0122952080313192e-39, 0), 1436: (400, 152, 400, 20.250289916992188, 3), 1434: (424, 152, 62080, 1.0122952080313192e-39, 0), 1441: (400, 152, 400, 12.250144958496094, 3), 1691: (424, 152, 42608, 15.813941955566406, 3), 1444: (400, 152, 400, 19.625289916992187, 3), 1606: (424, 152, 42432, 5.2947192852601414e-22, 41), 1575: (400, 152, 400, 6.2537390010262572e-36, 0), 1586: (424, 152, 42488, 1.0122601755697111e-39, 0), 1716: (400, 152, 400, 6.2537390010262572e-36, 0), 1590: (424, 152, 64144, 1.0126357235581501e-39, 0), 1463: (400, 152, 400, 6.2537390010262572e-36, 0), 1594: (424, 152, 32672, 17.002994537353516, 3), 1467: (400, 152, 400, 19.750289916992187, 3), 1596: (424, 152, 7176, 1.0124003054161436e-39, 0), 1602: (400, 152, 400, 18.500289916992188, 3), 1547: (424, 152, 7000, 1.0124003054161436e-39, 0), 1605: (400, 152, 400, 20.500289916992188, 3), 1478: (424, 152, 42256, -6.0222748507426518e+30, 222), 1719: (400, 152, 400, 6.2537390010262572e-36, 0), 1617: (424, 152, 16472, 1.0124283313854301e-39, 0), 1492: (400, 152, 400, 6.2537390010262572e-36, 0), 1622: (424, 152, 35304, 1.0123190301052127e-39, 0), 1628: (400, 152, 400, 6.2537390010262572e-36, 0), 1502: (424, 152, 63152, 19.627988815307617, 3), 1632: (400, 152, 400, 19.375289916992188, 3), 1468: (424, 152, 38088, 1.0124213248931084e-39, 0), 1642: (400, 152, 400, 6.2537390010262572e-36, 0), 1518: (424, 152, 63896, 1.0127436235399031e-39, 0), 1647: (400, 152, 400, 6.2537390010262572e-36, 0), 1650: (424, 152, 53424, 16.752857208251953, 3), 1651: (400, 152, 400, 19.250289916992188, 3), 1653: (424, 152, 50624, 1.0126497365427934e-39, 0), 1532: (400, 152, 400, 6.2537390010262572e-36, 0)} The keys come out fine, the values are screwed up. I tried same thing loading file in binary mode; didn't fix the problem. Any idea what I'm doing wrong? Edit: Here's the code with binary. Note that the values are different in the unpickled object. >>> idmapfile = open("idmap", mode="wb") >>> pickle.dump(idMap, idmapfile) >>> idmapfile.close() >>> idmapfile = open("idmap", mode="rb") >>> unpickled = pickle.load(idmapfile) >>> unpickled==idMap False >>> unpickled[1] {1537: (12176, 2281, 56700, -1.0808743559293829e+18, 152), 1540: (0, 0, 15934, 2.7457842047810522e+26, 108), 1544: (400, 152, 400, 4.9518498821046956e+27, 53), 1675: (408, 152, 408, 2.7201111331839077e+26, 34), 1550: (456, 152, 456, -1.1349175514578289e+18, 152), 1424: (432, 152, 432, 4.5939047815653343e-40, 11), 1681: (408, 152, 408, 2.1299736657737219e-43, 0), 1560: (376, 152, 376, 2.1299736657737219e-43, 0), 1690: (376, 152, 376, 2.1299736657737219e-43, 0), 1435: (376, 152, 376, 2.1299736657737219e-43, 0), 1436: (376, 152, 376, 2.1299736657737219e-43, 0), 1434: (376, 152, 376, 2.1299736657737219e-43, 0), 1441: (376, 152, 376, 2.1299736657737219e-43, 0), 1691: (376, 152, 376, 2.1299736657737219e-43, 0), 1444: (376, 152, 376, 2.1299736657737219e-43, 0), 1606: (25784, 2281, 376, -3.2883343074537754e+26, 34), 1575: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1586: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1716: (24240, 2281, 376, -3.0093091599657311e-35, 26), 1590: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1463: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1594: (24240, 2281, 376, -4123208450048.0, 196), 1467: (25784, 2281, 376, 2.1299736657737219e-43, 0), 1596: (25784, 2281, 376, 2.1299736657737219e-43, 0), 1602: (25784, 2281, 376, -5.9963281433905448e+26, 76), 1547: (25784, 2281, 376, -218106240.0, 139), 1605: (25784, 2281, 376, -3.7138649803377281e+27, 56), 1478: (376, 152, 376, 2.1299736657737219e-43, 0), 1719: (25784, 2281, 376, 2.1299736657737219e-43, 0), 1617: (25784, 2281, 376, -1.4411779941597184e+17, 237), 1492: (25784, 2281, 376, 2.8596493694487798e-30, 80), 1622: (25784, 2281, 376, 184686084096.0, 93), 1628: (1336, 152, 1336, 3.1691839245470052e+29, 179), 1502: (1272, 152, 1272, -5.2042207205116645e-17, 99), 1632: (1208, 152, 1208, 2.1299736657737219e-43, 0), 1468: (1144, 152, 1144, 2.1299736657737219e-43, 0), 1642: (1080, 152, 1080, 2.1299736657737219e-43, 0), 1518: (1016, 152, 1016, 4.0240902787680023e+35, 145), 1647: (952, 152, 952, -985172619034624.0, 237), 1650: (888, 152, 888, 12094787289088.0, 66), 1651: (824, 152, 824, 2.1299736657737219e-43, 0), 1653: (760, 152, 760, 0.00018310768064111471, 238), 1532: (696, 152, 696, 8.8978061885676389e+26, 125)} OK I've isolated the problem, but don't know why it's so. First, apparently what I'm pickling are not tuples (though they look like it), but instead numpy.void types. Here is a series to illustrate the problem. first = run0.detections[0] >>> first (1, 19, 1578, 82.637763977050781, 1) >>> type(first) <type 'numpy.void'> >>> firstTuple = tuple(first) >>> theFile = open("pickleTest", "w") >>> pickle.dump(first, theFile) >>> theTupleFile = open("pickleTupleTest", "w") >>> pickle.dump(firstTuple, theTupleFile) >>> theFile.close() >>> theTupleFile.close() >>> first (1, 19, 1578, 82.637763977050781, 1) >>> firstTuple (1, 19, 1578, 82.637764, 1) >>> theFile = open("pickleTest", "r") >>> theTupleFile = open("pickleTupleTest", "r") >>> unpickledTuple = pickle.load(theTupleFile) >>> unpickledVoid = pickle.load(theFile) >>> type(unpickledVoid) <type 'numpy.void'> >>> type(unpickledTuple) <type 'tuple'> >>> unpickledTuple (1, 19, 1578, 82.637764, 1) >>> unpickledTuple == firstTuple True >>> unpickledVoid == first False >>> unpickledVoid (7936, 1705, 56700, -1.0808743559293829e+18, 152) >>> first (1, 19, 1578, 82.637763977050781, 1)

    Read the article

  • Python - calendar.timegm() vs. time.mktime()

    - by ibz
    I seem to have a hard time getting my head around this. What's the difference between calendar.timegm() and time.mktime()? Say I have a datetime.datetime with no tzinfo attached, shouldn't the two give the same output? Don't they both give the number of seconds between epoch and the date passed as a parameter? And since the date passed has no tzinfo, isn't that number of seconds the same? >>> import calendar >>> import time >>> import datetime >>> d = datetime.datetime(2010, 10, 10) >>> calendar.timegm(d.timetuple()) 1286668800 >>> time.mktime(d.timetuple()) 1286640000.0 >>>

    Read the article

  • OpenMeetings + Python + Suds

    - by user366774
    Trying to integrate openmeetings with django website, but can't understand how properly configure ImportDoctor: (here :// replaced with __ 'cause spam protection) print url http://sovershenstvo.com.ua:5080/openmeetings/services/UserService?wsdl imp = Import('http__schemas.xmlsoap.org/soap/encoding/') imp.filter.add('http__services.axis.openmeetings.org') imp.filter.add('http__basic.beans.hibernate.app.openmeetings.org/xsd') imp.filter.add('http__basic.beans.data.app.openmeetings.org/xsd') imp.filter.add('http__services.axis.openmeetings.org') d = ImportDoctor(imp) client = Client(url, doctor = d) client.service.getSession() Traceback (most recent call last): File "", line 1, in File "/usr/lib/python2.6/site-packages/suds/client.py", line 539, in call return client.invoke(args, kwargs) File "/usr/lib/python2.6/site-packages/suds/client.py", line 598, in invoke result = self.send(msg) File "/usr/lib/python2.6/site-packages/suds/client.py", line 627, in send result = self.succeeded(binding, reply.message) File "/usr/lib/python2.6/site-packages/suds/client.py", line 659, in succeeded r, p = binding.get_reply(self.method, reply) File "/usr/lib/python2.6/site-packages/suds/bindings/binding.py", line 159, in get_reply resolved = rtypes[0].resolve(nobuiltin=True) File "/usr/lib/python2.6/site-packages/suds/xsd/sxbasic.py", line 63, in resolve raise TypeNotFound(qref) suds.TypeNotFound: Type not found: '(Sessiondata, http__basic.beans.hibernate.app.openmeetings.org/xsd, )' what i'm doing wrong? please help and sorry for my english, but you are my last chance to save position :( need webinars at morning (2.26 am now)

    Read the article

  • Python RegExp exception

    - by Jasie
    How do I split on all nonalphanumeric characters, EXCEPT the apostrophe? re.split('\W+',text) works, but will also split on apostrophes. How do I add an exception to this rule? Thanks!

    Read the article

  • Python 3.1 - Memory Error during sampling of a large list

    - by jimy
    The input list can be more than 1 million numbers. When I run the following code with smaller 'repeats', its fine; def sample(x): length = 1000000 new_array = random.sample((list(x)),length) return (new_array) def repeat_sample(x): i = 0 repeats = 100 list_of_samples = [] for i in range(repeats): list_of_samples.append(sample(x)) return(list_of_samples) repeat_sample(large_array) However, using high repeats such as the 100 above, results in MemoryError. Traceback is as follows; Traceback (most recent call last): File "C:\Python31\rnd.py", line 221, in <module> STORED_REPEAT_SAMPLE = repeat_sample(STORED_ARRAY) File "C:\Python31\rnd.py", line 129, in repeat_sample list_of_samples.append(sample(x)) File "C:\Python31\rnd.py", line 121, in sample new_array = random.sample((list(x)),length) File "C:\Python31\lib\random.py", line 309, in sample result = [None] * k MemoryError I am assuming I'm running out of memory. I do not know how to get around this problem. Thank you for your time!

    Read the article

  • Efficient way in Python to remove an element from a comma-separated string

    - by ensnare
    I'm looking for the most efficient way to add an element to a comma-separated string while maintaining alphabetical order for the words: For example: string = 'Apples, Bananas, Grapes, Oranges' subtraction = 'Bananas' result = 'Apples, Grapes, Oranges' Also, a way to do this but while maintaining IDs: string = '1:Apples, 4:Bananas, 6:Grapes, 23:Oranges' subtraction = '4:Bananas' result = '1:Apples, 6:Grapes, 23:Oranges' Sample code is greatly appreciated. Thank you so much.

    Read the article

  • Python: Taking an array and break it into subarrays based on some criteria

    - by randombits
    I have an array of files. I'd like to be able to break that array down into one array with multiple subarrays, each subarray contains files that were created on the same day. So right now if the array contains files from March 1 - March 31, I'd like to have an array with 31 subarrays (assuming there is at least 1 file for each day). In the long run, I'm trying to find the file from each day with the latest creation/modification time. If there is a way to bundle that into the iterations that are required above to save some CPU cycles, that would be even more ideal. Then I'd have one flat array with 31 files, one for each day, for the latest file created on each individual day.

    Read the article

  • How to remove commas etc from a matrix in python

    - by robert
    say ive got a matrix that looks like: [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] how can i make it on seperate lines: [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] and then remove commas etc: 0 0 0 0 0 And also to make it blank instead of 0's, so that numbers can be put in later, so in the end it will be like: _ 1 2 _ 1 _ 1 (spaces not underscores) thanks

    Read the article

  • Regex replace (in Python) - a more simple way?

    - by Evan Fosmark
    Any time I want to replace a piece of text that is part of a larger piece of text, I always have to do something like: "(?P<start>some_pattern)(?P<replace>foo)(?P<end>end)" And then concatenate the start group with the new data for replace and then the end group. Is there a better method for this?

    Read the article

  • Optimizing BeautifulSoup (Python) code

    - by user283405
    I have code that uses the BeautifulSoup library for parsing, but it is very slow. The code is written in such a way that threads cannot be used. Can anyone help me with this? I am using BeautifulSoup for parsing and than save into a DB. If I comment out the save statement, it still takes a long time, so there is no problem with the database. def parse(self,text): soup = BeautifulSoup(text) arr = soup.findAll('tbody') for i in range(0,len(arr)-1): data=Data() soup2 = BeautifulSoup(str(arr[i])) arr2 = soup2.findAll('td') c=0 for j in arr2: if str(j).find("<a href=") > 0: data.sourceURL = self.getAttributeValue(str(j),'<a href="') else: if c == 2: data.Hits=j.renderContents() #and few others... c = c+1 data.save() Any suggestions? Note: I already ask this question here but that was closed due to incomplete information.

    Read the article

  • Python: How best to parse a simple grammar?

    - by Rosarch
    Ok, so I've asked a bunch of smaller questions about this project, but I still don't have much confidence in the designs I'm coming up with, so I'm going to ask a question on a broader scale. I am parsing pre-requisite descriptions for a course catalog. The descriptions almost always follow a certain form, which makes me think I can parse most of them. From the text, I would like to generate a graph of course pre-requisite relationships. (That part will be easy, after I have parsed the data.) Some sample inputs and outputs: "CS 2110" => ("CS", 2110) # 0 "CS 2110 and INFO 3300" => [("CS", 2110), ("INFO", 3300)] # 1 "CS 2110, INFO 3300" => [("CS", 2110), ("INFO", 3300)] # 1 "CS 2110, 3300, 3140" => [("CS", 2110), ("CS", 3300), ("CS", 3140)] # 1 "CS 2110 or INFO 3300" => [[("CS", 2110)], [("INFO", 3300)]] # 2 "MATH 2210, 2230, 2310, or 2940" => [[("MATH", 2210), ("MATH", 2230), ("MATH", 2310)], [("MATH", 2940)]] # 3 If the entire description is just a course, it is output directly. If the courses are conjoined ("and"), they are all output in the same list If the course are disjoined ("or"), they are in separate lists Here, we have both "and" and "or". One caveat that makes it easier: it appears that the nesting of "and"/"or" phrases is never greater than as shown in example 3. What is the best way to do this? I started with PLY, but I couldn't figure out how to resolve the reduce/reduce conflicts. The advantage of PLY is that it's easy to manipulate what each parse rule generates: def p_course(p): 'course : DEPT_CODE COURSE_NUMBER' p[0] = (p[1], int(p[2])) With PyParse, it's less clear how to modify the output of parseString(). I was considering building upon @Alex Martelli's idea of keeping state in an object and building up the output from that, but I'm not sure exactly how that is best done. def addCourse(self, str, location, tokens): self.result.append((tokens[0][0], tokens[0][1])) def makeCourseList(self, str, location, tokens): dept = tokens[0][0] new_tokens = [(dept, tokens[0][1])] new_tokens.extend((dept, tok) for tok in tokens[1:]) self.result.append(new_tokens) For instance, to handle "or" cases: def __init__(self): self.result = [] # ... self.statement = (course_data + Optional(OR_CONJ + course_data)).setParseAction(self.disjunctionCourses) def disjunctionCourses(self, str, location, tokens): if len(tokens) == 1: return tokens print "disjunction tokens: %s" % tokens How does disjunctionCourses() know which smaller phrases to disjoin? All it gets is tokens, but what's been parsed so far is stored in result, so how can the function tell which data in result corresponds to which elements of token? I guess I could search through the tokens, then find an element of result with the same data, but that feel convoluted... What's a better way to approach this problem?

    Read the article

  • Dynamic variable name in python

    - by PhilGo20
    I'd like to call a query with a field name filter that I wont know before run time... Not sure how to construct the variable name ...Or maybe I am tired. field_name = funct() locations = Locations.objects.filter(field_name__lte=arg1) where if funct() returns name would equal to locations = Locations.objects.filter(name__lte=arg1) Not sure how to do that ...

    Read the article

  • varargs in lambda functions in Python

    - by brain_damage
    Is it possible a lambda function to have variable number of arguments? For example, I want to write a metaclass, which creates a method for every method of some other class and this newly created method returns the opposite value of the original method and has the same number of arguments. And I want to do this with lambda function. How to pass the arguments? Is it possible? class Negate(type): def __new__(mcs, name, bases, _dict): extended_dict = _dict.copy() for (k, v) in _dict.items(): if hasattr(v, '__call__'): extended_dict["not_" + k] = lambda s, *args, **kw: not v(s, *args, **kw) return type.__new__(mcs, name, bases, extended_dict) class P(metaclass=Negate): def __init__(self, a): self.a = a def yes(self): return True def maybe(self, you_can_chose): return you_can_chose But the result is totally wrong: >>>p = P(0) >>>p.yes() True >>>p.not_yes() # should be False Traceback (most recent call last): File "<pyshell#150>", line 1, in <module> p.not_yes() File "C:\Users\Nona\Desktop\p10.py", line 51, in <lambda> extended_dict["not_" + k] = lambda s, *args, **kw: not v(s, *args, **kw) TypeError: __init__() takes exactly 2 positional arguments (1 given) >>>p.maybe(True) True >>>p.not_maybe(True) #should be False True

    Read the article

< Previous Page | 156 157 158 159 160 161 162 163 164 165 166 167  | Next Page >