Search Results

Search found 18119 results on 725 pages for 'shared memory'.

Page 185/725 | < Previous Page | 181 182 183 184 185 186 187 188 189 190 191 192  | Next Page >

  • Prevent the "System" process from locking my files in a shared folder.

    - by Kamarey
    I have an application that creates files to be processed by SQL bulk. The files are created in shared folder on another server and than taken from there by SQL. The problem that sometime SQL returns an error, that the file is locked by another process and can't be accessed. The process that locks these files is "System" process. Looks like it lock files because of they are in a shared folder, but not sure. The use of any software to unlock files manually is not an option, as all bulk process is automatic. The question is: Why the "System" process locks these files and is there a way to prevent this?

    Read the article

  • How can I open a shared sub calendar in Outlook 2010?

    - by Matt Love
    There is a team in my office that has a shared calendar (the team calendar is set up as a user in Active Directory/Exchange, so treat the team as a user). The team also has 3 sub-calendars for the different team members. Other people in the office need to be able to access this team's calendar. They can go to Open Calendar in Outlook and see the main calendar, but they cannot see the sub-calendars. The sub-calendars all have the Default user permissions set to Reviewer. If you go to File → Account Settings → Change [logged in Exchange account] → More Settings → Advanced and add the team's mailbox, it does show the calendars in Outlook, but it comes up under My Calendars instead of Shared Calendars. We need to be able to go to Open Calendar and open the calendar and open all the sub-calendars this way. How is this possible?

    Read the article

  • TechEd 2014 Day 3

    - by John Paul Cook
    There is some confusion about durability of data stored in SQL Server in-memory tables, so some review of the concepts is appropriate. The in-memory option is enabled at the database level. Enabling it at the database level only gives you the option to specify the in-memory feature on a table by table basis. No existing tables or new tables will by default become in-memory tables when you enable the feature at the database level. If you choose to make a table an in-memory table, by default it is...(read more)

    Read the article

  • Windows 7 -Can't get access to shared folder from one computer to another.

    - by Carbonara
    I have 2 windows 7 computers and i'm trying to share a folder (that I want password protection on) outside of the homegroup. Both computers are part of the same workgroup and I have the same user account/password combination on both computers plus I have password protected sharing turned on in the network and sharing centre along with file and printer sharing turned on. On computer 1 I have right clicked and selected that I want the folder shared. When I navigate via the network on computer 2 to computer 1 the shared folder shows up on computer 2 but double clicking on it to open it gives me an alert saying I don't have permission to access it, no option to type in the user name and password (according to the help files I shouldn't even need to type the password in if both computers have the same username/password anyway but would need it if I'm logged in as a different user). It's just a blanket denial of access.

    Read the article

  • Is it possible to track down who or what changed a shared permission?

    - by user45574
    Today I received an email from one of my users asking why he couldn’t access his shared folder on one of our servers. Example: \\servername\share\ = access denied. When I checked the share permissions on the folder I was surprised to see that the user had been removed from the "shared permissions" list. Now my question is: Is it possible to track who or what deleted the users share permissions on the folder? I have studied the different event logs, but couldn’t find any indication of anyone who had changed the share permissions. Kind Regards Martin

    Read the article

  • How long does it take in practice to warm up large in-memory databases?

    - by Sim
    Companies such as Peak Hosting are offering 64 core machines with 512Gb RAM for $2K/month. This is a very interesting choice for in-memory databases such as Memcached/Redis as well as databases whose performance degrades rapidly when the data & indexes don't fit in RAM, such as MongoDB. My main concern with monster machines such as these is the time it takes to warm up an in-memory database. In my experience, theoretical metrics, e.g., that SATA can load 100Mb/sec, fall short of what happens in practice. Even at that rate, 100Mb/sec means that loading up 512Gb RAM machine from SATA disks can take over 1 1/2 hours (!). I am looking for real-world reports of warm-up times for machines with very large memory. Please, share details of the software on the machine, data size, storage configuration, e.g., SATA or SSD, network, hosting/cloud provider, if relevant, etc.

    Read the article

  • Why OS X use swap when there is lots of "inactive memory"?

    - by Balchev
    I am using OS X from few months (Lion and now Mountain Lion). I have 8 GB on my mini and almost daily now it get close to that. On Windows 7 machine with 8 GB I never had that kind of problem. Anyway, I read over the net, that the inactive memory is app cache of the programs that are recently closed and can be used for faster reopening.And this inactive memory can be released to a new app if needed. It is not released. Instead OS X starts swapping. So my question is why OS X use swap when there is lots of "inactive memory"? Here a screen that shows what I mean: I really hope there is a away to make OS X to use those 2.69 GB before start swapping.I really do.

    Read the article

  • Why does using 2 memory sticks cause my computer to crash?

    - by hi
    My computer randomly crashes when playing games, but if I remove one memory stick (it does not matter which one I remove), it does not crash anymore. Memory tests do not find errors, I just put in a new power supply (650W), I only have 1 graphics card, so why is this happening? BTW, they are the same memory, same vendor same specs, everything I bought it together (2x2GB) My motherboard is a Asus P5Q Pro, so it supports both dual channel and more than 4gb. Switching slots does nothing, as long as I don't use more than 1 I'm fine.

    Read the article

  • How do I push a new project to a shared Mercurial multi-repository?

    - by j-g-faustus
    I have a local machine ("laptop") and a shared Mercurial repository on another machine ("server"). The shared repository is set up as a multi-repository as described in the Mercurial documentation using Apache, the hgwebdir.cgi script and Mercurial 1.4. The setup works in the sense that I can browse the projects (repositories) in the web browser, I can clone and pull from the server, and I can push from the laptop when the project/repository already exists on the server. But I cannot create a new project on the laptop (hg init, do stuff, hg commit) and push it to the shared multi-repository (hg push http://server/hg/my-new-project-name) - I get "abort: HTTP Error 404: Not Found", presumably because the directory/project repository does not exist yet. How can I push a new project/directory structure to a Mercurial running elsewhere? I couldn't find anything in the documentation, how do you guys do it?

    Read the article

  • Having all Views in the Shared folder - works but is throwing "caught exceptions". Performance conc

    - by Scott
    Hi everyone, I have a simple but heavily used app done in VS2010/MVC2. I didn't like having separate folders for each view/controller and so have all the views in the Shared folder. It's working fine but while debugging in VS, I noticed that it's throwing IO "caught exceptions" since it seems to be looking in the [FolderName]/[ViewName] folder before going down to the Shared folder. Again, the app runs fine but I'm concerned that all these "caught exceptions" will have a minor performance impact since they do have a cost in via the CLR. Is there any way I can configure the Routing so that it will only look in the Shared folder? Thanks.

    Read the article

  • I asked this yesterday, after the input given I'm still having trouble implementing..

    - by Josh
    I'm not sure how to fix this or what I did wrong, but whenever I enter in a value it just closes out the run prompt. So, seems I do have a problem somewhere in my coding. Whenever I run the program and input a variable, it always returns the same answer.."The content at location 76 is 0." On that note, someone told me that "I don't know, but I suspect that Program A incorrectly has a fixed address being branched to on instructions 10 and 11." - mctylr but I'm not sure how to fix that.. I'm trying to figure out how to incorporate this idea from R Samuel Klatchko.. I'm still not sure what I'm missing but I can't get it to work.. const int OP_LOAD = 3; const int OP_STORE = 4; const int OP_ADD = 5; ... const int OP_LOCATION_MULTIPLIER = 100; mem[0] = OP_LOAD * OP_LOCATION_MULTIPLIER + ...; mem[1] = OP_ADD * OP_LOCATION_MULTIPLIER + ...; operand = memory[ j ] % OP_LOCATION_MULTIPLIER; operation = memory[ j ] / OP_LOCATION_MULTIPLIER; I'm new to programming, I'm not the best, so I'm going for simplicity. Also this is an SML program. Anyway, this IS a homework assignment and I'm wanting a good grade on this. So I was looking for input and making sure this program will do what I'm hoping they are looking for. Anyway, here are the instructions: Write SML (Simpletron Machine language) programs to accomplish each of the following task: A) Use a sentinel-controlled loop to read positive number s and compute and print their sum. Terminate input when a neg number is entered. B) Use a counter-controlled loop to read seven numbers, some positive and some negative, and compute + print the avg. C) Read a series of numbers, and determine and print the largest number. The first number read indicates how many numbers should be processed. Without further a due, here is my program. All together. int main() { const int READ = 10; const int WRITE = 11; const int LOAD = 20; const int STORE = 21; const int ADD = 30; const int SUBTRACT = 31; const int DIVIDE = 32; const int MULTIPLY = 33; const int BRANCH = 40; const int BRANCHNEG = 41; const int BRANCHZERO = 41; const int HALT = 43; int mem[100] = {0}; //Making it 100, since simpletron contains a 100 word mem. int operation; //taking the rest of these variables straight out of the book seeing as how they were italisized. int operand; int accum = 0; // the special register is starting at 0 int j; // This is for part a, it will take in positive variables in a sent-controlled loop and compute + print their sum. Variables from example in text. memory [0] = 1010; memory [01] = 2009; memory [02] = 3008; memory [03] = 2109; memory [04] = 1109; memory [05] = 4300; memory [06] = 1009; j = 0; //Makes the variable j start at 0. while ( true ) { operand = memory[ j ]%100; // Finds the op codes from the limit on the memory (100) operation = memory[ j ]/100; //using a switch loop to set up the loops for the cases switch ( operation ){ case 10: //reads a variable into a word from loc. Enter in -1 to exit cout <<"\n Input a positive variable: "; cin >> memory[ operand ]; break; case 11: // takes a word from location cout << "\n\nThe content at location " << operand << "is " << memory[operand]; break; case 20:// loads accum = memory[ operand ]; break; case 21: //stores memory[ operand ] = accum; break; case 30: //adds accum += mem[operand]; break; case 31: // subtracts accum-= memory[ operand ]; break; case 32: //divides accum /=(memory[ operand ]); break; case 33: // multiplies accum*= memory [ operand ]; break; case 40: // Branches to location j = -1; break; case 41: //branches if acc. is < 0 if (accum < 0) j = 5; break; case 42: //branches if acc = 0 if (accum == 0) j = 5; break; case 43: // Program ends exit(0); break; } j++; } return 0; }

    Read the article

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

  • How does the linux kernel manage less than 1GB physical memory ?

    - by TheLoneJoker
    I'm learning the linux kernel internals and while reading "Understanding Linux Kernel", quite a few memory related questions struck me. One of them is, how the Linux kernel handles the memory mapping if the physical memory of say only 512 MB is installed on my system. As I read, kernel maps 0(or 16) MB-896MB physical RAM into 0xC0000000 linear address and can directly address it. So, in the above described case where I only have 512 MB: How can the kernel map 896 MB from only 512 MB ? What about user mode processes in this situation? Where are user mode processes in phys RAM? Every article explains only the situation, when you've installed 4 GB of memory and the kernel maps the 1 GB into kernel space and user processes uses the remaining amount of RAM. I would appreciate any help in improving my understanding. Thanks..!

    Read the article

  • Why 2 GB memory limit when running in 64 bit Windows ?

    - by Roland Bengtsson
    I'm a member in a team that develop a Delphi application. The memory requirements are huge. 500 MB is normal but in some cases it got out of memory exception. The memory allocated in that cases is typically between 1000 - 1700 MB. We of course want 64-bits compiler but that won't happen now (and if it happens we also must convert to unicode, but that is another story...). My question is why is there a 2 GB memory limit per process when running in a 64 bit environment. The pointer is 32 bit so I think 4 GB would be the right limit. I use Delphi 2007.

    Read the article

  • Problem in migrating to LAMP from XAMPP.. Memory limit error

    - by Geshan
    I was using XAMPP for my local machine but as I wanted to run applications like mysql work bench and some test frameworks I decided to switch to LAMP self install. I'm using ubuntu and followed the instructions at: https://help.ubuntu.com/community/ApacheMySQLPHP But the problem is LAMP is consuming too much of my memory (RAM) I've allocated 124 MB currently but still it gives me memory exhausted error when I run Drush (Drupal command line). When I do drush cc to clear cache it give me the following: Fatal error: Allowed memory size of 33554432 bytes exhausted (tried to allocate 122880 bytes) in /var/www/----/sites/all/modules/ubercart/uc_order/uc_order.order_pane.inc on line 150 Call Stack: 0.0020 185624 1. {main}() /opt/drush/drush.php:0 0.0254 1303672 2. drush_main() /opt/drush/drush.php:37 0.2674 5107784 3. drush_bootstrap() /opt/drush/drush.php:71 0.2676 5109872 4. _drush_bootstrap_drupal_full() /opt/drush/includes/environment.inc:173 0.2676 5151032 5. drupal_bootstrap() /opt/drush/includes/environment.inc:655 0.3030 7739048 6. _drupal_bootstrap() /var/www/missmoti/includes/bootstrap.inc:989 0.3122 8855792 7. _drupal_bootstrap_full() /var/www/missmoti/includes/bootstrap.inc:1078 0.3445 12387320 8. module_load_all() /var/www/missmoti/includes/common.inc:2608 0.5194 32586544 9. drupal_load() /var/www/missmoti/includes/module.inc:14 0.5251 33361112 10. include_once('/var/www/missmoti/sites/all/modules/ubercart/uc_order/uc_order.module') /var/www/-----/includes/bootstrap.inc:617 Drush command could not be completed. In each error it shows me a back trace and I guess this default debugger I'm not aware of in Apache or my PHP config it eating up the memory. If anyone can help I"d be glad. Another error below: Fatal error: Call to undefined function dsm() in /var/www/-----/sites/all/modules/custom/gtpath/gtpath.module on line 180 Call Stack # Time Memory Function Location 1 0.0002 120144 {main}( ) ../index.php:0 2 1.7604 68224112 theme( ) ../index.php:36 3 2.0188 77346112 call_user_func_array ( ) ../theme.inc:658 4 2.0188 77347024 gtpath_preprocess_page( ) ../theme.inc:0 how do I deal with this default debugger? how do I turn it off??

    Read the article

  • PHP Memory limit problem while creating xml of magento products..

    - by Jitendra
    Hello Masters, Thanks in advance, I need help in solving php memory problem, I have created a script in php that automatically fetch magento product data,the problem is that when there is large number of product in database, the script gives memory fatal error i have changed the memory limit to 256M in my php.ini but still the script not executing totally. i have checked the script its working fine if there is number of product is not too much but if there is larger number my script not working.. Please help... -Thanks Jitendra Dhobi

    Read the article

  • c++-to-python swig caused memory leak! Related to Py_BuildValue and SWIG_NewPointerObj

    - by usfree74
    Hey gurus, I have the following Swig code that caused memory leak. PyObject* FindBestMatch(const Bar& fp) { Foo* ptr(new Foo()); float match; // call a function to fill the foo pointer return Py_BuildValue( "(fO)", match, SWIG_NewPointerObj(ptr, SWIGTYPE_p_Foo, 0 /* own */)); } I figured that ptr is not freed properly. So I did the following: PyObject* FindBestMatch(const Bar& fp) { Foo* ptr(new Foo()); float match; // call a function to fill the foo pointer *PyObject *o = SWIG_NewPointerObj(ptr, SWIGTYPE_p_Foo, 1 /* own */);* <------- 1 means pass the ownership to python PyObject *result = Py_BuildValue("(fO)", match, o); Py_XDECREF(o); return result; } But I am not very sure whether this will cause memory corruption. Here, Py_XDECREF(o) will decrease the ref count, which can free memory used by object "o". But o is part of the return value "result". Freeing "o" can cause data corrupt, I guess? I tried my change. It works fine and the caller (python code) does see the expected data. But this could be because nobody else overwrites to that memory area. So what's the right way to deal with memory management of the above code? I search the swig docs, but don't see very concrete description. Please help! Thanks, xin

    Read the article

  • Can the memory used by MKMapView be released some how?

    - by gdr
    I am using an MKMapView in my iPhone application. When I load this view, the activity monitor instrument shows that the real memory of my App is increasing significantly. It keeps going up as you move the map around or zoom in and out. Once the View controller that loads this view is removed, the memory that was allocated due to the usage of the mapView does not get freed up. Is there something that can be done to get all this memory back?

    Read the article

  • Drupal site requires a higher memory limit after migration? Why?

    - by oalo
    Hello. We have a website which had a previous memory limit of 12 MB (12 MB in php.ini, and 16 MB in settings.php) and worked previously. After moving to a new server it started giving memory limit errors and displaying half-blank screen. We increaded the limit in both files (php.ini and settings.php) and now it works, but I dont understand how is it possible that now it needs a considerably larger amount of memory (it used to work with 12 MB, now it cont work with less than 20 MB).

    Read the article

  • how to find out how much application memory django process is (or will be) taking?

    - by photographer
    There are different "Application memory" options (like 80MB...200MB) in django-friendly hosting called webfaction and I'm confused deciding which one I should buy. Could someone please walk me through the ideas on how to figure out how much memory my project might require (excluding operating system, the main apache server and the database servers memory requirements)? I understand in theory I'll need to perform some kind of load testing, but thought there might be ways to calculate that in advance with some simple/relatively easy understandable approach. I don't know how hard they enforce application memory usage limit, and another question is: what will happen if more users came to the site and more threads started than what I expected? Will the application crash? Or will delays just become uncomfortable? And - no, application is not ready yet (I can't measure anything right now). Development environment if it matters is Winodows 7, 64-bit. Hosting itself is some kind of Linux I think. (Sorry if it's not a stackoverflow question.)

    Read the article

< Previous Page | 181 182 183 184 185 186 187 188 189 190 191 192  | Next Page >