Search Results

Search found 13748 results on 550 pages for 'split testing'.

Page 165/550 | < Previous Page | 161 162 163 164 165 166 167 168 169 170 171 172  | Next Page >

  • F# Interactive bug?

    - by John Reynolds
    I've tried the following code in VS2010: open System.Security.Cryptography let rsaTest1 = let ecKey = [|0uy..143uy|] // junk data for testing let ecKeyMod = ecKey.[8..8+128-1] let ecKeyExp = ecKey.[136..136+8-1] let rsa = RSAParameters(Modulus = ecKeyMod, Exponent = ecKeyExp) rsa let rsaTest2 = let ecKey = [|0uy..143uy|] // junk data for testing let rsa = RSAParameters(Modulus = ecKey.[8..8+128-1], Exponent = ecKey.[136..136+8-1]) rsa If I highlight all code and send it to F# Interactive (Alt+Enter), then rsaTest1 works, but rsaTest2 gives an error message, System.NullReferenceException: Object reference not set to an instance of an object. at <StartupCode$FSI_0004>.$FSI_0004.main@() in P:\proj\Tachograph\Project\CompuTachTest\CompuTachTest\rsaTest.fsx:line 16 However, if I change rsaTest2 from a value into a function and call it, let rsaTest2 () = let ecKey = [|0uy..143uy|] // junk data for testing let rsa = RSAParameters(Modulus = ecKey.[8..8+128-1], Exponent = ecKey.[136..136+8-1]) rsa let x = rsaTest2 () then there is no error. F# bug or my mistake?

    Read the article

  • Executing python subprocess via git hook

    - by aljesco
    I'm running Gitolite over the Git repository and I have post-receive hook there written in Python. I need to execute "git" command at git repository directory. There are few lines of code: proc = subprocess.Popen(['git', 'log', '-n1'], cwd='/home/git/repos/testing.git' stdout=subprocess.PIPE, stderr=subprocess.PIPE) proc.communicate() After I make new commit and push to repository, scripts executes and says fatal: Not a git repository: '.' If I run proc = subprocess.Popen(['pwd'], cwd='/home/git/repos/testing.git' stdout=subprocess.PIPE, stderr=subprocess.PIPE) it says, as expected, correct path to git repository (/home/git/repos/testing.git) If I run this script manually from bash, it works correct and show correct output of "git log". What I'm doing wrong?

    Read the article

  • .htaccess newb - RewriteRule not matching 2nd rule, why?

    - by jyoseph
    I am currently migrating from isapi_rewrite to .htaccess. I'm having some difficulty and I think it's something basic, but I'm not terribly familiar with .htaccess. I have the two rules like so: RewriteRule ^testing/ /test/index.html?test=1 [NC] RewriteRule ^testing/foo-bar/ /test/index.html?test=2 [NC] Yet the second rule never matches. If I go to http://mydomain.com/testing/foo-bar/ then I will only see the first rule. Why is that? And can it be easily fixed? I have many rules (outputted from the database to write the .htaccess file )and ordering them in a particular order isn't really possible.

    Read the article

  • tinyMce reloading data with html tags

    - by Arunraj Chandran
    I'm having issue with TinyMCE. After saving the contents of the editor and redisplaying it all the HTML tags are visible. This is how I'm initializing the editor: // Tinymce Config tinyMCE.init({ // General options mode : "specific_textareas", editor_selector : "mceEditor", language : "<?php echo $tinyMceLang?>", setup : function(ed) { ed.onActivate.add(tinyOnEdit); }, theme : "advanced", plugins : "table", // Theme options theme_advanced_buttons1 : "bold,italic,underline,strikethrough,|,justifyleft,justifycenter,justifyright,justifyfull,fontsizeselect,|,forecolor,backcolor,|,table,row_before,row_after,delete_row,col_before,col_after,delete_col,code", theme_advanced_buttons2 : "", theme_advanced_buttons3 : "", theme_advanced_buttons4 : "", theme_advanced_toolbar_location : "top", theme_advanced_toolbar_align : "left", theme_advanced_statusbar_location : "bottom", theme_advanced_path : false, theme_advanced_resizing : true, convert_fonts_to_spans : true, //font_size_style_values : "0.7em,0.8em,1em,1.2em,1.5em,2em,3em", //font_size_style_values : "8pt,10pt,12pt,14pt,18pt,24pt,36pt", // content CSS (should be your site CSS) content_css : "/css/tiny_content.css" }); if i paste a content like this (With HTML tags): "testing tinymce contents" redisplayed as : "testing tinymce contents" but excepted result is : testing tinymce contents (Text with red color)(Not allowing html tags)

    Read the article

  • Proper structure for many test cases in Python with unittest

    - by mellort
    I am looking into the unittest package, and I'm not sure of the proper way to structure my test cases when writing a lot of them for the same method. Say I have a fact function which calculates the factorial of a number; would this testing file be OK? import unittest class functions_tester(unittest.TestCase): def test_fact_1(self): self.assertEqual(1, fact(1)) def test_fact_2(self): self.assertEqual(2, fact(2)) def test_fact_3(self): self.assertEqual(6, fact(3)) def test_fact_4(self): self.assertEqual(24, fact(4)) def test_fact_5(self): self.assertFalse(1==fact(5)) def test_fact_6(self): self.assertRaises(RuntimeError, fact, -1) #fact(-1) if __name__ == "__main__": unittest.main() It seems sloppy to have so many test methods for one method. I'd like to just have one testing method and put a ton of basic test cases (ie 4! ==24, 3!==6, 5!==120, and so on), but unittest doesn't let you do that. What is the best way to structure a testing file in this scenario? Thanks in advance for the help.

    Read the article

  • Constructing mocks in unit tests

    - by Flynn1179
    Is there any way to have a mock constructed instead of a real instance when testing code that calls a constructor? For example: public class ClassToTest { public void MethodToTest() { MyObject foo = new MyObject(); Console.WriteLine(foo.ToString()); } } In this example, I need to create a unit test that confirms that calling MethodToTest on an instance of ClassToTest will indeed output whatever the result of the ToString() method of a newly created instance of MyObject. I can't see a way of realistically testing the 'ClassToTest' class in isolation; testing this method would actually test the 'myObject.ToString()' method as well as the MethodToTest method.

    Read the article

  • What's a good way to set up a development environment on OS X for ruby, rails, and git?

    - by Ein2015
    I'm going to start development on a web app using ruby, rails, probably either postgres or mysql, and most likely apache. I'll be using a git repository with the master repo on another server. I've searched through stackoverflow and done some Googling... so here's what I have so far... What are your opinions on what's described on this page?: http://robots.thoughtbot.com/post/159805668/2009-rubyists-guide-to-a-mac-os-x-development What about this one?: http://www.buildingwebapps.com/articles/79197-setting-up-rails-on-leopard-mac I don't need helping finding an editor, there's plenty out there (TextMate, TextWrangler, MacVim), but I do need help to make sure I'm setting things up correctly to code, build, and run the web app from my mac. Here's a specific set of scenarios I could use some help on: Testing various versions of rails and/or ruby. Testing performance, vulnerabilities, monitoring queries, etc. Testing different versions of gems. Working on other projects on this same machine.

    Read the article

  • Why does SQL Server consider N'????' and N'???' to be equal?

    - by Aidan Ryan
    We are testing our application for Unicode compatibility and have been selecting random characters outside the Latin character set for testing. On both Latin and Japanese-collated systems the following equality is true (U+3422): N'????' = N'???' but the following is not (U+30C1): N'????' = N'???' This was discovered when a test case using the first example (using U+3422) violated a unique index. Do we need to be more selective about the characters we use for testing? Obviously we don't know the semantic meaning of the above comparisons. Would this behavior be obvious to a native speaker?

    Read the article

  • Flow-Design Cheat Sheet &ndash; Part I, Notation

    - by Ralf Westphal
    You want to avoid the pitfalls of object oriented design? Then this is the right place to start. Use Flow-Oriented Analysis (FOA) and –Design (FOD or just FD for Flow-Design) to understand a problem domain and design a software solution. Flow-Orientation as described here is related to Flow-Based Programming, Event-Based Programming, Business Process Modelling, and even Event-Driven Architectures. But even though “thinking in flows” is not new, I found it helpful to deviate from those precursors for several reasons. Some aim at too big systems for the average programmer, some are concerned with only asynchronous processing, some are even not very much concerned with programming at all. What I was looking for was a design method to help in software projects of any size, be they large or tiny, involing synchronous or asynchronous processing, being local or distributed, running on the web or on the desktop or on a smartphone. That´s why I took ideas from all of the above sources and some additional and came up with Event-Based Components which later got repositioned and renamed to Flow-Design. In the meantime this has generated some discussion (in the German developer community) and several teams have started to work with Flow-Design. Also I´ve conducted quite some trainings using Flow-Orientation for design. The results are very promising. Developers find it much easier to design software using Flow-Orientation than OOAD-based object orientation. Since Flow-Orientation is moving fast and is not covered completely by a single source like a book, demand has increased for at least an overview of the current state of its notation. This page is trying to answer this demand by briefly introducing/describing every notational element as well as their translation into C# source code. Take this as a cheat sheet to put next to your whiteboard when designing software. However, please do not expect any explanation as to the reasons behind Flow-Design elements. Details on why Flow-Design at all and why in this specific way you´ll find in the literature covering the topic. Here´s a resource page on Flow-Design/Event-Based Components, if you´re able to read German. Notation Connected Functional Units The basic element of any FOD are functional units (FU): Think of FUs as some kind of software code block processing data. For the moment forget about classes, methods, “components”, assemblies or whatever. See a FU as an abstract piece of code. Software then consists of just collaborating FUs. I´m using circles/ellipses to draw FUs. But if you like, use rectangles. Whatever suites your whiteboard needs best.   The purpose of FUs is to process input and produce output. FUs are transformational. However, FUs are not called and do not call other FUs. There is no dependency between FUs. Data just flows into a FU (input) and out of it (output). From where and where to is of no concern to a FU.   This way FUs can be concatenated in arbitrary ways:   Each FU can accept input from many sources and produce output for many sinks:   Flows Connected FUs form a flow with a start and an end. Data is entering a flow at a source, and it´s leaving it through a sink. Think of sources and sinks as special FUs which conntect wires to the environment of a network of FUs.   Wiring Details Data is flowing into/out of FUs through wires. This is to allude to electrical engineering which since long has been working with composable parts. Wires are attached to FUs usings pins. They are the entry/exit points for the data flowing along the wires. Input-/output pins currently need not be drawn explicitly. This is to keep designing on a whiteboard simple and quick.   Data flowing is of some type, so wires have a type attached to them. And pins have names. If there is only one input pin and output pin on a FU, though, you don´t need to mention them. The default is Process for a single input pin, and Result for a single output pin. But you´re free to give even single pins different names.   There is a shortcut in use to address a certain pin on a destination FU:   The type of the wire is put in parantheses for two reasons. 1. This way a “no-type” wire can be easily denoted, 2. this is a natural way to describe tuples of data.   To describe how much data is flowing, a star can be put next to the wire type:   Nesting – Boards and Parts If more than 5 to 10 FUs need to be put in a flow a FD starts to become hard to understand. To keep diagrams clutter free they can be nested. You can turn any FU into a flow: This leads to Flow-Designs with different levels of abstraction. A in the above illustration is a high level functional unit, A.1 and A.2 are lower level functional units. One of the purposes of Flow-Design is to be able to describe systems on different levels of abstraction and thus make it easier to understand them. Humans use abstraction/decomposition to get a grip on complexity. Flow-Design strives to support this and make levels of abstraction first class citizens for programming. You can read the above illustration like this: Functional units A.1 and A.2 detail what A is supposed to do. The whole of A´s responsibility is decomposed into smaller responsibilities A.1 and A.2. FU A thus does not do anything itself anymore! All A is responsible for is actually accomplished by the collaboration between A.1 and A.2. Since A now is not doing anything anymore except containing A.1 and A.2 functional units are devided into two categories: boards and parts. Boards are just containing other functional units; their sole responsibility is to wire them up. A is a board. Boards thus depend on the functional units nested within them. This dependency is not of a functional nature, though. Boards are not dependent on services provided by nested functional units. They are just concerned with their interface to be able to plug them together. Parts are the workhorses of flows. They contain the real domain logic. They actually transform input into output. However, they do not depend on other functional units. Please note the usage of source and sink in boards. They correspond to input-pins and output-pins of the board.   Implicit Dependencies Nesting functional units leads to a dependency tree. Boards depend on nested functional units, they are the inner nodes of the tree. Parts are independent, they are the leafs: Even though dependencies are the bane of software development, Flow-Design does not usually draw these dependencies. They are implicitly created by visually nesting functional units. And they are harmless. Boards are so simple in their functionality, they are little affected by changes in functional units they are depending on. But functional units are implicitly dependent on more than nested functional units. They are also dependent on the data types of the wires attached to them: This is also natural and thus does not need to be made explicit. And it pertains mainly to parts being dependent. Since boards don´t do anything with regard to a problem domain, they don´t care much about data types. Their infrastructural purpose just needs types of input/output-pins to match.   Explicit Dependencies You could say, Flow-Orientation is about tackling complexity at its root cause: that´s dependencies. “Natural” dependencies are depicted naturally, i.e. implicitly. And whereever possible dependencies are not even created. Functional units don´t know their collaborators within a flow. This is core to Flow-Orientation. That makes for high composability of functional units. A part is as independent of other functional units as a motor is from the rest of the car. And a board is as dependend on nested functional units as a motor is on a spark plug or a crank shaft. With Flow-Design software development moves closer to how hardware is constructed. Implicit dependencies are not enough, though. Sometimes explicit dependencies make designs easier – as counterintuitive this might sound. So FD notation needs a ways to denote explicit dependencies: Data flows along wires. But data does not flow along dependency relations. Instead dependency relations represent service calls. Functional unit C is depending on/calling services on functional unit S. If you want to be more specific, name the services next to the dependency relation: Although you should try to stay clear of explicit dependencies, they are fundamentally ok. See them as a way to add another dimension to a flow. Usually the functionality of the independent FU (“Customer repository” above) is orthogonal to the domain of the flow it is referenced by. If you like emphasize this by using different shapes for dependent and independent FUs like above. Such dependencies can be used to link in resources like databases or shared in-memory state. FUs can not only produce output but also can have side effects. A common pattern for using such explizit dependencies is to hook a GUI into a flow as the source and/or the sink of data: Which can be shortened to: Treat FUs others depend on as boards (with a special non-FD API the dependent part is connected to), but do not embed them in a flow in the diagram they are depended upon.   Attributes of Functional Units Creation and usage of functional units can be modified with attributes. So far the following have shown to be helpful: Singleton: FUs are by default multitons. FUs in the same of different flows with the same name refer to the same functionality, but to different instances. Think of functional units as objects that get instanciated anew whereever they appear in a design. Sometimes though it´s helpful to reuse the same instance of a functional unit; this is always due to valuable state it holds. Signify this by annotating the FU with a “(S)”. Multiton: FUs on which others depend are singletons by default. This is, because they usually are introduced where shared state comes into play. If you want to change them to be a singletons mark them with a “(M)”. Configurable: Some parts need to be configured before the can do they work in a flow. Annotate them with a “(C)” to have them initialized before any data items to be processed by them arrive. Do not assume any order in which FUs are configured. How such configuration is happening is an implementation detail. Entry point: In each design there needs to be a single part where “it all starts”. That´s the entry point for all processing. It´s like Program.Main() in C# programs. Mark the entry point part with an “(E)”. Quite often this will be the GUI part. How the entry point is started is an implementation detail. Just consider it the first FU to start do its job.   Patterns / Standard Parts If more than a single wire is attached to an output-pin that´s called a split (or fork). The same data is flowing on all of the wires. Remember: Flow-Designs are synchronous by default. So a split does not mean data is processed in parallel afterwards. Processing still happens synchronously and thus one branch after another. Do not assume any specific order of the processing on the different branches after the split.   It is common to do a split and let only parts of the original data flow on through the branches. This effectively means a map is needed after a split. This map can be implicit or explicit.   Although FUs can have multiple input-pins it is preferrable in most cases to combine input data from different branches using an explicit join: The default output of a join is a tuple of its input values. The default behavior of a join is to output a value whenever a new input is received. However, to produce its first output a join needs an input for all its input-pins. Other join behaviors can be: reset all inputs after an output only produce output if data arrives on certain input-pins

    Read the article

  • Windows Azure Service Bus Splitter and Aggregator

    - by Alan Smith
    This article will cover basic implementations of the Splitter and Aggregator patterns using the Windows Azure Service Bus. The content will be included in the next release of the “Windows Azure Service Bus Developer Guide”, along with some other patterns I am working on. I’ve taken the pattern descriptions from the book “Enterprise Integration Patterns” by Gregor Hohpe. I bought a copy of the book in 2004, and recently dusted it off when I started to look at implementing the patterns on the Windows Azure Service Bus. Gregor has also presented an session in 2011 “Enterprise Integration Patterns: Past, Present and Future” which is well worth a look. I’ll be covering more patterns in the coming weeks, I’m currently working on Wire-Tap and Scatter-Gather. There will no doubt be a section on implementing these patterns in my “SOA, Connectivity and Integration using the Windows Azure Service Bus” course. There are a number of scenarios where a message needs to be divided into a number of sub messages, and also where a number of sub messages need to be combined to form one message. The splitter and aggregator patterns provide a definition of how this can be achieved. This section will focus on the implementation of basic splitter and aggregator patens using the Windows Azure Service Bus direct programming model. In BizTalk Server receive pipelines are typically used to implement the splitter patterns, with sequential convoy orchestrations often used to aggregate messages. In the current release of the Service Bus, there is no functionality in the direct programming model that implements these patterns, so it is up to the developer to implement them in the applications that send and receive messages. Splitter A message splitter takes a message and spits the message into a number of sub messages. As there are different scenarios for how a message can be split into sub messages, message splitters are implemented using different algorithms. The Enterprise Integration Patterns book describes the splatter pattern as follows: How can we process a message if it contains multiple elements, each of which may have to be processed in a different way? Use a Splitter to break out the composite message into a series of individual messages, each containing data related to one item. The Enterprise Integration Patterns website provides a description of the Splitter pattern here. In some scenarios a batch message could be split into the sub messages that are contained in the batch. The splitting of a message could be based on the message type of sub-message, or the trading partner that the sub message is to be sent to. Aggregator An aggregator takes a stream or related messages and combines them together to form one message. The Enterprise Integration Patterns book describes the aggregator pattern as follows: How do we combine the results of individual, but related messages so that they can be processed as a whole? Use a stateful filter, an Aggregator, to collect and store individual messages until a complete set of related messages has been received. Then, the Aggregator publishes a single message distilled from the individual messages. The Enterprise Integration Patterns website provides a description of the Aggregator pattern here. A common example of the need for an aggregator is in scenarios where a stream of messages needs to be combined into a daily batch to be sent to a legacy line-of-business application. The BizTalk Server EDI functionality provides support for batching messages in this way using a sequential convoy orchestration. Scenario The scenario for this implementation of the splitter and aggregator patterns is the sending and receiving of large messages using a Service Bus queue. In the current release, the Windows Azure Service Bus currently supports a maximum message size of 256 KB, with a maximum header size of 64 KB. This leaves a safe maximum body size of 192 KB. The BrokeredMessage class will support messages larger than 256 KB; in fact the Size property is of type long, implying that very large messages may be supported at some point in the future. The 256 KB size restriction is set in the service bus components that are deployed in the Windows Azure data centers. One of the ways of working around this size restriction is to split large messages into a sequence of smaller sub messages in the sending application, send them via a queue, and then reassemble them in the receiving application. This scenario will be used to demonstrate the pattern implementations. Implementation The splitter and aggregator will be used to provide functionality to send and receive large messages over the Windows Azure Service Bus. In order to make the implementations generic and reusable they will be implemented as a class library. The splitter will be implemented in the LargeMessageSender class and the aggregator in the LargeMessageReceiver class. A class diagram showing the two classes is shown below. Implementing the Splitter The splitter will take a large brokered message, and split the messages into a sequence of smaller sub-messages that can be transmitted over the service bus messaging entities. The LargeMessageSender class provides a Send method that takes a large brokered message as a parameter. The implementation of the class is shown below; console output has been added to provide details of the splitting operation. public class LargeMessageSender {     private static int SubMessageBodySize = 192 * 1024;     private QueueClient m_QueueClient;       public LargeMessageSender(QueueClient queueClient)     {         m_QueueClient = queueClient;     }       public void Send(BrokeredMessage message)     {         // Calculate the number of sub messages required.         long messageBodySize = message.Size;         int nrSubMessages = (int)(messageBodySize / SubMessageBodySize);         if (messageBodySize % SubMessageBodySize != 0)         {             nrSubMessages++;         }           // Create a unique session Id.         string sessionId = Guid.NewGuid().ToString();         Console.WriteLine("Message session Id: " + sessionId);         Console.Write("Sending {0} sub-messages", nrSubMessages);           Stream bodyStream = message.GetBody<Stream>();         for (int streamOffest = 0; streamOffest < messageBodySize;             streamOffest += SubMessageBodySize)         {                                     // Get the stream chunk from the large message             long arraySize = (messageBodySize - streamOffest) > SubMessageBodySize                 ? SubMessageBodySize : messageBodySize - streamOffest;             byte[] subMessageBytes = new byte[arraySize];             int result = bodyStream.Read(subMessageBytes, 0, (int)arraySize);             MemoryStream subMessageStream = new MemoryStream(subMessageBytes);               // Create a new message             BrokeredMessage subMessage = new BrokeredMessage(subMessageStream, true);             subMessage.SessionId = sessionId;               // Send the message             m_QueueClient.Send(subMessage);             Console.Write(".");         }         Console.WriteLine("Done!");     }} The LargeMessageSender class is initialized with a QueueClient that is created by the sending application. When the large message is sent, the number of sub messages is calculated based on the size of the body of the large message. A unique session Id is created to allow the sub messages to be sent as a message session, this session Id will be used for correlation in the aggregator. A for loop in then used to create the sequence of sub messages by creating chunks of data from the stream of the large message. The sub messages are then sent to the queue using the QueueClient. As sessions are used to correlate the messages, the queue used for message exchange must be created with the RequiresSession property set to true. Implementing the Aggregator The aggregator will receive the sub messages in the message session that was created by the splitter, and combine them to form a single, large message. The aggregator is implemented in the LargeMessageReceiver class, with a Receive method that returns a BrokeredMessage. The implementation of the class is shown below; console output has been added to provide details of the splitting operation.   public class LargeMessageReceiver {     private QueueClient m_QueueClient;       public LargeMessageReceiver(QueueClient queueClient)     {         m_QueueClient = queueClient;     }       public BrokeredMessage Receive()     {         // Create a memory stream to store the large message body.         MemoryStream largeMessageStream = new MemoryStream();           // Accept a message session from the queue.         MessageSession session = m_QueueClient.AcceptMessageSession();         Console.WriteLine("Message session Id: " + session.SessionId);         Console.Write("Receiving sub messages");           while (true)         {             // Receive a sub message             BrokeredMessage subMessage = session.Receive(TimeSpan.FromSeconds(5));               if (subMessage != null)             {                 // Copy the sub message body to the large message stream.                 Stream subMessageStream = subMessage.GetBody<Stream>();                 subMessageStream.CopyTo(largeMessageStream);                   // Mark the message as complete.                 subMessage.Complete();                 Console.Write(".");             }             else             {                 // The last message in the sequence is our completeness criteria.                 Console.WriteLine("Done!");                 break;             }         }                     // Create an aggregated message from the large message stream.         BrokeredMessage largeMessage = new BrokeredMessage(largeMessageStream, true);         return largeMessage;     } }   The LargeMessageReceiver initialized using a QueueClient that is created by the receiving application. The receive method creates a memory stream that will be used to aggregate the large message body. The AcceptMessageSession method on the QueueClient is then called, which will wait for the first message in a message session to become available on the queue. As the AcceptMessageSession can throw a timeout exception if no message is available on the queue after 60 seconds, a real-world implementation should handle this accordingly. Once the message session as accepted, the sub messages in the session are received, and their message body streams copied to the memory stream. Once all the messages have been received, the memory stream is used to create a large message, that is then returned to the receiving application. Testing the Implementation The splitter and aggregator are tested by creating a message sender and message receiver application. The payload for the large message will be one of the webcast video files from http://www.cloudcasts.net/, the file size is 9,697 KB, well over the 256 KB threshold imposed by the Service Bus. As the splitter and aggregator are implemented in a separate class library, the code used in the sender and receiver console is fairly basic. The implementation of the main method of the sending application is shown below.   static void Main(string[] args) {     // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Use the MessagingFactory to create a queue client     QueueClient queueClient = factory.CreateQueueClient(AccountDetails.QueueName);       // Open the input file.     FileStream fileStream = new FileStream(AccountDetails.TestFile, FileMode.Open);       // Create a BrokeredMessage for the file.     BrokeredMessage largeMessage = new BrokeredMessage(fileStream, true);       Console.WriteLine("Sending: " + AccountDetails.TestFile);     Console.WriteLine("Message body size: " + largeMessage.Size);     Console.WriteLine();         // Send the message with a LargeMessageSender     LargeMessageSender sender = new LargeMessageSender(queueClient);     sender.Send(largeMessage);       // Close the messaging facory.     factory.Close();  } The implementation of the main method of the receiving application is shown below. static void Main(string[] args) {       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Use the MessagingFactory to create a queue client     QueueClient queueClient = factory.CreateQueueClient(AccountDetails.QueueName);       // Create a LargeMessageReceiver and receive the message.     LargeMessageReceiver receiver = new LargeMessageReceiver(queueClient);     BrokeredMessage largeMessage = receiver.Receive();       Console.WriteLine("Received message");     Console.WriteLine("Message body size: " + largeMessage.Size);       string testFile = AccountDetails.TestFile.Replace(@"\In\", @"\Out\");     Console.WriteLine("Saving file: " + testFile);       // Save the message body as a file.     Stream largeMessageStream = largeMessage.GetBody<Stream>();     largeMessageStream.Seek(0, SeekOrigin.Begin);     FileStream fileOut = new FileStream(testFile, FileMode.Create);     largeMessageStream.CopyTo(fileOut);     fileOut.Close();       Console.WriteLine("Done!"); } In order to test the application, the sending application is executed, which will use the LargeMessageSender class to split the message and place it on the queue. The output of the sender console is shown below. The console shows that the body size of the large message was 9,929,365 bytes, and the message was sent as a sequence of 51 sub messages. When the receiving application is executed the results are shown below. The console application shows that the aggregator has received the 51 messages from the message sequence that was creating in the sending application. The messages have been aggregated to form a massage with a body of 9,929,365 bytes, which is the same as the original large message. The message body is then saved as a file. Improvements to the Implementation The splitter and aggregator patterns in this implementation were created in order to show the usage of the patterns in a demo, which they do quite well. When implementing these patterns in a real-world scenario there are a number of improvements that could be made to the design. Copying Message Header Properties When sending a large message using these classes, it would be great if the message header properties in the message that was received were copied from the message that was sent. The sending application may well add information to the message context that will be required in the receiving application. When the sub messages are created in the splitter, the header properties in the first message could be set to the values in the original large message. The aggregator could then used the values from this first sub message to set the properties in the message header of the large message during the aggregation process. Using Asynchronous Methods The current implementation uses the synchronous send and receive methods of the QueueClient class. It would be much more performant to use the asynchronous methods, however doing so may well affect the sequence in which the sub messages are enqueued, which would require the implementation of a resequencer in the aggregator to restore the correct message sequence. Handling Exceptions In order to keep the code readable no exception handling was added to the implementations. In a real-world scenario exceptions should be handled accordingly.

    Read the article

  • Creating A SharePoint Parent/Child List Relationship&ndash; SharePoint 2010 Edition

    - by Mark Rackley
    Hey blog readers… It has been almost 2 years since I posted my most read blog on creating a Parent/Child list relationship in SharePoint 2007: Creating a SharePoint List Parent / Child Relationship - Out of the Box And then a year ago I improved on my method and redid the blog post… still for SharePoint 2007: Creating a SharePoint List Parent/Child Relationship – VIDEO REMIX Since then many of you have been asking me how to get this to work in SharePoint 2010, and frankly I have just not had time to look into it. I wish I could have jumped into this sooner, but have just recently began to look at it. Well.. after all this time I have actually come up with two solutions that work, neither of them are as clean as I’d like them to be, but I wanted to get something in your hands that you can start using today. Hopefully in the coming weeks and months I’ll be able to improve upon this further and give you guys some better options. For the most part, the process is identical to the 2007 process, but you have probably found out that the list view web parts in 2010 behave differently, and getting the Parent ID to your new child form can be a pain in the rear (at least that’s what I’ve discovered). Anyway, like I said, I have found a couple of solutions that work. If you know of a better one, please let us know as it bugs me that this not as eloquent as my 2007 implementation. Getting on the same page First thing I’d recommend is recreating this blog: Creating a SharePoint List Parent/Child Relationship – VIDEO REMIX in SharePoint 2010… There are some vague differences, but it’s basically the same…  Here’s a quick video of me doing this in SP 2010: Creating Lists necessary for this blog post Now that you have the lists created, lets set up the New Time form to use a QueryString variable to populate the Parent ID field: Creating parameters in Child’s new item form to set parent ID Did I talk fast enough through both of those videos? Hopefully by now that stuff is old hat to you, but I wanted to make sure everyone could get on the same page.  Okay… let’s get started. Solution 1 – XSLTListView with Javascript This solution is the more elegant of the two, however it does require the use of a little javascript.  The other solution does not use javascript, but it also doesn’t use the pretty new SP 2010 pop-ups.  I’ll let you decide which you like better. The basic steps of this solution are: Inserted a Related Item View Insert a ContentEditorWebPart Insert script in ContentEditorWebPart that pulls the ID from the Query string and calls the method to insert a new item on the child entry form Hide the toolbar from data view to remove “add new item” link. Again, you don’t HAVE to use a CEWP, you could just put the javascript directly in the page using SPD.  Anyway, here is how I did it: Using Related Item View / JavaScript Here’s the JavaScript I used in my Content Editor Web Part: <script type="text/javascript"> function NewTime() { // Get the Query String values and split them out into the vals array var vals = new Object(); var qs = location.search.substring(1, location.search.length); var args = qs.split("&"); for (var i=0; i < args.length; i++) { var nameVal = args[i].split("="); var temp = unescape(nameVal[1]).split('+'); nameVal[1] = temp.join(' '); vals[nameVal[0]] = nameVal[1]; } var issueID = vals["ID"]; //use this to bring up the pretty pop up NewItem2(event,"http://sp2010dev:1234/Lists/Time/NewForm.aspx?IssueID=" + issueID); //use this to open a new window //window.location="http://sp2010dev:1234/Lists/Time/NewForm.aspx?IssueID=" + issueID; } </script> Solution 2 – DataFormWebPart and exact same 2007 Process This solution is a little more of a hack, but it also MUCH more close to the process we did in SP 2007. So, if you don’t mind not having the pretty pop-up and prefer the comforts of what you are used to, you can give this one a try.  The basics steps are: Insert a DataFormWebPart instead of the List Data View Create a Parameter on DataFormWebPart to store “ID” Query String Variable Filter DataFormWebPart using Parameter Insert a link at bottom of DataForm Web part that points to the Child’s new item form and passes in the Parent Id using the Parameter. See.. like I told you, exact same process as in 2007 (except using the DataFormWeb Part). The DataFormWebPart also requires a lot more work to make it look “pretty” but it’s just table rows and cells, and can be configured pretty painlessly.  Here is that video: Using DataForm Web Part One quick update… if you change the link in this solution from: <tr> <td><a href="http://sp2010dev:1234/Lists/Time/NewForm.aspx?IssueID={$IssueIDParam}">Click here to create new item...</a> </td> </tr> to: <tr> <td> <a href="javascript:NewItem2(event,'http://sp2010dev:1234/Lists/Time/NewForm.aspx?IssueID={$IssueIDParam}');">Click here to create new item...</a> </td> </tr> It will open up in the pretty pop up and act the same as solution one… So… both Solutions will now behave the same to the end user. Just depends on which you want to implement. That’s all for now… Remember in both solutions when you have them working, you can make the “IssueID” invisible to users by using the “ms-hidden” class (it’s my previous blog post on the subject up there). That’s basically all there is to it! No pithy or witty closing this time… I am sorry it took me so long to dive into this and I hope your questions are answered. As I become more polished myself I will try to come up with a cleaner solution that will make everyone happy… As always, thanks for taking the time to stop by.

    Read the article

  • How to fix Monogame WP8 Touch Position bug?

    - by Moses Aprico
    Normally below code will result in X:Infinity, Y:Infinity TouchCollection touchState = TouchPanel.GetState(); foreach (TouchLocation t in touchState) { if (t.State == TouchLocationState.Pressed) { vb.ButtonTouched((int)t.Position.X, (int)t.Position.Y); } } Then, I followed this https://github.com/mono/MonoGame/issues/1046 and added below code at the first line in update method. (I still don't know how it's worked, but it fixed the problem) if (_firstUpdate) { typeof(Microsoft.Xna.Framework.Input.Touch.TouchPanel).GetField("_touchScale",System.Reflection.BindingFlags.NonPublic | System.Reflection.BindingFlags.Static).SetValue(null, Vector2.One); _firstUpdate = false; } And then, when I randomly testing something, there are several area that won't read the user touch. The tile with the purple dude is the area which won't receive user input (It don't even detect "Pressed", the TouchCollection.Count = 0) Any idea how to fix this? UPDATE 1 : The second attempt in recompiling The difference is weird. Dunno why the consistent clickable area is just 2/3 area to the left UPDATE 2 : After trying to rotate to landscape and back to portrait to randomly testing, then the outcome become :

    Read the article

  • Data Masking Pack 12.1.0.3 Certified with E-Business Suite 12.1.3

    - by Elke Phelps (Oracle Development)
    I'm pleased to announce the certification of the E-Business Suite 12.1.3 Data Masking Template for the Data Masking Pack with Enterprise Manager Cloud Control 12.1.0.3. You can use the Oracle Data Masking Pack with Oracle Enterprise Manager Grid Control 12c to scramble sensitive data in cloned E-Business Suite environments.     You may scramble data in E-Business Suite cloned environments with EM12.1.0.3 using the following template: E-Business Suite 12.1.3 Data Masking Template for Data Masking Pack with EM12c (Patch 18462641) What does data masking do in E-Business Suite environments? Application data masking does the following: De-identify the data:  Scramble identifiers of individuals, also known as personally identifiable information or PII.  Examples include information such as name, account, address, location, and driver's license number. Mask sensitive data:  Mask data that, if associated with personally identifiable information (PII), would cause privacy concerns.  Examples include compensation, health and employment information.   Maintain data validity:  Provide a fully functional application.  How can EBS customers use data masking? The Oracle E-Business Suite Template for Data Masking Pack can be used in situations where confidential or regulated data needs to be shared with other non-production users who need access to some of the original data, but not necessarily every table.  Examples of non-production users include internal application developers or external business partners such as offshore testing companies, suppliers or customers.  Due to data dependencies, scrambling E-Business Suite data is not a trivial task.  The data needs to be scrubbed in such a way that allows the application to continue to function. The template works with the Oracle Data Masking Pack and Oracle Enterprise Manager to obscure sensitive E-Business Suite information that is copied from production to non-production environments.  The Oracle E-Business Suite Template for Data Masking Pack is applied to a non-production environment with the Enterprise Manager Grid Control Data Masking Pack.  When applied, the Oracle E-Business Suite Template for Data Masking Pack will create an irreversibly scrambled version of your production database for development and testing. Is there a charge for this? Yes. You must purchase licenses for the Oracle Data Masking Pack to use the Oracle E-Business Suite 12.1.3 template. The Oracle E-Business Suite 12.1.3 Template for the Data Masking Pack is included with the Oracle Data Masking Pack license.  You can contact your Oracle account manager for more details about licensing. References Additional details and requirements are provided in the following My Oracle Support Note: Using Oracle E-Business Suite Release 12.1.3 Template for the Data Masking Pack with Oracle Enterprise Manager 12.1 Data Masking Tool (Note 1481916.1) Masking Sensitive Data in the Oracle Database Real Application Testing User's Guide 11g Release 2 (11.2) Related Articles Scrambling Sensitive Data in E-Business Suite E-Business Suite 12.1.3 Data Masking Certified with Enterprise Manager 12c

    Read the article

  • TestDriven.NET - Free unit test tool for Visual Studio

    - by Guilherme Cardoso
    Developers that use unit testing are familiar with Resharper and his plugin for Unit Testing. For those that like me, don't have a great pc hardware (Pentium 4, 3ghz, 1GB ram) the Resharper can be really slow, and affect the performance of pc. That's why i use TestDriven.NET TestDriven.NET is a freeware license tool (there are others licenses for this product) that gives us the possibility to run unit tests with this plugin, that's integrated with Visual Studio. You can check some screenshots here: http://www.testdriven.net/Screenshots.aspx It's compatible with: NUnit, MbUnit, MSTest, NCover, Reflector, TypeMock, dotTrace and MSBee. More information and free download here: http://www.testdriven.net

    Read the article

  • AVTest.org Results for March – April 2014 now Available

    - by Akemi Iwaya
    Do you like to keep up with how well the various anti-virus programs are doing, or just want to see how well your favorite one did? Then you will definitely want to have a look at the latest batch of test results from AVTest.org. The results for testing during March and April are now available for viewing at your leisure. One thing to keep in mind when viewing the latest set of results: the testing was performed on Windows 8.1 during this round. Current security products for Windows 8.1 put to the test [AVTest.org] Note: When you visit the page, you may need to scroll down just a tiny bit in order to see the results listing. [via ZDNet News]

    Read the article

  • T-4 Templates for ASP.NET Web Form Databound Control Friendly Logical Layers

    - by Mohammad Ashraful Alam
    I just released an open source project at codeplex, which includes a set of T-4 templates that will enable you to build ASP.NET Web Form Data Bound controls friendly testable logical layer based on Entity Framework 4.0 with just few clicks! In this open source project you will get Entity Framework 4.0 based T-4 templates for following types of logical layers: Data Access Layer: Entity Framework 4.0 provides excellent ORM data access layer. It also includes support for T-4 templates, as built-in code generation strategy in Visual Studio 2010, where we can customize default structure of data access layer based on Entity Framework. default structure of data access layer has been enhanced to get support for mock testing in Entity Framework 4.0 object model. Business Logic Layer: ASP.NET web form based data bound control friendly business logic layer, which will enable you few clicks to build data bound web applications on top of ASP.NET Web Form and Entity Framework 4.0 quickly with great support of mock testing. Download it to make your web development productive. Enjoy!

    Read the article

  • How to make FN keys working on Asus G75 laptop

    - by c_inconnu
    I just bought a Asus G75 and I cannot make the FN keys working. I only found how to control the brightness (http://askubuntu.com/questions/126441/brightness-controls-doesnt-work-on-a-macbook-pro-5-5-ubuntu-12-04-lts) but the other keys are not recognized. I didn't know much things about key binding before digging, but I tried : testing with xev : no output... testing with keymap : no output... modprobe asus-laptop : FATAL: Error inserting asus_laptop (/lib/modules/3.2.0-25-generic/kernel/drivers/platform/x86/asus-laptop.ko): No such device (not sure what that means) modprobe asus-nb-wmi : FATAL: Error inserting asus_nb_wmi (/lib/modules/3.2.0-25-generic/drivers/platform/x86/asus-nb-wmi.ko): No such device (not sure what that means) Thanks for your advice David

    Read the article

  • VS 2010: SP1

    - by xamlnotes
    I posted this yesterday but had the wrong link at the bottom. SP1 for VS 2010 just hit the web today. Check it out at http://support.microsoft.com/kb/983509/en-usHTH This should fix lots of big and little things such as startup time, bugs and more. Plus there are tons of features in there too for web, xaml, and other application types.  I am really excited about the unit testing and load testing features that were added. Theres also an update for .Net 4 framework. And check out the new Silverlight performance wizard. Lots of really cool stuff. Get it today! For now I looks like only MSDN subscribers can download it. Download it from here: http://msdn.microsoft.com/en-us/vstudio/default

    Read the article

  • VS 2010: SP1

    - by xamlnotes
    SP1 for VS 2010 just hit the web today. Check it out at http://support.microsoft.com/kb/983509/en-usHTH This should fix lots of big and little things such as startup time, bugs and more. Plus there are tons of features in there too for web, xaml, and other application types.  I am really excited about the unit testing and load testing features that were added. Theres also an update for .Net 4 framework. And check out the new Silverlight performance wizard. Lots of really cool stuff. Get it today! Download it from here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=11ea69cb-cf12-4842-a3d7-b32a1e5642e2

    Read the article

  • Finding an alert in the middle of your javascript

    - by Ariel Popovsky
    I was debugging a script injection issue the other day using some sample code with an alert in it. The alert was popping out meaning the code got executed leaving open the possibility for a hacker to put there some nasty malicious code. I knew my alert was being executed but didn’t know how. So I tried something that worked perfectly for this problem, replaced the native alert function with my own one. All I had to do in Chrome was open the javascript console and type: alert = function(msg){ console.log(msg); console.trace(); }; The next time the malicious code was executed, instead of the regular alert I got something similar to this:   alert("testing") testing console.trace() alert:2 (anonymous function):2 InjectedScript._evaluateOn:312 InjectedScript._evaluateAndWrap:294 InjectedScript.evaluate:288 undefined In my case I was able to see what was going on and find the offending function. This was tested on Firebug in Firefox and it works as.

    Read the article

  • Writing the tests for FluentPath

    Writing the tests for FluentPath is a challenge. The library is a wrapper around a legacy API (System.IO) that wasnt designed to be easily testable. If it were more testable, the sensible testing methodology would be to tell System.IO to act against a mock file system, which would enable me to verify that my code is doing the expected file system operations without having to manipulate the actual, physical file system: what we are testing here is FluentPath, not System.IO. Unfortunately, that...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • How can I merge two SubVersion branches to one working copy without committing?

    - by Eric Belair
    My current SubVersion workflow is like so: The trunk is used to make small content changes and bug fixes to the main source code. Branches are used for adding/editing enhancements and projects. So, trunk changes are made, tested, committed and deployed pretty quickly. Whereas, enhancements and projects need additional user testing and approval. At time, I have two branches that need testing and approval at the same time. I don't want to merge to the trunk and commit until the changes are fully tested and approved. What I need to do is merge both branches to one working copy without any commits. I am using Tortoise SVN, and when I try to merge the second branch, I get an error message: Cannot merge into a working copy that has local modifications Is there a way that I can do this without committing either merge?

    Read the article

  • Towards Database Continuous Delivery – What Next after Continuous Integration? A Checklist

    - by Ben Rees
    .dbd-banner p{ font-size:0.75em; padding:0 0 10px; margin:0 } .dbd-banner p span{ color:#675C6D; } .dbd-banner p:last-child{ padding:0; } @media ALL and (max-width:640px){ .dbd-banner{ background:#f0f0f0; padding:5px; color:#333; margin-top: 5px; } } -- Database delivery patterns & practices STAGE 4 AUTOMATED DEPLOYMENT If you’ve been fortunate enough to get to the stage where you’ve implemented some sort of continuous integration process for your database updates, then hopefully you’re seeing the benefits of that investment – constant feedback on changes your devs are making, advanced warning of data loss (prior to the production release on Saturday night!), a nice suite of automated tests to check business logic, so you know it’s going to work when it goes live, and so on. But what next? What can you do to improve your delivery process further, moving towards a full continuous delivery process for your database? In this article I describe some of the issues you might need to tackle on the next stage of this journey, and how to plan to overcome those obstacles before they appear. Our Database Delivery Learning Program consists of four stages, really three – source controlling a database, running continuous integration processes, then how to set up automated deployment (the middle stage is split in two – basic and advanced continuous integration, making four stages in total). If you’ve managed to work through the first three of these stages – source control, basic, then advanced CI, then you should have a solid change management process set up where, every time one of your team checks in a change to your database (whether schema or static reference data), this change gets fully tested automatically by your CI server. But this is only part of the story. Great, we know that our updates work, that the upgrade process works, that the upgrade isn’t going to wipe our 4Tb of production data with a single DROP TABLE. But – how do you get this (fully tested) release live? Continuous delivery means being always ready to release your software at any point in time. There’s a significant gap between your latest version being tested, and it being easily releasable. Just a quick note on terminology – there’s a nice piece here from Atlassian on the difference between continuous integration, continuous delivery and continuous deployment. This piece also gives a nice description of the benefits of continuous delivery. These benefits have been summed up by Jez Humble at Thoughtworks as: “Continuous delivery is a set of principles and practices to reduce the cost, time, and risk of delivering incremental changes to users” There’s another really useful piece here on Simple-Talk about the need for continuous delivery and how it applies to the database written by Phil Factor – specifically the extra needs and complexities of implementing a full CD solution for the database (compared to just implementing CD for, say, a web app). So, hopefully you’re convinced of moving on the the next stage! The next step after CI is to get some sort of automated deployment (or “release management”) process set up. But what should I do next? What do I need to plan and think about for getting my automated database deployment process set up? Can’t I just install one of the many release management tools available and hey presto, I’m ready! If only it were that simple. Below I list some of the areas that it’s worth spending a little time on, where a little planning and prep could go a long way. It’s also worth pointing out, that this should really be an evolving process. Depending on your starting point of course, it can be a long journey from your current setup to a full continuous delivery pipeline. If you’ve got a CI mechanism in place, you’re certainly a long way down that path. Nevertheless, we’d recommend evolving your process incrementally. Pages 157 and 129-141 of the book on Continuous Delivery (by Jez Humble and Dave Farley) have some great guidance on building up a pipeline incrementally: http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912 For now, in this post, we’ll look at the following areas for your checklist: You and Your Team Environments The Deployment Process Rollback and Recovery Development Practices You and Your Team It’s a cliché in the DevOps community that “It’s not all about processes and tools, really it’s all about a culture”. As stated in this DevOps report from Puppet Labs: “DevOps processes and tooling contribute to high performance, but these practices alone aren’t enough to achieve organizational success. The most common barriers to DevOps adoption are cultural: lack of manager or team buy-in, or the value of DevOps isn’t understood outside of a specific group”. Like most clichés, there’s truth in there – if you want to set up a database continuous delivery process, you need to get your boss, your department, your company (if relevant) onside. Why? Because it’s an investment with the benefits coming way down the line. But the benefits are huge – for HP, in the book A Practical Approach to Large-Scale Agile Development: How HP Transformed LaserJet FutureSmart Firmware, these are summarized as: -2008 to present: overall development costs reduced by 40% -Number of programs under development increased by 140% -Development costs per program down 78% -Firmware resources now driving innovation increased by a factor of 8 (from 5% working on new features to 40% But what does this mean? It means that, when moving to the next stage, to make that extra investment in automating your deployment process, it helps a lot if everyone is convinced that this is a good thing. That they understand the benefits of automated deployment and are willing to make the effort to transform to a new way of working. Incidentally, if you’re ever struggling to convince someone of the value I’d strongly recommend just buying them a copy of this book – a great read, and a very practical guide to how it can really work at a large org. I’ve spoken to many customers who have implemented database CI who describe their deployment process as “The point where automation breaks down. Up to that point, the CI process runs, untouched by human hand, but as soon as that’s finished we revert to manual.” This deployment process can involve, for example, a DBA manually comparing an environment (say, QA) to production, creating the upgrade scripts, reading through them, checking them against an Excel document emailed to him/her the night before, turning to page 29 in his/her notebook to double-check how replication is switched off and on for deployments, and so on and so on. Painful, error-prone and lengthy. But the point is, if this is something like your deployment process, telling your DBA “We’re changing everything you do and your toolset next week, to automate most of your role – that’s okay isn’t it?” isn’t likely to go down well. There’s some work here to bring him/her onside – to explain what you’re doing, why there will still be control of the deployment process and so on. Or of course, if you’re the DBA looking after this process, you have to do a similar job in reverse. You may have researched and worked out how you’d like to change your methodology to start automating your painful release process, but do the dev team know this? What if they have to start producing different artifacts for you? Will they be happy with this? Worth talking to them, to find out. As well as talking to your DBA/dev team, the other group to get involved before implementation is your manager. And possibly your manager’s manager too. As mentioned, unless there’s buy-in “from the top”, you’re going to hit problems when the implementation starts to get rocky (and what tool/process implementations don’t get rocky?!). You need to have support from someone senior in your organisation – someone you can turn to when you need help with a delayed implementation, lack of resources or lack of progress. Actions: Get your DBA involved (or whoever looks after live deployments) and discuss what you’re planning to do or, if you’re the DBA yourself, get the dev team up-to-speed with your plans, Get your boss involved too and make sure he/she is bought in to the investment. Environments Where are you going to deploy to? And really this question is – what environments do you want set up for your deployment pipeline? Assume everyone has “Production”, but do you have a QA environment? Dedicated development environments for each dev? Proper pre-production? I’ve seen every setup under the sun, and there is often a big difference between “What we want, to do continuous delivery properly” and “What we’re currently stuck with”. Some of these differences are: What we want What we’ve got Each developer with their own dedicated database environment A single shared “development” environment, used by everyone at once An Integration box used to test the integration of all check-ins via the CI process, along with a full suite of unit-tests running on that machine In fact if you have a CI process running, you’re likely to have some sort of integration server running (even if you don’t call it that!). Whether you have a full suite of unit tests running is a different question… Separate QA environment used explicitly for manual testing prior to release “We just test on the dev environments, or maybe pre-production” A proper pre-production (or “staging”) box that matches production as closely as possible Hopefully a pre-production box of some sort. But does it match production closely!? A production environment reproducible from source control A production box which has drifted significantly from anything in source control The big question is – how much time and effort are you going to invest in fixing these issues? In reality this just involves figuring out which new databases you’re going to create and where they’ll be hosted – VMs? Cloud-based? What about size/data issues – what data are you going to include on dev environments? Does it need to be masked to protect access to production data? And often the amount of work here really depends on whether you’re working on a new, greenfield project, or trying to update an existing, brownfield application. There’s a world if difference between starting from scratch with 4 or 5 clean environments (reproducible from source control of course!), and trying to re-purpose and tweak a set of existing databases, with all of their surrounding processes and quirks. But for a proper release management process, ideally you have: Dedicated development databases, An Integration server used for testing continuous integration and running unit tests. [NB: This is the point at which deployments are automatic, without human intervention. Each deployment after this point is a one-click (but human) action], QA – QA engineers use a one-click deployment process to automatically* deploy chosen releases to QA for testing, Pre-production. The environment you use to test the production release process, Production. * A note on the use of the word “automatic” – when carrying out automated deployments this does not mean that the deployment is happening without human intervention (i.e. that something is just deploying over and over again). It means that the process of carrying out the deployment is automatic in that it’s not a person manually running through a checklist or set of actions. The deployment still requires a single-click from a user. Actions: Get your environments set up and ready, Set access permissions appropriately, Make sure everyone understands what the environments will be used for (it’s not a “free-for-all” with all environments to be accessed, played with and changed by development). The Deployment Process As described earlier, most existing database deployment processes are pretty manual. The following is a description of a process we hear very often when we ask customers “How do your database changes get live? How does your manual process work?” Check pre-production matches production (use a schema compare tool, like SQL Compare). Sometimes done by taking a backup from production and restoring in to pre-prod, Again, use a schema compare tool to find the differences between the latest version of the database ready to go live (i.e. what the team have been developing). This generates a script, User (generally, the DBA), reviews the script. This often involves manually checking updates against a spreadsheet or similar, Run the script on pre-production, and check there are no errors (i.e. it upgrades pre-production to what you hoped), If all working, run the script on production.* * this assumes there’s no problem with production drifting away from pre-production in the interim time period (i.e. someone has hacked something in to the production box without going through the proper change management process). This difference could undermine the validity of your pre-production deployment test. Red Gate is currently working on a free tool to detect this problem – sign up here at www.sqllighthouse.com, if you’re interested in testing early versions. There are several variations on this process – some better, some much worse! How do you automate this? In particular, step 3 – surely you can’t automate a DBA checking through a script, that everything is in order!? The key point here is to plan what you want in your new deployment process. There are so many options. At one extreme, pure continuous deployment – whenever a dev checks something in to source control, the CI process runs (including extensive and thorough testing!), before the deployment process keys in and automatically deploys that change to the live box. Not for the faint hearted – and really not something we recommend. At the other extreme, you might be more comfortable with a semi-automated process – the pre-production/production matching process is automated (with an error thrown if these environments don’t match), followed by a manual intervention, allowing for script approval by the DBA. One he/she clicks “Okay, I’m happy for that to go live”, the latter stages automatically take the script through to live. And anything in between of course – and other variations. But we’d strongly recommended sitting down with a whiteboard and your team, and spending a couple of hours mapping out “What do we do now?”, “What do we actually want?”, “What will satisfy our needs for continuous delivery, but still maintaining some sort of continuous control over the process?” NB: Most of what we’re discussing here is about production deployments. It’s important to note that you will also need to map out a deployment process for earlier environments (for example QA). However, these are likely to be less onerous, and many customers opt for a much more automated process for these boxes. Actions: Sit down with your team and a whiteboard, and draw out the answers to the questions above for your production deployments – “What do we do now?”, “What do we actually want?”, “What will satisfy our needs for continuous delivery, but still maintaining some sort of continuous control over the process?” Repeat for earlier environments (QA and so on). Rollback and Recovery If only every deployment went according to plan! Unfortunately they don’t – and when things go wrong, you need a rollback or recovery plan for what you’re going to do in that situation. Once you move in to a more automated database deployment process, you’re far more likely to be deploying more frequently than before. No longer once every 6 months, maybe now once per week, or even daily. Hence the need for a quick rollback or recovery process becomes paramount, and should be planned for. NB: These are mainly scenarios for handling rollbacks after the transaction has been committed. If a failure is detected during the transaction, the whole transaction can just be rolled back, no problem. There are various options, which we’ll explore in subsequent articles, things like: Immediately restore from backup, Have a pre-tested rollback script (remembering that really this is a “roll-forward” script – there’s not really such a thing as a rollback script for a database!) Have fallback environments – for example, using a blue-green deployment pattern. Different options have pros and cons – some are easier to set up, some require more investment in infrastructure; and of course some work better than others (the key issue with using backups, is loss of the interim transaction data that has been added between the failed deployment and the restore). The best mechanism will be primarily dependent on how your application works and how much you need a cast-iron failsafe mechanism. Actions: Work out an appropriate rollback strategy based on how your application and business works, your appetite for investment and requirements for a completely failsafe process. Development Practices This is perhaps the more difficult area for people to tackle. The process by which you can deploy database updates is actually intrinsically linked with the patterns and practices used to develop that database and linked application. So you need to decide whether you want to implement some changes to the way your developers actually develop the database (particularly schema changes) to make the deployment process easier. A good example is the pattern “Branch by abstraction”. Explained nicely here, by Martin Fowler, this is a process that can be used to make significant database changes (e.g. splitting a table) in a step-wise manner so that you can always roll back, without data loss – by making incremental updates to the database backward compatible. Slides 103-108 of the following slidedeck, from Niek Bartholomeus explain the process: https://speakerdeck.com/niekbartho/orchestration-in-meatspace As these slides show, by making a significant schema change in multiple steps – where each step can be rolled back without any loss of new data – this affords the release team the opportunity to have zero-downtime deployments with considerably less stress (because if an increment goes wrong, they can roll back easily). There are plenty more great patterns that can be implemented – the book Refactoring Databases, by Scott Ambler and Pramod Sadalage is a great read, if this is a direction you want to go in: http://www.amazon.com/Refactoring-Databases-Evolutionary-paperback-Addison-Wesley/dp/0321774515 But the question is – how much of this investment are you willing to make? How often are you making significant schema changes that would require these best practices? Again, there’s a difference here between migrating old projects and starting afresh – with the latter it’s much easier to instigate best practice from the start. Actions: For your business, work out how far down the path you want to go, amending your database development patterns to “best practice”. It’s a trade-off between implementing quality processes, and the necessity to do so (depending on how often you make complex changes). Socialise these changes with your development group. No-one likes having “best practice” changes imposed on them, so good to introduce these ideas and the rationale behind them early.   Summary The next stages of implementing a continuous delivery pipeline for your database changes (once you have CI up and running) require a little pre-planning, if you want to get the most out of the work, and for the implementation to go smoothly. We’ve covered some of the checklist of areas to consider – mainly in the areas of “Getting the team ready for the changes that are coming” and “Planning our your pipeline, environments, patterns and practices for development”, though there will be more detail, depending on where you’re coming from – and where you want to get to. This article is part of our database delivery patterns & practices series on Simple Talk. Find more articles for version control, automated testing, continuous integration & deployment.

    Read the article

  • Programming Test

    - by Travis Webb
    We are looking to hire some more Java developers onto our team, and plan to test their coding abilities with a test. We currently use a web-based Java test that automatically compiles and runs the code, but it is very flaky and we're having problems with our candidates losing their work on this site. Not only is this frustrating for everyone, it makes us look like we don't know what we're doing. Is there a popular testing suite out there? What do you use? I'm not interested in dogmatic arguments on whether or not I should be testing my candidates in this way, I'm looking for a tool that will help me do it.

    Read the article

< Previous Page | 161 162 163 164 165 166 167 168 169 170 171 172  | Next Page >