Search Results

Search found 56609 results on 2265 pages for 'asp net deployment'.

Page 18/2265 | < Previous Page | 14 15 16 17 18 19 20 21 22 23 24 25  | Next Page >

  • How do you handle EF Data Contexts combined with asp.net custom membership/role providers

    - by KallDrexx
    I can't seem to get my head around how to implement a custom membership provider with Entity Framework data contexts into my asp.net MVC application. I understand how to create a custom membership/role provider by itself (using this as a reference). Here's my current setup: As of now I have a repository factory interface that allows different repository factories to be created (right now I only have a factory for EF repositories and and in memory repositories). The repository factory looks like this: public class EFRepositoryFactory : IRepositoryFactory { private EntitiesContainer _entitiesContext; /// <summary> /// Constructor that generates the necessary object contexts /// </summary> public EFRepositoryFactory() { _entitiesContext = new EntitiesContainer(); } /// <summary> /// Generates a new entity framework repository for the specified entity type /// </summary> /// <typeparam name="T">Type of entity to generate a repository for </typeparam> /// <returns>Returns an EFRepository</returns> public IRepository<T> GenerateRepository<T>() where T : class { return new EFRepository<T>(_entitiesContext); } } Controllers are passed an EF repository factory via castle Windsor. The controller then creates all the service/business layer objects it requires and passes in the repository factory into it. This means that all service objects are using the same EF data contexts and I do not have to worry about objects being used in more than one data context (which of course is not allowed and causes an exception). As of right now I am trying to decide how to generate my user and authorization service layers, and have run against a design roadblock. The User/Authization service will be a central class that handles the logic for logging in, changing user details, managing roles and determining what users have access to what. The problem is, using the current methodology the asp.net mvc controllers will initialize it's own EF repository factory via Windsor and the asp.net membership/role provider will have to initialize it's own EF repository factory. This means that each part of the site will then have it's own data context. This seems to mean that if asp.net authenticates a user, that user's object will be in the membership provider's data context and thus if I try to retrieve that user object in the service layer (say to change the user's name) I will get a duplication exception. I thought of making the repository factory class a singleton, but I don't see a way for that to work with castle Windsor. How do other people handle asp.net custom providers in a MVC (or any n-tier) architecture without having object duplication issues?

    Read the article

  • Tips on Migrating from AquaLogic .NET Accelerator to WebCenter WSRP Producer for .NET

    - by user647124
    This year I embarked on a journey to migrate a group of ASP.NET web applications developed to integrate with WebLogic Portal 9.2 via the AquaLogic® Interaction .NET Application Accelerator 1.0 to instead use the Oracle WebCenter WSRP Producer for .NET and integrated with WebLogic Portal 10.3.4. It has been a very winding path and this blog entry is intended to share both the lessons learned and relevant approaches that led to those learnings. Like most journeys of discovery, it was not a direct path, and there are notes to let you know when it is practical to skip a section if you are in a hurry to get from here to there. For the Curious From the perspective of necessity, this section would be better at the end. If it were there, though, it would probably be read by far fewer people, including those that are actually interested in these types of sections. Those in a hurry may skip past and be none the worst for it in dealing with the hands-on bits of performing a migration from .NET Accelerator to WSRP Producer. For others who want to talk about why they did what they did after they did it, or just want to know for themselves, enjoy. A Brief (and edited) History of the WSRP for .NET Technologies (as Relevant to the this Post) Note: This section is for those who are curious about why the migration path is not as simple as many other Oracle technologies. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The currently deployed architecture that was to be migrated and upgraded achieved initial integration between .NET and J2EE over the WSRP protocol through the use of The AquaLogic Interaction .NET Application Accelerator. The .NET Accelerator allowed the applications that were written in ASP.NET and deployed on a Microsoft Internet Information Server (IIS) to interact with a WebLogic Portal application deployed on a WebLogic (J2EE application) Server (both version 9.2, the state of the art at the time of its creation). At the time this architectural decision for the application was made, both the AquaLogic and WebLogic brands were owned by BEA Systems. The AquaLogic brand included products acquired by BEA through the acquisition of Plumtree, whose flagship product was a portal platform available in both J2EE and .NET versions. As part of this dual technology support an adaptor was created to facilitate the use of WSRP as a communication protocol where customers wished to integrate components from both versions of the Plumtree portal. The adapter evolved over several product generations to include a broad array of both standard and proprietary WSRP integration capabilities. Later, BEA Systems was acquired by Oracle. Over the course of several years Oracle has acquired a large number of portal applications and has taken the strategic direction to migrate users of these myriad (and formerly competitive) products to the Oracle WebCenter technology stack. As part of Oracle’s strategic technology roadmap, older portal products are being schedule for end of life, including the portal products that were part of the BEA acquisition. The .NET Accelerator has been modified over a very long period of time with features driven by users of that product and developed under three different vendors (each a direct competitor in the same solution space prior to merger). The Oracle WebCenter WSRP Producer for .NET was introduced much more recently with the key objective to specifically address the needs of the WebCenter customers developing solutions accessible through both J2EE and .NET platforms utilizing the WSRP specifications. The Oracle Product Development Team also provides these insights on the drivers for developing the WSRP Producer: ***************************************** Support for ASP.NET AJAX. Controls using the ASP.NET AJAX script manager do not function properly in the Application Accelerator for .NET. Support 2 way SSL in WLP. This was not possible with the proxy/bridge set up in the existing Application Accelerator for .NET. Allow developers to code portlets (Web Parts) using the .NET framework rather than a proprietary framework. Developers had to use the Application Accelerator for .NET plug-ins to Visual Studio to manage preferences and profile data. This is now replaced with the .NET Framework Personalization (for preferences) and Profile providers. The WSRP Producer for .NET was created as a new way of developing .NET portlets. It was never designed to be an upgrade path for the Application Accelerator for .NET. .NET developers would create new .NET portlets with the WSRP Producer for .NET and leave any existing .NET portlets running in the Application Accelerator for .NET. ***************************************** The advantage to creating a new solution for WSRP is a product that is far easier for Oracle to maintain and support which in turn improves quality, reliability and maintainability for their customers. No changes to J2EE applications consuming the WSRP portlets previously rendered by the.NET Accelerator is required to migrate from the Aqualogic WSRP solution. For some customers using the .NET Accelerator the challenge is adapting their current .NET applications to work with the WSRP Producer (or any other WSRP adapter as they are proprietary by nature). Part of this adaptation is the need to deploy the .NET applications as a child to the WSRP producer web application as root. Differences between .NET Accelerator and WSRP Producer Note: This section is for those who are curious about why the migration is not as pluggable as something such as changing security providers in WebLogic Server. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The basic terminology used to describe the participating applications in a WSRP environment are the same when applied to either the .NET Accelerator or the WSRP Producer: Producer and Consumer. In both cases the .NET application serves as what is referred to as a WSRP environment as the Producer. The difference lies in how the two adapters create the WSRP translation of the .NET application. The .NET Accelerator, as the name implies, is meant to serve as a quick way of adding WSRP capability to a .NET application. As such, at a high level, the .NET Accelerator behaves as a proxy for requests between the .NET application and the WSRP Consumer. A WSRP request is sent from the consumer to the .NET Accelerator, the.NET Accelerator transforms this request into an ASP.NET request, receives the response, then transforms the response into a WSRP response. The .NET Accelerator is deployed as a stand-alone application on IIS. The WSRP Producer is deployed as a parent application on IIS and all ASP.NET modules that will be made available over WSRP are deployed as children of the WSRP Producer application. In this manner, the WSRP Producer acts more as a Request Filter than a proxy in the WSRP transactions between Producer and Consumer. Highly Recommended Enabling Logging Note: You can skip this section now, but you will most likely want to come back to it later, so why not just read it now? Logging is very helpful in tracking down the causes of any anomalies during testing of migrated portlets. To enable the WSRP Producer logging, update the Application_Start method in the Global.asax.cs for your .NET application by adding log4net.Config.XmlConfigurator.Configure(); IIS logs will usually (in a standard configuration) be in a sub folder under C:\WINDOWS\system32\LogFiles\W3SVC. WSRP Producer logs will be found at C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\Logs\WSRPProducer.log InputTrace.webinfo and OutputTrace.webinfo are located under C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault and can be useful in debugging issues related to markup transformations. Things You Must Do Merge Web.Config Note: If you have been skipping all the sections that you can, now is the time to stop and pay attention J Because the existing .NET application will become a sub-application to the WSRP Producer, you will want to merge required settings from the existing Web.Config to the one in the WSRP Producer. Use the WSRP Producer Master Page The Master Page installed for the WSRP Producer provides common, hiddenform fields and JavaScripts to facilitate portlet instance management and display configuration when the child page is being rendered over WSRP. You add the Master Page by including it in the <@ Page declaration with MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" . You then replace: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > <HTML> <HEAD> With <asp:Content ID="ContentHead1" ContentPlaceHolderID="wsrphead" Runat="Server"> And </HEAD> <body> <form id="theForm" method="post" runat="server"> With </asp:Content> <asp:Content ID="ContentBody1" ContentPlaceHolderID="Main" Runat="Server"> And finally </form> </body> </HTML> With </asp:Content> In the event you already use Master Pages, adapt your existing Master Pages to be sub masters. See Nested ASP.NET Master Pages for a detailed reference of how to do this. It Happened to Me, It Might Happen to You…Or Not Watch for Use of Session or Request in OnInit In the event the .NET application being modified has pages developed to assume the user has been authenticated in an earlier page request there may be direct or indirect references in the OnInit method to request or session objects that may not have been created yet. This will vary from application to application, so the recommended approach is to test first. If there is an issue with a page running as a WSRP portlet then check for potential references in the OnInit method (including references by methods called within OnInit) to session or request objects. If there are, the simplest solution is to create a new method and then call that method once the necessary object(s) is fully available. I find doing this at the start of the Page_Load method to be the simplest solution. Case Sensitivity .NET languages are not case sensitive, but Java is. This means it is possible to have many variations of SRC= and src= or .JPG and .jpg. The preferred solution is to make these mark up instances all lower case in your .NET application. This will allow the default Rewriter rules in wsrp-producer.xml to work as is. If this is not practical, then make duplicates of any rules where an issue is occurring due to upper or mixed case usage in the .NET application markup and match the case in use with the duplicate rule. For example: <RewriterRule> <LookFor>(href=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> May need to be duplicated as: <RewriterRule> <LookFor>(HREF=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> While it is possible to write a regular expression that will handle mixed case usage, it would be long and strenous to test and maintain, so the recommendation is to use duplicate rules. Is it Still Relative? Some .NET applications base relative paths with a fixed root location. With the introduction of the WSRP Producer, the root has moved up one level. References to ~/ will need to be updated to ~/portlets and many ../ paths will need another ../ in front. I Can See You But I Can’t Find You This issue was first discovered while debugging modules with code that referenced the form on a page from the code-behind by name and/or id. The initial error presented itself as run-time error that was difficult to interpret over WSRP but seemed clear when run as straight ASP.NET as it indicated that the object with the form name did not exist. Since the form name was no longer valid after implementing the WSRP Master Page, the likely fix seemed to simply update the references in the code. However, as the WSRP Master Page is external to the code, a compile time error resulted: Error      155         The name 'form1' does not exist in the current context                C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\portlets\legacywebsite\module\Screens \Reporting.aspx.cs                51           52           legacywebsite.module Much hair-pulling research later it was discovered that it was the use of the FindControl method causing the issue. FindControl doesn’t work quite as expected once a Master Page has been introduced as the controls become embedded in controls, require a recursion to find them that is not part of the FindControl method. In code where the page form is referenced by name, there are two steps to the solution. First, the form needs to be referenced in code generically with Page.Form. For example, this: ToggleControl ctrl = new ToggleControl(frmManualEntry, FunctionLibrary.ParseArrayLst(userObj.Roles)); Becomes this: ToggleControl ctrl = new ToggleControl(Page.Form, FunctionLibrary.ParseArrayLst(userObj.Roles)); Generally the form id is referenced in most ASP.NET applications as a path to a control on the form. To reach the control once a MasterPage has been added requires an additional method to recurse through the controls collections within the form and find the control ID. The following method (found at Rick Strahl's Web Log) corrects this very nicely: public static Control FindControlRecursive(Control Root, string Id) { if (Root.ID == Id) return Root; foreach (Control Ctl in Root.Controls) { Control FoundCtl = FindControlRecursive(Ctl, Id); if (FoundCtl != null) return FoundCtl; } return null; } Where the form name is not referenced, simply using the FindControlRecursive method in place of FindControl will be all that is necessary. Following the second part of the example referenced earlier, the method called with Page.Form changes its value extraction code block from this: Label lblErrMsg = (Label)frmRef.FindControl("lblBRMsg" To this: Label lblErrMsg = (Label) FunctionLibrary.FindControlRecursive(frmRef, "lblBRMsg" The Master That Won’t Step Aside In most migrations it is preferable to make as few changes as possible. In one case I ran across an existing Master Page that would not function as a sub-Master Page. While it would probably have been educational to trace down why, the expedient process of updating it to take the place of the WSRP Master Page is the route I took. The changes are highlighted below: … <asp:ContentPlaceHolder ID="wsrphead" runat="server"></asp:ContentPlaceHolder> </head> <body leftMargin="0" topMargin="0"> <form id="TheForm" runat="server"> <input type="hidden" name="key" id="key" value="" /> <input type="hidden" name="formactionurl" id="formactionurl" value="" /> <input type="hidden" name="handle" id="handle" value="" /> <asp:ScriptManager ID="ScriptManager1" runat="server" EnablePartialRendering="true" > </asp:ScriptManager> This approach did not work for all existing Master Pages, but fortunately all of the other existing Master Pages I have run across worked fine as a sub-Master to the WSRP Master Page. Moving On In Enterprise Portals, even after you get everything working, the work is not finished. Next you need to get it where everyone will work with it. Migration Planning Providing that the server where IIS is running is adequately sized, it is possible to run both the .NET Accelerator and the WSRP Producer on the same server during the upgrade process. The upgrade can be performed incrementally, i.e., one portlet at a time, if server administration processes support it. Those processes would include the ability to manage a second producer in the consuming portal and to change over individual portlet instances from one provider to the other. If processes or requirements demand that all portlets be cut over at the same time, it needs to be determined if this cut over should include a new producer, updating all of the portlets in the consumer, or if the WSRP Producer portlet configuration must maintain the naming conventions used by the .NET Accelerator and simply change the WSRP end point configured in the consumer. In some enterprises it may even be necessary to maintain the same WSDL end point, at which point the IIS configuration will be where the updates occur. The downside to such a requirement is that it makes rolling back very difficult, should the need arise. Location, Location, Location Not everyone wants the web application to have the descriptively obvious wsrpdefault location, or needs to create a second WSRP site on the same server. The instructions below are from the product team and, while targeted towards making a second site, will work for creating a site with a different name and then remove the old site. You can also change just the name in IIS. Manually Creating a WSRP Producer Site Instructions (NOTE: all executables used are the same ones used by the installer and “wsrpdev” will be the name of the new instance): 1. Copy C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault to C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev. 2. Bring up a command window as an administrator 3. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\IISAppAccelSiteCreator.exe install WSRPProducers wsrpdev "C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev" 8678 2.0.50727 4. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev "NETWORK SERVICE" 3 1 5. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev EVERYONE 1 1 6. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\1.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev 7. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\2.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev Tests: 1. Bring up a browser on the host itself and go to http://localhost:8678/wsrpdev/wsdl/1.0/WSRPService.wsdl and make sure that the URLs in the XML returned include the wsrpdev changes you made in step 6. 2. Bring up a browser on the host itself and see if the default sample comes up: http://localhost:8678/wsrpdev/portlets/ASPNET_AJAX_sample/default.aspx 3. Register the producer in WLP and test the portlet. Changing the Port used by WSRP Producer The pre-configured port for the WSRP Producer is 8678. You can change this port by updating both the IIS configuration and C:\Oracle\Middleware\WSRPProducerForDotNet\[WSRP_APP_NAME]\wsdl\1.0\WSRPService.wsdl. Do You Need to Migrate? Oracle Premier Support ended in November of 2010 for AquaLogic Interaction .NET Application Accelerator 1.x and Extended Support ends in November 2012 (see http://www.oracle.com/us/support/lifetime-support/lifetime-support-software-342730.html for other related dates). This means that integration with products released after November of 2010 is not supported. If having such support is the policy within your enterprise, you do indeed need to migrate. If changes in your enterprise cause your current solution with the .NET Accelerator to no longer function properly, you may need to migrate. Migration is a choice, and if the goals of your enterprise are to take full advantage of newer technologies then migration is certainly one activity you should be planning for.

    Read the article

  • Asp.net session on browser close

    - by budugu
    Note: Cross posted from Vijay Kodali's Blog. Permalink How to capture logoff time when user closes browser? Or How to end user session when browser closed? These are some of the frequently asked questions in asp.net forums. In this post I'll show you how to do this when you're building an ASP.NET web application. Before we start, one fact: There is no full-proof technique to catch the browser close event for 100% of time. The trouble lies in the stateless nature of HTTP. The Web server is out of the picture as soon as it finishes sending the page content to the client. After that, all you can rely on is a client side script. Unfortunately, there is no reliable client side event for browser close. Solution: The first thing you need to do is create the web service. I've added web service and named it AsynchronousSave.asmx.    Make this web service accessible from Script, by setting class qualified with the ScriptServiceAttribute attribute...  Add a method (SaveLogOffTime) marked with [WebMethod] attribute. This method simply accepts UserId as a string variable and writes that value and logoff time to text file. But you can pass as many variables as required. You can then use this information for many purposes. To end user session, you can just call Session.Abandon() in the above web method. To enable web service to be called from page’s client side code, add script manager to page. Here i am adding to SessionTest.aspx page When the user closes the browser, onbeforeunload event fires on the client side. Our final step is adding a java script function to that event, which makes web service calls. The code is simple but effective My Code HTML:( SessionTest.aspx ) C#:( SessionTest.aspx.cs ) That’s’ it. Run the application and after browser close, open the text file to see the log off time. The above code works well in IE 7/8. If you have any questions, leave a comment.

    Read the article

  • ASP.NET developers build rich management system using the VWG extension

    - by Visual WebGui
    When The Center for Organ Recovery & Education (CORE) decided they needed a web application to allow easy access to the expenses management system they initially went to ASP.NET web forms combined with CSS. The outcome, however, was not satisfying enough as it appeared bland and lacked in richness. So in order to enrich the UI and give the web application some glitz, Visual WebGui was selected. Visual WebGui provided the needed richness and the familiar Windows look and feel also made the transition...(read more)

    Read the article

  • Where is .NET Framework 4.5 directory located?

    - by Evgeni Nabokov
    I installed .NET Framework 4.5 on Windows 7 Enterprise SP1 64 bit. When I looked in C:\Windows\Microsoft.NET\Framework (Framework64) directory, I did not see any directory containing files of .NET Framework 4.5, just those: v1.0.3705 v1.1.4322 v2.0.50727 v3.0 v3.5 v4.0.30319 Installing the .NET Framework 4.5 says: The .NET Framework 4.5 replaces the .NET Framework 4. When you install the .NET Framework 4.5 on a system that has the .NET Framework 4 installed, the assemblies are replaced. Thereby, 4.5's files are located in v4.0.30319 directory. Am I right?

    Read the article

  • Great Free Courses on Building HTML5 apps using ASP.NET Web API, Knockout.js and jQuery

    - by ScottGu
    Pluralsight has developed some great training courses on the new .NET 4.5 and VS 2012 release, including two fantastic courses from John Papa that cover how to build HTML5 web apps using ASP.NET Web API, Knockout and jQuery: Single Page Apps with HTML5, Web API, Knockout and jQuery Building HTML5 and JavaScript Apps with MVVM and Knockout Free 1-Month Subscription to the Courses Pluralsight is offering a special promotion that allows you to get a free 1-month subscription to watch the above courses at no cost.  There is no obligation to buy anything at the end of the offer and you don’t need to supply a credit card in order to take part in it. To get access to the course you simply follow @pluralsight and @john_papa on Twitter and then visit this page and enter your Twitter name using the form on it.  Pluralsight will then send you a private twitter message containing the access code that you can use to subscribe to the courses (and download the course exercise files).  Once you are subscribed to the course you have one month to watch the course (and you can watch it as many times as you want during the month). Pluralsight is running the promotion through Sept 18th – so sign-up now to get access.  Once you are signed up you then have a month to watch the course. Hope this helps, Scott P.S. And if you are new to Twitter you can also optionally follow me: @scottgu

    Read the article

  • Hijacking ASP.NET Sessions

    - by Ricardo Peres
    So, you want to be able to access other user’s session state from the session id, right? Well, I don’t know if you should, but you definitely can do that! Here is an extension method for that purpose. It uses a bit of reflection, which means, it may not work with future versions of .NET (I tested it with .NET 4.0/4.5). 1: public static class HttpApplicationExtensions 2: { 3: private static readonly FieldInfo storeField = typeof(SessionStateModule).GetField("_store", BindingFlags.NonPublic | BindingFlags.Instance); 4:  5: public static ISessionStateItemCollection GetSessionById(this HttpApplication app, String sessionId) 6: { 7: var module = app.Modules["Session"] as SessionStateModule; 8:  9: if (module == null) 10: { 11: return (null); 12: } 13:  14: var provider = storeField.GetValue(module) as SessionStateStoreProviderBase; 15:  16: if (provider == null) 17: { 18: return (null); 19: } 20:  21: Boolean locked; 22: TimeSpan lockAge; 23: Object lockId; 24: SessionStateActions actions; 25:  26: var data = provider.GetItem(HttpContext.Current, sessionId.Trim(), out locked, out lockAge, out lockId, out actions); 27:  28: if (data == null) 29: { 30: return (null); 31: } 32:  33: return (data.Items); 34: } 35: } As you can see, it extends the HttpApplication class, that is because we need to access the modules collection, for the Session module. Use with care!

    Read the article

  • MS Chart with ASP.NET chart type "column" not showing axis x label if there are more than 9 bar in t

    - by Bayonian
    Hi, I'm having problem with MS Chart chart type column. If there are only 9 bar in the chart like the following picture, then the axis-x label show up properly. However, there are more than 9 bars bar the chart, the axis-x label wont show up properly, some of them just dissappear. Here's my mark-up for the chart: <asp:Chart ID="chtNBAChampionships" runat="server"> <Series> <asp:Series Name="Championships" YValueType="Int32" Palette="Berry" ChartType="Column" ChartArea="MainChartArea" IsValueShownAsLabel="true"> <Points> <asp:DataPoint AxisLabel="Celtics" YValues="17" /> <asp:DataPoint AxisLabel="Lakers" YValues="15" /> <asp:DataPoint AxisLabel="Bulls" YValues="6" /> <asp:DataPoint AxisLabel="Spurs" YValues="4" /> <asp:DataPoint AxisLabel="76ers" YValues="3" /> <asp:DataPoint AxisLabel="Pistons" YValues="3" /> <asp:DataPoint AxisLabel="Warriors" YValues="3" /> <asp:DataPoint AxisLabel="Mara" YValues="4" /> <asp:DataPoint AxisLabel="Saza" YValues="9" /> <asp:DataPoint AxisLabel="Buha" YValues="6" /> </Points> </asp:Series> </Series> <ChartAreas> <asp:ChartArea Name="MainChartArea"> </asp:ChartArea> </ChartAreas> </asp:Chart> I don't know it works with only 9 bars? Is there any way to make the chart work properly? Also, if possible, how to make each bar have different color. Thank you.

    Read the article

  • How can I convert a bunch of .asp to .aspx ?

    - by Jerome WAGNER
    Hello, I want to port an existing, legacy, ecommerce website from ASP to ASP.NET. What approaches do I have ? is there a way to run an ASP file with an ASP.NET engine ? are there tools to automatically convert ASP to ASP.NET and do they work on complex websites ? other approaches ? Thanks for your help Jerome Wagner

    Read the article

  • ASP.NET: Custom MembershipProvider with a custom user table

    - by blahblah
    I've recently started tinkering with ASP.NET MVC, but this question should apply to classic ASP.NET as well. For what it's worth, I don't know very much about forms authentication and membership providers either. I'm trying to write my own MembershipProvider which will be connected to my own custom user table in my database. My user table contains all of the basic user information such as usernames, passwords, password salts, e-mail addresses and so on, but also information such as first name, last name and country of residence. As far as I understand, the standard way of doing this in ASP.NET is to create a user table without the extra information and then a "profile" table with the extra information. However, this doesn't sound very good to me, because whenever I need to access that extra information I would have to make one extra database query to get it. I read in the book "Pro ASP.NET 3.5 in C# 2008" that having a separate table for the profiles is not a very good idea if you need to access the profile table a lot and have many different pages in your website. Now for the problem at hand... As I said, I'm writing my own custom MembershipProvider subclass and it's going pretty well so far, but now I've come to realize that the CreateUser doesn't allow me to create users in the way I'd like. The method only takes a fixed number of arguments and first name, last name and country of residence are not part of them. So how would I create an entry for the new user in my custom table without this information at hand in CreateUser of my MembershipProvider?

    Read the article

  • Creating a dynamic proxy generator with c# – Part 4 – Calling the base method

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors   The plan for calling the base methods from the proxy is to create a private method for each overridden proxy method, this will allow the proxy to use a delegate to simply invoke the private method when required. Quite a few helper classes have been created to make this possible so as usual I would suggest download or viewing the code at http://rapidioc.codeplex.com/. In this post I’m just going to cover the main points for when creating methods. Getting the methods to override The first two notable methods are for getting the methods. private static MethodInfo[] GetMethodsToOverride<TBase>() where TBase : class {     return typeof(TBase).GetMethods().Where(x =>         !methodsToIgnore.Contains(x.Name) &&                              (x.Attributes & MethodAttributes.Final) == 0)         .ToArray(); } private static StringCollection GetMethodsToIgnore() {     return new StringCollection()     {         "ToString",         "GetHashCode",         "Equals",         "GetType"     }; } The GetMethodsToIgnore method string collection contains an array of methods that I don’t want to override. In the GetMethodsToOverride method, you’ll notice a binary AND which is basically saying not to include any methods marked final i.e. not virtual. Creating the MethodInfo for calling the base method This method should hopefully be fairly easy to follow, it’s only function is to create a MethodInfo which points to the correct base method, and with the correct parameters. private static MethodInfo CreateCallBaseMethodInfo<TBase>(MethodInfo method) where TBase : class {     Type[] baseMethodParameterTypes = ParameterHelper.GetParameterTypes(method, method.GetParameters());       return typeof(TBase).GetMethod(        method.Name,        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        baseMethodParameterTypes,        null     ); }   /// <summary> /// Get the parameter types. /// </summary> /// <param name="method">The method.</param> /// <param name="parameters">The parameters.</param> public static Type[] GetParameterTypes(MethodInfo method, ParameterInfo[] parameters) {     Type[] parameterTypesList = Type.EmptyTypes;       if (parameters.Length > 0)     {         parameterTypesList = CreateParametersList(parameters);     }     return parameterTypesList; }   Creating the new private methods for calling the base method The following method outline how I’ve created the private methods for calling the base class method. private static MethodBuilder CreateCallBaseMethodBuilder(TypeBuilder typeBuilder, MethodInfo method) {     string callBaseSuffix = "GetBaseMethod";       if (method.IsGenericMethod || method.IsGenericMethodDefinition)     {                         return MethodHelper.SetUpGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     }     else     {         return MethodHelper.SetupNonGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     } } The CreateCallBaseMethodBuilder is the entry point method for creating the call base method. I’ve added a suffix to the base classes method name to keep it unique. Non Generic Methods Creating a non generic method is fairly simple public static MethodBuilder SetupNonGenericMethod(     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       Type returnType = method.ReturnType;       MethodBuilder methodBuilder = CreateMethodBuilder         (             typeBuilder,             method,             methodName,             methodAttributes,             parameterTypes,             returnType         );       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static MethodBuilder CreateMethodBuilder (     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes,     Type[] parameterTypes,     Type returnType ) { MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, methodAttributes, returnType, parameterTypes); return methodBuilder; } As you can see, you simply have to declare a method builder, get the parameter types, and set the method attributes you want.   Generic Methods Creating generic methods takes a little bit more work. /// <summary> /// Sets up generic method. /// </summary> /// <param name="typeBuilder">The type builder.</param> /// <param name="method">The method.</param> /// <param name="methodName">Name of the method.</param> /// <param name="methodAttributes">The method attributes.</param> public static MethodBuilder SetUpGenericMethod     (         TypeBuilder typeBuilder,         MethodInfo method,         string methodName,         MethodAttributes methodAttributes     ) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName,         methodAttributes);       Type[] genericArguments = method.GetGenericArguments();       GenericTypeParameterBuilder[] genericTypeParameters =         GetGenericTypeParameters(methodBuilder, genericArguments);       ParameterHelper.SetUpParameterConstraints(parameterTypes, genericTypeParameters);       SetUpReturnType(method, methodBuilder, genericTypeParameters);       if (method.IsGenericMethod)     {         methodBuilder.MakeGenericMethod(genericArguments);     }       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static GenericTypeParameterBuilder[] GetGenericTypeParameters     (         MethodBuilder methodBuilder,         Type[] genericArguments     ) {     return methodBuilder.DefineGenericParameters(GenericsHelper.GetArgumentNames(genericArguments)); }   private static void SetUpReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.IsGenericMethodDefinition)     {         SetUpGenericDefinitionReturnType(method, methodBuilder, genericTypeParameters);     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     } }   private static void SetUpGenericDefinitionReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.ReturnType == null)     {         methodBuilder.SetReturnType(typeof(void));     }     else if (method.ReturnType.IsGenericType)     {         methodBuilder.SetReturnType(genericTypeParameters.Where             (x => x.Name == method.ReturnType.Name).First());     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     }             } Ok, there are a few helper methods missing, basically there is way to much code to put in this post, take a look at the code at http://rapidioc.codeplex.com/ to follow it through completely. Basically though, when dealing with generics there is extra work to do in terms of getting the generic argument types setting up any generic parameter constraints setting up the return type setting up the method as a generic All of the information is easy to get via reflection from the MethodInfo.   Emitting the new private method Emitting the new private method is relatively simple as it’s only function is calling the base method and returning a result if the return type is not void. ILGenerator il = privateMethodBuilder.GetILGenerator();   EmitCallBaseMethod(method, callBaseMethod, il);   private static void EmitCallBaseMethod(MethodInfo method, MethodInfo callBaseMethod, ILGenerator il) {     int privateParameterCount = method.GetParameters().Length;       il.Emit(OpCodes.Ldarg_0);       if (privateParameterCount > 0)     {         for (int arg = 0; arg < privateParameterCount; arg++)         {             il.Emit(OpCodes.Ldarg_S, arg + 1);         }     }       il.Emit(OpCodes.Call, callBaseMethod);       il.Emit(OpCodes.Ret); } So in the main method building method, an ILGenerator is created from the method builder. The ILGenerator performs the following actions: Load the class (this) onto the stack using the hidden argument Ldarg_0. Create an argument on the stack for each of the method parameters (starting at 1 because 0 is the hidden argument) Call the base method using the Opcodes.Call code and the MethodInfo we created earlier. Call return on the method   Conclusion Now we have the private methods prepared for calling the base method, we have reached the last of the relatively easy part of the proxy building. Hopefully, it hasn’t been too hard to follow so far, there is a lot of code so I haven’t been able to post it all so please check it out at http://rapidioc.codeplex.com/. The next section should be up fairly soon, it’s going to cover creating the delegates for calling the private methods created in this post.   Kind Regards, Sean.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • Using dnnModal.show in your modules and content

    - by Chris Hammond
    One thing that was added in DotNetNuke 6 but hasn’t been covered in great detail is a method called dnnModal.show. Calling this method is fairly straight forward depending on your need, but before we get into how to call/use the method, let’s talk about what it does first. dnnModal.show is a method that gets called via JavaScript and allows you to load up a URL into a modal popup window within your DotNetNuke site. Basically it will take that URL and load it into an IFrame within the current DotNetNuke...(read more)

    Read the article

  • Using Take and skip keyword to filter records in LINQ

    - by vik20000in
    In LINQ we can use the take keyword to filter out the number of records that we want to retrieve from the query. Let’s say we want to retrieve only the first 5 records for the list or array then we can use the following query     int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };     var first3Numbers = numbers.Take(3); The TAKE keyword can also be easily applied to list of object in the following way. var first3WAOrders = (         from cust in customers         from order in cust.Orders         select cust ) .Take(3); [Note in the query above we are using the order clause so that the data is first ordered based on the orders field and then the first 3 records are taken. In both the above example we have been able to filter out data based on the number of records we want to fetch. But in both the cases we were fetching the records from the very beginning. But there can be some requirements whereby we want to fetch the records after skipping some of the records like in paging. For this purpose LINQ has provided us with the skip method which skips the number of records passed as parameter in the result set. int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; var allButFirst4Numbers = numbers.Skip(4); The SKIP keyword can also be easily applied to list of object in the following way. var first3WAOrders = (         from cust in customers         from order in cust.Orders         select cust ).Skip(3);  Vikram

    Read the article

  • Upgrading ASP.NET AJAX 1.0 Websites to .NET 4.5

    - by Lijo
    I have an existing website in ASP.Net 2.0 that uses ASP.Net Ajax 1.0. This is developed using Visual Studio 2005. Now, we are planning to upgrade this to .Net 4.5 and VS2013. When I made a search, I could see that there are blogs about upgrading projects with Ajax 1.0 to .Net 3.5 version. However I could not find useful links for upgrading to .Net 4.5. Do we have any useful links for that? Or is it an unworkable approach? Note: As of now we have not purchased VS2013 and servers for this. Purchase depends on the feasibility study. Hence I cannot test it myself, at present. Upgrading ASP.NET AJAX 1.0 Websites and Web Applications to .NET Framework 3.5 How To: Upgrade an ASP.NET AJAX 1.0 Web Project to .NET Framework 3.5

    Read the article

  • Visual Studio 2010 Released

    - by Latest Microsoft Blogs
    It's a big day at Microsoft today as Visual Studio 2010 officially releases. There's a lot going on with this release and I thought I'd do a big rollup post with lots of details and context to help you find your way to the information and Read More......(read more)

    Read the article

  • Filtering data in LINQ with the help of where clause

    - by vik20000in
     LINQ has bought with itself a super power of querying Objects, Database, XML, SharePoint and nearly any other data structure. The power of LINQ lies in the fact that it is managed code that lets you write SQL type code to fetch data.  Whenever working with data we always need a way to filter out the data based on different condition. In this post we will look at some of the different ways in which we can filter data in LINQ with the help of where clause. Simple Filter for an array. Let’s say we have an array of number and we want to filter out data based on some condition. Below is an example int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; var lowNums =                 from num in numbers                 where num < 5                 select num;   Filter based on one of the property in the class. With the help of LINQ we can also filer out data from a list based on value of some property. var soldOutProducts =                 from prod in products                 where prod.UnitsInStock == 0                 select prod; Filter based on Multiple of the property in the class. var expensiveInStockProducts =         from prod in products         where prod.UnitsInStock > 0 && prod.UnitPrice > 3.00M         select prod; Filter based on the index of the Item in the list.In the below example we can see that we are able to filter data based on the index of the item in the list. string[] digits = { "zero", "one", "two", "three", "four", "five", "six"}; var shortDigits = digits.Where((digit, index) => digit.Length < index); There are many other way in which we can filter out data in LINQ. In the above post I have tried and shown few ways using the LINQ. Vikram

    Read the article

  • S#arp Architecture 1.5.2 released

    - by AlecWhittington
    It has been a few weeks since S#arp Architecture 1.5 RTM has been released. While it was a major success a few issues were found that needed to be addressed. These mostly involved the Visual Studio templates. What's new in S#arp Architecture 1.5.2? Merged the SharpArch.* assemblies into a single assembly (SharpArch.dll) Updated both VS 2008 and 2010 templates to reflect the use of the merged assembly Updated SharpArch.build with custom script that allows the merging of the assemblies. Copys new merged...(read more)

    Read the article

  • Code refactoring with Visual Studio 2010 Part-1

    - by Jalpesh P. Vadgama
    Visual studio 2010 is a Great IDE(Integrated Development Environment) and we all are using it in day by day for our coding purpose. There are many great features provided by Visual Studio 2010 and Today I am going to show one of great feature called for code refactoring. This feature is one of the most unappreciated features of Visual Studio 2010 as lots of people still not using that and doing stuff manfully. So to explain feature let’s create a simple console application which will print first name and last name like following. And following is code for that. using System; namespace CodeRefractoring { class Program { static void Main(string[] args) { string firstName = "Jalpesh"; string lastName = "Vadgama"; Console.WriteLine(string.Format("FirstName:{0}",firstName)); Console.WriteLine(string.Format("LastName:{0}", lastName)); Console.ReadLine(); } } } So as you can see this is a very basic console application and let’s run it to see output. So now lets explore our first feature called extract method in visual studio you can also do that via refractor menu like following. Just select the code for which you want to extract method and then click refractor menu and then click extract method. Now I am selecting three lines of code and clicking on refactor –> Extract Method just like following. Once you click menu a dialog box will appear like following. As you can I have highlighted two thing first is Method Name where I put Print as Method Name and another one Preview method signature where its smart enough to extract parameter also as We have just selected three lines with  console.writeline.  One you click ok it will extract the method and you code will be like this. using System; namespace CodeRefractoring { class Program { static void Main(string[] args) { string firstName = "Jalpesh"; string lastName = "Vadgama"; Print(firstName, lastName); } private static void Print(string firstName, string lastName) { Console.WriteLine(string.Format("FirstName:{0}", firstName)); Console.WriteLine(string.Format("LastName:{0}", lastName)); Console.ReadLine(); } } } So as you can see in above code its has created a static method called Print and also passed parameter for as firstname and lastname. Isn’t that great!!!. It has also created static print method as I am calling it from static void main.  Hope you liked it.. Stay tuned for more..Till that Happy programming.

    Read the article

  • S#arp Architecture 1.5.1 released

    - by AlecWhittington
    So far we have had some great success with the 1.5 release of S#arp Architecture, but there were a few issues that made it into the release that needed to be corrected. These issues were: Unnecessary assemblies in the root /bin and SolutionItemsContainer folders Nant folder removed from root /bin - this was causing issues with the build scripts that come with the project if the user did not have Nant installed and available via a path variable VS 2010 template - the CrudScaffoldingForEnterpriseApp...(read more)

    Read the article

  • Encrypted Hidden Redux : Let's Get Salty

    - by HeartattacK
    In this article, Ashic Mahtab shows an elegant, reusable and unobtrusive way in which to persist sensitive data to the browser in hidden inputs and restoring them on postback without needing to change any code in controllers or actions. The approach is an improvement of his previous article and incorporates a per session salt during encryption. Note: Cross posted from Heartysoft.com. Permalink

    Read the article

  • New free DotNetNuke 7.0 Skin

    - by Chris Hammond
    With the pending release of DotNetNuke 7, scheduled for this week, I updated my free DotNetNuke (DNN) skin , MultiFunction v1.3 . This latest release requires DotNetNuke 7, it shouldn’t install on an earlier version of DNN. This release updates a number of the CSS classes for DNN 7 specific styles and objects. Overall the design of the skin doesn’t really change much, just cleans up CSS mainly for this release. I also updated to the 3.0 version of the Orangebox jQuery plugin, you can find the code...(read more)

    Read the article

  • ASP.NET and HTML5 Local Storage

    - by Stephen Walther
    My favorite feature of HTML5, hands-down, is HTML5 local storage (aka DOM storage). By taking advantage of HTML5 local storage, you can dramatically improve the performance of your data-driven ASP.NET applications by caching data in the browser persistently. Think of HTML5 local storage like browser cookies, but much better. Like cookies, local storage is persistent. When you add something to browser local storage, it remains there when the user returns to the website (possibly days or months later). Importantly, unlike the cookie storage limitation of 4KB, you can store up to 10 megabytes in HTML5 local storage. Because HTML5 local storage works with the latest versions of all modern browsers (IE, Firefox, Chrome, Safari), you can start taking advantage of this HTML5 feature in your applications right now. Why use HTML5 Local Storage? I use HTML5 Local Storage in the JavaScript Reference application: http://Superexpert.com/JavaScriptReference The JavaScript Reference application is an HTML5 app that provides an interactive reference for all of the syntax elements of JavaScript (You can read more about the application and download the source code for the application here). When you open the application for the first time, all of the entries are transferred from the server to the browser (all 300+ entries). All of the entries are stored in local storage. When you open the application in the future, only changes are transferred from the server to the browser. The benefit of this approach is that the application performs extremely fast. When you click the details link to view details on a particular entry, the entry details appear instantly because all of the entries are stored on the client machine. When you perform key-up searches, by typing in the filter textbox, matching entries are displayed very quickly because the entries are being filtered on the local machine. This approach can have a dramatic effect on the performance of any interactive data-driven web application. Interacting with data on the client is almost always faster than interacting with the same data on the server. Retrieving Data from the Server In the JavaScript Reference application, I use Microsoft WCF Data Services to expose data to the browser. WCF Data Services generates a REST interface for your data automatically. Here are the steps: Create your database tables in Microsoft SQL Server. For example, I created a database named ReferenceDB and a database table named Entities. Use the Entity Framework to generate your data model. For example, I used the Entity Framework to generate a class named ReferenceDBEntities and a class named Entities. Expose your data through WCF Data Services. I added a WCF Data Service to my project and modified the data service class to look like this:   using System.Data.Services; using System.Data.Services.Common; using System.Web; using JavaScriptReference.Models; namespace JavaScriptReference.Services { [System.ServiceModel.ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class EntryService : DataService<ReferenceDBEntities> { // This method is called only once to initialize service-wide policies. public static void InitializeService(DataServiceConfiguration config) { config.UseVerboseErrors = true; config.SetEntitySetAccessRule("*", EntitySetRights.All); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } // Define a change interceptor for the Products entity set. [ChangeInterceptor("Entries")] public void OnChangeEntries(Entry entry, UpdateOperations operations) { if (!HttpContext.Current.Request.IsAuthenticated) { throw new DataServiceException("Cannot update reference unless authenticated."); } } } }     The WCF data service is named EntryService. Notice that it derives from DataService<ReferenceEntitites>. Because it derives from DataService<ReferenceEntities>, the data service exposes the contents of the ReferenceEntitiesDB database. In the code above, I defined a ChangeInterceptor to prevent un-authenticated users from making changes to the database. Anyone can retrieve data through the service, but only authenticated users are allowed to make changes. After you expose data through a WCF Data Service, you can use jQuery to retrieve the data by performing an Ajax call. For example, I am using an Ajax call that looks something like this to retrieve the JavaScript entries from the EntryService.svc data service: $.ajax({ dataType: "json", url: “/Services/EntryService.svc/Entries”, success: function (result) { var data = callback(result["d"]); } });     Notice that you must unwrap the data using result[“d”]. After you unwrap the data, you have a JavaScript array of the entries. I’m transferring all 300+ entries from the server to the client when the application is opened for the first time. In other words, I transfer the entire database from the server to the client, once and only once, when the application is opened for the first time. The data is transferred using JSON. Here is a fragment: { "d" : [ { "__metadata": { "uri": "http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries(1)", "type": "ReferenceDBModel.Entry" }, "Id": 1, "Name": "Global", "Browsers": "ff3_6,ie8,ie9,c8,sf5,es3,es5", "Syntax": "object", "ShortDescription": "Contains global variables and functions", "FullDescription": "<p>\nThe Global object is determined by the host environment. In web browsers, the Global object is the same as the windows object.\n</p>\n<p>\nYou can use the keyword <code>this</code> to refer to the Global object when in the global context (outside of any function).\n</p>\n<p>\nThe Global object holds all global variables and functions. For example, the following code demonstrates that the global <code>movieTitle</code> variable refers to the same thing as <code>window.movieTitle</code> and <code>this.movieTitle</code>.\n</p>\n<pre>\nvar movieTitle = \"Star Wars\";\nconsole.log(movieTitle === this.movieTitle); // true\nconsole.log(movieTitle === window.movieTitle); // true\n</pre>\n", "LastUpdated": "634298578273756641", "IsDeleted": false, "OwnerId": null }, { "__metadata": { "uri": "http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries(2)", "type": "ReferenceDBModel.Entry" }, "Id": 2, "Name": "eval(string)", "Browsers": "ff3_6,ie8,ie9,c8,sf5,es3,es5", "Syntax": "function", "ShortDescription": "Evaluates and executes JavaScript code dynamically", "FullDescription": "<p>\nThe following code evaluates and executes the string \"3+5\" at runtime.\n</p>\n<pre>\nvar result = eval(\"3+5\");\nconsole.log(result); // returns 8\n</pre>\n<p>\nYou can rewrite the code above like this:\n</p>\n<pre>\nvar result;\neval(\"result = 3+5\");\nconsole.log(result);\n</pre>", "LastUpdated": "634298580913817644", "IsDeleted": false, "OwnerId": 1 } … ]} I worried about the amount of time that it would take to transfer the records. According to Google Chome, it takes about 5 seconds to retrieve all 300+ records on a broadband connection over the Internet. 5 seconds is a small price to pay to avoid performing any server fetches of the data in the future. And here are the estimated times using different types of connections using Fiddler: Notice that using a modem, it takes 33 seconds to download the database. 33 seconds is a significant chunk of time. So, I would not use the approach of transferring the entire database up front if you expect a significant portion of your website audience to connect to your website with a modem. Adding Data to HTML5 Local Storage After the JavaScript entries are retrieved from the server, the entries are stored in HTML5 local storage. Here’s the reference documentation for HTML5 storage for Internet Explorer: http://msdn.microsoft.com/en-us/library/cc197062(VS.85).aspx You access local storage by accessing the windows.localStorage object in JavaScript. This object contains key/value pairs. For example, you can use the following JavaScript code to add a new item to local storage: <script type="text/javascript"> window.localStorage.setItem("message", "Hello World!"); </script>   You can use the Google Chrome Storage tab in the Developer Tools (hit CTRL-SHIFT I in Chrome) to view items added to local storage: After you add an item to local storage, you can read it at any time in the future by using the window.localStorage.getItem() method: <script type="text/javascript"> window.localStorage.setItem("message", "Hello World!"); </script>   You only can add strings to local storage and not JavaScript objects such as arrays. Therefore, before adding a JavaScript object to local storage, you need to convert it into a JSON string. In the JavaScript Reference application, I use a wrapper around local storage that looks something like this: function Storage() { this.get = function (name) { return JSON.parse(window.localStorage.getItem(name)); }; this.set = function (name, value) { window.localStorage.setItem(name, JSON.stringify(value)); }; this.clear = function () { window.localStorage.clear(); }; }   If you use the wrapper above, then you can add arbitrary JavaScript objects to local storage like this: var store = new Storage(); // Add array to storage var products = [ {name:"Fish", price:2.33}, {name:"Bacon", price:1.33} ]; store.set("products", products); // Retrieve items from storage var products = store.get("products");   Modern browsers support the JSON object natively. If you need the script above to work with older browsers then you should download the JSON2.js library from: https://github.com/douglascrockford/JSON-js The JSON2 library will use the native JSON object if a browser already supports JSON. Merging Server Changes with Browser Local Storage When you first open the JavaScript Reference application, the entire database of JavaScript entries is transferred from the server to the browser. Two items are added to local storage: entries and entriesLastUpdated. The first item contains the entire entries database (a big JSON string of entries). The second item, a timestamp, represents the version of the entries. Whenever you open the JavaScript Reference in the future, the entriesLastUpdated timestamp is passed to the server. Only records that have been deleted, updated, or added since entriesLastUpdated are transferred to the browser. The OData query to get the latest updates looks like this: http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries?$filter=(LastUpdated%20gt%20634301199890494792L) If you remove URL encoding, the query looks like this: http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries?$filter=(LastUpdated gt 634301199890494792L) This query returns only those entries where the value of LastUpdated > 634301199890494792 (the version timestamp). The changes – new JavaScript entries, deleted entries, and updated entries – are merged with the existing entries in local storage. The JavaScript code for performing the merge is contained in the EntriesHelper.js file. The merge() method looks like this:   merge: function (oldEntries, newEntries) { // concat (this performs the add) oldEntries = oldEntries || []; var mergedEntries = oldEntries.concat(newEntries); // sort this.sortByIdThenLastUpdated(mergedEntries); // prune duplicates (this performs the update) mergedEntries = this.pruneDuplicates(mergedEntries); // delete mergedEntries = this.removeIsDeleted(mergedEntries); // Sort this.sortByName(mergedEntries); return mergedEntries; },   The contents of local storage are then updated with the merged entries. I spent several hours writing the merge() method (much longer than I expected). I found two resources to be extremely useful. First, I wrote extensive unit tests for the merge() method. I wrote the unit tests using server-side JavaScript. I describe this approach to writing unit tests in this blog entry. The unit tests are included in the JavaScript Reference source code. Second, I found the following blog entry to be super useful (thanks Nick!): http://nicksnettravels.builttoroam.com/post/2010/08/03/OData-Synchronization-with-WCF-Data-Services.aspx One big challenge that I encountered involved timestamps. I originally tried to store an actual UTC time as the value of the entriesLastUpdated item. I quickly discovered that trying to work with dates in JSON turned out to be a big can of worms that I did not want to open. Next, I tried to use a SQL timestamp column. However, I learned that OData cannot handle the timestamp data type when doing a filter query. Therefore, I ended up using a bigint column in SQL and manually creating the value when a record is updated. I overrode the SaveChanges() method to look something like this: public override int SaveChanges(SaveOptions options) { var changes = this.ObjectStateManager.GetObjectStateEntries( EntityState.Modified | EntityState.Added | EntityState.Deleted); foreach (var change in changes) { var entity = change.Entity as IEntityTracking; if (entity != null) { entity.LastUpdated = DateTime.Now.Ticks; } } return base.SaveChanges(options); }   Notice that I assign Date.Now.Ticks to the entity.LastUpdated property whenever an entry is modified, added, or deleted. Summary After building the JavaScript Reference application, I am convinced that HTML5 local storage can have a dramatic impact on the performance of any data-driven web application. If you are building a web application that involves extensive interaction with data then I recommend that you take advantage of this new feature included in the HTML5 standard.

    Read the article

  • Is there any real benefit to using ASP.Net Authentication with ASP.Net MVC?

    - by alchemical
    I've been researching this intensely for the past few days. We're developing an ASP.Net MVC site that needs to support 100,000+ users. We'd like to keep it fast, scalable, and simple. We have our own SQL database tables for user and user_role, etc. We are not using server controls. Given that there are no server controls, and a custom membershipProvider would need to be created, where is there any benefit left to use ASP.Net Auth/Membership? The other alternative would seem to be to create custom code to drop a UniqueID CustomerID in a cookie and authenticate with that. Or, if we're paranoid about sniffers, we could encrypt the cookie as well. Is there any real benefit in this scenario (MVC and customer data is in our own tables) to using the ASP.Net auth/membership framework, or is the fully custom solution a viable route?

    Read the article

  • ASP.NET MVC on IIS6

    - by Seb Nilsson
    Where can I find some good pointers on best practices for running ASP.NET MVC on IIS6? I haven't seen any realistic options for web-hosts who provide IIS7-hosting yet. Mostly because I don't live in the U.S. So I was wondering on how you best build applications in ASP.NET MVC and make it easily available to deploy on both IIS6 and IIS7. Keep in mind that this is for standard web-hosts, so there is no access to ISAPI-filters or special settings inside IIS6. Are there anything else one should think about when developing ASP.NET MVC-applications to target IIS6? Any functions that doesn't work? UPDATE: One of the bigger issues is the thing with routes. The pattern {controller}/{action} will work on IIS7, but not IIS6 which needs {controller}.mvc/{action}. So how do I make this transparent? Again, no ISAPI and no IIS-settings, please.

    Read the article

< Previous Page | 14 15 16 17 18 19 20 21 22 23 24 25  | Next Page >