Search Results

Search found 15449 results on 618 pages for 'python signal'.

Page 160/618 | < Previous Page | 156 157 158 159 160 161 162 163 164 165 166 167  | Next Page >

  • Optimizing python code performance when importing zipped csv to a mongo collection

    - by mark
    I need to import a zipped csv into a mongo collection, but there is a catch - every record contains a timestamp in Pacific Time, which must be converted to the local time corresponding to the (longitude,latitude) pair found in the same record. The code looks like so: def read_csv_zip(path, timezones): with ZipFile(path) as z, z.open(z.namelist()[0]) as input: csv_rows = csv.reader(input) header = csv_rows.next() check,converters = get_aux_stuff(header) for csv_row in csv_rows: if check(csv_row): row = { converter[0]:converter[1](value) for converter, value in zip(converters, csv_row) if allow_field(converter) } ts = row['ts'] lng, lat = row['loc'] found_tz_entry = timezones.find_one(SON({'loc': {'$within': {'$box': [[lng-tz_lookup_radius, lat-tz_lookup_radius],[lng+tz_lookup_radius, lat+tz_lookup_radius]]}}})) if found_tz_entry: tz_name = found_tz_entry['tz'] local_ts = ts.astimezone(timezone(tz_name)).replace(tzinfo=None) row['tz'] = tz_name else: local_ts = (ts.astimezone(utc) + timedelta(hours = int(lng/15))).replace(tzinfo = None) row['local_ts'] = local_ts yield row def insert_documents(collection, source, batch_size): while True: items = list(itertools.islice(source, batch_size)) if len(items) == 0: break; try: collection.insert(items) except: for item in items: try: collection.insert(item) except Exception as exc: print("Failed to insert record {0} - {1}".format(item['_id'], exc)) def main(zip_path): with Connection() as connection: data = connection.mydb.data timezones = connection.timezones.data insert_documents(data, read_csv_zip(zip_path, timezones), 1000) The code proceeds as follows: Every record read from the csv is checked and converted to a dictionary, where some fields may be skipped, some titles be renamed (from those appearing in the csv header), some values may be converted (to datetime, to integers, to floats. etc ...) For each record read from the csv, a lookup is made into the timezones collection to map the record location to the respective time zone. If the mapping is successful - that timezone is used to convert the record timestamp (pacific time) to the respective local timestamp. If no mapping is found - a rough approximation is calculated. The timezones collection is appropriately indexed, of course - calling explain() confirms it. The process is slow. Naturally, having to query the timezones collection for every record kills the performance. I am looking for advises on how to improve it. Thanks. EDIT The timezones collection contains 8176040 records, each containing four values: > db.data.findOne() { "_id" : 3038814, "loc" : [ 1.48333, 42.5 ], "tz" : "Europe/Andorra" } EDIT2 OK, I have compiled a release build of http://toblerity.github.com/rtree/ and configured the rtree package. Then I have created an rtree dat/idx pair of files corresponding to my timezones collection. So, instead of calling collection.find_one I call index.intersection. Surprisingly, not only there is no improvement, but it works even more slowly now! May be rtree could be fine tuned to load the entire dat/idx pair into RAM (704M), but I do not know how to do it. Until then, it is not an alternative. In general, I think the solution should involve parallelization of the task. EDIT3 Profile output when using collection.find_one: >>> p.sort_stats('cumulative').print_stats(10) Tue Apr 10 14:28:39 2012 ImportDataIntoMongo.profile 64549590 function calls (64549180 primitive calls) in 1231.257 seconds Ordered by: cumulative time List reduced from 730 to 10 due to restriction <10> ncalls tottime percall cumtime percall filename:lineno(function) 1 0.012 0.012 1231.257 1231.257 ImportDataIntoMongo.py:1(<module>) 1 0.001 0.001 1230.959 1230.959 ImportDataIntoMongo.py:187(main) 1 853.558 853.558 853.558 853.558 {raw_input} 1 0.598 0.598 370.510 370.510 ImportDataIntoMongo.py:165(insert_documents) 343407 9.965 0.000 359.034 0.001 ImportDataIntoMongo.py:137(read_csv_zip) 343408 2.927 0.000 287.035 0.001 c:\python27\lib\site-packages\pymongo\collection.py:489(find_one) 343408 1.842 0.000 274.803 0.001 c:\python27\lib\site-packages\pymongo\cursor.py:699(next) 343408 2.542 0.000 271.212 0.001 c:\python27\lib\site-packages\pymongo\cursor.py:644(_refresh) 343408 4.512 0.000 253.673 0.001 c:\python27\lib\site-packages\pymongo\cursor.py:605(__send_message) 343408 0.971 0.000 242.078 0.001 c:\python27\lib\site-packages\pymongo\connection.py:871(_send_message_with_response) Profile output when using index.intersection: >>> p.sort_stats('cumulative').print_stats(10) Wed Apr 11 16:21:31 2012 ImportDataIntoMongo.profile 41542960 function calls (41542536 primitive calls) in 2889.164 seconds Ordered by: cumulative time List reduced from 778 to 10 due to restriction <10> ncalls tottime percall cumtime percall filename:lineno(function) 1 0.028 0.028 2889.164 2889.164 ImportDataIntoMongo.py:1(<module>) 1 0.017 0.017 2888.679 2888.679 ImportDataIntoMongo.py:202(main) 1 2365.526 2365.526 2365.526 2365.526 {raw_input} 1 0.766 0.766 502.817 502.817 ImportDataIntoMongo.py:180(insert_documents) 343407 9.147 0.000 491.433 0.001 ImportDataIntoMongo.py:152(read_csv_zip) 343406 0.571 0.000 391.394 0.001 c:\python27\lib\site-packages\rtree-0.7.0-py2.7.egg\rtree\index.py:384(intersection) 343406 379.957 0.001 390.824 0.001 c:\python27\lib\site-packages\rtree-0.7.0-py2.7.egg\rtree\index.py:435(_intersection_obj) 686513 22.616 0.000 38.705 0.000 c:\python27\lib\site-packages\rtree-0.7.0-py2.7.egg\rtree\index.py:451(_get_objects) 343406 6.134 0.000 33.326 0.000 ImportDataIntoMongo.py:162(<dictcomp>) 346 0.396 0.001 30.665 0.089 c:\python27\lib\site-packages\pymongo\collection.py:240(insert) EDIT4 I have parallelized the code, but the results are still not very encouraging. I am convinced it could be done better. See my own answer to this question for details.

    Read the article

  • Logical python question - handeling directories and files in them

    - by Konstantin
    Hello! I'm using this function to extract files from .zip archive and store it on the server: def unzip_file_into_dir(file, dir): import sys, zipfile, os, os.path os.makedirs(dir, 0777) zfobj = zipfile.ZipFile(file) for name in zfobj.namelist(): if name.endswith('/'): os.mkdir(os.path.join(dir, name)) else: outfile = open(os.path.join(dir, name), 'wb') outfile.write(zfobj.read(name)) outfile.close() And the usage: unzip_file_into_dir('/var/zips/somearchive.zip', '/var/www/extracted_zip') somearchive.zip have this structure: somearchive.zip 1.jpeg 2.jpeg another.jpeg or, somethimes, this one: somearchive.zip somedir/ 1.jpeg 2.jpeg another.jpeg Question is: how do I modify my function, so that my extracted_zip catalog would always contain just images, not images in another subdirectory, even if images are stored in somedir inside an archive.

    Read the article

  • compute mean in python for a generator

    - by nmaxwell
    Hi, I'm doing some statistics work, I have a (large) collection of random numbers to compute the mean of, I'd like to work with generators, because I just need to compute the mean, so I don't need to store the numbers. The problem is that numpy.mean breaks if you pass it a generator. I can write a simple function to do what I want, but I'm wondering if there's a proper, built-in way to do this? It would be nice if I could say "sum(values)/len(values)", but len doesn't work for genetators, and sum already consumed values. here's an example: import numpy def my_mean(values): n = 0 Sum = 0.0 try: while True: Sum += next(values) n += 1 except StopIteration: pass return float(Sum)/n X = [k for k in range(1,7)] Y = (k for k in range(1,7)) print numpy.mean(X) print my_mean(Y) these both give the same, correct, answer, buy my_mean doesn't work for lists, and numpy.mean doesn't work for generators. I really like the idea of working with generators, but details like this seem to spoil things. thanks for any help -nick

    Read the article

  • Exporting dates properly formatted on Google Appengine in Python

    - by Chris M
    I think this is right but google appengine seems to get to a certain point and cop-out; Firstly is this code actually right; and secondly is there away to skip the record if it cant output (like an ignore errors and continue)? class TrackerExporter(bulkloader.Exporter): def __init__(self): bulkloader.Exporter.__init__(self, 'SearchRec', [('__key__', lambda key:key.name(), None), ('WebSite', str, None), ('DateStamp', lambda x: datetime.datetime.strptime(x, '%d-%m-%Y').date(), None), ('IP', str, None), ('UserAgent', str, None)]) Thanks

    Read the article

  • Python: Created nested dictionary from list of paths

    - by sberry2A
    I have a list of tuples the looks similar to this (simplified here, there are over 14,000 of these tuples with more complicated paths than Obj.part) [ (Obj1.part1, {<SPEC>}), (Obj1.partN, {<SPEC>}), (ObjK.partN, {<SPEC>}) ] Where Obj goes from 1 - 1000, part from 0 - 2000. These "keys" all have a dictionary of specs associated with them which act as a lookup reference for inspecting another binary file. The specs dict contains information such as the bit offset, bit size, and C type of the data pointed to by the path ObjK.partN. For example: Obj4.part500 might have this spec, {'size':32, 'offset':128, 'type':'int'} which would let me know that to access Obj4.part500 in the binary file I must unpack 32 bits from offset 128. So, now I want to take my list of strings and create a nested dictionary which in the simplified case will look like this data = { 'Obj1' : {'part1':{spec}, 'partN':{spec} }, 'ObjK' : {'part1':{spec}, 'partN':{spec} } } To do this I am currently doing two things, 1. I am using a dotdict class to be able to use dot notation for dictionary get / set. That class looks like this: class dotdict(dict): def __getattr__(self, attr): return self.get(attr, None) __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ The method for creating the nested "dotdict"s looks like this: def addPath(self, spec, parts, base): if len(parts) > 1: item = base.setdefault(parts[0], dotdict()) self.addPath(spec, parts[1:], item) else: item = base.setdefault(parts[0], spec) return base Then I just do something like: for path, spec in paths: self.lookup = dotdict() self.addPath(spec, path.split("."), self.lookup) So, in the end self.lookup.Obj4.part500 points to the spec. Is there a better (more pythonic) way to do this?

    Read the article

  • use/run python's 2to3 as or like a unittest

    - by Vincent
    I have used the 2to3 utility to convert code from the command line. What I would like to do is run it basically as a unittest. Even if it tests the file rather than parts(funtions, methods...) as would be normal for a unittest. It does not need to be a unittest and I don't what to automatically convert the files I just want to monitor the py3 compliance of files in a unittest like manor. I can't seem to find any documentation or examples for this. An example and/or documentation would be great. Thanks

    Read the article

  • Find last match with python regular expression

    - by SDD
    I wanto to match the last occurence of a simple pattern in a string, e.g. list = re.findall(r"\w+ AAAA \w+", "foo bar AAAA foo2 AAAA bar2) print "last match: ", list[len(list)-1] however, if the string is very long, a huge list of matches is generated. Is there a more direct way to match the second occurence of "AAAA" or should I use this workaround?

    Read the article

  • how can i randomly print an element from a list in python

    - by lm
    So far i have this, which prints out every word in my list, but i am trying to print only one word at random. Any suggestions? def main(): # open a file wordsf = open('words.txt', 'r') word=random.choice('wordsf') words_count=0 for line in wordsf: word= line.rstrip('\n') print(word) words_count+=1 # close the file wordsf.close()

    Read the article

  • Python: How do sets work

    - by Guy
    I have a list of objects which I want to turn into a set. My objects contain a few fields that some of which are o.id and o.area. I want two objects to be equal if these two fields are the same. ie: o1==o2 if and only if o1.area==o2.area and o1.id==o2.id. I tried over-writing __eq__ and __cmp__ but I get the error: TypeError: unhashable instance. What should I over-write?

    Read the article

  • Replacing python docstrings

    - by tomaz
    I have written a epytext to reST markup converter, and now I want to convert all the docstrings in my entire library from epytext to reST format. Is there a smart way to read the all the docstrings in a module and write back the replacements? ps: ast module perhaps?

    Read the article

  • Python: How best to parse a simple grammar?

    - by Rosarch
    Ok, so I've asked a bunch of smaller questions about this project, but I still don't have much confidence in the designs I'm coming up with, so I'm going to ask a question on a broader scale. I am parsing pre-requisite descriptions for a course catalog. The descriptions almost always follow a certain form, which makes me think I can parse most of them. From the text, I would like to generate a graph of course pre-requisite relationships. (That part will be easy, after I have parsed the data.) Some sample inputs and outputs: "CS 2110" => ("CS", 2110) # 0 "CS 2110 and INFO 3300" => [("CS", 2110), ("INFO", 3300)] # 1 "CS 2110, INFO 3300" => [("CS", 2110), ("INFO", 3300)] # 1 "CS 2110, 3300, 3140" => [("CS", 2110), ("CS", 3300), ("CS", 3140)] # 1 "CS 2110 or INFO 3300" => [[("CS", 2110)], [("INFO", 3300)]] # 2 "MATH 2210, 2230, 2310, or 2940" => [[("MATH", 2210), ("MATH", 2230), ("MATH", 2310)], [("MATH", 2940)]] # 3 If the entire description is just a course, it is output directly. If the courses are conjoined ("and"), they are all output in the same list If the course are disjoined ("or"), they are in separate lists Here, we have both "and" and "or". One caveat that makes it easier: it appears that the nesting of "and"/"or" phrases is never greater than as shown in example 3. What is the best way to do this? I started with PLY, but I couldn't figure out how to resolve the reduce/reduce conflicts. The advantage of PLY is that it's easy to manipulate what each parse rule generates: def p_course(p): 'course : DEPT_CODE COURSE_NUMBER' p[0] = (p[1], int(p[2])) With PyParse, it's less clear how to modify the output of parseString(). I was considering building upon @Alex Martelli's idea of keeping state in an object and building up the output from that, but I'm not sure exactly how that is best done. def addCourse(self, str, location, tokens): self.result.append((tokens[0][0], tokens[0][1])) def makeCourseList(self, str, location, tokens): dept = tokens[0][0] new_tokens = [(dept, tokens[0][1])] new_tokens.extend((dept, tok) for tok in tokens[1:]) self.result.append(new_tokens) For instance, to handle "or" cases: def __init__(self): self.result = [] # ... self.statement = (course_data + Optional(OR_CONJ + course_data)).setParseAction(self.disjunctionCourses) def disjunctionCourses(self, str, location, tokens): if len(tokens) == 1: return tokens print "disjunction tokens: %s" % tokens How does disjunctionCourses() know which smaller phrases to disjoin? All it gets is tokens, but what's been parsed so far is stored in result, so how can the function tell which data in result corresponds to which elements of token? I guess I could search through the tokens, then find an element of result with the same data, but that feel convoluted... What's a better way to approach this problem?

    Read the article

  • Concatenate String to Evernote Markup Language (ENML) in python

    - by Adam the Mediocre
    I am looking to add a string containing the user's text input to the note.content of my note. After reading, I have found how to add resources, but I don't want the resource to be an attachment, I want it to be the actual text. Here is some of the code: title= self.textEditTitle.text() body= self.textEditBody.text() auth_token = "secret stuff!" client = EvernoteClient(token=auth_token, sandbox=True) note_store = client.get_note_store() nBody = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>" nBody += "<!DOCTYPE en-note SYSTEM \"http://xml.evernote.com/pub/enml2.dtd\">" nBody += "<en-note>%s</en-note>" % body note = Types.Note() note.title = title note.content= nBody Any advice would be great, as I'm just starting out with this api and it looks like it's full of potential once I figure it out! Here is what I have been mostly reading from: http://dev.evernote.com/documentation/cloud/chapters/ENML.php

    Read the article

  • How to remove commas etc from a matrix in python

    - by robert
    say ive got a matrix that looks like: [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] how can i make it on seperate lines: [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] and then remove commas etc: 0 0 0 0 0 And also to make it blank instead of 0's, so that numbers can be put in later, so in the end it will be like: _ 1 2 _ 1 _ 1 (spaces not underscores) thanks

    Read the article

  • Python - pickling fails for numpy.void objects

    - by I82Much
    >>> idmapfile = open("idmap", mode="w") >>> pickle.dump(idMap, idmapfile) >>> idmapfile.close() >>> idmapfile = open("idmap") >>> unpickled = pickle.load(idmapfile) >>> unpickled == idMap False idMap[1] {1537: (552, 1, 1537, 17.793827056884766, 3), 1540: (4220, 1, 1540, 19.31205940246582, 3), 1544: (592, 1, 1544, 18.129131317138672, 3), 1675: (529, 1, 1675, 18.347782135009766, 3), 1550: (4048, 1, 1550, 19.31205940246582, 3), 1424: (1528, 1, 1424, 19.744396209716797, 3), 1681: (1265, 1, 1681, 19.596025466918945, 3), 1560: (3457, 1, 1560, 20.530569076538086, 3), 1690: (477, 1, 1690, 17.395542144775391, 3), 1691: (554, 1, 1691, 13.446117401123047, 3), 1436: (3010, 1, 1436, 19.596025466918945, 3), 1434: (3183, 1, 1434, 19.744396209716797, 3), 1441: (3570, 1, 1441, 20.589576721191406, 3), 1435: (476, 1, 1435, 19.640911102294922, 3), 1444: (527, 1, 1444, 17.98480224609375, 3), 1478: (1897, 1, 1478, 19.596025466918945, 3), 1575: (614, 1, 1575, 19.371648788452148, 3), 1586: (2189, 1, 1586, 19.31205940246582, 3), 1716: (3470, 1, 1716, 19.158674240112305, 3), 1590: (2278, 1, 1590, 19.596025466918945, 3), 1463: (991, 1, 1463, 19.31205940246582, 3), 1594: (1890, 1, 1594, 19.596025466918945, 3), 1467: (1087, 1, 1467, 19.31205940246582, 3), 1596: (3759, 1, 1596, 19.744396209716797, 3), 1602: (3011, 1, 1602, 20.530569076538086, 3), 1547: (490, 1, 1547, 17.994071960449219, 3), 1605: (658, 1, 1605, 19.31205940246582, 3), 1606: (1794, 1, 1606, 16.964881896972656, 3), 1719: (1826, 1, 1719, 19.596025466918945, 3), 1617: (583, 1, 1617, 11.894925117492676, 3), 1492: (3441, 1, 1492, 20.500667572021484, 3), 1622: (3215, 1, 1622, 19.31205940246582, 3), 1628: (2761, 1, 1628, 19.744396209716797, 3), 1502: (1563, 1, 1502, 19.596025466918945, 3), 1632: (1108, 1, 1632, 15.457141876220703, 3), 1468: (3779, 1, 1468, 19.596025466918945, 3), 1642: (3970, 1, 1642, 19.744396209716797, 3), 1518: (612, 1, 1518, 18.570245742797852, 3), 1647: (854, 1, 1647, 16.964881896972656, 3), 1650: (2099, 1, 1650, 20.439058303833008, 3), 1651: (540, 1, 1651, 18.552841186523438, 3), 1653: (613, 1, 1653, 19.237197875976563, 3), 1532: (537, 1, 1532, 18.885730743408203, 3)} >>> unpickled[1] {1537: (64880, 1638, 56700, -1.0808743559293829e+18, 152), 1540: (64904, 1638, 0, 0.0, 0), 1544: (54472, 1490, 0, 0.0, 0), 1675: (6464, 1509, 0, 0.0, 0), 1550: (43592, 1510, 0, 0.0, 0), 1424: (43616, 1510, 0, 0.0, 0), 1681: (0, 0, 0, 0.0, 0), 1560: (400, 152, 400, 2.1299736657737219e-43, 0), 1690: (408, 152, 408, 2.7201111331839077e+26, 34), 1435: (424, 152, 61512, 1.0122952080313192e-39, 0), 1436: (400, 152, 400, 20.250289916992188, 3), 1434: (424, 152, 62080, 1.0122952080313192e-39, 0), 1441: (400, 152, 400, 12.250144958496094, 3), 1691: (424, 152, 42608, 15.813941955566406, 3), 1444: (400, 152, 400, 19.625289916992187, 3), 1606: (424, 152, 42432, 5.2947192852601414e-22, 41), 1575: (400, 152, 400, 6.2537390010262572e-36, 0), 1586: (424, 152, 42488, 1.0122601755697111e-39, 0), 1716: (400, 152, 400, 6.2537390010262572e-36, 0), 1590: (424, 152, 64144, 1.0126357235581501e-39, 0), 1463: (400, 152, 400, 6.2537390010262572e-36, 0), 1594: (424, 152, 32672, 17.002994537353516, 3), 1467: (400, 152, 400, 19.750289916992187, 3), 1596: (424, 152, 7176, 1.0124003054161436e-39, 0), 1602: (400, 152, 400, 18.500289916992188, 3), 1547: (424, 152, 7000, 1.0124003054161436e-39, 0), 1605: (400, 152, 400, 20.500289916992188, 3), 1478: (424, 152, 42256, -6.0222748507426518e+30, 222), 1719: (400, 152, 400, 6.2537390010262572e-36, 0), 1617: (424, 152, 16472, 1.0124283313854301e-39, 0), 1492: (400, 152, 400, 6.2537390010262572e-36, 0), 1622: (424, 152, 35304, 1.0123190301052127e-39, 0), 1628: (400, 152, 400, 6.2537390010262572e-36, 0), 1502: (424, 152, 63152, 19.627988815307617, 3), 1632: (400, 152, 400, 19.375289916992188, 3), 1468: (424, 152, 38088, 1.0124213248931084e-39, 0), 1642: (400, 152, 400, 6.2537390010262572e-36, 0), 1518: (424, 152, 63896, 1.0127436235399031e-39, 0), 1647: (400, 152, 400, 6.2537390010262572e-36, 0), 1650: (424, 152, 53424, 16.752857208251953, 3), 1651: (400, 152, 400, 19.250289916992188, 3), 1653: (424, 152, 50624, 1.0126497365427934e-39, 0), 1532: (400, 152, 400, 6.2537390010262572e-36, 0)} The keys come out fine, the values are screwed up. I tried same thing loading file in binary mode; didn't fix the problem. Any idea what I'm doing wrong? Edit: Here's the code with binary. Note that the values are different in the unpickled object. >>> idmapfile = open("idmap", mode="wb") >>> pickle.dump(idMap, idmapfile) >>> idmapfile.close() >>> idmapfile = open("idmap", mode="rb") >>> unpickled = pickle.load(idmapfile) >>> unpickled==idMap False >>> unpickled[1] {1537: (12176, 2281, 56700, -1.0808743559293829e+18, 152), 1540: (0, 0, 15934, 2.7457842047810522e+26, 108), 1544: (400, 152, 400, 4.9518498821046956e+27, 53), 1675: (408, 152, 408, 2.7201111331839077e+26, 34), 1550: (456, 152, 456, -1.1349175514578289e+18, 152), 1424: (432, 152, 432, 4.5939047815653343e-40, 11), 1681: (408, 152, 408, 2.1299736657737219e-43, 0), 1560: (376, 152, 376, 2.1299736657737219e-43, 0), 1690: (376, 152, 376, 2.1299736657737219e-43, 0), 1435: (376, 152, 376, 2.1299736657737219e-43, 0), 1436: (376, 152, 376, 2.1299736657737219e-43, 0), 1434: (376, 152, 376, 2.1299736657737219e-43, 0), 1441: (376, 152, 376, 2.1299736657737219e-43, 0), 1691: (376, 152, 376, 2.1299736657737219e-43, 0), 1444: (376, 152, 376, 2.1299736657737219e-43, 0), 1606: (25784, 2281, 376, -3.2883343074537754e+26, 34), 1575: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1586: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1716: (24240, 2281, 376, -3.0093091599657311e-35, 26), 1590: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1463: (24240, 2281, 376, 2.1299736657737219e-43, 0), 1594: (24240, 2281, 376, -4123208450048.0, 196), 1467: (25784, 2281, 376, 2.1299736657737219e-43, 0), 1596: (25784, 2281, 376, 2.1299736657737219e-43, 0), 1602: (25784, 2281, 376, -5.9963281433905448e+26, 76), 1547: (25784, 2281, 376, -218106240.0, 139), 1605: (25784, 2281, 376, -3.7138649803377281e+27, 56), 1478: (376, 152, 376, 2.1299736657737219e-43, 0), 1719: (25784, 2281, 376, 2.1299736657737219e-43, 0), 1617: (25784, 2281, 376, -1.4411779941597184e+17, 237), 1492: (25784, 2281, 376, 2.8596493694487798e-30, 80), 1622: (25784, 2281, 376, 184686084096.0, 93), 1628: (1336, 152, 1336, 3.1691839245470052e+29, 179), 1502: (1272, 152, 1272, -5.2042207205116645e-17, 99), 1632: (1208, 152, 1208, 2.1299736657737219e-43, 0), 1468: (1144, 152, 1144, 2.1299736657737219e-43, 0), 1642: (1080, 152, 1080, 2.1299736657737219e-43, 0), 1518: (1016, 152, 1016, 4.0240902787680023e+35, 145), 1647: (952, 152, 952, -985172619034624.0, 237), 1650: (888, 152, 888, 12094787289088.0, 66), 1651: (824, 152, 824, 2.1299736657737219e-43, 0), 1653: (760, 152, 760, 0.00018310768064111471, 238), 1532: (696, 152, 696, 8.8978061885676389e+26, 125)} OK I've isolated the problem, but don't know why it's so. First, apparently what I'm pickling are not tuples (though they look like it), but instead numpy.void types. Here is a series to illustrate the problem. first = run0.detections[0] >>> first (1, 19, 1578, 82.637763977050781, 1) >>> type(first) <type 'numpy.void'> >>> firstTuple = tuple(first) >>> theFile = open("pickleTest", "w") >>> pickle.dump(first, theFile) >>> theTupleFile = open("pickleTupleTest", "w") >>> pickle.dump(firstTuple, theTupleFile) >>> theFile.close() >>> theTupleFile.close() >>> first (1, 19, 1578, 82.637763977050781, 1) >>> firstTuple (1, 19, 1578, 82.637764, 1) >>> theFile = open("pickleTest", "r") >>> theTupleFile = open("pickleTupleTest", "r") >>> unpickledTuple = pickle.load(theTupleFile) >>> unpickledVoid = pickle.load(theFile) >>> type(unpickledVoid) <type 'numpy.void'> >>> type(unpickledTuple) <type 'tuple'> >>> unpickledTuple (1, 19, 1578, 82.637764, 1) >>> unpickledTuple == firstTuple True >>> unpickledVoid == first False >>> unpickledVoid (7936, 1705, 56700, -1.0808743559293829e+18, 152) >>> first (1, 19, 1578, 82.637763977050781, 1)

    Read the article

  • [Tkinter/Python] Different line widths with canvas.create_line?

    - by Sam
    Does anyone have any idea why I get different line widths on the canvas in the following example? from Tkinter import * bigBoxSize = 150 class cFrame(Frame): def __init__(self, master, cwidth=450, cheight=450): Frame.__init__(self, master, relief=RAISED, height=550, width=600, bg = "grey") self.canvasWidth = cwidth self.canvasHeight = cheight self.canvas = Canvas(self, bg="white", width=cwidth, height=cheight, border =0) self.drawGridLines() self.canvas.pack(side=TOP, pady=20, padx=20) def drawGridLines(self, linewidth = 10): self.canvas.create_line(0, 0, self.canvasWidth, 0, width= linewidth ) self.canvas.create_line(0, 0, 0, self.canvasHeight, width= linewidth ) self.canvas.create_line(0, self.canvasHeight, self.canvasWidth + 2, self.canvasHeight, width= linewidth ) self.canvas.create_line(self.canvasWidth, self.canvasHeight, self.canvasWidth, 1, width= linewidth ) self.canvas.create_line(0, bigBoxSize, self.canvasWidth, bigBoxSize, width= linewidth ) self.canvas.create_line(0, bigBoxSize * 2, self.canvasWidth, bigBoxSize * 2, width= linewidth) root = Tk() C = cFrame(root) C.pack() root.mainloop() It's really frustrating me as I have no idea what's happening. If anyone can help me out then that'd be fantastic. Thanks!

    Read the article

  • Python: Count lines and differentiate between them

    - by Mister X
    I'm using an application that gives a timed output based on how many times something is done in a minute, and I wish to manually take the output (copy paste) and have my program, and I wish to count how many times each minute it is done. An example output is this: 13:48 An event happened. 13:48 Another event happened. 13:49 A new event happened. 13:49 A random event happened. 13:49 An event happened. So, the program would need to understand that 2 things happened at 13:48, and 3 at 13:49. I'm not sure how the information would be stored, but I need to average them after, to determine an average of how often it happens. Sorry for being so complicated!

    Read the article

  • Python recursion with list returns None

    - by newman
    def foo(a): a.append(1) if len(a) > 10: print a return a else: foo(a) Why this recursive function returns None (see transcript below)? I can't quite understand what I am doing wrong. In [263]: x = [] In [264]: y = foo(x) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] In [265]: print y None

    Read the article

  • I have an Errno 13 Permission denied with subprocess in python

    - by wDroter
    The line with the issue is ret=subprocess.call(shlex.split(cmd)) cmd = /usr/share/java -cp pig-hadoop-conf-Simpsons:lib/pig-0.8.1-cdh3u1-core.jar:lib/hadoop-core-0.20.2-cdh3u1.jar org.apache.pig.Main -param func=cat -param from =foo.txt -x mapreduce fsFunc.pig The error is. File "./run_pig.py", line 157, in process ret=subprocess.call(shlex.split(cmd)) File "/usr/lib/python2.7/subprocess.py", line 493, in call return Popen(*popenargs, **kwargs).wait() File "/usr/lib/python2.7/subprocess.py", line 679, in __init__ errread, errwrite) File "/usr/lib/python2.7/subprocess.py", line 1249, in _execute_child raise child_exception OSError: [Errno 13] Permission denied Let me know if any more info is needed. Any help is appreciated. Thanks.

    Read the article

  • Python combinations no repeat by constraint

    - by user2758113
    I have a tuple of tuples (Name, val 1, val 2, Class) tuple = (("Jackson",10,12,"A"), ("Ryan",10,20,"A"), ("Michael",10,12,"B"), ("Andrew",10,20,"B"), ("McKensie",10,12,"C"), ("Alex",10,20,"D")) I need to return all combinations using itertools combinations that do not repeat classes. How can I return combinations that dont repeat classes. For example, the first returned statement would be: tuple0, tuple2, tuple4, tuple5 and so on.

    Read the article

  • Python 3.1 - Memory Error during sampling of a large list

    - by jimy
    The input list can be more than 1 million numbers. When I run the following code with smaller 'repeats', its fine; def sample(x): length = 1000000 new_array = random.sample((list(x)),length) return (new_array) def repeat_sample(x): i = 0 repeats = 100 list_of_samples = [] for i in range(repeats): list_of_samples.append(sample(x)) return(list_of_samples) repeat_sample(large_array) However, using high repeats such as the 100 above, results in MemoryError. Traceback is as follows; Traceback (most recent call last): File "C:\Python31\rnd.py", line 221, in <module> STORED_REPEAT_SAMPLE = repeat_sample(STORED_ARRAY) File "C:\Python31\rnd.py", line 129, in repeat_sample list_of_samples.append(sample(x)) File "C:\Python31\rnd.py", line 121, in sample new_array = random.sample((list(x)),length) File "C:\Python31\lib\random.py", line 309, in sample result = [None] * k MemoryError I am assuming I'm running out of memory. I do not know how to get around this problem. Thank you for your time!

    Read the article

  • Using __str__ representation for printing objects in containers in Python

    - by BobDobbs
    I've noticed that when an instance with an overloaded str method is passed to the print() function as an argument, it prints as intended. However, when passing a container that contains one of those instances to print(), it uses the repr method instead. That is to say, print(x) displays the correct string representation of x, and print(x, y) works correctly, but print([x]) or print((x, y)) prints the repr representation instead. First off, why does this happen? Secondly, is there a way to correct that behavior of print() in this circumstance?

    Read the article

< Previous Page | 156 157 158 159 160 161 162 163 164 165 166 167  | Next Page >